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ERGODIC PROPERTIES OF
CRYSTALLIZATION PROCESSES

ABSTRACT. We consider a birth and growth process with germs being
born according to a Poisson point process whose intensity measure is in-
variant under translations in space. The germs can be born in unoccupied
space and then start growing until they occupy the available space. In
this general framework, the crystallization process can be characterized
by a random field which, for any point in the state space, assigns the first
time at which this point is reached by a crystal. Under general conditions
on the growth speed and geometrical shape of free crystals, we prove that
the random field is mixing in the sense of ergodic theory. This result is
illustrated by applications to the problem of parameter estimation.

1. INTRODUCTION

We consider the crystallization process which deals with points, called
germs, g = (2,4,t,) in the space R? x RT, where ty denotes random time
and z, random location. The germ birth process N is a Poisson point
process on R xR+ with intensity measure A. Once germs or crystallization
centers are born, crystals grow if their location is not yet occupied by
another crystal. When two crystals meet, the growth stops at the meeting
point.

To describe crystal expansion in unoccupied space, for a germ g =
(z4,t,) and a point z in RY, let A,(x) be the time when the point x
is reached by the crystal born in the location z, at the time t,. The
crystallization process is then characterized by the random field (r.f.) &,
which, for any location z in R?, assigns its crystallization time

(@) = inf 4, (@)

Consequently, at time ¢, a free crystal is the set Cy(t) = {z| A4(z) < t}.
The above model was introduced by Kolmogorov [1] and, indepen-
dently, by Johnson and Mehl [6]. It has been intensively studied by many
authors, including Mgller [2, 3], Micheletti & Capasso [7], who represent
main approaches. In these publications one can also find exhaustive lists
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of references. A very large part of these investigations deals with geo-
metrical structures of mosaics after all the germs have been grown. In
contrast, our main attention in the current work is on ergodic properties
of the crystallization process, thus providing a base for efficient estimation
of model parameters and subsequent analysis of limit theorems such as
asymptotical normality.

The rest of the paper is organized as follows. Under general assump-
tions, we state in Sec. 2 that the r.f. £ is mixing in the sense of ergodic
theory. The proof is reported to Sec. 4. In Sec. 3, we give two examples
of application of Theorem 1 to the problem of parameter estimation.

2. ASSUMPTIONS ON THE BIRTH AND GROWTH PROCESS AND MIXING

Germs are born according to a Poisson point process N on F = R? x
R*. That is, germs are random points g = (z,,t,) in E, where z, is the
location in the growth space R? and ¢, is the birth time on the time axis
RT. We suppose that the intensity measure of A has the expression

A= xm,

where A% is the Lebesgue measure on R? and m is a measure on RT
such that m([0,a]) < oo for all @ > 0. The cases to be considered below
(cf. [2]) are those with a discrete measure m and with a density measure
m(dt) = at?~'\(dt), where a, 8 > 0 are parameters. Since the Lebesgue
measure is invariant under translations on R?, we have that A is space
homogeneous.

For time ¢, we consider the so called causal cone K; = {g € E| A4(0) <
t}, which consists of all possible germs that can reach the origin before ¢.
The measure A(K;) of the causal cone K; is denoted by F(t). These set
and function play important roles in the sequel.

We assume that, for any germ g = (z,,t,), the associated free crystal
at time t > t, is equal to Cy(t) = =, PV (¢) — V(¢,)]K, where K is a
convex compact set such that 0 € K° with €@ denoting the Minkowski
sum, and V' (t) is an absolutely continuous function of ¢ whose value is the
distance achieved with positive speed v(t). Finally, let M be a constant
such that v < M, and let Dk be the diameter of the smallest ball centered
at zero and containing K. Note that when K = B(0,1) and v = M, then
we have the well-known model which corresponds to the linear expansion
in all directions at a constant speed.

We next consider the mixing of the r.f. £&. To start with, we assume
without loss of generality that £ is a canonical r.f. on (2, F,P). Namely,
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we suppose that O = R” with 7' = R?, F is the o-field generated by the
cylinders, and P is the distribution of £ so that for all w € Q, {(z,w) =
w(z). Since the Lebesque measure on R? is invariant under translations,
the r.f. ¢ is homogeneous, that is, PP is invariant under the translations
Sp(w)(z) = w(x + h) for all h in R?. We say that the canonical r.f. is
mixing if, for all A and B € F,

P(ANS;!(B)} — P{AP{B}. (1)

Note that every mixing r.f. in the above sense is ergodic. We have the
following theorem.

Theorem 1. Ford > 1, the r.f. £ = (£(x)),ere Is mixing.

The proof of the theorem is contained in Sec. 4 while the next section
is devoted to the applications of Theorem 1 to the problem of parameter
estimation.

