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CONCENTRATION AND LIMIT THEOREMS 33We shall study the general question about the possible limit laws for Fn;".In partiular, in this randomized model, it is natural to ask whether ornot there is for growing n a ertain universal limit distribution whihapproximates Fn;" for most hoies of "'s. Our aim is to show that, undersome regularity hypotheses on the distribution of the X's, suh a limitdistribution exists and may be haraterized as a mixture of the Wigner'ssemi-irle laws. The whole piture is very similar to that in the aseof the weighted sums of dependent random variables, where mixtures ofGaussian measures play the role of typial distributions (a remarkableobservation, going bak to the work of V. N. Sudakov [23℄).To be more preise, for the trunated random variables X(�)jk =XjkI{|Xjk |6�√n } with trunation level � > 0 de�ne the quantities(�(�)n;j)2 = 1n n∑k=1 (X(�)jk )2 and (�(�)n )2 = 1n2 n∑j=1 n∑k=1 (X(�)jk )2:We impose the following onditions: for any � > 0, as n→ ∞,(1) supj;k EX2jk = O(1);(2) Ln(�) = 1n2 ∑nj=1∑nk=1 EX2jkI(|Xjk | > �√n ) = o(1);(3) �21 = 1n∑nj=1E((�(�)n;j)2 − (�(�)n )2)2 = o(1).The seond assumption is the usual Lindeberg-type ondition, introduedby L. A. Pastur for random matries with independent entries [19℄, oftenalled Wigner ensemble. The third ondition may be desribed as a kindof variane stabilization.To measure loseness of distributions on the real line, we shall use theL�evy metri: Given distribution funtions F and G, the distane L(F;G)is de�ned as the in�mum over all Æ > 0 suh that for all x ∈ R,F (x− Æ)− Æ ≤ G(x) ≤ F (x+ Æ) + Æ:We write L(�) for the distribution of a random variable �. Let �n de-note the standard Bernoulli measure on the disrete ube {−1; 1}n(n+1)=2.To eah point it assigns the mass 2−n(n+1)=2. Finally, de�ne �2n =1n2 ∑nj=1∑nk=1X2jk (�n > 0).



34 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVTheorem 1.1. Assume �n ⇒ �, weakly in distribution, as n → ∞, forsome random variable � ≥ 0. Then, assuming the onditions (1){(3) forany Æ > 0, we have �n{" : L(Fn;";L(��)) > Æ} → 0;where � is a random variable independent of � and distributed a-ording to the semi-irle law with variane 1 (that is, with density12� √4− x2 I(|x| ≤ 2)).The statement may formally be sharpened by replaing Æ with a se-quene Æn → 0. Thus, for large n most of the distribution funtions Fn;"are lose to L(��) in the the metri L. Note that L(��) may be viewed asa mixture of the semi-irle laws with mixing measure L(�). If a weak lawof large numbers applies to X2jk , so that �2n onverges in probability to aonstant �2, then the universal limit distribution L(��) is the semi-irlelaw with variane �2.Note as well, when the distribution ofX in R
n(n+1)=2 is symmetri withrespet to all oordinate axes, there will be no dependene ofW(") of the\parameter" ", so all 2n(n+1)=2 distribution funtions Fn;" are idential.Therefore, taking, for example, "jk = 1, the model redues to the non-randomized ase and yields the Wigner theorem for a ertain family ofrandom matries with dependent entries.As for the general (non-symmetri) ase, there is one interesting on-entration aspet, whih in essene does not require any hypotheses onthe joint distribution of the entries of X. De�ne the average distributionfuntion with respet to the "'s viaFn(x) = 2−n(n+1)=2∑" Fn;"(x); x ∈ R:It may be desribed as the expeted empirial measure for eigenvalues ofW ("), where now " is viewed as a random vetor on the disrete ube,independent of X (with distribution �n).It turns out that already the assumption (1) suÆes to guarantee thatmost of the distribution funtions Fn;" are very lose to Fn.Theorem 1.2. IfEX2jk ≤ �2 for all j; k ≤ n, then for any Æ ∈ (0; 1),�n{" : L(Fn;"; Fn) ≥ Æ} ≤ C e−n2 ; (1.1)



CONCENTRATION AND LIMIT THEOREMS 35where C and  are positive onstants depending on Æ and �, only.An important feature of the bound (1.1) is that with respet to the\dimension" the exponent is proportional to n2. This is an analogue toresults on the onentration of distributions of randomized sums for de-pendent summands. Namely, given a sequene of random variables, say,�1; : : : ; �n, one onsiders the sumsSn(�) = �1�1 + · · ·+ �n�n; � = (�1; : : : ; �n)with oeÆients from the unit sphere Sn−1 : �21 + : : : �2n = 1. In 1978,V. N. Sudakov disovered [23℄ that under a mild spetral assumptionon the orrelation operator of �i's, most of the distributions of Sn(�)are lose to a ertain \typial" distribution Fn whih is the average ofthe L(Sn(�))'s with respet to the uniform Lebesgue measure �n(d�) onSn−1. For the proof, he applied the L�evy{Shmidt isoperimetri theoremon the sphere and the measure onentration phenomenon related to it.Moreover, Fn itself is lose to the law of �nZ, where �2n = 1n ∑ni=1 �2i andZ is a standard normal random variable independent of �n. Thus, mostof L(Sn(�))'s are lose to a mixture of symmetri Gaussian measures onthe line. A di�erent approah to Sudakov's theorem, involving the aseof independent oeÆients, was later developed by H. von Weizs�aker[25℄. Various extensions and re�nements were intensively disussed in theliterature (f., e.g., [1, 5, 18℄). One of the results was that, the oeÆientsmay have a speial struture. For example, if �i = "i=√n with "i = ±1,and �i's are orthonormal in L2(
;F ;P), it was shown in [6℄ that�n{" : L(L(Sn); Fn) ≥ Æ} ≤ C e−n;where now �n denotes the normalizing ounting measure on the disreteube {−1; 1}n. (In ase of the trigonometri system, the problem goesbak to the work by R. Salem and A. Zygmund [22℄.) Thus, the role ofthe semi-irle law in the framework of randomized matries, as statedin Theorems 1.1{1.2, is similar to that of the normal distribution in theframework of randomized sums.The paper is organized as follows.In Se. 2, we introdue neessary notations and reall some useful iden-tities and bounds for resolvent matries.Setion 3 deals with the onentration property of the family of theharateristi funtions assoiated with the expeted empirial distribu-tions Fn;". In Se. 4, we onvert this property in terms of the L�evy distane



36 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVand derive Theorem 1.2 in a more preised form. A shorter proof of it inase of bounded entries of the matrix X an be given on the basis of Ta-lagrand's onentration inequality on the ube; this and related lines ofarguments was disussed by A. Guionnet and O. Zeitouni, f. [9℄. To savemore generality we have hosen a di�erent and more routine way, wherea di�erent onentration phenomenon on the ube is applied through theexpeted Stiltjes transform of the matrix W(").In Se. 5, we show that the average distribution Fn is lose to a mixtureof the semi-irle laws. For the readers onveniene, this setion is dividedinto three subsetions. The proof of Theorem 1.1 is ompleted in Se. 6.In the Appendix, we prove some auxiliary bounds for resolvent matries.2. General identities and bounds for resolventLet Ln denote the olletion of all square n×nmatriesA with omplexentries ajk, 1 ≤ j; k ≤ n. Also, denote by Hn the olletion of all n × nsymmetri matries with real entries. Given a matrixA in Ln with entriesajk , Tr (A) =∑nj=1 ajj de�nes its trae. The Hilbert{Shmidt norm of Ais given by ‖A‖2HS = ∑nj;k=1 |ajk |2. As usual, ‖A‖ denotes the spetralnorm.Denote by I the unit matrix of size n × n. For a omplex numberz = u+ iv, the value of the resolvent of A ∈ Hn at z is de�ned byR(z) = (A− zI)−1:It is well-de�ned, whenever v > 0. For short, we also write R = R(z).The next following Lemmas 2.1{2.5 are easily obtained by diagonaliza-tion of symmetri matries.Lemma 2.1. For any matrix A in Hn and z = u+ iv with v > 0,
|Tr (R)| ≤ nv ; ‖R‖HS ≤

