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t. We show that two di�erent ideas of uniform spreading of lo-
ally �nite measures on the d-dimensional Eu
lidean spa
e are equivalent.The �rst idea is formulated in terms of �nite distan
e transportations tothe Lebesgue measure, while the se
ond idea is formulated in terms ofve
tor �elds 
onne
ting a given measure with the Lebesgue measure.1. Introdu
tionThis text aims to disentangle and make expli
it some ideas impli
it inour work [9℄. It 
an be read independently of [9℄.Given a lo
ally �nite nonnegative measure � on the Eu
lidean spa
e
Rd, we are interested to know how evenly the measure � is spread over Rd.First, we 
onsider 
ounting measures for dis
rete subsets X ⊂ Rd: �X =∑x∈X Æx where Æx is a unit measure sitting at x. Following La
zkovi
h [7,8℄, we say that the set X (and the measure �X ) are uniformly spread in
Rd if there exists a bije
tion S:Zd → X su
h that sup{|S(z) − z|: z ∈
Z
d} <∞. Equivalently, there exists a measurable map T :Rd → X 
alledthe marriage between the d-dimensional Lebesgue measure md and �X(also 
alled \mat
hing", \allo
ation") that pushes forward the Lebesguemeasure md to �X and is su
h that sup{|T (x)− x|:x ∈ Rd} <∞.To extend the notion of uniform spreading to arbitrary measures on

R
d, we use the idea of the mass transfer that goes ba
k to G. Monge andL. V. Kantorovi
h [5, Chapter VIII, §4℄. Let �1 and �2 be lo
ally �nitepositive measures on Rd. We 
all a positive lo
ally �nite measure 
 on

Rd ×Rd a transportation from �1 to �2 if 
 has marginals �1 and �2, thatis ∫∫

Rd×Rd �(x) d
(x; y) = ∫
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UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 117and ∫∫

Rd×Rd �(y) d
(x; y) = ∫

Rd �(y) d�2(y)for all 
ontinuous fun
tions �:Rd → R1 with 
ompa
t support. Note thatif there exists a map � :Rd → Rd that pushes forward �1 to �2, then the
orresponding transportation 
� is de�ned as follows:
∫∫

Rd×Rd  (x; y) d
� (x; y) = ∫

Rd  (x; �(x)) d�1(x)for an arbitrary 
ontinuous fun
tion  :Rd ×Rd → R1 with 
ompa
t sup-port.The better 
 is 
on
entrated near the diagonal of Rd × Rd, the 
loserthe measures �1 and �2 must be to ea
h other. We shall measure su
h a
on
entration in the L∞-norm and setTra(�1; �2) = inf
 ||x− y||L∞(
) = inf
 sup{|x− y|:x; y ∈ spt(
)} ∈ [0;∞℄;where the in�mum is taken over all transportations 
, and `spt' denotesthe 
losed support. Clearly, Tra(�1; �2) + Tra(�2; �3) > Tra(�1; �3). ByTra(�) = Tra(�;md) we denote the transportation distan
e between themeasure � and the Lebesgue measure md. If � = �X with a dis
rete setX ∈ Rd, then
onst ·Tra(�) 6 infS supx∈Zd |S(x)− x| 6 Const ·Tra(�)where the in�mum is taken over all bije
tions S:Zd → X . This follows, forinstan
e, from the lo
ally �nite marriage lemma dis
ussed two paragraphsbelow. Throughout the paper, `Const' and `
onst' mean positive 
onstantsthat depend only on the dimension d. The values of these 
onstants 
anbe 
hanged at ea
h o

urren
e.There exists a dual de�nition of the transportation distan
e Tra(�1; �2).The distan
e Di(�1; �2) is de�ned as the in�mum of r ∈ (0;∞) su
h that�1(B) 6 �2(B+r) and �2(B) 6 �1(B+r) (1.1)for ea
h bounded Borel set B ⊂ Rd. Here, B+r is the 
losed r-neighbourhood of B (a
tually, for our purposes, we 
ould take openneighbourhoods as well). The distan
e Di ranges from 0 to +∞, theboth ends are in
luded. We de�ne the dis
repan
y of the measure � asD(�) = Di(�;md). The following duality is 
lassi
al.