3. PARAMETERS ESTIMATION OF THE INTENSITY MEASURE

We consider two cases:

A) The measure m which is a component of intensity measure A is
absolutely continuous and m(dt) = at?~'dt with o, 8 > 0,

B) The measure m is discrete: m = > 1| p; 84, with > 1 p; = 1, for
alli=1,...,n,p;>0and 0 < ay <as--- < ay.

Moreover, we suppose, keeping notations of the previous section, that
the crystal’s shapes are defined by the compact K = B(0,1) and that the
growth speed is constant v = 1.

First of all we remark that the marginal distribution function

F(t) =P{(0) <t}, teR*,

can be expressed as follows

F(t) = PINNK; £ 0}
=1-PNNK,; =10}

1 — exp(=A(Ky)),

where K; = {g € E|A,(0) <t} is a causal cone.
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Hence
A(Ky) = —log(l — F(2)). (2)
On the other side Theorem 1 shows that the function
~ 1
Frt) =77 [ toa@)N@)
[0, 774

is a consistent estimator for F:
Frt) PS5 E (15,1 (£0))) = F(?). (3)

Now, using (2) and (3), we will easily construct consistent estimators
for parameters a, 8 in case A) as well as for p; in case B).

3.1. Absolutely continuous case
If m(dt) = at?~'dt, we have for all t € R

A(Ky) = //\d(B(O,t —s))a s’ tds
0

: (4)
= cd/(t —s)lasPlds
0
= cdat‘HB ld(ﬁ),
where
ca = N(B(0,1))
and

d!
YO =56 . Bt
From (2) and (4), we deduce for all t € RT that

—log(1 — F(t)) = caat™P14(B). (5)

Taking in (5) t = t; and ¢ = t2, we obtain the following system:

log(1—7F(t1))
log (log(lfj:(t;))) —d=p
logt; — logts N (6)

—log(1 — F(t1)) = cqalq(B) t577°

From (3), we get immediately
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Proposition 1. The following statistics are strongly consistent estima-
tors for parameters o and [3:

log(1—Fr(t1))
B\T _ log (log(l—ﬁT(&))) 7d£}6
logt; — logts
Gy = —log(1 — Fr(t1)) b
cala(Br)titoT

Naturally, for particular values of t;, ¢t the formulas for BT; ar could
be simplified. For example, if t; = e, to = 1, then

3 e (LB =Fren) . —log(1— Fr(e)
el g<10g(1—f:r(1))> hoers cala(Br)

3.2. Case of the discrete measure

We suppose now that m is the discrete measure Y ., p;d,; with
e pi=1,pi>0and 0 < a; < ay--- < a,. Moreover, as the crystals
can be born only at the moment a;,¢ = 1,... ,n, the estimation of these
moments is not a difficult task, and we can assume that a;,7 = 1...n,
are known.

For all t € RT,

A(Kt) = Cq Zpi (t — ai)dl{aigt}. (7)
i=1

Thus, if we consider Eq. (7) for t = a; with i =2,...,n and t = a1 + a,,
we obtain the following system:

—log(1 — F(a2)) = ¢q (p1 (a2 — a1)?)

—log(1 — F(a3)) = ca (p1 (a3 — a1)? 4 p2 (a3 — a2)?)

Sl - Fa) = ea S pilan — o)

—log(l — F(a1 + an)) = cq <p1a$ll + nz::zl pi (a1 + an — a;)? +pna”f) .

Again from (3), we derive the following consistent estimators p; 7 of p;
fori=1,...,n.
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Proposition 2. The following statistics are strongly consistent estima-
tors for parameters p;:

> . 1 —log(1—Fr(az))
piT = (a2?a1)d( og > T{a2 )’

~ —log(1—F =~
Doy = (a3_1a2)d ( og( — r(as)) — prr(as — al)d) ’

’ = n—2
PoorT = ey (—log(lzdfT(an)) =5 Bur(on - ai)d) ’
1=

n—1
ﬁn,T — Ld <log(1}'(a1+an)) *ﬁl,T az _ Z ﬁi,T (al +a, — ai)d> )

a Ccd
1 =2

4. PROOF OF THEOREM 1

To prove that a random field is mixing, it is sufficient to verify condition
(1) for cylinders and establish the following condition

VZ1,.. Tk YY1,e. o Yme  VE; € BY, VB, € B™
P{(g(xl)uug(xk)) EElu (f(y1+h)77€(ym+h)) GEZ} (8)
— ]P{(f(xl)aaf(xk)) € El}P{(f(yl)aaf(ym)) € EZ}

|h|—00

We need three auxiliary lemma.

