
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 366, 2009 Ç.M. Sodin, B. TsirelsonUNIFORMLY SPREAD MEASURESAND VECTOR FIELDSAbstrat. We show that two di�erent ideas of uniform spreading of lo-ally �nite measures on the d-dimensional Eulidean spae are equivalent.The �rst idea is formulated in terms of �nite distane transportations tothe Lebesgue measure, while the seond idea is formulated in terms ofvetor �elds onneting a given measure with the Lebesgue measure.1. IntrodutionThis text aims to disentangle and make expliit some ideas impliit inour work [9℄. It an be read independently of [9℄.Given a loally �nite nonnegative measure � on the Eulidean spae
Rd, we are interested to know how evenly the measure � is spread over Rd.First, we onsider ounting measures for disrete subsets X ⊂ Rd: �X =∑x∈X Æx where Æx is a unit measure sitting at x. Following Lazkovih [7,8℄, we say that the set X (and the measure �X ) are uniformly spread in
Rd if there exists a bijetion S:Zd → X suh that sup{|S(z) − z|: z ∈
Z
d} <∞. Equivalently, there exists a measurable map T :Rd → X alledthe marriage between the d-dimensional Lebesgue measure md and �X(also alled \mathing", \alloation") that pushes forward the Lebesguemeasure md to �X and is suh that sup{|T (x)− x|:x ∈ Rd} <∞.To extend the notion of uniform spreading to arbitrary measures on

R
d, we use the idea of the mass transfer that goes bak to G. Monge andL. V. Kantorovih [5, Chapter VIII, §4℄. Let �1 and �2 be loally �nitepositive measures on Rd. We all a positive loally �nite measure  on

Rd ×Rd a transportation from �1 to �2 if  has marginals �1 and �2, thatis ∫∫

Rd×Rd �(x) d(x; y) = ∫
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UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 117and ∫∫

Rd×Rd �(y) d(x; y) = ∫

Rd �(y) d�2(y)for all ontinuous funtions �:Rd → R1 with ompat support. Note thatif there exists a map � :Rd → Rd that pushes forward �1 to �2, then theorresponding transportation � is de�ned as follows:
∫∫

Rd×Rd  (x; y) d� (x; y) = ∫

Rd  (x; �(x)) d�1(x)for an arbitrary ontinuous funtion  :Rd ×Rd → R1 with ompat sup-port.The better  is onentrated near the diagonal of Rd × Rd, the loserthe measures �1 and �2 must be to eah other. We shall measure suh aonentration in the L∞-norm and setTra(�1; �2) = inf ||x− y||L∞() = inf sup{|x− y|:x; y ∈ spt()} ∈ [0;∞℄;where the in�mum is taken over all transportations , and `spt' denotesthe losed support. Clearly, Tra(�1; �2) + Tra(�2; �3) > Tra(�1; �3). ByTra(�) = Tra(�;md) we denote the transportation distane between themeasure � and the Lebesgue measure md. If � = �X with a disrete setX ∈ Rd, thenonst ·Tra(�) 6 infS supx∈Zd |S(x)− x| 6 Const ·Tra(�)where the in�mum is taken over all bijetions S:Zd → X . This follows, forinstane, from the loally �nite marriage lemma disussed two paragraphsbelow. Throughout the paper, `Const' and `onst' mean positive onstantsthat depend only on the dimension d. The values of these onstants anbe hanged at eah ourrene.There exists a dual de�nition of the transportation distane Tra(�1; �2).The distane Di(�1; �2) is de�ned as the in�mum of r ∈ (0;∞) suh that�1(B) 6 �2(B+r) and �2(B) 6 �1(B+r) (1.1)for eah bounded Borel set B ⊂ Rd. Here, B+r is the losed r-neighbourhood of B (atually, for our purposes, we ould take openneighbourhoods as well). The distane Di ranges from 0 to +∞, theboth ends are inluded. We de�ne the disrepany of the measure � asD(�) = Di(�;md). The following duality is lassial.



