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ON THE CONCENTRATION OF HIGH DIMENSIONAL
MATRICES WITH RANDOMLY SIGNED ENTRIES

ABSTRACT. Results on the concentration and asymptotic behaviour of
large dimensional random matrices with random signs are obtained. They
extend corresponding results, originating in the 1978 work of V. N. Su-
dakov, in the scheme of weighted sums with limiting Gaussian mixture
families to Wigner distributions.

1. INTRODUCTION

Consider a family X = {X;;}, 1 < j < k < n, of random variables
defined on some probability space (2, F,P). Put X, = X, for 1 <k <
j < n, and introduce the symmetric matrices

e X1 €12X12 -+ €1pXin
1 €91 Xo1  €22X99 -+ 95Xy

Wie) = NG : : - : ’
gannl 6712AX’77,2 Tt 6nn‘Xvnn

where ¢ = {g;;} denotes an arbitrary family of signs +1, satisfying the
symmetry condition e;;, = ;. This constitutes an ensemble of 2("+1)/2
random matrices. Each of them has a random spectrum {1 (¢),..., An(e)}
and an associated spectral distribution function

1
Foe(z,w) = - card{j <n:\j(e) <z}, z€R, wel.

Averaging over the random values X;;(w), define the expected (non-
random) empirical distribution functions

Fo:(z) =EF, .(z,w).

IResearch partially supported by NSF grant.
3Research supported by the DFG-Forschergruppe FOR. 399/1. Partially supported
by INTAS, grant No. 03-51-5018, and by RFBR-DFG, grant No. 04-01-04000.

32



CONCENTRATION AND LIMIT THEOREMS 33

We shall study the general question about the possible limit laws for F}, ..
In particular, in this randomized model, it is natural to ask whether or
not there is for growing n a certain universal limit distribution which
approximates F, . for most choices of ¢’s. Our aim is to show that, under
some regularity hypotheses on the distribution of the X’s, such a limit
distribution exists and may be characterized as a mixture of the Wigner’s
semi-circle laws. The whole picture is very similar to that in the case
of the weighted sums of dependent random variables, where mixtures of
Gaussian measures play the role of typical distributions (a remarkable
observation, going back to the work of V. N. Sudakov [23]).
)

To be more precise, for the truncated random variables Xj(z =
Xjily x,,|<rvmy With truncation level 7 > 0 define the quantities

O RN IR NN
E= Iy e o= LS
k=1 =1 k=1

We impose the following conditions: for any 7 > 0, as n — oo,
(1) Sup; g Eijk =0(1);
(2) La(r) = 72 X5y 2y BXRI(IXGe| > 7v/n) = o(1);
(3) A7 =150, B (5D~ 017)2) = o).

The second assumption is the usual Lindeberg-type condition, introduced
by L. A. Pastur for random matrices with independent entries [19], often
called Wigner ensemble. The third condition may be described as a kind
of variance stabilization.

To measure closeness of distributions on the real line, we shall use the
Lévy metric: Given distribution functions F' and G, the distance L(F,G)
is defined as the infimum over all § > 0 such that for all z € R,

Flx—06)—-6<G(z)<F(z+)+6.

We write £(n) for the distribution of a random variable 7. Let u,, de-
note the standard Bernoulli measure on the discrete cube {—1, 1}(+1)/2,
To each point it assigns the mass 2-"™("*1/2 Finally, define o2 =

# Z?:l Zﬁzl ngk (on 2 0).
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Theorem 1.1. Assume o, = o, weakly in distribution, as n — oo, for
some random variable ¢ > 0. Then, assuming the conditions (1)—-(3) for
any § > 0, we have

pnf{e : L(Fy ¢, L(c€)) > 0} — 0,

where € is a random variable independent of ¢ and distributed ac-
cording to the semi-circle law with variance 1 (that is, with density

VI I(a] < 2)).

The statement may formally be sharpened by replacing é with a se-
quence 0, — 0. Thus, for large n most of the distribution functions #, .
are close to L(c€) in the the metric L. Note that £(cf) may be viewed as
a mixture of the semi-circle laws with mixing measure £(0). If a weak law
of large numbers applies to X]?k, so that o2 converges in probability to a
constant o2, then the universal limit distribution £(c¢) is the semi-circle
law with variance o2.

Note as well, when the distribution of X in R*"*+1)/2 is symmetric with
respect to all coordinate axes, there will be no dependence of W (g) of the
“parameter” ¢, so all 27("+1)/2 distribution functions F, . are identical.
Therefore, taking, for example, €;; = 1, the model reduces to the non-
randomized case and yields the Wigner theorem for a certain family of
random matrices with dependent entries.

As for the general (non-symmetric) case, there is one interesting con-
centration aspect, which in essence does not require any hypotheses on
the joint distribution of the entries of X. Define the average distribution
function with respect to the ¢’s via

Fo(z) =27"2N"F, (2), z€eR.

It may be described as the expected empirical measure for eigenvalues of
W (e), where now ¢ is viewed as a random vector on the discrete cube,
independent of X (with distribution py,).

It turns out that already the assumption (1) suffices to guarantee that
most of the distribution functions F;, . are very close to Fj,.

Theorem 1.2. IfEX;, <o for all j,k <n, then for any § € (0,1),

pin{e : L(Fp., Fy) > 8} < Ce o, (1.1)
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where C' and ¢ are positive constants depending on ¢ and a, only.

An important feature of the bound (1.1) is that with respect to the
“dimension” the exponent is proportional to n?. This is an analogue to
results on the concentration of distributions of randomized sums for de-
pendent summands. Namely, given a sequence of random variables, say,
&1,...,&,, one considers the sums

Sn(0) =0:1& + -+ 0p&n, 0= (01,...,0,)

with coefficients from the unit sphere S"~! : 62 +...02 = 1. In 1978,
V. N. Sudakov discovered [23] that under a mild spectral assumption
on the correlation operator of &;’s, most of the distributions of S, (6)
are close to a certain “typical” distribution F, which is the average of
the £(5,(6))’s with respect to the uniform Lebesgue measure p,(df) on
S™~1. For the proof, he applied the Lévy—Schmidt isoperimetric theorem
on the sphere and the measure concentration phenomenon related to it.
Moreover, F, itself is close to the law of p, Z, where p2 = L 3" | €2 and
Z is a standard normal random variable independent of p,,. Thus, most
of L£(S,(8))’s are close to a mixture of symmetric Gaussian measures on
the line. A different approach to Sudakov’s theorem, involving the case
of independent coeflicients, was later developed by H. von Weizsicker
[25]. Various extensions and refinements were intensively discussed in the
literature (cf., e.g., [1, 5, 18]). One of the results was that, the coefficients
may have a special structure. For example, if §; = ¢;//n with ¢; = +1,
and &;’s are orthonormal in L?(Q, F, P), it was shown in [6] that

vo{e : L(L(S,), F,) >0} < Ce

where now v, denotes the normalizing counting measure on the discrete
cube {—1,1}". (In case of the trigonometric system, the problem goes
back to the work by R. Salem and A. Zygmund [22].) Thus, the role of
the semi-circle law in the framework of randomized matrices, as stated
in Theorems 1.1-1.2, is similar to that of the normal distribution in the
framework of randomized sums.