√nv ; ‖R2‖HS ≤
√nv2 :Lemma 2.2. For any A in Hn and z = u + iv with v > 0, we have

‖R‖ ≤ 1v . In partiular, for any j = 1; : : : ; n,n∑k=1 |Rjk |2 ≤ 1v2 :



CONCENTRATION AND LIMIT THEOREMS 37Lemma 2.3. For any A in Hn and v > 0,+∞∫

−∞

‖R(u+ iv)‖2HS du = n�v :More preisely, for any j = 1; : : : ; n,+∞∫

−∞

n∑k=1 |R(u+ iv)jk |2 du = �v : (2.1)Lemma 2.4. Given A ∈ Hn and M ∈ Ln, for any v > 0,+∞∫

−∞

|Tr (MR2(u+ iv)| du ≤
√n�v ‖M‖HS :We will also use the following elementary identity:Lemma 2.5. Given matries A and B in Hn, let R = RA(z) be theresolvent of A and R′ = RA−B(z) be the resolvent of A−B. Then,R′ = R+RBR′ = R+RBR+RBRBR′:3. Conentration of harateristi funtionsTo study the onentration problem, we mainly work with the Stieltjestransform of the expeted spetral distributions Fn;", de�ned bySn(z; ") = +∞∫

−∞

dFn;"(x)x− z = 1n Tr (R(z; "));where R(z; ") = E (W(")−zI)−1 represents the expeted resolvent of therandom matrix W(") at the point z = u + iv. We always assume thatv > 0. The Stieltjes transform is related to the harateristi funtionfn(t; ") of Fn;" through the simple relationfn(t; ") = ev|t|� +∞∫

−∞

eitu ImSn(z; ") du; t ∈ R:



38 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVCorrespondingly, the �n-average of suh harateristi funtions repre-sents the harateristi funtion of Fn(x):fn(t) = ev|t|� +∞∫

−∞

eitu ImSn(z) du: (3.1)Note that the imaginary part of the Stieltjes transform as a funtion ofthe real variable u is always integrable with respet to Lebesgue measure.As a �rst step, we show that for any z = u+ iv and v > 0, the valuesof the funtion "→ Sn(z; ") are strongly onentrated about its �n-meanSn(z) = ∫ Sn(z; ") d�n(") = 2−n(n+1)=2∑" Sn(x; "):This an be seen by virtue of the so-alled onentration phenomenon onthe disrete ube.Namely, given a omplex-valued funtion g = g(") on {−1; 1}N , on-sider its disrete gradient with modulus given by
|∇g(")|2 = N∑k=1 |g(")− g("k)|2;where "k represents the ±1-sequene whih is obtained from the sequene" by replaing "k with −"k on the kth plae. The distribution of themodulus of the gradient is ours in a number of deviation inequalities.As the simplest example, one may onsider the so-alled Poinar�e-typeinequality.Lemma 3.1. For any funtion g : {−1; 1}N → C suh that ∫ g d�N = 0with respet to the normalized ounting measure �N , we have
∫

|g|2 d�N ≤ 14 ∫ |∇g|2 d�N :Moreover, there is an inequality of Gaussian-type in terms of the `∞-norm of the modulus of the gradient (f. [7, 15℄):



CONCENTRATION AND LIMIT THEOREMS 39Lemma 3.2. If |∇g(")| ≤ �, for all " ∈ {−1; 1}N , then�N {" : ∣∣∣∣g(")− ∫ g d�N ∣∣∣∣ ≥ h} ≤ 4 e−h2=4�2 ; h ≥ 0:We need to bound the modulus of the gradient |∇fn(t; ")| for the spe-i� funtion g(") = fn(t; ") uniformly over all points " in {−1; 1}n(n+1)=2.In our setting,
|∇fn(t; ")|2 = ∑1≤j≤k≤n |fn(t; ")− fn(t; "jk)|2;where, "jk represents the symmetri ±1-matrix of size n × n, whih isobtained from the matrix " by replaing the entry "jk with −"jk on thejkth and kjth plaes.Lemma 3.3. IfEX2jk ≤ �2, for all j; k, then for all " ∈ {−1; 1}n(n+1)=2and t ∈ R,

|∇fn(t; ")| ≤ C�|t|n max{1; �|t|}; (3.2)where C is an absolute onstant.By the inequalities in Lemmas 3.1{3.2, we therefore obtain:Theorem 3.1. LetEX2jk ≤ �2, for all j; k. Then we get, with respet tothe normalized ounting measure �n on {−1; 1}n(n+1)=2, for all t ∈ R,
∫

|fn(t; ")− fn(t)|2 d�n(") ≤ C2b2n2 : (3.3)where b = �|t| max{1; �|t|}. Moreover, with some universal  > 0, for allh ≥ 0, �n {" : |fn(t; ")− fn(t)| ≥ h} ≤ 4 e−n2h2=b2 : (3.4)Proof of Lemma 3.3. Let t 6= 0. We use an elementary bound
|∇fn(t; ")| ≤ √2 supA ∣∣∣∣

∑1≤j≤k≤n ajk (fn(t; ")− fn(t; "jk)) ∣∣∣∣; (3.5)where the sup is taken over all matries A in Ln with real entries {ajk}suh that ∑1≤j≤k≤n a2jk = 1: (3.6)



40 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVHere we assume that ajk = 0 for j > k. Fix suh a matrix A.Aording to the relation between harateristi funtions and Stieltjestransform, we have for z = u+ iv, v > 0, and ajk real,
∑1≤j≤k≤n ajk (fn(t; ")− fn(t; "jk))= ev|t|� +∞∫

−∞

eitu Im ∑1≤j≤k≤n ajk (Sn(z; ")− Sn(z; "jk)) du;hene,
∣∣∣∣
∑1≤j≤k≤n ajk (fn(t; ")− fn(t; "jk)) ∣∣∣∣

≤ ev|t|� +∞∫

−∞

∣∣∣∣
∑1≤j≤k≤n ajk (Sn(z; ")− Sn(z; "jk)) ∣∣∣∣du: (3.7)Given 1 ≤ j ≤ k ≤ n, writeW("jk) =W(")− 2"jkXjk√n Djk ;where we Djk denotes the symmetri matrix whih has zero entries every-where exept at the jkth and kjth entries, where it equals 1. In partiular,Djj has zero entries everywhere exept in the jjth entry, where it is 1.By Lemma 2.5 with B = 2"jkXjk√n Djk , the resolvents R ofW(") and Rjkof W("jk) are related byRjk = R+ 2"jkXjk√n RDjkR+ 4X2jkn RDjkRDjkRjk :Taking the trae of the both sides and using ommutativity of the trae,we obtain thatTr (Rjk) = Tr (R) + 2"jkXjk√n Tr (DjkR2) + 4X2jkn Tr (DjkRDjkRjkR):Taking expetations and dividing by n, we getSn(z; "jk)− Sn(z; ") = 2n3=2 E "jkXjk Tr (DjkR2) + 4n2 E bjkX2jk;



CONCENTRATION AND LIMIT THEOREMS 41where bjk = Tr (DjkRDjkRjkR). Hene,
∑1≤j≤k≤n ajk (Sn(z; "jk)− Sn(z; "))= 2n3=2 ETr (MR2) + 4n2 ∑1≤j≤k≤n ajkE bjkX2jk ;and+∞∫