118 M. SODIN, B. TSIRELSONTheorem 1.2. Tra(�1; �2) = Di(�1; �2). In partiular, Tra(�) = D(�).For �nite measures �1 and �2, this follows from a result of Strassen [10,Theorem 11℄ and Sudakov [11℄. If the measures �1 and �2 are ountingmeasures of disrete sets X1 and X2, then this follows from a loally�nite version of the marriage lemma due to M. Hall and R. Rado, seeLazkovih [8℄. Note that the loally �nite marriage lemma asserts theexistene of a bijetion between the sets X1 and X2 that is more thana transportation from �1 to �2. Theorem 1.2 was also mentioned in Gro-mov [3, Setion 3 12 ℄, though the exposition there is quite skethy. For thereader's onveniene, we reall the proof in Appendix.A di�erent idea of onneting the measures � and md omes from po-tential theory. We say that a loally integrable vetor �eld v onnets themeasures � and md if div v = � −md (in the weak sense), that is
∫

Rd 〈v(x);∇�(x)〉dmd(x) = −

∫

Rd �(x) d(� −md)(x)for all smooth ompatly supported funtions �:Rd → R1. It is easy to seethat suh a �eld always exists. For instane, we an take v = ∇h, where his a solution to the Poisson equation �h = � −md in Rd. Suh a solutionalways exist, for instane, due to a subharmoni version of Weierstrass'representation theorem [4, Theorem 4.1℄.Let B(x; r) be the ball of radius r entered at x, and let rB = B(0; r).Set �r = 1md(rB)1IrB where 1IrB is the indiator funtion of the ball rB. Wemeasure the size of the �eld v as follows.De�nition 1.3. For a loally integrable vetor �eld v on Rd, we setRa(v) = infr>0 {r + ‖ v ∗ �r ‖∞} and R̃a(v) = infr>0 {r + ‖ |v| ∗ �r ‖∞} ;where ∗ denotes the onvolution.Evidently, Ra(v) 6 R̃a(v) 6 ‖v‖∞. Note that the multipliative group
R+ ats by saling on the measures and vetor �elds: �t(B) = �(tB),vt(x) = t−1v(tx). These ations are \oordinated": if div v = �−md, thendiv vt = �t−md, and they are respeted by our de�nitions of Tra, Ra andR̃a: Tra(�t) = t−1Tra(�), Ra(vt) = t−1Ra(v), and R̃a(vt) = t−1R̃a(v).



UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 119Theorem 1.4. Let � be a nonnegative loally �nite measure on Rd. Thenonst · infv R̃a(v) 6 Tra(�) 6 Const · infv Ra(v);where the in�mum is taken over all vetor �elds v onneting the measures� and md.This is the main result of this note. In the proof of the upper bound weuse duality and atually prove that D(�) 6 Const ·Ra(v). For this reason,our tehnique gives no idea how transportations  may look like in thease when Tra(�) is �nite.Corollary 1.5. Let u be a C2-funtion on Rd suh that �u = � −md.Then Tra(�) 6 Const√‖u‖∞ :One an juxtapose this orollary with lassial disrepany estimatesdue to Erd}os and Tur�an and Ganelius. In [1℄, Ganelius proved that if �is a probability measure on the unit irumferene T ⊂ C, and m is thenormalized Lebesgue measure on T, thensupI |�(I)−m(I)| 6 Const√sup
T

U� ;where the supremum is taken over all ars I ⊂ T, andU�(z) = ∫ log |z − �| d�(�)is the logarithmi potential of the measure �. Sine Um vanishes on T, wean rewrite this assupI |�(I) −m(I)| 6 Const√sup
T

U�−m:Note the supremum on the right-hand side, not the supremum of theabsolute value as in our result.Proof of Corollary 1.5. Consider the onvolution ur = u∗�r. We have
∇ur = u ∗ ∇�r and �ur = div∇ur = � ∗ �r −md:



120 M. SODIN, B. TSIRELSONNoting that ∇�r is a �nite vetor measure of total variation
‖∇�r‖1 = ‖∇�1‖1 · r−1 = Const ·r−1;we have Ra(∇ur) 6 ‖∇ur‖∞ 6 ‖u‖∞ · ‖∇�r‖1 = Constr · ‖u‖∞and Tra(�) 6 Tra(�; � ∗ �r) + Tra(� ∗ �r)
6 r +Const ·Ra(∇ur) 6 r + Constr · ‖u‖∞:Choosing r = √