The paper is organized as follows.

In Sec. 2, we introduce necessary notations and recall some useful iden-
tities and bounds for resolvent matrices.

Section 3 deals with the concentration property of the family of the
characteristic functions associated with the expected empirical distribu-
tions F}, .. In Sec. 4, we convert this property in terms of the Lévy distance
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and derive Theorem 1.2 in a more precised form. A shorter proof of it in
case of bounded entries of the matrix X can be given on the basis of Ta-
lagrand’s concentration inequality on the cube; this and related lines of
arguments was discussed by A. Guionnet and O. Zeitouni, cf. [9]. To save
more generality we have chosen a different and more routine way, where
a different concentration phenomenon on the cube is applied through the
expected Stiltjes transform of the matrix W (e).

In Sec. 5, we show that the average distribution Fj, is close to a mixture
of the semi-circle laws. For the readers convenience, this section is divided
into three subsections. The proof of Theorem 1.1 is completed in Sec. 6.
In the Appendix, we prove some auxiliary bounds for resolvent matrices.

2. GENERAL IDENTITIES AND BOUNDS FOR RESOLVENT

Let £,, denote the collection of all square nxn matrices A with complex
entries ajr, 1 < j,k < n. Also, denote by H,, the collection of all n x n
symmetric matrices with real entries. Given a matrix A in £,, with entries
ajk, Tr(A) = 3°7_, aj; defines its trace. The Hilbert-Schmidt norm of A
is given by [|Alls = Xoj 4y lajk|*. As usual, [|A]| denotes the spectral
norm.

Denote by I the unit matrix of size n x n. For a complex number
z = u + iv, the value of the resolvent of A € H,, at z is defined by

R(z) = (A — 2I)"L.

It is well-defined, whenever v > 0. For short, we also write R = R(2).
The next following Lemmas 2.1-2.5 are easily obtained by diagonaliza-
tion of symmetric matrices.

Lemma 2.1. For any matrix A in ‘H,, and z = u + v with v > 0,

n n . n
T®) < Rigs < Y R < V2

Lemma 2.2. For any A in ‘H, and z = uw + tv with v > 0, we have
IR < % In particular, for any j = 1,...,n,

2 1
2
; |Rjr|” < ol
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Lemma 2.3. For any A in 'H,, and v > 0,

+-00
/ IR (u + iv) || 3 du = ”7”
—oo

More precisely, for any j = 1,...,n,
+oo n
/ ST IR(u + i) ] du = g (2.1)
Lo k=1

Lemma 2.4. Given A € H,, and M € L,,, for any v > 0,

+o0
/ ITe (MR (u + iv)| du < @ M.

We will also use the following elementary identity:

Lemma 2.5. Given matrices A and B in H,, let R = Ra(2) be the
resolvent of A and R’ = Ra_g(z) be the resolvent of A — B. Then,

R'=R+RBR’' =R + RBR + RBRBR'.

3. CONCENTRATION OF CHARACTERISTIC FUNCTIONS

To study the concentration problem, we mainly work with the Stieltjes
transform of the expected spectral distributions F}, ., defined by

+oo
Su(z,€) = / C”;”v;j(:) = LT (R(z,9)),

where R(z,e) = E (W (e) — 2I) ! represents the expected resolvent of the
random matrix W(e) at the point z = u + iv. We always assume that
v > 0. The Stieltjes transform is related to the characteristic function
fn(t,e) of F, . through the simple relation

— 00
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Correspondingly, the p,-average of such characteristic functions repre-
sents the characteristic function of F,(x):

+00
Full) = e:‘ / ' Im S, (2) du. (3.1)

Note that the imaginary part of the Stieltjes transform as a function of
the real variable u is always integrable with respect to Lebesgue measure.

As a first step, we show that for any z = u + iv and v > 0, the values
of the function € — S, (z,¢) are strongly concentrated about its p,-mean

50(2) = [ Suls2)dune) =2V Y S ),

This can be seen by virtue of the so-called concentration phenomenon on
the discrete cube.

Namely, given a complex-valued function g = g(g) on {—1,1}", con-
sider its discrete gradient with modulus given by

N

IVa@)* =D lgle) — 9P,

k=1

where £* represents the +1-sequence which is obtained from the sequence
¢ by replacing e with —e; on the kth place. The distribution of the
modulus of the gradient is occurs in a number of deviation inequalities.
As the simplest example, one may consider the so-called Poincaré-type
inequality.

Lemma 3.1. For any function g : {—1,1}" — C such that [ gdun =0
with respect to the normalized counting measure jpn, we have

1
/|g|2duN < Z/|V9|2dNN-

Moreover, there is an inequality of Gaussian-type in terms of the £°°-
norm of the modulus of the gradient (cf. [7, 15]):
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Lemma 3.2. If |[Vg(¢)| < o, for all ¢ € {—1,1}", then

N {61 ‘9(5)/9duN‘ > h} §4€_h2/4a2, h > 0.

We need to bound the modulus of the gradient |V f,(t,¢)| for the spe-
cific function g(g) = fn(t,) uniformly over all points € in {—1,1}(n+1/2,
In our setting,

Vit = Y Ifaltie) = fult,e™)P,

1<j<k<n

where, ¢7% represents the symmetric £1-matrix of size n x n, which is
obtained from the matrix € by replacing the entry ¢, with —e;; on the
jkth and kjth places.

Lemma 3.3. IfEX?; < o, for all j,k, then for all € € {—1, 1) t1)/2

and t € R,
t
Va2 < 0 a1, alu, (3.2

where C' is an absolute constant.
By the inequalities in Lemmas 3.1-3.2, we therefore obtain:
Theorem 3.1. LetEX3, < o?, for all j, k. Then we get, with respect to

the normalized counting measure i, on {—1,1}*"*tV/2 for all t € R,

/ Falt:2) — FaO dyine) < S0 (3.3)

n

where b = a|t| max{1, a|t|}. Moreover, with some universal ¢ > 0, for all
h >0,
212 2
tin {2 5 [falt,) = Fu(D)] = b} < de e/, (3.4)

Proof of Lemma 3.3. Let t # 0. We use an elementary bound

So o ag (faltie) = fult, )|, (3.5)

1<j<k<n

[V n(t,e)| < V2 sup
A

where the sup is taken over all matrices A in £,, with real entries {a;j}

such that
Y =1 (3.6)