−∞

∣∣∣∣
∑1≤j≤k≤n ajk (Sn(z; "jk)− Sn(z; ")) ∣∣∣∣du (3.8)

≤ 2n3=2 E +∞∫

−∞

|Tr (MR2)| du+ 4n2 ∑1≤j≤k≤n |ajk|E[X2jk +∞∫

−∞

|bjk| du ];where M is the matrix with entries Mjk = ajk"jkXjk.By Lemma 2.4, +∞∫

−∞

|Tr (MR2)| du ≤
√n�v ‖M‖HS:Sine ‖M‖2HS = ∑j;k |ajk |2X2jk , by (3.6), we have, E ‖M‖2HS ≤ �2, soE ‖M‖HS ≤ �. Thus,E +∞∫

−∞

|Tr (MR2)| du ≤
√n�v �: (3.9)Now, let's turn to the last term in (3.7) and reall the de�nition of bjk .Note that, for all symmetri matries G and H in Ln, we have in generalTr (DjkGDjkH) = GjjHkk +GkkHjj + 2GjkHjk ; for j < k:Also, Tr (DjjGDjjH) = GjjHjj . We apply these identities to G = Rand H = RjkR. By Lemma 2.2, |Rjk | ≤ 1v for all k, so, whether j < k orj = k, we have

|Tr (DjkGDjkH)| ≤ 4v |Hjk |: (3.10)



42 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVWrite Hjk = (RjkR)jk =∑nl=1 (Rjk)jlRlk. By the usual Cauhy inequal-ity,
|Hjk | ≤√√√√ n∑l=1 |(Rjk)jl|2 √√√√ n∑l=1 |Rlk|2;so integrating over u and using Cauhy{Bunyakovski's inequality, we get+∞∫

−∞

|Hjk| du ≤

√√√√√
+∞∫

−∞

n∑l=1 |(Rjk)jl|2 du √√√√√ +∞∫

−∞

n∑l=1 |Rlk|2 du:By Lemma 2.3, applied to the matries Rjk and R, and in view of thesymmetry ofR, the above right-hand side is equal to �v . Hene, from (3.9),+∞∫

−∞

|bjk| du ≤ 4�v2 ;and thus the seond expetation in (3.7) is bounded by 4�v2 �2. In addition,by the Cauhy's inequality and (3.6),∑1≤j≤k≤n |ajk | ≤ n. Therefore, theseond term in (3.7) is bounded by 16�nv2 �2. Together with (3.8), this boundyields via (3.7) that+∞∫

−∞

∣∣∣∣
∑1≤j≤k≤n ajk (Sn(z; "jk)− Sn(z; ")) ∣∣∣∣ du

≤ 2��nv + 16��2nv2 ≤ 18��nv max{1; �v } :Realling (3.5) and (3.7), we obtain that for any v > 0,
|∇fn(t; ")| ≤ 18√2 ev|t| �nv max{1; �v } :Choosing v = 1=|t| �nishes the proof of the lemma with C = 18�e√2. �



CONCENTRATION AND LIMIT THEOREMS 434. Conentration of distributions in L�evy metriWe shall now study the loseness of the randomized distribution fun-tions Fn;" to the mean distribution funtions Fn in terms of the L�evymetri. Note that this metri is related to the usual Kolmogorov's supre-mum distane by 0 ≤ L(F;G) ≤ ‖F −G‖ ≤ 1:Conversely, if G has a Lipshitz semi-norm bounded by a onstant C, thenwe get an opposite bound ‖F −G‖ ≤ (1 + C)L(F;G).Inequality (3.4) of Theorem 3.1 about the onentration property of theharateristi funtions may be transformed into a onentration prop-erty of the distribution funtions by virtue of Zolotarev's general bound,f. [28℄:Lemma 4.1. If f and g are the harateristi funtions of the distributionfuntions F and G, then with some absolute onstants C > 0 and T0 > 1,L(F;G) ≤ C[ T∫0 |f(t)− g(t)|t dt+ C logTT ]; T ≥ T0: (4.1)We shall use as well the following general elementary result.Lemma 4.2. If ∫ x2 dF (x) ≤ �2 and ∫ x2 dG(x) ≤ �2, then the funtion (t) = f(t)−g(t)t has derivative satisfying | ′(t)| ≤ �2, for any t > 0.Indeed, write ′(t) = +∞∫

−∞

eitx(1− itx)− 1(tx)2 x2 d(F (x) −G(x)):But the funtion �(s) = eis(1− is)− 1 has the derivative �′(s) = s eis, so
|�(s)| ≤ 12 s2 for all s ∈ R.Now �x a number Æ, suh that 0 < Æ < 1, �x a number h > 0, andtake T ≥ T0 to be spei�ed later on. Consider a partition of [0; T ℄ into monseutive intervals �i, i = 0; 1; : : : ;m−1, of equal length, not exeedingh. These intervals have endpoints ti = Tm i, andti+1 − ti = Tm ≤ h; 0 ≤ i ≤ m− 1: (4.2)



44 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVIntrodue the subsets of the disrete ube
i = {" : |fn(ti; ")− fn(ti)|ti < h} ; 1 ≤ i ≤ m:By Theorem 3.1, 1 − �n(
i) ≤ 4 exp{− n2h2=B2}, where B =� max{1; �T}, and  is a positive universal onstant. Hene,1− �n{ m⋂i=1
i} ≤ 4m exp{− n2h2=B2}:In (4.2), we may take m = [Th ]+ 1 (the integer part), so1− �n{ m⋂i=1
i} ≤ 4 (T + h)h exp{− n2h2=B2}: (4.3)Reall that fn(t; ") = 1n ETr (eitW(")). Therefore,f ′′n (0; ") = − 1n ETr (W(")2) = − 1n2 n∑j=1 n∑k=1EX2jk:This identity holds for all " on the disrete ube, so the same is true forf ′′n (0). Thus, |f ′′n (0; ")| ≤ �2 and the same is true for f ′′n (0). Hene, byLemma 4.2, the funtion (t; ") = |fn(t; ")− fn(t)|thas a Lipshitz semi-norm satisfying ‖ (t; ")‖Lip ≤ �2 on the half-axis t >0. Let " ∈ ⋂mi=1
i, so that | (ti)| < h for all i. Any point t ∈ [0; T ℄belongs to some interval �i, so |t − ti| ≤ h for some i ≤ m. By theLipshitz property shown above, we obtain that (t; ") ≤  (ti; ") + ‖ (t; ")‖Lip|t− ti| < (1 + �2)h:Hene, T∫0  (t; ") dt ≤ (1 + �2)Th, and by Lemma 4.1,L(Fn;"; Fn) ≤ C [(1 + �2)Th+ logTT ] :



CONCENTRATION AND LIMIT THEOREMS 45Thus, by (4.3), if Æ ≥ C [(1 + �2)Th+ log TT ] ; (4.4)then�n{L(Fn;"; Fn) ≥ Æ} ≤ 4 (T + h)h exp{−  n2h2�2max{1; �2T 2}} : (4.5)The next step is to minimize the right-hand side of (4.5) for all (T; h),satisfying (4.4), together with the assumption T ≥ T0. In fat, as analmost optimal hoie, we may take T = � log 2ÆÆ with � large enough.Then, logTT ≤ Æ ( log�� log 2 + 2� ) ≤ Æ2C ;where C is the onstant in Zolotarev's inequality (4.1) and (4.4). Further-more, if we take h = Æ2C (1 + �2)T ;(4.4) holds. As for the right-hand side of (4.5), then for some onstantC ′ > 0, hmax{1; �T} ≥ h1 + �T ≥ ÆC ′(1 + �3)T 2 = Æ3�2 C ′(1 + �3) log2 2Æ :In addition,T + hh = 2�2 C (1 + �2) log2 2Æ + Æ3Æ3 ≤ C ′′(1 + �2)Æ4 :Thus, we may onlude:Theorem 4.1. For any Æ ∈ (0; 1),�n{" : L(Fn;"; Fn) ≥ Æ} ≤ C e−n2 ; (4.6)where C = C(�; Æ) and  = (�; Æ) depend on Æ and �, only. Here we mayhoose for some absolute positive onstants C and ,C(�; Æ) = C(1 + �2)Æ4 ; (�; Æ) =  Æ6�2(1 + �6) log4 2Æ :Thus, we get a more preise version of Theorem 1.2. The bound (4.6)seems to be orret with respet to the \dimension" n2. However, we donot know the optimal order of the funtion (�; Æ) for small Æ. ChoosingÆ = Æn of order lognn1=3 for large n yields a right-hand side smaller than anypower of 1n . Hene:



