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t. We 
onsider a birth and growth pro
ess with germs beingborn a

ording to a Poisson point pro
ess whose intensity measure is in-variant under translations in spa
e. The germs 
an be born in uno

upiedspa
e and then start growing until they o

upy the available spa
e. Inthis general framework, the 
rystallization pro
ess 
an be 
hara
terizedby a random �eld whi
h, for any point in the state spa
e, assigns the �rsttime at whi
h this point is rea
hed by a 
rystal. Under general 
onditionson the growth speed and geometri
al shape of free 
rystals, we prove thatthe random �eld is mixing in the sense of ergodi
 theory. This result isillustrated by appli
ations to the problem of parameter estimation.1. Introdu
tionWe 
onsider the 
rystallization pro
ess whi
h deals with points, 
alledgerms, g = (xg ; tg) in the spa
e R
d × R

+, where tg denotes random timeand xg random lo
ation. The germ birth pro
ess N is a Poisson pointpro
ess on R
d×R

+ with intensity measure �. On
e germs or 
rystallization
enters are born, 
rystals grow if their lo
ation is not yet o

upied byanother 
rystal. When two 
rystals meet, the growth stops at the meetingpoint.To des
ribe 
rystal expansion in uno

upied spa
e, for a germ g =(xg ; tg) and a point x in R
d, let Ag(x) be the time when the point xis rea
hed by the 
rystal born in the lo
ation xg at the time tg . The
rystallization pro
ess is then 
hara
terized by the random �eld (r.f.) �,whi
h, for any lo
ation x in R
d, assigns its 
rystallization time�(x) = infg∈N

Ag(x):Consequently, at time t, a free 
rystal is the set Cg(t) = {x |Ag(x) ≤ t}.The above model was introdu
ed by Kolmogorov [1℄ and, indepen-dently, by Johnson and Mehl [6℄. It has been intensively studied by manyauthors, in
luding M�ller [2, 3℄, Mi
heletti & Capasso [7℄, who representmain approa
hes. In these publi
ations one 
an also �nd exhaustive lists109
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es. A very large part of these investigations deals with geo-metri
al stru
tures of mosai
s after all the germs have been grown. In
ontrast, our main attention in the 
urrent work is on ergodi
 propertiesof the 
rystallization pro
ess, thus providing a base for eÆ
ient estimationof model parameters and subsequent analysis of limit theorems su
h asasymptoti
al normality.The rest of the paper is organized as follows. Under general assump-tions, we state in Se
. 2 that the r.f. � is mixing in the sense of ergodi
theory. The proof is reported to Se
. 4. In Se
. 3, we give two examplesof appli
ation of Theorem 1 to the problem of parameter estimation.2. Assumptions on the birth and growth pro
ess and mixingGerms are born a

ording to a Poisson point pro
ess N on E = R
d ×

R
+. That is, germs are random points g = (xg ; tg) in E, where xg is thelo
ation in the growth spa
e R

d and tg is the birth time on the time axis
R
+. We suppose that the intensity measure of N has the expression� = �d ×m;where �d is the Lebesgue measure on R

d and m is a measure on R
+su
h that m([0; a℄) < ∞ for all a > 0. The 
ases to be 
onsidered below(
f. [2℄) are those with a dis
rete measure m and with a density measurem(dt) = �t�−1�(dt), where �; � > 0 are parameters. Sin
e the Lebesguemeasure is invariant under translations on R

d, we have that N is spa
ehomogeneous.For time t, we 
onsider the so 
alled 
ausal 
one Kt = {g ∈ E |Ag(0) ≤t}, whi
h 
onsists of all possible germs that 
an rea
h the origin before t.The measure �(Kt) of the 
ausal 
one Kt is denoted by F (t). These setand fun
tion play important roles in the sequel.We assume that, for any germ g = (xg ; tg), the asso
iated free 
rystalat time t ≥ tg is equal to Cg(t) = xg⊕[V (t) − V (tg)℄K, where K is a
onvex 
ompa
t set su
h that 0 ∈ K◦ with ⊕ denoting the Minkowskisum, and V (t) is an absolutely 
ontinuous fun
tion of t whose value is thedistan
e a
hieved with positive speed v(t). Finally, let M be a 
onstantsu
h that v ≤ M , and let DK be the diameter of the smallest ball 
enteredat zero and 
ontaining K. Note that when K = B(0; 1) and v =M , thenwe have the well-known model whi
h 
orresponds to the linear expansionin all dire
tions at a 
onstant speed.We next 
onsider the mixing of the r.f. �. To start with, we assumewithout loss of generality that � is a 
anoni
al r.f. on (
;F ;P). Namely,
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 = R
T with T = R

