
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 364, 2009 Ç.Yu. Davydov, A. IlligERGODIC PROPERTIES OFCRYSTALLIZATION PROCESSESAbstrat. We onsider a birth and growth proess with germs beingborn aording to a Poisson point proess whose intensity measure is in-variant under translations in spae. The germs an be born in unoupiedspae and then start growing until they oupy the available spae. Inthis general framework, the rystallization proess an be haraterizedby a random �eld whih, for any point in the state spae, assigns the �rsttime at whih this point is reahed by a rystal. Under general onditionson the growth speed and geometrial shape of free rystals, we prove thatthe random �eld is mixing in the sense of ergodi theory. This result isillustrated by appliations to the problem of parameter estimation.1. IntrodutionWe onsider the rystallization proess whih deals with points, alledgerms, g = (xg ; tg) in the spae R
d × R

+, where tg denotes random timeand xg random loation. The germ birth proess N is a Poisson pointproess on R
d×R

+ with intensity measure �. One germs or rystallizationenters are born, rystals grow if their loation is not yet oupied byanother rystal. When two rystals meet, the growth stops at the meetingpoint.To desribe rystal expansion in unoupied spae, for a germ g =(xg ; tg) and a point x in R
d, let Ag(x) be the time when the point xis reahed by the rystal born in the loation xg at the time tg . Therystallization proess is then haraterized by the random �eld (r.f.) �,whih, for any loation x in R
d, assigns its rystallization time�(x) = infg∈N

Ag(x):Consequently, at time t, a free rystal is the set Cg(t) = {x |Ag(x) ≤ t}.The above model was introdued by Kolmogorov [1℄ and, indepen-dently, by Johnson and Mehl [6℄. It has been intensively studied by manyauthors, inluding M�ller [2, 3℄, Miheletti & Capasso [7℄, who representmain approahes. In these publiations one an also �nd exhaustive lists109



110 YU. DAVYDOV, A. ILLIGof referenes. A very large part of these investigations deals with geo-metrial strutures of mosais after all the germs have been grown. Inontrast, our main attention in the urrent work is on ergodi propertiesof the rystallization proess, thus providing a base for eÆient estimationof model parameters and subsequent analysis of limit theorems suh asasymptotial normality.The rest of the paper is organized as follows. Under general assump-tions, we state in Se. 2 that the r.f. � is mixing in the sense of ergoditheory. The proof is reported to Se. 4. In Se. 3, we give two examplesof appliation of Theorem 1 to the problem of parameter estimation.2. Assumptions on the birth and growth proess and mixingGerms are born aording to a Poisson point proess N on E = R
d ×

R
+. That is, germs are random points g = (xg ; tg) in E, where xg is theloation in the growth spae R

d and tg is the birth time on the time axis
R
+. We suppose that the intensity measure of N has the expression� = �d ×m;where �d is the Lebesgue measure on R

d and m is a measure on R
+suh that m([0; a℄) < ∞ for all a > 0. The ases to be onsidered below(f. [2℄) are those with a disrete measure m and with a density measurem(dt) = �t�−1�(dt), where �; � > 0 are parameters. Sine the Lebesguemeasure is invariant under translations on R

d, we have that N is spaehomogeneous.For time t, we onsider the so alled ausal one Kt = {g ∈ E |Ag(0) ≤t}, whih onsists of all possible germs that an reah the origin before t.The measure �(Kt) of the ausal one Kt is denoted by F (t). These setand funtion play important roles in the sequel.We assume that, for any germ g = (xg ; tg), the assoiated free rystalat time t ≥ tg is equal to Cg(t) = xg⊕[V (t) − V (tg)℄K, where K is aonvex ompat set suh that 0 ∈ K◦ with ⊕ denoting the Minkowskisum, and V (t) is an absolutely ontinuous funtion of t whose value is thedistane ahieved with positive speed v(t). Finally, let M be a onstantsuh that v ≤ M , and let DK be the diameter of the smallest ball enteredat zero and ontaining K. Note that when K = B(0; 1) and v =M , thenwe have the well-known model whih orresponds to the linear expansionin all diretions at a onstant speed.We next onsider the mixing of the r.f. �. To start with, we assumewithout loss of generality that � is a anonial r.f. on (
;F ;P). Namely,