‖u‖∞, we get the result. �This orollary immediately yields a seemingly more general result(f. [9, Theorem 4.3℄).Corollary 1.6. Let u be a loally integrable funtion in R
d suh that�u = � −md weakly. ThenTra(�) 6 Const · infr>0{r +√

‖u ∗ �r‖∞ }: (1.7)Proof of Corollary 1.6. Denote by �̃r the 3rd onvolution power of �rand put ur = u ∗ �̃r. Then ur is a C2-funtion and �ur = � ∗ �̃r −md.Sine the funtion �̃r is supported by the ball 3rB, we have Tra(�) 63r+Tra(� ∗ �̃r). Corollary 1.5 applied to the smoothed potential ur yieldsTra(� ∗ �̃r) 6 Const√‖ur‖∞. Finally, note that ‖ur‖∞ 6 ‖u ∗ �r‖∞ ·
‖�r ∗ �r‖1 = ‖u ∗ �r‖∞ ompleting the argument. �2. Proof of Theorem 1.42.1. The lower bound.Here, we onstrut a vetor �eld v that onnets the measure � withthe Lebesgue measure md and suh that R̃a(v) 6 Const ·Tra(�).Let r > Tra(�). For any x; y ∈ Rd suh that |x− y| 6 r, there exists avetor �eld vx;y onentrated on the ball B

(x+y2 ; r) suh that div vx;y =Æx − Æy (as usual, Æx is a point measure at x of unit mass), and
∫

Rd |vx;y(�)| dmd(�) 6 Const ·r:



UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 121(In order to see that suh a �eld v exists, �rst, onsider the speial aseof r = 1; then the general ase follows by resaling.)Now, we take v = ∫∫

Rd×Rd vx;y d(x; y)where the transportation  onnets the measures � and m, and is on-entrated on the set {(x; y) : |x− y| 6 r}. Thendiv v = ∫∫

Rd×Rd(Æx − Æy) d(x; y) = � −md;and for every z ∈ Rd
∫

B(z;r) |v(�)| dmd(�) 6

∫∫

Rd×Rd d(x; y) ∫

B(z;r) |vx;y(�)| dmd(�)
6 Const ·r · ∫∫ d(x; y);where the last integral is taken over all (x; y) suh that B

(x+y2 ; r) ∩

B
(z; r) 6= ∅, whih implies |y − z| 6 52r. Thus,

∫

B(z;r) |v(�)| dmd(�) 6 Const ·r · ∫∫

Rd×Rd 1IB(z;5r=2)(y) d(x; y)= Const ·r · ∫

B(z;5r=2) dmd(y) 6 Const ·rd+1;that is, R̃a(v) 6 Const ·r, q.e.d.Note that in the argument given above, the Lebesgue measure md anbe replaed with any measure � satisfying � 6 Constmd. The other in-equality Tra(�) 6 Const ·Ra(v) does not permit suh a replaement. In-deed, if �x is a normalized volume within the unit ball entered at x,then for |x − y| > 2 we have Tra(�x; �y) > onst |x − y|, whereas it iseasy to onstrut a vetor �eld v onneting the measures �x and �y with
||v||∞ 6 Const. It suÆes to take v = (∇E) ∗ (�x − �y), E being a funda-mental solution for the Laplaian in Rd.



122 M. SODIN, B. TSIRELSON2.2. The upper bound.In what follows, by a unit ube we mean Q = ∏di=1[ai; ai + 1℄, ai ∈ Z,1 6 i 6 d. The proof of the upper bound relies on the following.Lemma 2.1. (Lazkovih). Suppose that for any set U ⊂ Rd that is a�nite union of the unit ubes, we have
|�(U)−md(U)| 6 �md−1(�U) (2.2)with � > 1. Then D(�) 6 Const �.In [8℄, Lazkovih proved this lemma for the ounting measure �X ofa disrete set X ⊂ Rd. For the reader's onveniene, we shall reall theproof of this lemma in A-2.Now, the upper bound in Theorem 1.4 will readily follow from thedivergene theorem. We need to show that D(�) 6 ConstRa(v). A simplesaling argument shows that it suÆes to onsider only the ase whereRa(v) = 1. Then there exists r 6 2 suh that ‖v ∗ �r‖∞ 6 2. Note thatdiv(v ∗ �r) = � ∗ �r +md.Let U ⊂ Rd be a �nite union of the unit ubes. Then denoting by nthe outward unit normal to U , we have