46 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVCorollary 4.3. For \most" of ", we haveL(Fn;"; Fn) ≤ C lognn1=3with some onstant C = C(�). In partiular,
∫ L(Fn;"; Fn) d�n(") ≤ C lognn1=3 : (4.7)Remark. The logn term in (4.7) may be removed by using a Poinar�e-type inequality (3.3). Moreover, for bounded mean zero entries Xjk, esti-mate (4.7) may be sharpened to lognn1=2 , and similarly one may also improvedependene of onstants in Theorem 4.1 with respet to small values of Æ.Let us desribe an argument in this ase, whih is more/less standard.The map T : Hn → R

n, assigning to any symmetri n × n matrix Y =(yjk) the vetor of its eigenvalues (�1; : : : ; �n), written in the inreasingorder, is Lipshitz with respet to the Hilbert{Shmidt norm, that is,
||T (Y1) − T (Y2)|| ≤ ‖Y1 − Y2‖HS . Hene, for any funtion f on the realline with �nite Lipshitz norm ‖f‖Lip, the funtionalTf (Y ) = f(�1) + · · ·+ f(�n)nhas Lipshitz norm at most ‖f‖Lip=n. Moreover, if f is onvex, then Tf isonvex, as well. These two properties may be used to study the varianeTf and other similar quantities in ase of random Y by posing naturalhypotheses on the distribution of the entries Yjk , f., e.g., [16, 9℄. For ourrandomized model, where Yjk = "jkXjk with �xed "jk and random Xjksuh that |Xjk | ≤ 1, we may onlude that the funtionalQf (") = ∫ f dFn;"is onvex with respet to " ∈ R

n(n+1)=2 (as mixture of onvex funtionsafter averaging over Xjk 's) and has Lipshitz norm at most 2‖f‖Lip=n (asmixture of funtions with Lipshitz norm at most ‖f‖Lip=n). Therefore,we are in position to apply to Qf Talagrand's onentration inequality onthe disrete ube {−1; 1}n(n+1)=2, f. [24℄, whih gives�n{" : ∣∣∣∣ ∫ f dFn;" − ∫ f dFn∣∣∣∣ ≥ h} ≤ 2e−n2h2=‖f‖2Lip ; h ≥ 0; (4.8)



CONCENTRATION AND LIMIT THEOREMS 47with some positive absolute onstant .This bound is already very similar to estimate (4.6) in Theorem 4.1. Inorder to relate it to the L�evy distane between Fn;" and Fn, �rst we extend(4.8) to a larger family of admissible funtions. Namely, if f = f1− f2 forsome onvex f1 and f2 with ‖fi‖Lip ≤ �, it follows from (4.8) that�n{" : ∣∣∣∣ ∫ f dFn;" − ∫ f dFn∣∣∣∣ ≥ h} ≤ 4e−n2h2=�2 ; h ≥ 0; (4.9)with some (other) absolute  > 0. Now, �x a ∈ R, h > 0, and � > 0, andapply the latter to f1(x) = �(x− a)+ and f2(x) = �(x− (a+ h))+. Thenthe funtion f is vanishing on (−∞; a℄, is equal to �h on [a+h;+∞), andis linear on the interval [a; a+ h℄. Therefore,
∫ f dFn;" − ∫ f dFn ≥ �h (Fn;"(a)− Fn(a+ h));
∫ f dFn −

∫ f dFn;" ≥ �h (Fn(a)− Fn;"(a+ h)):Choosing � = 1h , we obtain from (4.9) that the set 
(a; h) of "'s, for whihFn;"(a) ≤ Fn(a+ h) + h and Fn(a) ≤ Fn;"(a+ h) + h; (4.10)has �n-measure at least 1 − 4e−n2h4 . Now, given a natural number N ,introdue 
(h) = ∩i=Nhi=−Nh
(ih; h), so that by the previous step,�n(
(h)) ≥ 1− 4(2N + 1) e−n2h4 : (4.11)If " is in 
(h), then (4.10) is ful�lled for all 2N + 1 points of the forma = ih, i = −N; : : : ; N . In ase a ∈ (−Nh;Nh), hoose i = −N+1; : : : ; Nsuh that (i− 1)h < a ≤ ih. Then, by (4.10),Fn;"(a) ≤ Fn;"(ih) ≤ Fn(ih+ h) + h ≤ Fn(a+ 2h) + h;and similarly Fn(a) ≤ Fn;"(a+2h) + h. In ase a < −Nh and N , is largeenough so that F (−(N − 1)h) ≤ h, we also haveFn;"(a) ≤ Fn;"(−(N − 1)h) ≤ Fn(−Nh) + h ≤ Fn(a) + 2h;



48 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVand Fn(a) ≤ h ≤ Fn;"(a+h)+h. Finally, assume a > Nh and 1−Fn((N−1)h) ≤ h. Then, by (4.10),Fn(a) ≤ Fn((N − 1)h) + h ≤ Fn;"(Nh) + 2h ≤ Fn;"(a+ h) + 2h;and Fn;"(a) ≤ 1 ≤ Fn(a+ h) + h.Thus, in all ases for all a ∈ R, we obtain that Fn;"(a) ≤ Fn(a+2h)+2hand Fn(a) ≤ Fn;"(a + 2h) + 2h, whih yields L(Fn;"; Fn) ≤ 2h. Hene,aording to (4.11),�n{" : L(Fn;"; Fn) ≥ 2h} ≤ 4(2N + 1) e−n2h4 : (4.12)It remains to estimate the least possible N . Using the basi assumption
|Xjk | ≤ 1, we have +∞∫

−∞

x2 dFn(x) = 1n2 ∑j;k EX2jk ≤ 1;so that by Chebyshev's inequality, 1− Fn((N − 1)h) ≤ 1(N−1)2h2 ≤ h, aslong as N − 1 ≥ 1h3=2 . Then also Fn(−(N − 1)h) ≤ h, so we may takeN = [ 1h3=2 ℄ + 2. Replaing Æ = 2h in (4.12), we arrive at the followingsharpening of Theorem 4.1.Theorem 4.2. If |Xjk| ≤ 1, for any Æ ∈ (0; 1),�n{" : L(Fn;"; Fn) ≥ Æ} ≤ CÆ3=2 e−n2Æ4 ;where C and  are absolute positive onstants.It is now easy to dedue with some absolute onstant C:Corollary 4.4. If |Xjk | ≤ 1, then ∫ L(Fn;"; Fn) d�n(") ≤ C log nn1=2 .5. Asymptoti behaviour of weightedrandom spetral distributionsIn this setion, we onsider the behaviour of the spetral distributionfuntions that are averaged with respet to "'s,F̃n(x) = Fn(x; !) ≡ 2−n(n+1)=2∑" Fn;"(x; !); (5.1)