118 M. SODIN, B. TSIRELSONTheorem 1.2. Tra(�1; �2) = Di(�1; �2). In parti
ular, Tra(�) = D(�).For �nite measures �1 and �2, this follows from a result of Strassen [10,Theorem 11℄ and Sudakov [11℄. If the measures �1 and �2 are 
ountingmeasures of dis
rete sets X1 and X2, then this follows from a lo
ally�nite version of the marriage lemma due to M. Hall and R. Rado, seeLa
zkovi
h [8℄. Note that the lo
ally �nite marriage lemma asserts theexisten
e of a bije
tion between the sets X1 and X2 that is more thana transportation from �1 to �2. Theorem 1.2 was also mentioned in Gro-mov [3, Se
tion 3 12 ℄, though the exposition there is quite sket
hy. For thereader's 
onvenien
e, we re
all the proof in Appendix.A di�erent idea of 
onne
ting the measures � and md 
omes from po-tential theory. We say that a lo
ally integrable ve
tor �eld v 
onne
ts themeasures � and md if div v = � −md (in the weak sense), that is
∫

Rd 〈v(x);∇�(x)〉dmd(x) = −

∫

Rd �(x) d(� −md)(x)for all smooth 
ompa
tly supported fun
tions �:Rd → R1. It is easy to seethat su
h a �eld always exists. For instan
e, we 
an take v = ∇h, where his a solution to the Poisson equation �h = � −md in Rd. Su
h a solutionalways exist, for instan
e, due to a subharmoni
 version of Weierstrass'representation theorem [4, Theorem 4.1℄.Let B(x; r) be the ball of radius r 
entered at x, and let rB = B(0; r).Set �r = 1md(rB)1IrB where 1IrB is the indi
ator fun
tion of the ball rB. Wemeasure the size of the �eld v as follows.De�nition 1.3. For a lo
ally integrable ve
tor �eld v on Rd, we setRa(v) = infr>0 {r + ‖ v ∗ �r ‖∞} and R̃a(v) = infr>0 {r + ‖ |v| ∗ �r ‖∞} ;where ∗ denotes the 
onvolution.Evidently, Ra(v) 6 R̃a(v) 6 ‖v‖∞. Note that the multipli
ative group
R+ a
ts by s
aling on the measures and ve
tor �elds: �t(B) = �(tB),vt(x) = t−1v(tx). These a
tions are \
oordinated": if div v = �−md, thendiv vt = �t−md, and they are respe
ted by our de�nitions of Tra, Ra andR̃a: Tra(�t) = t−1Tra(�), Ra(vt) = t−1Ra(v), and R̃a(vt) = t−1R̃a(v).



UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 119Theorem 1.4. Let � be a nonnegative lo
ally �nite measure on Rd. Then
onst · infv R̃a(v) 6 Tra(�) 6 Const · infv Ra(v);where the in�mum is taken over all ve
tor �elds v 
onne
ting the measures� and md.This is the main result of this note. In the proof of the upper bound weuse duality and a
tually prove that D(�) 6 Const ·Ra(v). For this reason,our te
hnique gives no idea how transportations 
 may look like in the
ase when Tra(�) is �nite.Corollary 1.5. Let u be a C2-fun
tion on Rd su
h that �u = � −md.Then Tra(�) 6 Const√‖u‖∞ :One 
an juxtapose this 
orollary with 
lassi
al dis
repan
y estimatesdue to Erd}os and Tur�an and Ganelius. In [1℄, Ganelius proved that if �is a probability measure on the unit 
ir
umferen
e T ⊂ C, and m is thenormalized Lebesgue measure on T, thensupI |�(I)−m(I)| 6 Const√sup
T

U� ;where the supremum is taken over all ar
s I ⊂ T, andU�(z) = ∫ log |z − �| d�(�)is the logarithmi
 potential of the measure �. Sin
e Um vanishes on T, we
an rewrite this assupI |�(I) −m(I)| 6 Const√sup
T

U�−m:Note the supremum on the right-hand side, not the supremum of theabsolute value as in our result.Proof of Corollary 1.5. Consider the 
onvolution ur = u∗�r. We have
∇ur = u ∗ ∇�r and �ur = div∇ur = � ∗ �r −md:



120 M. SODIN, B. TSIRELSONNoting that ∇�r is a �nite ve
tor measure of total variation
‖∇�r‖1 = ‖∇�1‖1 · r−1 = Const ·r−1;we have Ra(∇ur) 6 ‖∇ur‖∞ 6 ‖u‖∞ · ‖∇�r‖1 = Constr · ‖u‖∞and Tra(�) 6 Tra(�; � ∗ �r) + Tra(� ∗ �r)
6 r +Const ·Ra(∇ur) 6 r + Constr · ‖u‖∞:Choosing r = √