1<j<k<n
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Here we assume that a;; = 0 for j > k. Fix such a matrix A.
According to the relation between characteristic functions and Stieltjes
transform, we have for z = u +iv, v > 0, and a;;, real,

Z Ak (fn(tug) - fn(tugjk))

1<j<k<n
+ o0
el itu ik
= — /e Im Z aji (Sn(z,€) — Sn(z,e’")) du;
. 1<j<k<n
hence,

Z Ak (fn(taE) - fn(t7€jk)) ‘
1<j<k<n
+oo

ev|t\
<
</
—o0

Given 1 < j <k < n, write

Z aji, (Sn(z,€) — Sn(z,ajk)) du. (3.7)

1<j<k<n

. 25ijjk
vn

where we D/* denotes the symmetric matrix which has zero entries every-
where except at the jkth and kjth entries, where it equals 1. In particular,
D77 has zero entries everywhere except in the jjth entry, where it is 1.
By Lemma 2.5 with B = Z—EJ%Lk D/* the resolvents R of W (g) and R7*

of W (&7*) are related by

W(*) = W(e) D*,

2

2e, X1 RD*R + 4X5, RD*RD*RI*
n

NG

Taking the trace of the both sides and using commutativity of the trace,
we obtain that

R/* =R+

2

i X s ) 4X* ) o
+ iRk ik R?) + 5 Ty (DIFRDIFRIFR).
n

vn

Taking expectations and dividing by n, we get

Tr (R7*) = Tr (R)

. 2 I 4
Sn(z,67%) — Sn(z,e) = 37z BeinXje Tr (D7*R?) + 2 E b X7,
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where b;;, = Tr (D/*RD/*R/*R). Hence,

Z Ak (Sn(Z,Ejk) - Sn(z7€))

1<j<k<n
2 4
= =5 BT (MR?) + — > apEbj X},
1<j<k<n
and
+oo
/ aji (Sn(z,7%) — Sn(z,0)) |du (3.8)
e | 1<j<k<n

+o00o 400
2 4 .
<=5 E/ |Tr(1vm2)|cmn—2 Z |a,-k|E[X;k / |bjk|du],
o0 oo

1<j<k<n

where M is the matrix with entries M;, = ajrejrXjk-
By Lemma 2.4,

—+oo

. nim
[ MR < YT s
— 00

Since M35 = 32,4 lajk[? X3, by (3.6), we have, E [M||3s < o, so
E M| gs < a. Thus,

+ o0
E / ITr (MR2)| du < @a. (3.9)

Now, let’s turn to the last term in (3.7) and recall the definition of bjy.
Note that, for all symmetric matrices G and H in £,,, we have in general

Tr (D’*GD’*H) = G Hyi + GreHjj +2G i Hje, for j<k.

Also, Tr (D/IGD#/H) = G,;H;;. We apply these identities to G = R
and H = R/*R. By Lemma 2.2, |Rj;| < L for all k, so, whether j < k or
j =k, we have

. . 4
ITr (D*GDI*H)| < — |Hjl. (3.10)
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Write Hj, = (R¥*R);r, = Y./, (R7%);1Ry),. By the usual Cauchy inequal-
ity,

n

[Hikl < [ D 1R (| D R,
=1

=1

so integrating over u and using Cauchy—Bunyakovski’s inequality, we get

+oo “+o0 n +oo n
[itlans | [0 w0l | [ 37 Rl du.
e o =1 o 1=1

By Lemma 2.3, applied to the matrices R’* and R, and in view of the
symmetry of R, the above right-hand side is equal to Z. Hence, from (3.9),

+oo 4
7
[ o< 3.

and thus the second expectation in (3.7) is bounded by j—g a?. In addition,
by the Cauchy’s inequality and (3.6), 3>, < <4<, lajk| < n. Therefore, the
second term in (3.7) is bounded by % 2. Together with (3.8), this bound
yields via (3.7) that

+ o0

/

Z ajk (Sn(z,67*) — S,(z,¢)) | du

1<j<k<n

2ra 16ma? 187« a
<—+ 5 < max {1, —} .

nv nv nv v
Recalling (3.5) and (3.7), we obtain that for any v > 0,

IVfa(t,e)| < 18V2evltl max{l, 9}.
nuv v

Choosing v = 1/|t| finishes the proof of the lemma with C' = 187e\/2. O
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4. CONCENTRATION OF DISTRIBUTIONS IN LEVY METRIC

We shall now study the closeness of the randomized distribution func-
tions F, . to the mean distribution functions F;, in terms of the Lévy
metric. Note that this metric is related to the usual Kolmogorov’s supre-

mum distance by
0<L(FG)<|F-G| <1

Conversely, if G has a Lipschitz semi-norm bounded by a constant C', then
we get an opposite bound |F — G| < (1 + C) L(F,G).

Inequality (3.4) of Theorem 3.1 about the concentration property of the
characteristic functions may be transformed into a concentration prop-
erty of the distribution functions by virtue of Zolotarev’s general bound,
cf. [28]:

Lemma 4.1. If f and g are the characteristic functions of the distribution

functions F' and G, then with some absolute constants C > 0 and Ty > 1,

T

L(F,G)gC{/lf(t);g(t”dt—l-Cl;gT . T>T. (4.1)

0

We shall use as well the following general elementary result.
Lemma 4.2. If [2? dF(z) < o? and [ 2? dG(z) < o?, then the function
P(t) = M has derivative satisfying [¢'(t)| < o2, for any t > 0.

Indeed, write

v = [ U R - 6.

But the function £(s) = €?*(1 — is) — 1 has the derivative &'(s) = se'®, so
|€(s)] < 1 8% for all s € R.

Now fix a number 4, such that 0 < § < 1, fix a number h > 0, and
take T' > Ty to be specified later on. Consider a partition of [0, 7] into m

consecutive intervals A;, ¢ = 0,1,...,m—1, of equal length, not exceeding
h. These intervals have endpoints t; = % i, and

<h, 0<i<m-—1L. (4.2)



44 S. G. BOBKOV, F. GOTZE, A. N. TIKHOMIROV

Introduce the subsets of the discrete cube

Q; = {8: |fn(ti7€)t‘* fn(tl)| < h}, 1<i<m.

By Theorem 3.1, 1 — p,(Q;) < 4exp{—cn®h®>/B%}, where B =
a max{1,aT}, and c is a positive universal constant. Hence,

m
1-— ,un{ ﬂ Qi} < 4m exp{—cn®h?/B?}.
i=1
In (4.2), we may take m = [£] + 1 (the integer part), so

1- un{ ﬂ Q; } AT + AT +h) exp{—cn®h?/B?}. (4.3)

Recall that fn(t,e) = ZETr (e*W()), Therefore,

110,¢) = f—ETr( _7112 ZZEka

j=1k=1

This identity holds for all € on the discrete cube, so the same is true for
f7(0). Thus, |f/(0,e)] < a® and the same is true for f/(0). Hence, by
Lemma 4.2, the function

|fn(t75) - fn(t)|

vlt,e) = S

has a Lipschitz semi-norm satisfying [|1(¢,€)||Lip < @ on the half-axis ¢ >
0.