CONCENTRATION AND LIMIT THEOREMS 49under the onditions that, for any � > 0, as n→ ∞,(1) L̃n(�) = 1n2 ∑nj=1∑nk=1X2jkI(|Xjk | > �√n ) = o(1);(2) �̃21 := 1n∑nj=1 ((�(�)n;j)2 − (�(�)n )2)2 = o(1).The study of the behavior of the spetral distribution funtion Fn(x; !)for large n is essentially equivalent to the study of the spetra of a randommatrix whose entries are independent and symmetrially distributed ran-dom variables, taking at most two opposite values. Note this is a non-i.i.d.model. First, we need to prove a (random) bound for the L�evy distane be-tween the distribution funtion Fn(x; !) and L(�n�), where � is a randomvariable having a standard semi-irle law (with variane (1).Reall the notations introdued in Se. 1:(�(�)nj )2 = 1n n∑k=1 (X(�)jk )2; (�(�)n )2 = 1n n∑j=1 (�(�)nj )2:As before, X(�)jk stands for Xjk, trunated at level � . Consider the randomsymmetri matries, subjet to the trunation proedure,W(�) = 1√n ("jkX(�)jk )nj;k=1 ; R(�) = (W(�) − zI)−1;and introdue the Stieltjes transform S(�)n (z) = 1n Tr (R(�)). LetB̃ = √L̃n(�)(�(�)n )2 + 2� + 1n + �(�)n√n + �̃1 + �̃21(�(�)n )2 :Theorem 5.1. Given � > 0 and ! ∈ 
, assume thatB̃ 6 �(�)n : (5.2)Then, there exist absolute onstants C and T0 > 1 suh that for anyT > T0,L(F̃n;L(�(�)n �)) 6 CB̃(�(�)n )−1 exp{2T�(�)n } logT + C logTT + T L̃n(�)2�(�)n :



50 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVProof. Let f̃n and f denote the harateristi funtions of F̃n and thesemi-irle law, respetively. By Zolotarev's Lemma 4.1, we have forall T ≥ T0,L(F̃n;L(�(�)n �)) ≤ C T∫0 |f̃n(t)− f(t�(�)n )|t dt+ C logTT :Note that |�n − �(�)n | ≤ L̃n(�)2�(�)n . This easily implies the bound
|f(t�(�)n )− f(t�n)| ≤ |t| |�n − �(�)n | ≤ |t| L̃n(�)2�(�)n : (5.3)Then, applying equality (3.1) and inequality (5.3) together, we get forany v > 0, L(F̃n;L(�n�)) 6 C exp{vT} logT ∞∫

−∞

|Sn(u+ iv)
−(�(�)n )−1S((u+ iv)(�n(�))−1)|du+ logTT + T L̃n(�)2�(�)n ; (5.4)where Sn(z) and S(z) denote the Stieltjes transforms of the distributionfuntion F̃n(x) and the semi-irle law, respetively.To bound the right hand side of this inequality, we shall investigate theStieltjes transform Sn(z) = 1n E"Tr (R(z)):Theorem 5.2. Under the ondition of Theorem 5:1, there exists an ab-solute positive onstant C suh that
∞∫

−∞

∣∣∣Sn(u+ iv)− (�(�)n )−1S((u+ iv)(�(�)n )−1)∣∣∣ du 6 C B̃v :Theorem 5.2 and inequality 5.4 together will omplete the proof of The-orem 5.1. �Proof of Theorem 5.2. First we bound the di�erene between Stieltjestransforms of the spetrum of the matrixW and the one of the spetrumof the matrix W(�) with trunated entries.



CONCENTRATION AND LIMIT THEOREMS 51Lemma 5.1. For any v > 0, we have
∞∫

−∞

∣∣∣Sn(u+ iv)− S(�)n (u+ iv)∣∣∣ du 6

√2(�(�)n )2 + v2v 32√�(�)n √Ln(�):The proof of this lemma is postponed to the Appendix.Now, assuming |Xjk | 6 �√n, we prove:Theorem 5.3. Under the ondition of Theorem 5:1, there exists an ab-solute positive onstant C suh that for all v > 2�(�)n ,+∞∫

−∞

∣∣∣S(�)n (u+ iv)− (�(�)n )−1S((u+ iv)(�(�)n )−1)∣∣∣ du 6
CB̃v :The proof of this theorem is given in Se. 5.1. Lemma 5.1 and Theo-rem 5.3 together imply the result of Theorem 5.2. �5.1. Proof of Theorem 5.3. Uniform boundIn the sequel, we assume that

|Xjk | 6 �√n:We will omit the index � in the notation. In this setion, we show thatthe Stieltjes transform of the spetral distribution of the matrixW satis-�es a ertain approximate equation that haraterizes the semi-irle law.Furthermore, we give a bound for the error of this approximation whih isuniform in u. Then, in Se. 5.3, using the obtained representation, we de-rive an integral bound for the di�erene between the Stieltjes transformsof the semi-irle law and the spetral distribution of the matrix.5.1.1. The main equationWe reall the following notations. Let X = (Xjk)nj;k=1 denote a sym-metri matrix of order n. Let "jk, 1 6 j 6 k 6 n, denote the Bernoullii.i.d. random variables. Consider a symmetri random matrixW of ordern with entries Wjk = 1√n "jkXjk for 1 6 j 6 k 6 n:



52 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVIntrodue the resolvent matrix R = (W−zIn)−1, where In is the identitymatrix of order n and z = u+ vi with v > 0.Let j� denote the multi-index j� = (j1; : : : ; j�) with distint numbersj1; : : : ; j� from {1: : : : ; n}. Introdue the matrix W(j�) obtained from Wby deleting the j1th,: : : ,j�th both rows and olumns. Consider also theresolvent matrix R(j�) = (W(j� ) − zIn−�)−1:If � = 0, the set of indies {j1; : : : ; j�} is empty, and we may also writeW =W(j0) and R = R(j0). Let a(j�)j denote the jth olumn without jthelements of the matrix W(j�).Aording to Lemma 7.1 below, we have the following equality forthe diagonal entries of the resolvent matries: For all j ∈ {1; : : : ; n} \
{j1; : : : ; j�}, � = 0; 1; : : : ; n− 1.R(j� )jj = 1"jjXjj√n − z − 1n∑(j�+1)l6=k "jk"jlXjkXjlR(j�+1)kl − 1n (j�+1)∑l X2jlR(j�+1)ll ; (5.5)where j�+1 = (j1; : : : ; j� ; j) and where∑(j�+1) indiates summation overall indies from {1; : : : ; n} \ {j1; : : : ; j�+1}. Introdue the following nota-tions:(j�)j;1 = 1√n"jjXjj ; (j�)j;2 = − 1n∑l6=k(j�+1)"jk"jlXjlXjkR(j�+1)lk ;(j�)j;3 = − 1n∑l (j�+1)X2jl (R(j�+1)ll − 1nTrR(j�+1)) ;(j�)j;4 = −

( 1n∑l (j�+1)X2jl)( 1nTrR(j�+1) − 1nTrR(j�))(j�)j;5 = −
( 1n n∑l=1 X2jl)( 1nTrR(j�) − 1nE"TrR(j�)) ;(j�)j;6 = ( 1n �+1∑p=1X2jjp) 1nTrR(j�);(j�)j;7 = −

( 1n n∑l=1 X2jl − �2n) 1nE"TrR(j�):