‖u‖∞, we get the result. �This 
orollary immediately yields a seemingly more general result(
f. [9, Theorem 4.3℄).Corollary 1.6. Let u be a lo
ally integrable fun
tion in R
d su
h that�u = � −md weakly. ThenTra(�) 6 Const · infr>0{r +√

‖u ∗ �r‖∞ }: (1.7)Proof of Corollary 1.6. Denote by �̃r the 3rd 
onvolution power of �rand put ur = u ∗ �̃r. Then ur is a C2-fun
tion and �ur = � ∗ �̃r −md.Sin
e the fun
tion �̃r is supported by the ball 3rB, we have Tra(�) 63r+Tra(� ∗ �̃r). Corollary 1.5 applied to the smoothed potential ur yieldsTra(� ∗ �̃r) 6 Const√‖ur‖∞. Finally, note that ‖ur‖∞ 6 ‖u ∗ �r‖∞ ·
‖�r ∗ �r‖1 = ‖u ∗ �r‖∞ 
ompleting the argument. �2. Proof of Theorem 1.42.1. The lower bound.Here, we 
onstru
t a ve
tor �eld v that 
onne
ts the measure � withthe Lebesgue measure md and su
h that R̃a(v) 6 Const ·Tra(�).Let r > Tra(�). For any x; y ∈ Rd su
h that |x− y| 6 r, there exists ave
tor �eld vx;y 
on
entrated on the ball B

(x+y2 ; r) su
h that div vx;y =Æx − Æy (as usual, Æx is a point measure at x of unit mass), and
∫

Rd |vx;y(�)| dmd(�) 6 Const ·r:



UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 121(In order to see that su
h a �eld v exists, �rst, 
onsider the spe
ial 
aseof r = 1; then the general 
ase follows by res
aling.)Now, we take v = ∫∫

Rd×Rd vx;y d
(x; y)where the transportation 
 
onne
ts the measures � and m, and is 
on-
entrated on the set {(x; y) : |x− y| 6 r}. Thendiv v = ∫∫

Rd×Rd(Æx − Æy) d
(x; y) = � −md;and for every z ∈ Rd
∫

B(z;r) |v(�)| dmd(�) 6

∫∫

Rd×Rd d
(x; y) ∫

B(z;r) |vx;y(�)| dmd(�)
6 Const ·r · ∫∫ d
(x; y);where the last integral is taken over all (x; y) su
h that B

(x+y2 ; r) ∩

B
(z; r) 6= ∅, whi
h implies |y − z| 6 52r. Thus,

∫

B(z;r) |v(�)| dmd(�) 6 Const ·r · ∫∫

Rd×Rd 1IB(z;5r=2)(y) d
(x; y)= Const ·r · ∫

B(z;5r=2) dmd(y) 6 Const ·rd+1;that is, R̃a(v) 6 Const ·r, q.e.d.Note that in the argument given above, the Lebesgue measure md 
anbe repla
ed with any measure � satisfying � 6 Constmd. The other in-equality Tra(�) 6 Const ·Ra(v) does not permit su
h a repla
ement. In-deed, if �x is a normalized volume within the unit ball 
entered at x,then for |x − y| > 2 we have Tra(�x; �y) > 
onst |x − y|, whereas it iseasy to 
onstru
t a ve
tor �eld v 
onne
ting the measures �x and �y with
||v||∞ 6 Const. It suÆ
es to take v = (∇E) ∗ (�x − �y), E being a funda-mental solution for the Lapla
ian in Rd.



122 M. SODIN, B. TSIRELSON2.2. The upper bound.In what follows, by a unit 
ube we mean Q = ∏di=1[ai; ai + 1℄, ai ∈ Z,1 6 i 6 d. The proof of the upper bound relies on the following.Lemma 2.1. (La
zkovi
h). Suppose that for any set U ⊂ Rd that is a�nite union of the unit 
ubes, we have
|�(U)−md(U)| 6 �md−1(�U) (2.2)with � > 1. Then D(�) 6 Const �.In [8℄, La
zkovi
h proved this lemma for the 
ounting measure �X ofa dis
rete set X ⊂ Rd. For the reader's 
onvenien
e, we shall re
all theproof of this lemma in A-2.Now, the upper bound in Theorem 1.4 will readily follow from thedivergen
e theorem. We need to show that D(�) 6 ConstRa(v). A simples
aling argument shows that it suÆ
es to 
onsider only the 
ase whereRa(v) = 1. Then there exists r 6 2 su
h that ‖v ∗ �r‖∞ 6 2. Note thatdiv(v ∗ �r) = � ∗ �r +md.Let U ⊂ Rd be a �nite union of the unit 
ubes. Then denoting by nthe outward unit normal to U , we have