Let € € N2, €, so that [¢(t;)] < h for all i. Any point ¢ € [0,T]
belongs to some interval A;, so |t — t;| < h for some i < m. By the
Lipschitz property shown above, we obtain that

Dt e) < P(tise) + ([t €)lLiplt — ti] < (1 +0®) .
T 5
Hence, [¢(t,e)dt < (1+a*)Th, and by Lemma 4.1,
0

logT

L(Fp . Fy) <C|(1+a®)Th+
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Thus, by (4.3), if

5>C [(1+a2)Th+ IOgT} ,

(4.4)
then

4(T + h) cn’h?
pn{ L(Fy, ) } A exp{ o? max{1, a?T?} (4.5)
The next step is to minimize the right-hand side of (4.5) for all (T, h),
satisfying (4.4), together with the assumption T" > Tj. In fact, as an

2
almost optimal choice, we may take T' = (3 lo—ii with 8 large enough.

Then,
longé( log 5 +g)§i’
T Blog2 2C
where C' is the constant in Zolotarev’s inequality (4.1) and (4.4). Further-
more, if we take

e 0
200 +a)T
(4.4) holds. As for the right-hand side of (4.5), then for some constant
C' >0,
h - h - 0 _ 52
max{L,aT} - 1+al - O+ T? B0+ 0 g 2
In addition,
T+h 28°C(1+a?) log’2 + &° - C"(1+ a?)
R 53 - 54 ’
Thus, we may conclude:
Theorem 4.1. For any § € (0,1),
pin{e : L(Fp o, Fy) >0} < Ce ™, (4.6)
where C = C'(«a, §) and ¢ = ¢(«, ) depend on § and «, only. Here we may
choose for some absolute positive constants C' and c,

C(l + a? c 6
Clart) = S ) = Sy
& 5

Thus, we get a more precise version of Theorem 1.2. The bound (4.6)
seems to be correct with respect to the “dimension” n?. However, we do
not know the optimal order of the function ¢(e,d) for small 6. Choosing
d = 6, of order 1%/—7; for large n yields a right-hand side smaller than any
power of % Hence:
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Corollary 4.3. For “most” of €, we have

logn
nl/3

L(Fpe, Fp) <C

with some constant C = C(a). In particular,

logn
/ L(Fo., Fo) dpn(e) < C nlg/g . (4.7)

Remark. The logn term in (4.7) may be removed by using a Poincaré-
type inequality (3.3). Moreover, for bounded mean zero entries Xy, esti-
mate (4.7) may be sharpened to ‘nﬂ‘;/—Z, and similarly one may also improve
dependence of constants in Theorem 4.1 with respect to small values of 4.

Let us describe an argument in this case, which is more/less standard.
The map T : 'H,, — R”, assigning to any symmetric n X n matrix ¥ =
(yjr) the vector of its eigenvalues (A1,..., ), written in the increasing
order, is Lipschitz with respect to the Hilbert—Schmidt norm, that is,
|T (Y1) — T(Ys)|| < ||Y1 — Y2||ms. Hence, for any function f on the real
line with finite Lipschitz norm || f||vip, the functional

fO) 4+ 4+ f(An)

n

Ty(Y) =

has Lipschitz norm at most || f||rip/n. Moreover, if f is convex, then T is
convex, as well. These two properties may be used to study the variance
Tt and other similar quantities in case of random Y by posing natural
hypotheses on the distribution of the entries Yy, cf., e.g., [16, 9]. For our
randomized model, where Y, = €;,X;, with fixed €, and random X,
such that | X ;| < 1, we may conclude that the functional

Q)= [ £ar,.

is convex with respect to & € R™™+1)/2 (as mixture of convex functions
after averaging over X;’s) and has Lipschitz norm at most 2|| f||rip/n (as
mixture of functions with Lipschitz norm at most || f||Lip/n). Therefore,
we are in position to apply to 5 Talagrand’s concentration inequality on
the discrete cube {—1,1}*+1/2 cf. [24], which gives

un{e:‘/den,s—/den

> h} <2/ >0, (4.8)
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with some positive absolute constant c.

This bound is already very similar to estimate (4.6) in Theorem 4.1. In
order to relate it to the Lévy distance between F}, . and F},, first we extend
(4.8) to a larger family of admissible functions. Namely, if f = f; — f» for
some convex f1 and fo with || f;||Lip < o, it follows from (4.8) that

un{e:‘/den,e/den

with some (other) absolute ¢ > 0. Now, fix a € R, h > 0, and ¢ > 0, and
apply the latter to fi(z) = o(x —a)* and fs(z) = o(x — (a+ h))*. Then
the function f is vanishing on (—o0, a], is equal to oh on [a+ h, +00), and
is linear on the interval [a,a + h]. Therefore,

> h} <dememM/ p>0,  (4.9)

/den,E —/den > oh (Fp.o(a) — Fa(a + h),
/den _ /den,E > oh (Fp(a) — Fa.(a+ h).

Choosing o = 3, we obtain from (4.9) that the set (a, h) of &’s, for which

Foe(a) <F,(a+h)+h and F,(a) < F,.(a+h)+h, (4.10)

has p,-measure at least 1 — qe—cn’ht, Now, given a natural number N,
introduce Q(h) = NEZNk, Q(ih, h), so that by the previous step,

1 (QR)) > 1 — 42N + 1) e~"h". (4.11)
If € is in Q(h), then (4.10) is fulfilled for all 2N + 1 points of the form
a=1th,i=—-N,...,N.Incasea € (—Nh, Nh), choosei = —N+1,...,N
such that (i — 1)h < a < ih. Then, by (4.10),
Fy:(a) < Fyc(ih) < Fo(ih+h) +h < Fu(a+2h) + h,

and similarly F},(a) < F,, .(a + 2h) + h. In case a < —Nh and N, is large
enough so that F(—(N — 1)h) < h, we also have

Fhoe(a) < Fhp(—(N —1)h) < F,(—=Nh) + h < F,(a) + 2h,
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and F,(a) < h < F,, c(a+h)+h. Finally, assume a > Nh and 1 —F, (N —
1)h) < h. Then, by (4.10),

Fo(a) < Fo((N —=1)h) + h < F, o(Nh) + 2h < Fy . (a + h) + 2h,
and F, .(a) <1< F,(a+h)+h.
Thus, in all cases for all a € R, we obtain that I}, . (a) < Fy,(a+2h)+2h

and F,(a) < F,.(a + 2h) + 2h, which yields L(F, ., F,) < 2h. Hence,
according to (4.11),

pin{e : L(Fn., F) > 20} < 4(2N + 1) e~nh", (4.12)

It remains to estimate the least possible N. Using the basic assumption
| X k| <1, we have

+00

‘ 1
/ z* dF,(z) = —~ > EXj <1,
e gk

so that by Chebyshev’s inequality, 1 — F,,((N — 1)h) < m < h, as
long as N — 1 > ;L;T Then also F,,(—(N — 1)h) < h, so we may take
N = [}L;T] + 2. Replacing 6 = 2h in (4.12), we arrive at the following
sharpening of Theorem 4.1.