CONCENTRATION AND LIMIT THEOREMS 53Using these notations, we may rewrite equality (5.5) in the formR(j�)jj = − 1z + �2nS(j�;�)n (z) + 1z + �2nS(j�)n (z)�jR(j�)jj ; (5.6)where S(j�)n (z) = 1nE"TrR(j�); �(j�)j = 7∑s=1 (j�)j;s :Taking the mean value of Eq. (5.6) with respet to both j and ", we getS(j�)n (z) = − 1z + �2nS(j�)n (z) + 1z + �2nS(j�)n (z) 1n∑j (j�)E"�(j�)j R(j�)jj : (5.7)In partiular, for � = 0, we haveSn(z) = − 1z + �2nSn(z) + Æn(z); (5.8)where Æn(z) = 1n(z + �2nSn(z)) n∑j=1E"�jRjj :Assuming that |Xjk | 6 �√n, we prove the followingTheorem 5.4. For v > 2�n, we have |Æn(z)| 6 B̃1�2n , whereB̃1 = 2� + �n√n + √�21�n + �21�3n + 1√n:Corollary 5.2. Assume that B̃1 6 12v. Then, for v > max{1; 2�n},Sn(z) = �−1n S((z + Æn(z))�−1n ) + Æn(z)where S(z) = − z2 + √z2−42 .Proof. Note that for v > max{1; 2�n}, the assumption implies Im {z +�2nÆn(z)} > 0. Solving equation (5.8) with respet to Sn(z), we arrive atthe desired representation. �



54 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROV5.2. Proof of Theorem 5.4We start with straightforward bounds for the j;s with s 6= 3. For s = 3,the bound will be based on a ertain reurrene proedure. The boundsuniformly in u = ℜz and allow us to estimate the di�erene betweenStieltjes transforms.Proof of 5.4. Put As = 1n∑nj=1 E" |j;s| and note that
|Æn(z)| 6

1v2 1n n∑j=1E" |�j | 6
1v2 7∑s=1As:Lemmas 5.3{5.9 below together imply the result. �5.2.1. Auxiliary boundsIn this subsetion, we will onsider the matrix W(�). For simpliity ofnotations, we assume that, for some � > 0 and for any 1 6 j; k 6 n,

|Xjk | 6 �√n:We shall estimate the j;s, s = 1; : : : ; 7, error terms of the approximationof the Stieltjes transform of the distribution funtion Fn(x) by the Stieltjestransform of the semi-irle law using several auxiliary lemmas. We startwith obvious estimates.Lemma 5.3. We haveA(j�)1 ≡ 1n∑j (j�)E"|(j�)j;1 | 6 �:Proof. It is straightforward to hek thatA(j�)1 6
1n 32 n∑j=1 |Xjj | 6 �:Lemma 5.4. A(j�)2 ≡ 1n∑j (j�)E"|(j�)j;2 | 6

�n�v :



CONCENTRATION AND LIMIT THEOREMS 55Proof. Applying Cauhy's inequality and the de�nition of (j�)j;2 , we ob-tain that1n∑j (j�)E"|(j�)j;2 | 6
1n∑j (j�)E 12" |(j�)j;2 |2

6
1n2∑j (j�)(∑l6=k (j�+1)X2jlX2jkE"|R(j�+1)kl |2) 12

6
�n∑j (j�)( 1n∑l6=k(j�+1)X2jlE"|R(j�+1)kl |2) 12

6
�nv∑j (j�)( 1n∑l (j�+1)X2jl) 12

6
��nv :Here we have used that for all l ∈ {1; : : : ; n} \ {j1; : : : ; j�+1} and for all� = 0; 1; : : : ; n, ∑k (j�+1)|Rlk|2 6

1v2 :Lemma 5.5. A(j�)4 ≡ 1n∑j (j�)E"|(j�)j;4 | 6
�2nnv :Proof. Applying Lemma 7.2, we obtainA(j�)4 6

1n2v∑j (j�)( 1n∑k (j�+1)X2jk) 6
�2nnv :Lemma 5.6. A(j�)5 ≡ 1n∑j (j�)E"|(j�)j;5 | 6

�n√nv :Proof. Applying Lemma 7.3, we getA(j�)5 6
1n∑j (j�) 1n∑k (j�+1)X2jkE 12" ∣∣∣∣ 1n (TrR(j�) −E"TrR(j�))∣∣∣∣2 6

2�2n√nv :



56 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVLemma 5.7.A(j�)6 ≡ 1n∑j (j�)E"|(j�)j;6 | 6
(� + 1)�2nnv + √�21v :Proof. The de�nition of (j�)j;6 and the inequality | 1nTrR(j�)| 6 1v togetherimplyA(j�)6 6

1nv �∑p=1 1n n∑j=1X2jjp 6
(� + 1)�2nnv + 1nv �∑p=1 ∣∣∣∣∣∣ 1n n∑j=1X2jjp − �2n∣∣∣∣∣∣ :Finally, we state a simple bound for A(j�)7 ≡ 1n∑(j�)j E|(j�)j;7 |.Lemma 5.8. A(j�)7 6

1nv n∑j=1 ∣∣∣∣∣ 1n n∑k=1X2jk − �2n∣∣∣∣∣ 6

√�21v :The proof follows from the de�nition of (j�)j;7 .5.2.2. The bound on A3We prove the following:Lemma 5.9. The inequalityA3 = 1n n∑j=1E|j;3| 6 4B̃1;holds for v > 2�n withB̃1 = 2� +( �n√n + 1) 1√n + 1�3n�21 + 1�n√�21:Proof. Introdue the following quantity�(�)j = maxj� : j =∈{j1;::: ;j�}E"|(j�)j;3 |:



CONCENTRATION AND LIMIT THEOREMS 57For � = 0, we de�ne �(0)j = E"|j;3|:Using equality (5.6), we getE"|(j�)j;3 | 6
1n∑k (j�+1)X2jk 1n∑l (j�+1) ∣∣∣Rj�+1kk −Rj�+1ll ∣∣∣

6
1v2 1n∑k (j�+1)X2jk 1n∑l (j�+1) (E" ∣∣∣�(j�+1)l ∣∣∣+E" ∣∣∣�(j�+1)k ∣∣∣

) :Note that1n∑l (j�)E" ∣∣∣�(j�+1)l ∣∣∣

6 maxj� : j =∈{j1;::: ;j�}{ 7∑s=1; s6=3 1n∑l (j�)E|(j�+1)j;s |
}+ 1n∑l (j�)�(�+1)l :Aording to Lemmas 5.3{5.8, we obtainmaxj� : j =∈{j1;::: ;j�}∑s6=3 1n∑l (j�)E|(j�+1)j;s |



 6 B� ;where B� = (1 + �nv ) � + �n√nv ( (� + 2)�n√n + 1)+ √�21v :Then1n∑j (j�)�(�)j 6

�2nv2 B� + 1v2 1n2∑j (j�)∑k (j�+1)X2jk 1n∑l (j�+1)�(�+1)l+ 1v2 1n2∑j (j�)∑k (j�+1)X2jk�(�+1)k ; (5.9)In (5.9), we note the estimates1n∑j (j�)�(�)j 6
�2nv2 B� + 1v2 1n2∑j (j�)∑k (j�+1)X2jk 1n∑l (j�+1)�(�+1)l



58 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROV+ 1v2 1n∑k (j�) 1n∑j 6=k(j�)X2jk �(�+1)k :Thus we may rewrite the previous inequality as1n∑j (j�)�(�)j 6
�2nv2 B� + 1v2 1n2∑j (j�)∑k (j�+1)X2jk{ 1n∑l (j�)�(�+1)l }+ 1v2 1n∑k (j�)( 1n∑j 6=k(j�)X2jk)�(�+1)k : (5.10)Note that �(�+1)k in the seond term on the right-hand side of (5.10), doesnot depend on j and the quantity 1n∑l(j�)�(�+1)l in the �rst term doesnot depend on j and k, respetively. We also note that�(�)j 6

�2nv + 1v ∣∣∣∣∣ 1n n∑l=1 X2kl − �2n∣∣∣∣∣ : (5.11)Inequalities (5.10) and (5.11), and the above remark imply that1n∑j (j�)�(�)j 6
�2nv2 B� + 2�2nv2 1n∑l (j�)�(�+1)l + 2�2nv3 √�21 + 2v3�21:Put B̃� = B� + 2√�21v + 2v�2n�21:Using this notation, we have1n∑j (j�)�(�)j 6