ERGODIC PROPERTIES OF CRYSTALLIZATION PROCESSES 111we suppose that 
 = R
T with T = R

d, F is the �-�eld generated by theylinders, and P is the distribution of � so that for all ! ∈ 
, �(x; !) =!(x). Sine the Lebesque measure on R
d is invariant under translations,the r.f. � is homogeneous, that is, P is invariant under the translationsSh(!)(x) = !(x + h) for all h in R

d. We say that the anonial r.f. ismixing if, for all A and B ∈ F ,
P{A ∩ S−1h (B)} −→

|h|→∞
P{A}P{B}: (1)Note that every mixing r.f. in the above sense is ergodi. We have thefollowing theorem.Theorem 1. For d ≥ 1, the r.f. � = (�(x))x∈Rd is mixing.The proof of the theorem is ontained in Se. 4 while the next setionis devoted to the appliations of Theorem 1 to the problem of parameterestimation.3. Parameters estimation of the intensity measureWe onsider two ases:A) The measure m whih is a omponent of intensity measure � isabsolutely ontinuous and m(dt) = � t�−1dt with �; � > 0,B) The measure m is disrete: m =∑ni=1 pi Æai with ∑ni=1 pi = 1, forall i = 1; : : : ; n, pi > 0 and 0 < a1 < a2 · · · < an.Moreover, we suppose, keeping notations of the previous setion, thatthe rystal's shapes are de�ned by the ompat K = B(0; 1) and that thegrowth speed is onstant v = 1.First of all we remark that the marginal distribution funtion

F(t) = P{�(0) ≤ t}; t ∈ R
+;an be expressed as follows

F(t) = P{N ∩Kt 6= ∅}= 1− P{N ∩Kt = ∅}= 1− exp(−�(Kt));where Kt = {g ∈ E |Ag(0) ≤ t} is a ausal one.



112 YU. DAVYDOV, A. ILLIGHene �(Kt) = − log(1−F(t)): (2)On the other side Theorem 1 shows that the funtion
F̂T (t) = 1T d ∫[0;T ℄d 1[0;t℄(�(x))�d(dx)is a onsistent estimator for F :
F̂T (t) p:s:

−→ E
(1[0;t℄(�(0))) = F(t): (3)Now, using (2) and (3), we will easily onstrut onsistent estimatorsfor parameters �; � in ase A) as well as for pi in ase B).3.1. Absolutely ontinuous aseIf m(dt) = � t�−1dt, we have for all t ∈ R

+�(Kt) = t∫0 �d(B(0; t− s))� s�−1ds= d t∫0 (t− s)d� s�−1ds= d � td+� ld(�); (4)where d = �d(B(0; 1))and ld(�) = d!� (� + 1) : : : (� + d) :From (2) and (4), we dedue for all t ∈ R
+ that

− log(1−F(t)) = d � td+� ld(�): (5)Taking in (5) t = t1 and t = t2, we obtain the following system:




log( log(1−F(t1))log(1−F(t2)))log t1 − log t2 − d = �
− log(1−F(t1)) = d � ld(�) td+�1 (6)From (3), we get immediately



ERGODIC PROPERTIES OF CRYSTALLIZATION PROCESSES 113Proposition 1. The following statistis are strongly onsistent estima-tors for parameters � and �:�̂T := log ( log(1−F̂T (t1))log(1−F̂T (t2)))log t1 − log t2 − d p:s:
−→ ��̂T := − log(1− F̂T (t1))d ld(�̂T )td+�̂T1 p:s:

−→ �:Naturally, for partiular values of t1, t2 the formulas for �̂T , �̂T ouldbe simpli�ed. For example, if t1 = e, t2 = 1, then�̂T = log( log(1− F̂T (e))log(1− F̂T (1)))− d; �̂T = − log(1− F̂T (e))d ld(�̂T ) :3.2. Case of the disrete measureWe suppose now that m is the disrete measure ∑ni=1 pi Æai with∑ni=1 pi = 1, pi > 0 and 0 < a1 < a2 · · · < an. Moreover, as the rystalsan be born only at the moment ai; i = 1; : : : ; n; the estimation of thesemoments is not a diÆult task, and we an assume that ai; i = 1 : : : n,are known.For all t ∈ R
+, �(Kt) = d n∑i=1 pi (t− ai)d1{ai≤t}: (7)Thus, if we onsider Eq. (7) for t = ai with i = 2; : : : ; n and t = a1 + an,we obtain the following system:






− log(1− F(a2)) = d (p1 (a2 − a1)d)
− log(1− F(a3)) = d (p1 (a3 − a1)d + p2 (a3 − a2)d)...
− log(1− F(an)) = d n−1∑i=1 pi (an − ai)d
− log(1− F(a1 + an)) = d (p1adn + n−1∑i=2 pi (a1 + an − ai)d + pnad1) :Again from (3), we derive the following onsistent estimators p̂i;T of pifor i = 1; : : : ; n.