|(� ∗ �r)(U)−md(U)| = ∣∣∣∣
∫U div(v ∗ �r) dmd∣∣∣∣= ∣∣∣∣

∫�U 〈v ∗ �r; n〉dmd−1∣∣∣∣ 6 ‖v ∗ �r‖∞md−1(�U) 6 2md−1(�U);when
e, by La
zkovi
h's lemma, D(� ∗ �r) 6 Const, and �nally, D(�) 6r +D(� ∗ �r) 6 Const. AppendixA-1. Transportation supported by a given set.Here, we prove a somewhat more general result than Theorem 1.2. LetF ⊂ R
d × R

d be a 
losed symmetri
 set su
h thatF ∩ (Rd ×B) is bounded whenever B is bounded. (A-1.1)For U ⊂ Rd, set U+F = {x ∈ Rd: ∃y ∈ U (x; y) ∈ F}. If C ⊂ Rd is a
ompa
t set, then the set C+F is also 
ompa
t.



UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 123De�nition A-1.2.(i) Tra(F ) is a set of all pairs (�1; �2) of lo
ally �nite positive mea-sures �1, �2 on R
d su
h that there exists a transportation 
 withspt(
) ⊂ F .(ii) Di(F ) is a set of all pairs (�1; �2) of lo
ally �nite positive measures�1, �2 on Rd su
h that�1(C) 6 �2(C+F ) and �2(C) 6 �1(C+F )for any 
ompa
t subset C ⊂ R

d.Theorem A-1.3. For any 
losed symmetri
 set F ⊂ Rd × Rd satisfying(A− 1:1), Tra(F ) = Di(F ).See also Kellerer [6, Corollary 2.18 and Proposition 3.3℄ for a wide 
lassof non
losed sets F .Theorem 1.2 follows immediately from Theorem A-1.3: it suÆ
es totake the 
losed symmetri
 set Fr = {(x; y) ∈ Rd × Rd: |x− y| 6 r}. Then(�1; �2) ∈ Tra(Fr) ⇐⇒ Tra(�1; �2) 6 rand (�1; �2) ∈ Di(Fr) ⇐⇒ Di(�1; �2) 6 r :Proof of Theorem A-1.3. The in
lusion Tra(F ) ⊂ Di(F ) is ratherobvious:�1(C) = 
(C × R
d) = 
(C × C+F ) 6 
(Rd × C+F ) = �2(C+F );and the same for the other inequality.The proof of the opposite in
lusion Di(F ) ⊂ Tra(F ) is based on duality.Consider the linear spa
e C0(Rd) of 
ontinuous fun
tions with 
ompa
tsupport in Rd endowed with standard 
onvergen
e: fn → f in C0(Rd) ifthere is a ball B su
h that spt(fn) ⊂ B for all n, and the sequen
e fn
onverges uniformly to f . The dual spa
e of 
ontinuous linear fun
tionalsM(Rd) 
onsists of signed measures of lo
ally �nite variation on Rd withthe usual pairing �(f) = ∫ f d�. If a linear fun
tional � on C0(Rd) ispositive (i.e., �(f) > 0 whenever the fun
tion f is nonnegative), then itis 
ontinuous and is represented by a nonnegative lo
ally �nite measure.The same fa
ts are true for the linear spa
e C0(F ) of 
ontinuous fun
tionswith 
ompa
t support in F , and its dual spa
e M(F ).



124 M. SODIN, B. TSIRELSONConsider the mapping �:M(F ) → M(Rd) ⊕ M(Rd) a
ting as �
 =(�1; �2), where �1 and �2 are the marginals of the measure 
. The mapping� is well de�ned due to our assumption (A-1.1). The adjoint mapping�′:C0(Rd)⊕C0(Rd) → C(F ) is �′(f; g)(x; y) = f(x)+g(y) for (x; y) ∈ F .Assume that (�1; �2) ∈ Di(F ). We need to show that the pair (�1; �2)belongs to the image of the 
one of positive measures M+(F ) under �; inother words, that there exists 
 ∈M+(F ) su
h that
(�′(f; g)) = (�1; �2)(f; g) = ∫ f d�1 + ∫ g d�2: (A-1.4)We 
he
k below that the 
ondition (�1; �2) ∈ Di(F ) ensures that theright-hand side of (A-1.4) de�nes a positive linear fun
tional on the linearsubspa
e L = �′(C0(Rd) × C0(Rd)) of C0(F ). The linear spa
e C0(F ) issubordinate to its linear subspa
e L; i.e., for any � ∈ C0(F ) there arefun
tions f; g in C0(Rd) su
h that
|�(x; y)| 6 f(x) + g(y); (x; y) ∈ F:Then by M. Riesz' 
lassi
al extension theorem (see, e.g., [2, Chapter II,