|(� ∗ �r)(U)−md(U)| = ∣∣∣∣
∫U div(v ∗ �r) dmd∣∣∣∣= ∣∣∣∣

∫�U 〈v ∗ �r; n〉dmd−1∣∣∣∣ 6 ‖v ∗ �r‖∞md−1(�U) 6 2md−1(�U);whene, by Lazkovih's lemma, D(� ∗ �r) 6 Const, and �nally, D(�) 6r +D(� ∗ �r) 6 Const. AppendixA-1. Transportation supported by a given set.Here, we prove a somewhat more general result than Theorem 1.2. LetF ⊂ R
d × R

d be a losed symmetri set suh thatF ∩ (Rd ×B) is bounded whenever B is bounded. (A-1.1)For U ⊂ Rd, set U+F = {x ∈ Rd: ∃y ∈ U (x; y) ∈ F}. If C ⊂ Rd is aompat set, then the set C+F is also ompat.



UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 123De�nition A-1.2.(i) Tra(F ) is a set of all pairs (�1; �2) of loally �nite positive mea-sures �1, �2 on R
d suh that there exists a transportation  withspt() ⊂ F .(ii) Di(F ) is a set of all pairs (�1; �2) of loally �nite positive measures�1, �2 on Rd suh that�1(C) 6 �2(C+F ) and �2(C) 6 �1(C+F )for any ompat subset C ⊂ R

d.Theorem A-1.3. For any losed symmetri set F ⊂ Rd × Rd satisfying(A− 1:1), Tra(F ) = Di(F ).See also Kellerer [6, Corollary 2.18 and Proposition 3.3℄ for a wide lassof nonlosed sets F .Theorem 1.2 follows immediately from Theorem A-1.3: it suÆes totake the losed symmetri set Fr = {(x; y) ∈ Rd × Rd: |x− y| 6 r}. Then(�1; �2) ∈ Tra(Fr) ⇐⇒ Tra(�1; �2) 6 rand (�1; �2) ∈ Di(Fr) ⇐⇒ Di(�1; �2) 6 r :Proof of Theorem A-1.3. The inlusion Tra(F ) ⊂ Di(F ) is ratherobvious:�1(C) = (C × R
d) = (C × C+F ) 6 (Rd × C+F ) = �2(C+F );and the same for the other inequality.The proof of the opposite inlusion Di(F ) ⊂ Tra(F ) is based on duality.Consider the linear spae C0(Rd) of ontinuous funtions with ompatsupport in Rd endowed with standard onvergene: fn → f in C0(Rd) ifthere is a ball B suh that spt(fn) ⊂ B for all n, and the sequene fnonverges uniformly to f . The dual spae of ontinuous linear funtionalsM(Rd) onsists of signed measures of loally �nite variation on Rd withthe usual pairing �(f) = ∫ f d�. If a linear funtional � on C0(Rd) ispositive (i.e., �(f) > 0 whenever the funtion f is nonnegative), then itis ontinuous and is represented by a nonnegative loally �nite measure.The same fats are true for the linear spae C0(F ) of ontinuous funtionswith ompat support in F , and its dual spae M(F ).



124 M. SODIN, B. TSIRELSONConsider the mapping �:M(F ) → M(Rd) ⊕ M(Rd) ating as � =(�1; �2), where �1 and �2 are the marginals of the measure . The mapping� is well de�ned due to our assumption (A-1.1). The adjoint mapping�′:C0(Rd)⊕C0(Rd) → C(F ) is �′(f; g)(x; y) = f(x)+g(y) for (x; y) ∈ F .Assume that (�1; �2) ∈ Di(F ). We need to show that the pair (�1; �2)belongs to the image of the one of positive measures M+(F ) under �; inother words, that there exists  ∈M+(F ) suh that(�′(f; g)) = (�1; �2)(f; g) = ∫ f d�1 + ∫ g d�2: (A-1.4)We hek below that the ondition (�1; �2) ∈ Di(F ) ensures that theright-hand side of (A-1.4) de�nes a positive linear funtional on the linearsubspae L = �′(C0(Rd) × C0(Rd)) of C0(F ). The linear spae C0(F ) issubordinate to its linear subspae L; i.e., for any � ∈ C0(F ) there arefuntions f; g in C0(Rd) suh that
|�(x; y)| 6 f(x) + g(y); (x; y) ∈ F:Then by M. Riesz' lassial extension theorem (see, e.g., [2, Chapter II,