114 YU. DAVYDOV, A. ILLIGProposition 2. The following statistis are strongly onsistent estima-tors for parameters pi:p̂1;T := 1(a2−a1)d (− log(1−F̂T (a2))d ) ;p̂2;T := 1(a3−a2)d (− log(1−F̂T (a3))d − p̂1;T (a3 − a1)d) ;...p̂n−1;T := 1(an−an−1)d (− log(1−F̂T (an))d −
n−2∑i=1 p̂i;T (an − ai)d) ;p̂n;T := 1ad1 (− log(1−F(a1+an))d − p̂1;T adn −

n−1∑i=2 p̂i;T (a1 + an − ai)d) :4. Proof of Theorem 1To prove that a random �eld is mixing, it is suÆient to verify ondition(1) for ylinders and establish the following ondition
∀x1; : : : ; xk; ∀y1; : : : ; ym; ∀E1 ∈ Bk; ∀E2 ∈ Bm
P{(�(x1); : : : ; �(xk)) ∈ E1; (�(y1 + h); : : : ; �(ym + h)) ∈ E2}
−→

|h|→∞
P{(�(x1); : : : ; �(xk)) ∈ E1}P{(�(y1); : : : ; �(ym)) ∈ E2}: (8)We need three auxiliary lemma.Lemma 1. If A1, A2, B1, and B2 are four events, then(i) |P(A1)− P(A2)| ≤ P(A1△A2),(ii) |P(A1 ∩B1)− P(A2 ∩B2)| ≤ P(A1△A2) + P(B1△B2),where for two events A and B, A△B = (A ∩B) ∪ (A ∩B).Proof. These fats are well known. �Now for all h ∈ R

d and r ≥ 0, we de�ne new random �elds to approxi-mate �(x) and its translations �(x+ h):�hr (x) = infg∈N
|xg−h|≤rAg(x):



ERGODIC PROPERTIES OF CRYSTALLIZATION PROCESSES 115Lemma 2. Let H(R) = sup
|x|=RA(0;R)(x). Under our assumptions we havefor all h ∈ R

d
P

{�(x+ h) = �h(M ′+1)H(R)(x); |x| ≤ R} ≥ 1− e−�(K0;R);where M ′ =MDK and K0;R is the ausal one de�ned as followsK(0;R) = {g ∈ E; Ag(0) ≤ R}:Proof. As N is spae homogeneous,
P

{�(x+ h) = �h(M ′+1)H(R)(x); |x| ≤ R}=P

{�(x) = �0(M ′+1)H(R)(x); |x| ≤ R}and it is then suÆient to demonstrate Lemma 2 for h = 0.It is not diÆult to see that
{�(0) ≤ R} ⊂

{ sup
|x|≤R �(x) ≤ H(R)} :Now, let us prove that

{ sup
|x|≤R �(x) ≤ H(R)} ⊂ {�(x) = �0R+M ′H(R)(x); |x| ≤ R}: (9)Assumptions on the growth of rystals imply that for all germ g,Ag(x) ≥ tg + |x− xg |M ′

∀x ∈ R
d:In partiular, for germs g suh that |xg | > R+M ′H(R), we dedue thatAg(x) > H(R) ∀x ∈ R

d; |x| ≤ R:Hene, for all x suh that |x| ≤ R,infg∈N
|xg|>R+M ′H(R)Ag(x) > H(R) ≥ �(x);



116 YU. DAVYDOV, A. ILLIGand (9) follows.On the other hand, for 0 ≤ r1 ≤ r2 and ∀x ∈ R
d�(x) ≤ �0r2(x) ≤ �0r1(x):As R ≤ H(R); we dedue

{�(x) = �R+M ′H(R)(x); |x| ≤ R} ⊂ {�(x) = �(M ′+1)H(R)(x); |x| ≤ R}:Finally, we get
P
{�(x) = �(M ′+1)H(R)(x); |x| ≤ R} ≥ P{�(0) ≤ R}and

P{�(0) ≤ R} = P{N ∩K0;R 6= ∅}:But,
P{N ∩K0;R 6= ∅} = 1− e−�(K0;R):