§6, Theorem 3℄), we 
an extend this linear fun
tional to a positive linearfun
tional on the whole spa
e C0(F ).It remains to 
he
k that the linear fun
tional is well de�ned and posi-tive. Suppose it is not, i.e., there is a pair of fun
tions f; g ∈ C0(Rd) su
hthat f(x) + g(y) > 0; (x; y) ∈ F;however, ∫ f d�1 + ∫ g d�2 < 0:Repla
ing g by −g, we get a pair of fun
tions su
h thatf(x) > g(y); (x; y) ∈ F; (A-1.5)and ∫ f d�1 < ∫ g d�2: (A-1.6)Then, by virtue of (A-1.5),
{y: g(y) > t}+F ⊂ {x: f(x) > t};
{x: f(x) 6 t}+F ⊂ {y: g(y) 6 t}:



UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 125Finally, using the 
ondition (�1; �2) ∈ Di(F ), we get�2({y: g(y) > t}) 6 �1({x: f(x) > t}); t > 0;�2({y: g(y) 6 t}) > �1({x: f(x) 6 t}); t < 0:Then ∫ g d�2 6

∫ f d�1whi
h 
ontradi
ts (A-1.6) and 
ompletes the proof of the theorem. �A-2. Proof of the lemma of La
zkovi
h.We 
he
k that, for any bounded Borel set V ⊂ Rd,�(V ) 6 md(V+C�); (A-2.1)md(V ) 6 �(V+C�): (A-2.2)Take M = [2�d℄ + 1 and denote by QM the 
olle
tion of all 
ubes ofedge length M , Q = d∏i=1[aiM; (ai + 1)M ℄with ai ∈ Z, 1 6 i 6 d. Given a bounded Borel set V , 
onsider the 
ubesQ1; : : : ; Qn from QM that interse
t V , and denote by Q′i = 3Qi the 
ube
on
entri
 with Qi of thri
e bigger size, 1 6 i 6 n. SetA = n⋃i=1Qi; B = n⋃i=1Q′i:We shall need a simple geometri
 
laim.Claim A-2.3.md−1(�A) 6
2dM md(B \A); md−1(�B) 6

2dM md(B \A):Proof of Claim A-2.3. First, we 
onsider the boundary of the set A:�A = ⋃rj=1 Fj where Fj is a fa
e of some 
ube Qij . By Pj we denotethe 
ube obtained by re
e
tion of Qij in Fj ; 
learly, Pj ⊂ B \ A for allj. Ea
h 
ube 
an o

ur at most 2d times in the list of 
ubes P1; : : : ; Pr



126 M. SODIN, B. TSIRELSON(sin
e every Pj 
annot have more than 2d neighbours among the 
ubesQ1; : : : ; Qn). Thus,2dmd(B \A) >

r∑j=1md(Pj) = rMd =M · rMd−1 =Mmd−1(�A):This gives us the �rst inequality. To estimate md−1(�B), we note thatB \A = ⋃sj=1 Rj where R1; : : : ; Rs are di�erent 
ubes from the 
olle
tion
QM , and that �B ⊂

⋃sj=1 �Rj . Consequently,md−1(�B) 6

s∑j=1md−1(�Rj) 6 s · 2dMd−1 = 2dM sMd = 2dM md(B \A)proving the 
laim. �Now, we readily �nish the proof of the lemma. We 
hoose a 
onstantC (depending on the dimension d) so big that B ⊂ V+C�. Then�(V ) 6 �(A) 6 md(A) + �md−1(�A)
6 md(A) + 2d�M md(B \A) 6 md(B) 6 md(V+C�);when
e (A-2.1); and�(V+C�) > �(B) > md(B)− �md−1(�B) > md(B)− 2d�M md(B \A)

> md(B)−md(B \A) = md(A) > md(V );when
e (A-2.2). Referen
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