Theorem 4.2. If | X ;| <1, for any 6 € (0,1),
pinfe : L(Fpe, Fy) > 6} < 53% e,
where C' and ¢ are absolute positive constants.
It is now easy to deduce with some absolute constant C":
Corollary 4.4. If |X;i| <1, then [ L(F, ., F,)dus(c) < C%’l%.
5. ASYMPTOTIC BEHAVIOUR OF WEIGHTED
RANDOM SPECTRAL DISTRIBUTIONS

In this section, we consider the behaviour of the spectral distribution
functions that are averaged with respect to €’s,

Fo(z) = Fo(z,w) =27 "2 N " FL L (2,0), (5.1)
>
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under the conditions that, for any 7 > 0, as n — oo,
(1) La(r) = 3 201 iy XAI(1Xe] > 7v/n) = o(1);
2
(2) A%:= L0, (002 = (07)?) = o(1).

The study of the behavior of the spectral distribution function F),(z,w)
for large n is essentially equivalent to the study of the spectra of a random
matrix whose entries are independent and symmetrically distributed ran-
dom variables, taking at most two opposite values. Note this is a non-i.i.d.
model. First, we need to prove a (random) bound for the Lévy distance be-
tween the distribution function F,(z,w) and £(0,€), where £ is a random
variable having a standard semi-circle law (with variance (1).
Recall the notations introduced in Sec. 1:

1n (7- n
_EI;X , Z

j=1

SI'—*

As before, X;;) stands for X, truncated at level 7. Consider the random
symmetric matrices, subject to the truncation procedure,

1 T " T T —
W = 7n (Eij]('k))jk:17 R = (W — 1),

and introduce the Stieltjes transform si (2)=L+Tr (R(7). Let

= VI I L.
(05)? no Vn (052

Theorem 5.1. Given 7 > 0 and w € ), assume that
B <o, (5.2)

Then, there exist absolute constants C' and Ty > 1 such that for any
T > Ty,

ClogT 4 TLn(T)

L(F,,L(c{7¢)) < CB(6\") " exp{2T("} log T + .
T 20'7(:—)

n
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Proof. Let fn and f denote the characteristic functions of F, and the
semi-circle law, respectively. By Zolotarev’s Lemma 4.1, we have for
all T > To,

’ (1)
L(ﬁn,ﬁ(gflr)g)) < C/ | fn(t) *tf(tcrn )| g+ ClogT.
0

T

Note that |o,, — 0’1(1T)| < %}} This easily implies the bound
o

L,
F(t00) = Flto)] < o —o@l < 22D 53
20.(7')
Then, applying equality (3.1) and inequality (5.3) together, we get for
any v > 0,

L(F, £(0n€)) < Cexp{vT} logT / 1S (1 + i)

logT Ln(7)
T
T TG

n

—(o7) 7S ((u +iv)(0aT) ) |du +

(5.4)

where S,,(z) and S(z) denote the Stieltjes transforms of the distribution
function F,(z) and the semi-circle law, respectively.

To bound the right hand side of this inequality, we shall investigate the
Stieltjes transform

Sn(z) = %EETr (R(2)).

Theorem 5.2. Under the condition of Theorem 5.1, there exists an ab-
solute positive constant C' such that

/ [Suu+iv) = (@57) 7 S((u+iv)(el) )| du<C

Theorem 5.2 and inequality 5.4 together will complete the proof of The-
orem 5.1. N

Proof of Theorem 5.2. First we bound the difference between Stieltjes
transforms of the spectrum of the matrix W and the one of the spectrum
of the matrix W(™) with truncated entries.
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Lemma 5.1. For any v > 0, we have

i 2 1 v
/ Sn(u—l—iv)—Sr(f)(u—i-iv)‘dué L/ L,(7).
—00 U% UT(LT)

The proof of this lemma is postponed to the Appendix.
Now, assuming | X ;| < 7v/n, we prove:

Theorem 5.3. Under the condition of Theorem 5.1, there exists an ab-

solute positive constant C' such that for all v > 207@,

+oo
/\Sﬁf’(uﬂv)—(aﬁ:)) S((u+iv) (0§ | du < ==

The proof of this theorem is given in Sec. 5.1. Lemma 5.1 and Theo-
rem 5.3 together imply the result of Theorem 5.2. O

5.1. Proof of Theorem 5.3. Uniform bound

In the sequel, we assume that

|Xjk| g T\/’E.

We will omit the index 7 in the notation. In this section, we show that
the Stieltjes transform of the spectral distribution of the matrix W satis-
fies a certain approximate equation that characterizes the semi-circle law.
Furthermore, we give a bound for the error of this approximation which is
uniform in u. Then, in Sec. 5.3, using the obtained representation, we de-
rive an integral bound for the difference between the Stieltjes transforms
of the semi-circle law and the spectral distribution of the matrix.

5.1.1. The main equation

We recall the following notations. Let X = (Xjk)?kzl denote a sym-
metric matrix of order n. Let €, 1 < j < k < n, denote the Bernoulli
i.i.d. random variables. Consider a symmetric random matrix W of order
n with entries

1

Wit = —= x Xk for 1<j<k<n.
n
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Introduce the resolvent matrix R = (W —21,,) 7!, where I,, is the identity
matrix of order n and z = u + vi with v > 0.

Let j, denote the multi-index j, = (j1,...,J,) with distinct numbers
i, ,jy from {1....,n}. Introduce the matrix W4») obtained from W
by deleting the jith,...,j,th both rows and columns. Consider also the
resolvent matrix

RUY) = (W) .1, )"

If v = 0, the set of indices {ji,...,j,} is empty, and we may also write

W = Wlo) and R = RU0), Let ag-j”) denote the jth column without jth

elements of the matrix WU»).
According to Lemma 7.1 below, we have the following equality for
the diagonal entries of the resolvent matrices: For all j € {1,... ,n}\

{j1,-o s gvt,v=0,1,...,n—1.
1

RU») — . , (55)
T X LG g1) Goan) 1 9 o Gugn)
% —z = ot EkEa X X Ry — o zz: X5 Ry
where j,+1 = (j1,.-. , jv,j) and where Z(j”“) indicates summation over
all indices from {1,... ,n}\ {j1,.-. ,jv+1}- Introduce the following nota-

tions:

i 1 i 1 (Gv+1) i
v = N vy = -=> ejnei X X R,
1%k

. 1 i ‘ . 1 .
%(‘35) = —EZ(J +1)Xfl (Rz(ljyﬂ) - ETrR(J”“)) )
[
Go) _ 1 (Gvt1) o 1 i 1 i
vy =- (EXl: X3, ETTR(J +1) ET]fR(J )