�Lemma 3. Under our assumptions�(K0;R) −→R→∞
∞:Proof. The assumptions on the growth of rystals imply that for all germg ∈ E, there exists R > 0 suh that g ∈ K(0;R) or equivalently suh that0 belongs to the rystal Cg(R). But,

⋃R≥0K(0;R) = Eand sine �(E) = +∞, the result follows. �We ome bak to the proof of Theorem 1.Proof. For (x1; : : : ; xk) in Ek, (y1; : : : ; ym) in Em, E1 ∈ Bk andE2 ∈ Bm,we de�ne the sets:A = {(�(x1); : : : ; �(xk)) ∈ E1};B = {(�(y1); : : : ; �(ym)) ∈ E2};Bh = {(�(y1 + h); : : : ; �(ym + h)) ∈ E2}:



ERGODIC PROPERTIES OF CRYSTALLIZATION PROCESSES 117Let � > 0 and r = max{|xi|; i = 1 : : : k; |yj |; j = 1 : : :m}. By Lemmas 2and 3, we an �nd R > r suh that
P

{�(x) = �0(M ′+1)H(R)(x); |x| ≤ R} ≥ 1− �:Let us now take h ∈ R
d suh that |h| > 2R1, where R1 = (M ′ + 1)H(R),and introdue the sets:Ã = {(�0R1(x1); : : : ; �0R1(xk)) ∈ E1};B̃ = {(�0R1(y1); : : : ; �0R1(ym)) ∈ E2};B̃h = {(�hR1(y1); : : : ; �hR1(ym)) ∈ E2}:By Lemma 1 (ii), we have

|P(A ∩Bh)− P(Ã ∩ B̃h)| ≤ P(A△Ã) + P(Bh△B̃h):Let D = {�(x) = �0R1(x); |x| ≤ R}. Then, by Lemma 2,
P(A△Ã) = P((A△Ã) ∩D) + P((A△Ã) ∩D)= P((A△Ã) ∩D)

≤ P(D)
≤ �:Replaing the set D by Dh = {�(x+h) = �hR1(x); |x| ≤ R}, we obtain bythe same arguments that

P(Bh△B̃h) ≤ �:These two inequalities imply that
|P(A ∩Bh)− P(Ã ∩ B̃h)| ≤ 2�: (10)On the other hand, the events Ã and B̃h are independent beause |h| >2R1. Thus,

P(Ã ∩ B̃h) = P(Ã)P(B̃h)and by spae homogeneity of N , P(B̃h) = P(B̃), so that
P(Ã ∩ B̃h) = P(Ã)P(B̃): (11)



118 YU. DAVYDOV, A. ILLIGMoreover, by Lemma 1 (i),
|P(A)P(B) − P(Ã)P(B̃)| ≤ |P(A)− P(Ã)|+ |P(B)− P(B̃)|

≤ P(A△Ã) + P(B△B̃);and Lemma 2 implies that
P(A△Ã) + P(Bh△B̃h) ≤ 2�: (12)Inequalities (10), (11), and (12) imply that for all h ∈ R

d suh that
|h| > 2R1,

|P(A ∩Bh)− P(A)P(B)| ≤ 4�and the Theorem 1 then proved. �5. Conluding remarks
• The method used in the proof of Theorem 1 an be applied (aftersome modi�ations) to estimate the rate of dereasing of the absoluteregularity oeÆient (for details see [5℄). These results provide a solidbase for establishing of asymptotial normality of estimators of modelparameters.
• In Se. 3, one example of appliation of Theorem 1 to the problem ofonsistent estimation was given. There are many others, we an mentionhere the mean value of rystals born in unit volume or, more generally,another funtional of additive harater. We are preparing a more detailedpubliation in this subjet.6. AknowledgmentsThe authors are grateful to R. Zitikis for disussions and interest inthis work. Referenes1. A. N. Kolmogorov, Statistial theory of rystallization of metals. | Bull. Aad. Si.USSR Mat., Ser. 1 (1937), 355{359.2. J. M�ller, Random tessellations in Rd. | Adv. Appl. Probab. 21 (1989), 37{73.3. J. M�ller, Random Johnson{Mehl tessellations. | Adv. Appl. Probab. 24 (1992),814{844.4. J. M�ller, Generation of Johnson{Mehl rystals and omparative analysis of modelsfor random nuleation. | Adv. Appl. Probab. 27 (1995), 367{383.
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