§6, Theorem 3℄), we an extend this linear funtional to a positive linearfuntional on the whole spae C0(F ).It remains to hek that the linear funtional is well de�ned and posi-tive. Suppose it is not, i.e., there is a pair of funtions f; g ∈ C0(Rd) suhthat f(x) + g(y) > 0; (x; y) ∈ F;however, ∫ f d�1 + ∫ g d�2 < 0:Replaing g by −g, we get a pair of funtions suh thatf(x) > g(y); (x; y) ∈ F; (A-1.5)and ∫ f d�1 < ∫ g d�2: (A-1.6)Then, by virtue of (A-1.5),
{y: g(y) > t}+F ⊂ {x: f(x) > t};
{x: f(x) 6 t}+F ⊂ {y: g(y) 6 t}:



UNIFORMLY SPREAD MEASURES AND VECTOR FIELDS 125Finally, using the ondition (�1; �2) ∈ Di(F ), we get�2({y: g(y) > t}) 6 �1({x: f(x) > t}); t > 0;�2({y: g(y) 6 t}) > �1({x: f(x) 6 t}); t < 0:Then ∫ g d�2 6

∫ f d�1whih ontradits (A-1.6) and ompletes the proof of the theorem. �A-2. Proof of the lemma of Lazkovih.We hek that, for any bounded Borel set V ⊂ Rd,�(V ) 6 md(V+C�); (A-2.1)md(V ) 6 �(V+C�): (A-2.2)Take M = [2�d℄ + 1 and denote by QM the olletion of all ubes ofedge length M , Q = d∏i=1[aiM; (ai + 1)M ℄with ai ∈ Z, 1 6 i 6 d. Given a bounded Borel set V , onsider the ubesQ1; : : : ; Qn from QM that interset V , and denote by Q′i = 3Qi the ubeonentri with Qi of thrie bigger size, 1 6 i 6 n. SetA = n⋃i=1Qi; B = n⋃i=1Q′i:We shall need a simple geometri laim.Claim A-2.3.md−1(�A) 6
2dM md(B \A); md−1(�B) 6

2dM md(B \A):Proof of Claim A-2.3. First, we onsider the boundary of the set A:�A = ⋃rj=1 Fj where Fj is a fae of some ube Qij . By Pj we denotethe ube obtained by reetion of Qij in Fj ; learly, Pj ⊂ B \ A for allj. Eah ube an our at most 2d times in the list of ubes P1; : : : ; Pr



126 M. SODIN, B. TSIRELSON(sine every Pj annot have more than 2d neighbours among the ubesQ1; : : : ; Qn). Thus,2dmd(B \A) >

r∑j=1md(Pj) = rMd =M · rMd−1 =Mmd−1(�A):This gives us the �rst inequality. To estimate md−1(�B), we note thatB \A = ⋃sj=1 Rj where R1; : : : ; Rs are di�erent ubes from the olletion
QM , and that �B ⊂

⋃sj=1 �Rj . Consequently,md−1(�B) 6

s∑j=1md−1(�Rj) 6 s · 2dMd−1 = 2dM sMd = 2dM md(B \A)proving the laim. �Now, we readily �nish the proof of the lemma. We hoose a onstantC (depending on the dimension d) so big that B ⊂ V+C�. Then�(V ) 6 �(A) 6 md(A) + �md−1(�A)
6 md(A) + 2d�M md(B \A) 6 md(B) 6 md(V+C�);whene (A-2.1); and�(V+C�) > �(B) > md(B)− �md−1(�B) > md(B)− 2d�M md(B \A)
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