- IR 1 | :
v = - (5 ZX]%) (ETrR(J”) — EEETrR(J“)) :
=1

(JV) — 1 - X2 1 T R(JV)
RF N Z i | ot ;
p=1

~ 1~ o 1 .
yd) = — <E > X5 - gg> ~E.Tr RU).,
=1
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Using these notations, we may rewrite equality (5.5) in the form

(ju) — 1 1 (JV)
RUY — _ : + TR (5.6)
7 z+ J%SS”’T)(Z) z+ 0%57(3”)( ) i

where

-3

SU) () = lE TrRO), 1) = Z%

Taking the mean value of Eq. (5.6) with respect to both j and e, we get

. 1 1 LG iy s
S () = — _Z(J )EEI‘;J”)R;J]-”). (5.7)
J

Gy T o 4 o2 ol
240255 (2) 24028y (2) 1
In particular, for v = 0, we have

1

Snl2) = 24 025,(2)

+6n(2), (5.8)

where

6n(Z): (Z+O'25 ZEFRJJ

Assuming that | X ;| < 74/n, we prove the following

Theorem 5.4. For v > 20, we have |0,(z)| < f—;, where

- VAT A1
Bi=2r4 2L+ N2l Sl

\/_ On Un ﬁ .

Corollary 5.2. Assume that B, < $v. Then, for v > max{1,20,},

where S(z) = —% + Y2 =1,

Proof. Note that for v > max{1, 20, }, the assumption implies Im {z +
28n(2)} > 0. Solving equation (5.8) with respect to S, (z), we arrive at
the desired representation. O
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5.2. Proof of Theorem 5.4

We start with straightforward bounds for the v; ; with s # 3. For s = 3,
the bound will be based on a certain recurrence procedure. The bounds
uniformly in v = Rz and allow us to estimate the difference between
Stieltjes transforms.

Proof of 5.4. Put A, = £ % | E. |v;,;| and note that

n

7
11 1
|0n(2)] < v—zng ITj] < —22

j=1

Lemmas 5.3-5.9 below together imply the result. O

5.2.1. Auxiliary bounds

In this subsection, we will consider the matrix W(7). For simplicity of
notations, we assume that, for some 7 > 0 and for any 1 < j,k < n,

|X]k| g T\/ﬁ.
We shall estimate the v; 5, s =1,...,7, error terms of the approximation
of the Stieltjes transform of the distribution function F,(x) by the Stieltjes

transform of the semi-circle law using several auxiliary lemmas. We start
with obvious estimates.

Lemma 5.3. We have

: 1
Ag.]u) = E | (.]1/ |

Proof. It is straightforward to check that

AP < Z X551 <

Lemma 5.4.
O’nT

QA
Mt

g = 5

J
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Proof. Applying Cauchy’s inequality and the definition of 7]( ), we ob-
tain that

1) i (iv) )
-3 Es|v§fz>|\—2 B2 )P
J

(3 Jv+1) . 2
<@ (S g g )
j I#£k
1
2
g_z:(.l ( Z(J+1) E|RJV+1|>
I#£k
1
(v Gvt1) 9\ 2 _ TOg
< — X2 < ==,
> (s ) i) <

Here we have used that for all l € {1,... ,n}\ {1, ..

vr=20,1,..
(Go+1)
> IRl <
k

.y Jju+1} and for all

'7n7

Lemma 5.5.

(3v) On
A(Ju - Z E. |%(JZ o
Proof. Applying Lemma 7.2, we obtain

(3v) 1 () [ 1 =Gvt1) 4 o
A< R AR <o
J

k

Lemma 5.6.

(Ju ; o
A(Ju = Z Jg)| < n .
J Vv

Proof. Applying Lemma 7.3, we get

(Ju) 1 (JV)]. (jv+1) 2 1 1 (V) (V) 20'721
Ab <Ezj: Ezk: X5E2 | ~(TrRU-) — E.TrRU-) <7
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Lemma 5.7.

k}/\
m:‘

(1/ +1)02 N A2
nv v

=

J

Proof. The definition of yj(Jg ) and the inequality |1 Tr RUY)| < 1 together
imply
v n 1 v n

1 1 (v+1)o 1
Epﬂg;me\; Ez; nz Jie T n'

Finally, we state a simple bound for A% = =1 Zy” E|7] ).

Lemma 5.8.

n /A%

1
nv v

1 n
— X i

Jj=1

The proof follows from the definition of fy](J; ).

5.2.2. The bound on A;
We prove the following:

Lemma 5.9. The inequality

ZEW] 5| < 4By,

holds for v > 20, with

~ o 1 1 1

By =2 Ll =4 A2 /A2

1 T+<\/ﬁ+>\/ﬁ+a;§ T A
Proof. Introduce the following quantity

ﬁ](',,) = max E. |’y](f§) |

Jot 3¢ {1, }
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For v = 0, we define
B = Eelysl-

Using equality (5.6), we get

. 1 (Got+1) .5 1 (Jo+1)
Bef’ \gz kagz

k i

JV+1) (Jo+1) i
<5y, Z (E. [rf+
k

Note that

1 o :
_Z(J )Ee ‘FI(JVH)
n
!
7
< max

Jvr 3¢ {dt,.. i

jo+1 jo+1
Ry — Ry

+E. ‘F,(j”“)

).

I

According to Lemmas 5.3-5.8, we obtain

(Giv)
max E g J"“ < B,,

Jui §@{d1se i}

s#£3 I
where
On On (7/ + 2)0n A2
B, = (1 —) 1 L
)Tt V/nw ( vn + )+ v
Then

1—G) fL (v) v 41 (v+1) (p
Ez.} ﬁ]()g% Uzn2z.} ZJ+ _ZJ+ l(+1)
J l

Z Ju+1)|} iz(ju)ﬁl(y—i-l).
l

Ju Ju+1 v41
WZ 2T (5.9)

In (5.9), we note the estimates

1 —G) fL (v) —=Gv+1) (v+1) (p
Ez.] ﬁ]()g% Uzn2z.} ZJ+ ;J#— l(+1)
J



58 S. G. BOBKOV, F. GOTZE, A. N. TIKHOMIROV

+vlz TlLZ Z > X5 | B
k

J;ﬁk

Thus we may rewrite the previous inequality as

1) ;{ v vt 1Gv) (o
Ezj:a @ng—g U2nzZJ ZJ+ X2 {EEZ:J 51( +1)}

11— (1) v
F5=> (52 Xﬁ)ﬂ,i*”- (5.10)