�2nv2 B̃� + 2�2nv2 1n∑l (j�)�(�+1)l :Sine the last inequality does not depend on j� , we may write1n n∑j=1�(�)j 6
�2nv2 B̃� + 2�2nv2 1n n∑l=1�(�+1)l :



CONCENTRATION AND LIMIT THEOREMS 59For � = 0; 1; : : : ; n, n > 1, introdue the quantity Dn� = 1n∑nj=1 �(�)j .Then inequality (5.9) may be rewritten asDn;� 6
2�2nv2 B̃� + 2�2nv2 Dn;�+1:Note that Dn;n = 0. We may take v2 > 4�2n. Then we get Dn;� 6 12 B̃� +12Dn;�+1, whih, for v > 2�n, implies that Dn;0 6 4B̃1, whereB̃1 = 2� +( �n√n + 1) 1√n + 1�3n�21 + 1�n√�21:Finally, we note that 1n n∑j=1E|j;3| 6

1n n∑j=1 �(0)j :The last inequalities together imply that 1n∑nj=1 E|j;3| 6 4B̃1. �5.3. Proof of Theorem 5.4. An integral boundIn this setion, we prove Theorem 5.4. In partiular, we obtain someintegral bounds for the di�erene between the Stieltjes transforms of thespetral distribution funtion and of the semi-irle law. As a simple orol-lary, we get bounds for the distane between the orresponding hara-teristi funtions.First we onsider the matrix W(�), but for simpliity of notation, weomit the symbol � , assuming that |Xjk| 6 �√n for all j; k. Note thataording to Corollary 5.2, we may write the solution of Eq. (5.8) in theform Sn(z) = 1�nS(z + �2nÆn(z)�n )+ Æn(z): (5.12)Using |S′(z)| 6 1v , this implies that, for v > 2�n,
∣∣∣∣Sn(z)− 1�nS( z�n)∣∣∣∣ 6 (1 + �−1n ) |Æn(z)|and

∞∫

−∞

∣∣Sn(z)− �−1n S (z�n−1)∣∣ du 6 (1 + �−1n ) ∞∫

−∞

|Æn(u+ iv)|du:



60 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVWe return to Eq. (5.7) and to the de�nition Æn(z) asÆn(z) = 1n(z + �2nSn(z)) n∑j=1E"�jRjj ;where �j =∑7p=1 j;p. Integrating, we get
∞∫

−∞

|Æn(z)| du 6
1n n∑j=1E" ∞∫

−∞

∣∣∣∣�j Rjjz + �2nSn(z) ∣∣∣∣du
6

1n n∑j=1 7∑s=1 ∞∫

−∞

1
|z + �2nSn(z)|E" |j;s| |Rjj(u+ iv)|du:Introdue the quantitiesÃ(j�)j;s = 1n∑j (j�) ∞∫

−∞

1
|z + �2nSn(z)|E" |j;s| |Rjj(u+ iv)|du:Note that

∞∫

−∞

|Rjj(u+ iv)|du
|z + �2nSn(z)| 612  ∞∫

−∞

|Rjj(u+ iv)|2du+ ∞∫

−∞

du
|z + �2nSn(z)|2 :Using the representation of the diagonal entries of the matrix R via eigen-values �1; : : : ; �n and eigenvetors u1; : : : ;un of the matrixW, we obtain

∞∫

−∞

|Rjj(z)|2du 6

n∑k=1u2jk ∞∫

−∞

1(�j − u)2 + v2 du 6
�v :Equation (5.12) implies the following inequality

∞∫

−∞

1
|z + �2nSn(z)|2 du

6 2 ∞∫

−∞

|Sn(z)|2du+ 2 ∞∫

−∞

B̃2v2|z + �2nSn(z)|2 du:
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∞∫

−∞

|Sn(z)|2du 6

∞∫

−∞

∞∫

−∞

1(u− x)2 + v2 dudFn(x) 6
�v :Aording to ondition 5.2 of Theorem 5.1, we have | B̃2v2 | 6 14 . It thenfollows that ∞∫

−∞

1
|z + �2nSn(z)|2 du 6

C�v (5.13)for z = u+iv with v > 2�n. Using these bounds, similarly to Lemmas 5.3{5.8, we show that for s 6= 3
∑s6=3 Ãs 6

B̃v : (5.14)Applying the same argument as in the proof of Lemma 5.9, we show that,for v > 2�n, Ã3 6 CB̃v . From these inequalities it follows that
∞∫

−∞

|Sn(z)− �−1n S(z�−1n | du 6
CB̃v :The last inequality ompletes the proof of Theorem 5.4.6. Proof of Theorem 1.1By Theorem 1.2, it remains to show that Fn(x) → EXG̃(x), as n →

∞. Here G̃(x) = G(x�−1). Reall that Fn(x) = E F̃n(x). The latterexpetation may be splitted into the three integrals suh that, whenever0 < m < M ,E F̃n(x)= E F̃n(x)I{m6�n6M} +E F̃n(x)I{�n<m} +E F̃n(x)I{M<�n}: (6.1)Without loss of generality we will assume P{�2 = 0} = 0. Let n(X) = L(F̃n; G̃n);



62 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVwhere G̃n(x) = G(x�−1n ), x ∈ R. By the de�nition of the L�evy distane,we haveE F̃n(x) > E F̃n(x)I{m6�n6M}

> E G̃n(x−  n(X))I{m6�n6M} −E  n(X)I{m6�n6M}Note that supx |(G̃′n(x))| 6 C�−1n with some absolute positive onstantC. This impliesE F̃n(x) > E G̃n(x)I{m6�n6M} −E (1 + C�−1n ) n(X)I{m6�n6M}

> E G̃n(x)I{m6�n6M} − (1 + Cm−1)E  n(X)I{m6�n6M}: (6.2)Furthermore,lim supn→∞
E  n(X)I{m6�n6M}

6 lim supn→∞
E  n(X)I{m6�n6M}I{B̃6�n}+lim supn→∞

E  n(X)I{m6�n6M}I{B̃>�n}:Aording to Theorem 5.1, for any T > T0,lim supn→∞
E  n(X)I{m6�n6M}I{B̃6�n}

6 Cm−1 lim supn→∞
EB̃ exp{2TM} logT + C logTT + Tm lim supn→∞

EL̃n(�):Sine lim supn→∞EB̃ 6 � , we obtain for any � > 0 and for any T > T0,lim supn→∞
E  n(X)I{m6�n6M}I{B̃6�n} 6 C(T;M;m) � + C logTT ;where C(T;M) = C logT exp{2TM}. The left-hand side of the last in-equality does not depend on � and T . In the limit with � → 0 and T → ∞we get lim supn→∞

E  n(X)I{m6�n6M}I{B̃6�n} = 0: (6.3)Relations (6.2) and (6.3) yieldlim infn→∞
E F̃n(x) > lim infn→∞

E G̃n(x)I{m6�n6M}:



CONCENTRATION AND LIMIT THEOREMS 63Sine �n onverges weakly in distribution to � as n→ ∞ we obtainlim infn→∞
E F̃n(x) > E G̃(x)I{m6�6M} ;In the limit with m→ 0 and M → ∞ we getlim infn→∞