d, F is the �-�eld generated by the
ylinders, and P is the distribution of � so that for all ! ∈ 
, �(x; !) =!(x). Sin
e the Lebesque measure on R
d is invariant under translations,the r.f. � is homogeneous, that is, P is invariant under the translationsSh(!)(x) = !(x + h) for all h in R

d. We say that the 
anoni
al r.f. ismixing if, for all A and B ∈ F ,
P{A ∩ S−1h (B)} −→

|h|→∞
P{A}P{B}: (1)Note that every mixing r.f. in the above sense is ergodi
. We have thefollowing theorem.Theorem 1. For d ≥ 1, the r.f. � = (�(x))x∈Rd is mixing.The proof of the theorem is 
ontained in Se
. 4 while the next se
tionis devoted to the appli
ations of Theorem 1 to the problem of parameterestimation.3. Parameters estimation of the intensity measureWe 
onsider two 
ases:A) The measure m whi
h is a 
omponent of intensity measure � isabsolutely 
ontinuous and m(dt) = � t�−1dt with �; � > 0,B) The measure m is dis
rete: m =∑ni=1 pi Æai with ∑ni=1 pi = 1, forall i = 1; : : : ; n, pi > 0 and 0 < a1 < a2 · · · < an.Moreover, we suppose, keeping notations of the previous se
tion, thatthe 
rystal's shapes are de�ned by the 
ompa
t K = B(0; 1) and that thegrowth speed is 
onstant v = 1.First of all we remark that the marginal distribution fun
tion

F(t) = P{�(0) ≤ t}; t ∈ R
+;
an be expressed as follows

F(t) = P{N ∩Kt 6= ∅}= 1− P{N ∩Kt = ∅}= 1− exp(−�(Kt));where Kt = {g ∈ E |Ag(0) ≤ t} is a 
ausal 
one.
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e �(Kt) = − log(1−F(t)): (2)On the other side Theorem 1 shows that the fun
tion
F̂T (t) = 1T d ∫[0;T ℄d 1[0;t℄(�(x))�d(dx)is a 
onsistent estimator for F :
F̂T (t) p:s:

−→ E
(1[0;t℄(�(0))) = F(t): (3)Now, using (2) and (3), we will easily 
onstru
t 
onsistent estimatorsfor parameters �; � in 
ase A) as well as for pi in 
ase B).3.1. Absolutely 
ontinuous 
aseIf m(dt) = � t�−1dt, we have for all t ∈ R

+�(Kt) = t∫0 �d(B(0; t− s))� s�−1ds= 
d t∫0 (t− s)d� s�−1ds= 
d � td+� ld(�); (4)where 
d = �d(B(0; 1))and ld(�) = d!� (� + 1) : : : (� + d) :From (2) and (4), we dedu
e for all t ∈ R
+ that

− log(1−F(t)) = 
d � td+� ld(�): (5)Taking in (5) t = t1 and t = t2, we obtain the following system:




log( log(1−F(t1))log(1−F(t2)))log t1 − log t2 − d = �
− log(1−F(t1)) = 
d � ld(�) td+�1 (6)From (3), we get immediately



ERGODIC PROPERTIES OF CRYSTALLIZATION PROCESSES 113Proposition 1. The following statisti
s are strongly 
onsistent estima-tors for parameters � and �:�̂T := log ( log(1−F̂T (t1))log(1−F̂T (t2)))log t1 − log t2 − d p:s:
−→ ��̂T := − log(1− F̂T (t1))
d ld(�̂T )td+�̂T1 p:s:

−→ �:Naturally, for parti
ular values of t1, t2 the formulas for �̂T , �̂T 
ouldbe simpli�ed. For example, if t1 = e, t2 = 1, then�̂T = log( log(1− F̂T (e))log(1− F̂T (1)))− d; �̂T = − log(1− F̂T (e))
d ld(�̂T ) :3.2. Case of the dis
rete measureWe suppose now that m is the dis
rete measure ∑ni=1 pi Æai with∑ni=1 pi = 1, pi > 0 and 0 < a1 < a2 · · · < an. Moreover, as the 
rystals
an be born only at the moment ai; i = 1; : : : ; n; the estimation of thesemoments is not a diÆ
ult task, and we 
an assume that ai; i = 1 : : : n,are known.For all t ∈ R
+, �(Kt) = 
d n∑i=1 pi (t− ai)d1{ai≤t}: (7)Thus, if we 
onsider Eq. (7) for t = ai with i = 2; : : : ; n and t = a1 + an,we obtain the following system:






− log(1− F(a2)) = 
d (p1 (a2 − a1)d)
− log(1− F(a3)) = 
d (p1 (a3 − a1)d + p2 (a3 − a2)d)...
− log(1− F(an)) = 
d n−1∑i=1 pi (an − ai)d
− log(1− F(a1 + an)) = 
d (p1adn + n−1∑i=2 pi (a1 + an − ai)d + pnad1) :Again from (3), we derive the following 
onsistent estimators p̂i;T of pifor i = 1; : : : ; n.



114 YU. DAVYDOV, A. ILLIGProposition 2. The following statisti
s are strongly 
onsistent estima-tors for parameters pi:p̂1;T := 1(a2−a1)d (− log(1−F̂T (a2))
d ) ;p̂2;T := 1(a3−a2)d (− log(1−F̂T (a3))
d − p̂1;T (a3 − a1)d) ;...p̂n−1;T := 1(an−an−1)d (− log(1−F̂T (an))
d −
n−2∑i=1 p̂i;T (an − ai)d) ;p̂n;T := 1ad1 (− log(1−F(a1+an))
d − p̂1;T adn −

n−1∑i=2 p̂i;T (a1 + an − ai)d) :4. Proof of Theorem 1To prove that a random �eld is mixing, it is suÆ
ient to verify 
ondition(1) for 
ylinders and establish the following 
ondition
∀x1; : : : ; xk; ∀y1; : : : ; ym; ∀E1 ∈ Bk; ∀E2 ∈ Bm
P{(�(x1); : : : ; �(xk)) ∈ E1; (�(y1 + h); : : : ; �(ym + h)) ∈ E2}
−→

|h|→∞
P{(�(x1); : : : ; �(xk)) ∈ E1}P{(�(y1); : : : ; �(ym)) ∈ E2}: (8)We need three auxiliary lemma.Lemma 1. If A1, A2, B1, and B2 are four events, then(i) |P(A1)− P(A2)| ≤ P(A1△A2),(ii) |P(A1 ∩B1)− P(A2 ∩B2)| ≤ P(A1△A2) + P(B1△B2),where for two events A and B, A△B = (A ∩B
) ∪ (A
 ∩B).Proof. These fa
ts are well known. �Now for all h ∈ R

d and r ≥ 0, we de�ne new random �elds to approxi-mate �(x) and its translations �(x+ h):�hr (x) = infg∈N
|xg−h|≤rAg(x):
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|x|=RA(0;R)(x). Under our assumptions we havefor all h ∈ R

d
P

{�(x+ h) = �h(M ′+1)H(R)(x); |x| ≤ R} ≥ 1− e−�(K0;R);where M ′ =MDK and K0;R is the 
ausal 
one de�ned as followsK(0;R) = {g ∈ E; Ag(0) ≤ R}:Proof. As N is spa
e homogeneous,
P

{�(x+ h) = �h(M ′+1)H(R)(x); |x| ≤ R}=P

{�(x) = �0(M ′+1)H(R)(x); |x| ≤ R}and it is then suÆ
ient to demonstrate Lemma 2 for h = 0.It is not diÆ
ult to see that
{�(0) ≤ R} ⊂

{ sup
|x|≤R �(x) ≤ H(R)} :Now, let us prove that

{ sup
|x|≤R �(x) ≤ H(R)} ⊂ {�(x) = �0R+M ′H(R)(x); |x| ≤ R}: (9)Assumptions on the growth of 
rystals imply that for all germ g,Ag(x) ≥ tg + |x− xg |M ′

∀x ∈ R
d:In parti
ular, for germs g su
h that |xg | > R+M ′H(R), we dedu
e thatAg(x) > H(R) ∀x ∈ R

d; |x| ≤ R:Hen
e, for all x su
h that |x| ≤ R,infg∈N
|xg|>R+M ′H(R)Ag(x) > H(R) ≥ �(x);



116 YU. DAVYDOV, A. ILLIGand (9) follows.On the other hand, for 0 ≤ r1 ≤ r2 and ∀x ∈ R
d�(x) ≤ �0r2(x) ≤ �0r1(x):As R ≤ H(R); we dedu
e