J#k

Note that ﬁk"H) in the second term on the rlght hand side of (5.10), does

not depend on j and the quantity %Zz ,"H) in the first term does

not depend on j and k, respectively. We also note that

—_

2
v) _ Op 1
B < <t E§ X2 - (5.11)

v

Inequalities (5.10) and (5.11), and the above remark imply that
1 iv) (v 2071 v) (v 2 /
EZ(J )5]() nB +L_ (i Bl +1) 0 + Az
J

Put

~ 2¢/A2 2 .
B, =B, + L+ — AL
v vol
Using this notation, we have
16 02 ~ 202 1 =) (v41
10 < BB B e
J
Since the last inequality does not depend on j,, we may write

1— (v) U;ZL ~ 2(7721 1 — (v+1)
=> B < B+ p
j=1 =1
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For v = 0,1,...,n, n > 1, introduce the quantity D,, = %Z?Zl 63('”)
Then inequality (5.9) may be rewritten as

202 ~ 2072
Dn,l/ g ,U_ZnBV + ,U_ann,l/—i-l-

Note that D,, , = 0. We may take v? > 402. Then we get D,, , < %EV +
%Dn7y+1’ which, for v > 20, implies that D,, o < 4By, where
~ On 1 1., 1 .
B =2 Inop 1) — 4+ A2 — /A2
1 T+ (\/ﬁ + ) \/’E + 0’% 1 + o 1

Finally, we note that
1« 1~ 00
- ZE|%',3| S Zﬁj
j=1 j=1

The last inequalities together imply that 1 Zj 1 Ely;3] < 4B,. O
5.3. Proof of Theorem 5.4. An integral bound

In this section, we prove Theorem 5.4. In particular, we obtain some
integral bounds for the difference between the Stieltjes transforms of the
spectral distribution function and of the semi-circle law. As a simple corol-
lary, we get bounds for the distance between the corresponding charac-
teristic functions.

First we consider the matrix W(7), but for simplicity of notation, we
omit the symbol 7, assuming that |X;;| < 7y/n for all j, k. Note that
according to Corollary 5.2, we may write the solution of Eq. (5.8) in the
form

1 25
Sn(z) = —S (M) +6u(2). (5.12)
On On
Using |S’(z)| < +, this implies that, for v > 20,

5,)~ 2-5(2) | < o) 6o

On

and

/‘S 'S (200 M) |du < (1+ 0, ) /|6 (u + iv)|du.
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We return to Eq. (5.7) and to the definition §,(z) as

on(z) = (ngs ZE TR,

where I'; = Z;Zl vjp- Integrating, we get

i 1« R
()| du< =S E. | |D,—=2 |4
/| (2)| du n; ]Z-i-a%Sn(z) U
1~ [ 1
< . ‘7}35 . R - d .
n;; |z + 025,(2)] [Vj.s| [ Rjj (uw + iv)|du

Introduce the quantities

~G,) 1 (») 1 .
Aj,s = Ezj: 7|Z+O’%Sn(z)|EE |’}/j7s||Rjj(u+’LU)|du.

Note that

|Rjj (u + iv)|du
|2+ 028n(2)]

DN =

.. i) |2d / .
/ |Rjj (u+iv)| du + 2+ 025,(2)]?

Using the representation of the diagonal entries of the matrix R via eigen-
values A1, ..., A\, and eigenvectors uy, ... ,u, of the matrix W, we obtain

o0 n o0 1
2 2 ™
J 1miste) d“;“ﬂf/md“;-

Equation (5.12) implies the following inequality

j
J RSP
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It is straightforward to check that

oo ‘ (o sllNe’e] 1 -
2du < - - T
/ [Sn(2)]7du < / / TR dudF,(x) < o

— 00 — 00

According to condition 5.2 of Theorem 5.1, we have |%| < 1.1t then
follows that

7 1 Cr
S S—; WP i} .
/ oS, P S (5:13)

for z = u+iv with v > 20,,. Using these bounds, similarly to Lemmas 5.3—
5.8, we show that for s # 3

> A, < B (5.14)
v
$#£3

Applying the same argument as in the proof of Lemma 5.9, we show that,
for v > 20,, A3 < %. From these inequalities it follows that

T B
/ 1Sn(2) — 0, S(z0, | du < CT

The last inequality completes the proof of Theorem 5.4.

6. PROOF OF THEOREM 1.1

By Theorem 1.2, it remains to show that Fj,(z) — ExG(z), as n —

co. Here G(z) = G(zo~'). Recall that F,(z) = E F,(z). The latter
expectation may be splitted into the three integrals such that, whenever
0<m< M,

E F,(z)
= E Fo(@)[{m<o,<rry + B Fo(@) (5, <my + E Fo(@)[(rr<p,y-  (6.1)

Without loss of generality we will assume P{0? = 0} = 0. Let
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where G, (z) = G(zo;'), z € R. By the definition of the Lévy distance,
we have

E ﬁn(x) > E Fo(2)[{m<o, <My
> E Go(@ — n(X)meo, <y — B 00(X) (<o, <an)

Note that sup, |(G/,(z))] < Co;; ' with some absolute positive constant
C. This implies

E F,(z) > E G (@) (<o, <ary — E (1 + Cop Yo (X) <o, <ary

> E én(ﬂf)f{mgangM} —(1+Cm™ "E Un(X) <o, <ary- (6.2)

Furthermore,

lim sup B 1 (X) [ e, <a1)

n—oo

<limsup E wn(X)I{mgangM}I{ B

n—oo

ga’n}—’_
limsup E 1/)n(X)I{m<Jn <M}I{I§>an}'

n—oo

According to Theorem 5.1, for any 7" > Tp,

limsup E 1/)n(X)I{m§Un<M}I{]§<%}

n—oo

~ logT T ~
< Cm ™ 'limsup EB exp{2T M} logT + ¢ ;g + — limsup EL,,(7).

n— 00 m n—oco

Since lim sup,,_, o, EB < T, we obtain for any 7 > 0 and for any T > Tj,

. ClogT
limsup B ¢ (X) Imeo, <anl(pe,,y < CTMm) 7+ %,
where C(T, M) = ClogT exp{2T M }. The left-hand side of the last in-
equality does not depend on 7 and T'. In the limit with 7 — 0 and T' — oo

we get
hmsupE ¢H(X)I{m<0n<M}I{§<5n} =0. (63)

n—o0o

Relations (6.2) and (6.3) yield

liminf E F,,(z) > liminf E én(x)I{mggngM}.

n—oo n—oo
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Since oy, converges weakly in distribution to ¢ as n — oo we obtain

liminf E F,,(z) > E é(x)I{mgggM},

n—oo

In the limit with m — 0 and M — oo we get

liminf E F,(z) > E G(z). (6.4)

n—oo

Representation (6.1) yields the following inequality

Fo(2) < E Fo(@) pmeon<ory VE Itg,cmy + E Iipreo, s
From here, using the same argument as above, we get

limsup E F,(z) < E G(x). (6.5)

n—oo

Relations (6.4) and (6.5) together complete the proof.