E F̃n(x) > E G̃(x): (6.4)Representation (6.1) yields the following inequalityFn(x) 6 E F̃n(x)I{m6�n6M} +E I{�n<m} +E I{M<�n}:From here, using the same argument as above, we getlim supn→∞
E F̃n(x) 6 E G̃(x): (6.5)Relations (6.4) and (6.5) together omplete the proof.7. Appendix7.1. Auxiliary lemmasIn order to make the paper self-ontained, we ollet here some auxiliarylemmas similar to those used in [2℄.Lemma 7.1. Let A = (akj) denote a nondegenerate matrix of order nwith inverse A−1 = (ajk) and Ak its nondegenerate major sub-matrix oforder n− 1. Let �k denote the vetor obtained from the kth row of A byremoving the kth entry and �k the vetor obtained from the kth olumnby removing the kth entry. Then,akk = 1akk − �′kA−1k �k :Proof. Consider the obvious equality

[ I 0
−CA−1 I ] [A BC D ] = [ A B0 D−CA−1B] ;whih implies det [A BC D ] = det (A) det (D−CA−1B) :



64 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVSine akk = det (Ak)det (A) ;the above equality with A = Ak, D = akk, C = �k and B = �k yieldsthe result. �As a trivial orollary of the Sturmian separation theorem (f.,e.g., [4,Chap. 7, Theorem 4℄), we have following:Lemma 7.2. Let z = u+ iv, and A be an n×n symmetri matrix. Then∣∣∣Tr (A− zIn)−1 − Tr (Ak − zIn−1)−1∣∣∣ 6 v−1:Proof. Consider a nonsingular blok matrixS = [S11S12S21S22 ] :Applying the Shur omplements formula ([13, Chap. 08, p. 21℄) withS11 = Ak − zIn−1, S21 = �k, S12 = �′k, and S22 = akk − z, a diretalulation yieldsTr (A− zIn)−1 − Tr (Ak − zIn−1)−1 = 1 + �′k(Ak − zIn−1)−2�kakk − �′k(Ak − zIn−1)−1�k :Let T be an orthogonal transformation whih transforms A into diag-onal form. Denote by �1 6 · · · 6 �n−1 the eigenvalues of Ak and let(y1; : : : ; yn−1) = �′kT ′. Then
|1 + �′k(Ak − zIn−1)−2�k| = ∣∣∣∣∣1 + n−1∑l=1 y2l (�l − z)−2∣∣∣∣∣

6 1+n−1∑l=1 y2l ((�l − u)2 + v2)−1
6 1+�′k ((Ak − uIn−1)2 + v2In−1)−1 �k:Sine for any ommuting matries A; B, suh that A2+B2 is nondegen-erate, (A+ iB)−1 = (A− iB)(A2 +B2)−1;we an diretly verify thatIm(akk − z − �′k (A− zIn−1)−1 �k)= −v (1 + �′k ((A− uIn−1)2 + v2In−1)−1 �k) :The last two relations together imply the result. �



CONCENTRATION AND LIMIT THEOREMS 657.2. Estimation of the variane of the Stieltjes transformsIn this setion, we give a general bound for the variane of Tr (R(z)),z = u + iv, without restritions on the moments of the matrix entriesunder the assumption of independene of entries. LetV 2n = 1n E |Tr (R(z))−ETr (R(z))|2:The bound for the last quantity gives:Lemma 7.3. For any v > 0, V 2n 6
4nv2 : (7.2)Proof. We apply the martingale deomposition for the di�ereneTr (R(z))−ETr (R(z)) developed in [10, p. 9℄. Let Ek denote the ondi-tional expetation given the �-algebra Fk = �{"ij : k + 1 6 i 6 j 6 n},where "ij , i; j = 1; : : : ; n, denote i.i.d. Bernoulli random variables. Intro-due the (n− 1)× (n− 1) matrixW(k) obtained fromW by deleting thekth row and olumn. Set R(k)(z) = (W(k) − zIn−1)−1. Let�k = Ek−1Tr (R(z))−Ek Tr (R(z)) = Ek−1κk −Ekκk ; (7.3)where

κk = Tr (R(z))− Tr (R(k)(z)):Equation (7.3) follows sine E{Tr (R(k)(z))∣∣Fk} = E{Tr (R(k)(z))∣∣Fk−1}.Applying Lemma 7.2 with A = W and A(k) = W(k) for symmetrimatries, we get
|κk| 6

1v :This immediately implies that
|d| 6

2v :Sine the martingale di�erenes d represent unorrelated random vari-ables for d ≤ n, and Tr (R(z)) − ETr (R(z)) = n∑d=1 d, we obtain theinequality V 2n = 1n2 E |Tr (R(z))−ETr (R(z))|2 6
4nv2 ;whih ompletes the proof. �



66 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROV7.3.TrunationHere we onsider the di�erene between the Stieltjes transforms of thespetral distributions of the matrixW and the trunated matrix. In whatfollows we shall use notation
|A|2 = AA∗;where A∗ denotes omplex onjugate matrix A. We start again with someobvious bounds.Lemma 7.4. For all � real and v > 0,supu { u2(u− �)2 + v2} 6

�2 + v2v2 :Proof. The funtion f(u) = u2(u−�)2+v2 the �rst derivativef ′(u) = 2u −�u+ �2 + v2((u− �)2 + v2)2 ;with ritial points at u0 = 0 and u1 = �2+v2� . It is easy to see thatsupu { u2(u− �)2 + v2} = f(u1) = u2 + v2v2 :Thus the Lemma is proved. �Lemma 7.5.
∞∫

−∞

√ 1n E"Tr (|R|4) du 6
�v 32 √2�2n + v2√�n :Proof. Consider the following equalities

∞∫

−∞

√ 1nE"Tr |R|4 = ∞∫

−∞

√√√√ 1n n∑j=1E" 1((u − �j)2 + v2)2 du= ∞∫

−∞

√√√√ 1n n∑j=1E" u2 + �2n((u − �j)2 + v2)2 du√u2 + �2n :



CONCENTRATION AND LIMIT THEOREMS 67Applying H�older inequality, we get
∣∣∣∣

∞∫

−∞

√ 1nE"Tr |R|4du∣∣∣∣
6

( ∞∫

−∞

1n n∑j=1E" u2 + �2n((u− �j)2 + v2)2 du) 12( ∞∫

−∞

duu2 + �2n) 12 : (7.5)By Lemma 7.4, we have
∞∫

−∞

1n n∑j=1E" u2 + �2n((u− �j)2 + v2)2 du
6

�nv n∑j=1E"�2j + v2 + �2nv2 = �v 2�2n + v2v2 : (7.6)Inequalities (7.5) and (7.6) together imply the Lemma. �We prove the followingLemma 7.6. For any v > 0, the following inequality holds,
∞∫

−∞

∣∣∣Sn(u+ iv)− S(�)n ∣∣∣ du 6

√2�2n + v2v 32√�n √Ln(�):Proof. Applying the resolvent equality(A+B− zI)−1 = (A− zI)−1 + (A− zI)−1B(A− zI)−1;we get ∣∣∣∣
1nE"TrR− 1nE"TrR(�)∣∣∣∣ 6 1nE"|TrR(�)W(�)R|: (7.7)Using Cauhy's inequality, we get

∣∣∣∣
1nE"TrR− 1nE"TrR(�)∣∣∣∣

6
1n( n∑j;k=1E"∣∣∣∣W (�)jk ∣∣∣∣2) 12( n∑j;k=1E"∣∣∣∣(RR(�))jk∣∣∣∣2) 12 :



68 S. G. BOBKOV, F. G�OTZE, A. N. TIKHOMIROVWe rewrite the last inequality as follows
∣∣∣∣
1nE"TrR− 1nE"TrR(�)∣∣∣∣ 6

√Ln(�)√E"TrRRR(�)R(�):From the last bound it follows that
∣∣∣∣
1nE"TrR− 1nE"TrR(�)∣∣∣∣ 6 √Ln(�)(√E"Tr |R|4 +√E"Tr |R(�)|4):Inequality (7.8) and Lemma 7.5 together imply

∞∫

−∞

∣∣∣∣
1nE"TrR− 1nE"TrR(�)∣∣∣∣ 6
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