{�(x) = �R+M ′H(R)(x); |x| ≤ R} ⊂ {�(x) = �(M ′+1)H(R)(x); |x| ≤ R}:Finally, we get
P
{�(x) = �(M ′+1)H(R)(x); |x| ≤ R} ≥ P{�(0) ≤ R}and

P{�(0) ≤ R} = P{N ∩K0;R 6= ∅}:But,
P{N ∩K0;R 6= ∅} = 1− e−�(K0;R):

�Lemma 3. Under our assumptions�(K0;R) −→R→∞
∞:Proof. The assumptions on the growth of 
rystals imply that for all germg ∈ E, there exists R > 0 su
h that g ∈ K(0;R) or equivalently su
h that0 belongs to the 
rystal Cg(R). But,

⋃R≥0K(0;R) = Eand sin
e �(E) = +∞, the result follows. �We 
ome ba
k to the proof of Theorem 1.Proof. For (x1; : : : ; xk) in Ek, (y1; : : : ; ym) in Em, E1 ∈ Bk andE2 ∈ Bm,we de�ne the sets:A = {(�(x1); : : : ; �(xk)) ∈ E1};B = {(�(y1); : : : ; �(ym)) ∈ E2};Bh = {(�(y1 + h); : : : ; �(ym + h)) ∈ E2}:



ERGODIC PROPERTIES OF CRYSTALLIZATION PROCESSES 117Let � > 0 and r = max{|xi|; i = 1 : : : k; |yj |; j = 1 : : :m}. By Lemmas 2and 3, we 
an �nd R > r su
h that
P

{�(x) = �0(M ′+1)H(R)(x); |x| ≤ R} ≥ 1− �:Let us now take h ∈ R
d su
h that |h| > 2R1, where R1 = (M ′ + 1)H(R),and introdu
e the sets:Ã = {(�0R1(x1); : : : ; �0R1(xk)) ∈ E1};B̃ = {(�0R1(y1); : : : ; �0R1(ym)) ∈ E2};B̃h = {(�hR1(y1); : : : ; �hR1(ym)) ∈ E2}:By Lemma 1 (ii), we have

|P(A ∩Bh)− P(Ã ∩ B̃h)| ≤ P(A△Ã) + P(Bh△B̃h):Let D = {�(x) = �0R1(x); |x| ≤ R}. Then, by Lemma 2,
P(A△Ã) = P((A△Ã) ∩D) + P((A△Ã) ∩D
)= P((A△Ã) ∩D
)

≤ P(D
)
≤ �:Repla
ing the set D by Dh = {�(x+h) = �hR1(x); |x| ≤ R}, we obtain bythe same arguments that

P(Bh△B̃h) ≤ �:These two inequalities imply that
|P(A ∩Bh)− P(Ã ∩ B̃h)| ≤ 2�: (10)On the other hand, the events Ã and B̃h are independent be
ause |h| >2R1. Thus,

P(Ã ∩ B̃h) = P(Ã)P(B̃h)and by spa
e homogeneity of N , P(B̃h) = P(B̃), so that
P(Ã ∩ B̃h) = P(Ã)P(B̃): (11)



118 YU. DAVYDOV, A. ILLIGMoreover, by Lemma 1 (i),
|P(A)P(B) − P(Ã)P(B̃)| ≤ |P(A)− P(Ã)|+ |P(B)− P(B̃)|

≤ P(A△Ã) + P(B△B̃);and Lemma 2 implies that
P(A△Ã) + P(Bh△B̃h) ≤ 2�: (12)Inequalities (10), (11), and (12) imply that for all h ∈ R

d su
h that
|h| > 2R1,

|P(A ∩Bh)− P(A)P(B)| ≤ 4�and the Theorem 1 then proved. �5. Con
luding remarks
• The method used in the proof of Theorem 1 
an be applied (aftersome modi�
ations) to estimate the rate of de
reasing of the absoluteregularity 
oeÆ
ient (for details see [5℄). These results provide a solidbase for establishing of asymptoti
al normality of estimators of modelparameters.
• In Se
. 3, one example of appli
ation of Theorem 1 to the problem of
onsistent estimation was given. There are many others, we 
an mentionhere the mean value of 
rystals born in unit volume or, more generally,another fun
tional of additive 
hara
ter. We are preparing a more detailedpubli
ation in this subje
t.6. A
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