7. APPENDIX

7.1. Auxiliary lemmas
In order to make the paper self-contained, we collect here some auxiliary
lemmas similar to those used in [2].

Lemma 7.1. Let A = (ai;) denote a nondegenerate matrix of order n
with inverse A=! = (ajk) and Ay its nondegenerate major sub-matrix of
order n — 1. Let a4, denote the vector obtained from the kth row of A by
removing the kth entry and f3, the vector obtained from the kth column
by removing the kth entry. Then,

Kk _ 1
a - / 71 -
agr — o, AL B

Proof. Consider the obvious equality
I 0 A B| A B
—-CA ! I||C D|— 0 D-CA'B}|’
which implies

det[c D

A B} = det (A) det (D — CA™'B).
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Since

det (A)’
the above equality with A = Ay, D = agi, C = a5 and B = [ yields
the result. O

As a trivial corollary of the Sturmian separation theorem (cf.e.g., [4,
Chap. 7, Theorem 4]), we have following:

Lemma 7.2. Let z = u+1iv, and A be an n X n symmetric matrix. Then

Tr (A — zIn)f1 —Tr (Ag — zIn_l)fl‘ <v L

Proof. Consider a nonsingular block matrix

S11S12
S = .
{521522 }

Applying the Schur complements formula ([13, Chap. 08, p. 21]) with
Si11 = Ag — 21,1, So1 = ag, S12 = a}, and S22 = apr — 2, a direct
calculation yields

1+ Oé;C (Ak — zIn,l)*zak

Tr(A —2L) " = Tr(Ag — 2lp) ' = '
I“( z ) I“( k% 1) akk—a%(Ak_ZIn—l)_lak

Let T be an orthogonal transformation which transforms A into diag-
onal form. Denote by p; < -+ < pnp—1 the eigenvalues of Ay and let
(W1,--- ,Yn—1) = a;,T'. Then

1+ Oé;g(Ak — ZIn_l)_QOék| =

n—1
T+ yi (- Z)_Q‘
=1

= 2 2 2\ 1 ’ 2 2 -1
<1+Zyl (i —u)?+v°)  <1l+ap ((Ak—uIn_l) +wv In—l) .
=1
Since for any commuting matrices A, B, such that A2 + B? is nondegen-
erate,
(A +iB)™' = (A —iB)(A? + B,

we can directly verify that
Im (akk —z—af (A—20,_1) " ak)
= (1 + o), (A—ul,—1)* + vzln,l)_l ak) )

The last two relations together imply the result. O
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7.2. Estimation of the variance of the Stieltjes transforms
In this section, we give a general bound for the variance of Tr (R.(z)),
z = u + iv, without restrictions on the moments of the matrix entries
under the assumption of independence of entries. Let
1 ‘
V2= —E|Tr (R(z)) — ETr (R(2))|*.
n
The bound for the last quantity gives:

Lemma 7.3. For any v > 0,

, 4
Vi< — (7.2)

" e’

Proof. We apply the martingale decomposition for the difference
Tr (R(z)) — ETr (R(z)) developed in [10, p. 9]. Let E; denote the condi-
tional expectation given the o-algebra Fy = o{e;; : k+1 <i < j < n},
where €5, 4,5 = 1,... ,n, denote i.i.d. Bernoulli random variables. Intro-
duce the (n — 1) x (n — 1) matrix W(*) obtained from W by deleting the
kth row and column. Set R*)(z) = (W®) — 21, _;)~'. Let

o = Ek,1 Tr (R(Z)) - Ek Tr (R(Z)) = Ekfl%k - Ek%ka (73)
where
s, = Tr (R(z2)) — Tr (R¥)(2)).

Equation (7.3) follows since E{Tr (R*) (2))| F} = E{Tr (R®) (2))| Fp_1 }.
Applying Lemma 7.2 with A = W and A®) = W©*) for symmetric
matrices, we get

50| <

S| =

This immediately implies that

2
lval < —.
v

Since the martingale differences v, represent uncorrelated random vari-
n
ables for d < n, and Tr (R(z)) — ETr(R(2)) = >_ 74, we obtain the
d=1
inequality
1
2 _ 2
V. = 2 E|Tr (R(z)) —ETr(R(2))|* < 3

which completes the proof. O
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7.3. Truncation

Here we consider the difference between the Stieltjes transforms of the
spectral distributions of the matrix W and the truncated matrix. In what
follows we shall use notation

|A]> = AA*¥,

where A* denotes complex conjugate matrix A. We start again with some
obvious bounds.

Lemma 7.4. For all XA real and v > 0,
< u? < A2 402
ﬂp (u—AN24+02 [ = 2

Proof. The function f(u) = W the first derivative

—Au+ A% +0?

fw =2y oy

with critical points at ug = 0 and u; = AQ?”Q. It is easy to see that

2 2+ 2
s { G p = I =

Thus the Lemma is proved. O

/5.3 2
/U—E Tr (|R|4) du<—M
V n

Proof. Consider the following equalities

/V EE“'R““f %ZEﬁd

— 00

7/ le u? + o2 du
= ' n E((uf/\j)2+y2)2 \/7’&24»0—‘721'

Lemma 7.5.
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Applying Holder inequality, we get

TN
‘/ —E.Tr |R|*du
n
c>o1 - u? —|—c7 N du 3
E. d —— ] . .
</nz )2 +v?)? u) (/uQ—l-U%) (7.5)

—00

By Lemma 7.4, we have

/ ZE u? +U+U)du

A2 4 g2 2
éles ;v +0n:7r2c7 +v . (7.6)

v2

Inequalities (7.5) and (7.6) together imply the Lemma. O
We prove the following
Lemma 7.6. For any v > 0, the following inequality holds,

7 / 2 2
n(u n Zv) _ S’r(;_) 2(7 + v /—
— 00 U2 v

Proof. Applying the resolvent equality
A+B-2I)'=(A—-z2D)'+(A—-2)"'B(A —2I)7!
we get

1 1 1
‘—EETrR — —E.TrRM| < “E.|Tr ROWIR|. (7.7)
n n n

Using Cauchy’s inequality, we get
1 1
‘—EETrR — ZE.TrR(™
n n
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We rewrite the last inequality as follows

<VLn(7) \/ E.Tr RRRORO.

‘lEgTrR - lEETrR(T)
n n

From the last bound it follows that

‘ 1

n

1
E.TrR — ~E.TrR("
n

<V Ln(7) (\/EETI'|R|4 + EETr|R(T)|4)_

Inequality (7.8) and Lemma 7.5 together imply

/ ‘lEsTrR lEETr R
n n

Lemma 7.5 and the last inequality together imply the result. O

10.

11.

12.
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