Lemma 1. If Ay, A, By, and Bs are four events, then
(i) [P(A1) — P(A2)| < P(A1AAy),
(i) |P(A1 N By) —P(A2 N B2)| < P(A1AAs) + P(BABs),
where for two events A and B, AAB = (AN B°)U(A°NB).
Proof. These facts are well known. O
Now for all h € R? and r > 0, we define new random fields to approxi-

mate £(z) and its translations &(x + h):

h _ .
& (z) = nf, Ag(x).
lxg—h|<r
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Lemma 2. Let H(R) = sup A g)(z). Under our assumptions we have
|z|=R

for all h € R?
P {5(:1: +h)= f(hM'Jrl)H(R) (@), |z| < R} >1— ¢ MKor)
where M' = M Dy and Ky g is the causal cone defined as follows

Kor ={9€E, 4,(0) < R}.
Proof. As N is space homogeneous,

P{&@+h) = yryam (@), lo] < R}
=P {£(@) = v ynm) (@), o] < R}

and it is then sufficient to demonstrate Lemma 2 for h = 0.
It is not difficult to see that

{¢(0) <R} C { sup &(r) < H(R)}-

|| <R

Now, let us prove that

{ sup £(z) < H(R)} C {&@) = Errarmm (@), |zl <R}Y (9)

lz|<R
Assumptions on the growth of crystals imply that for all germ g,

M Ve € RY.

In particular, for germs ¢ such that |z,| > R + M'H(R), we deduce that
Ay(z) > HR) Yz cR|z|<R.
Hence, for all z such that |z| < R,

inf Ag(x) > H(R) > &(x),
geEN
|zg|>R+M' H(R)
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and (9) follows.
On the other hand, for 0 < r; < ry and Vz € R?

£(z) < &,(2) < &, (2).
As R < H(R), we deduce

() = Eremrmr) (2), |2 < R} C{&(2) = {rvnymr) (), |2 < R}

Finally, we get

P{5 M/+1)H(R ( ), |z < R} > P{£(0) < R}
and
P{£(0) < R} = PAN N Ko # 0).

But,
PN NKop# 0} =1— e AEor),

Lemma 3. Under our assumptions

A(K07R) R*) Q.

—00

Proof. The assumptions on the growth of crystals imply that for all germ
g € E, there exists R > 0 such that g € K(g,r) or equivalently such that
0 belongs to the crystal Cy(R). But,

U Kom=E

R>0

and since A(E) = 400, the result follows. O
We come back to the proof of Theorem 1.

Proof. For (z1,...,z¢)in E*, (y1,...,ym)in E™, E; € B* and B, € B™,
we define the sets:

A= {(@),...,&(xr)) € Er},
B = {(&W1),---,¢(ym)) € Ex},
{(E€ + h) -3 &(Ym + 1)) € Ex}.
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Let € > 0 and r = max{|z;|, ¢ =1...%; |y;|, s =1...m}. By Lemmas 2
and 3, we can find R > r such that

P{f(az) = £?M’+1)H(R) (z), |z| < R} >1—ce.

Let us now take h € R? such that |h| > 2Ry, where Ry = (M’ + 1)H(R),
and introduce the sets:

5%1 (wl)a s 75%1 (xk)) € El}u

R, (U1): -+ €y, (ym)) € En},

Er (Y1), €k, (Ym)) € Bo}.

{(
{(
{(

By Lemma 1 (ii), we have

A
B
By

IP(AN By) —P(AN By)| < P(AAA) + P(B,ABy,).
Let D = {&(x) = &% (z), |z| < R}. Then, by Lemma 2,

P(AAA) = P((AAA) N D) + P((AAA) N D°)
P((AAA) N D°)
P(D°)

€.

INIA

Replacing the set D by Dy, = {£(z+h) = fﬁl (x), |z| < R}, we obtain by
the same arguments that

P(Bhﬂéh) S €.
These two inequalities imply that
|P(ANBy) —P(AN By)| < 2e. (10)

On the other hand, the events A and By, are independent because |h| >
2R;. Thus, o L
P(AN Bp) = P(A)P(Bs)

and by space homogeneity of N, P(Eh) = P(E), so that

P(A N By) = P(A)P(B). (11)
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Moreover, by Lemma 1 (i),

[P(A)P(B) — P(A)P(B)|

IN

[P(A) — P(4)| + [P(B) — P(B)|
P(AAA) + P(BAB),

N

and Lemma 2 implies that
P(AAA) + P(B,ABy) < 2e. (12)

Inequalities (10), (11), and (12) imply that for all A € R? such that
|h| > 2Ry,
P(AN By) — PAB(B)| < 4e

and the Theorem 1 then proved. O

5. CONCLUDING REMARKS

e The method used in the proof of Theorem 1 can be applied (after
some modifications) to estimate the rate of decreasing of the absolute
regularity coefficient (for details see [5]). These results provide a solid
base for establishing of asymptotical normality of estimators of model
parameters.

e In Sec. 3, one example of application of Theorem 1 to the problem of
consistent estimation was given. There are many others, we can mention
here the mean value of crystals born in unit volume or, more generally,
another functional of additive character. We are preparing a more detailed
publication in this subject.
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