
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 364, 2009 Ç.U. EinmahlA NEW STRONG INVARIANCE PRINCIPLE FORSUMS OF INDEPENDENT RANDOM VECTORSAbstrat. We provide a strong invariane priniple for sums of indepen-dent, identially distributed random vetors whih need not have �niteseond absolute moments. Various appliations are indiated. In parti-ular, we show how one an re-obtain some reent LIL type results fromthis invariane priniple. 1. IntrodutionLet X;X1; X2; : : : be independent, identially distributed (i.i.d.) ran-dom vetors in R
d and set Sn =∑ni=1Xi, n > 1, S0 := 0. If the randomvetors have mean zero and a �nite ovariane matrix � it follows fromthe multidimensional entral limit theorem thatSn=√n d→ Y ∼ normal (0;�); (1.1)where d→ stands for onvergene in distribution.There is also a muh more general weak onvergene result available,namely Donsker's theorem. To formulate this result we �rst have to reallthe de�nition of the partial sum proess sequene S(n) : 
 → Cd[0; 1℄:S(n)(t) = { Sk if t = k=n; 0 6 k 6 n;linearly interpolated elsewhere:Let {W (t); t > 0} be a standard d-dimensional Brownian motion anddenote the Eulidean norm on R

d by | · |. Then the d-dimensional versionof Donsker's theorem an be formulated as follows,Theorem (Donsker). Let X;X1; X2; : : : be i.i.d. random vetors suhthat E|X |2 < ∞ and EX = 0. Let � be the positive de�nite, symmetrimatrix satisfying �2 = ov (X) =: �. Then we have,S(n)=√n d→ � ·W;5



6 U. EINMAHLwhere W (t), 0 6 t 6 1 is the restrition of W to [0; 1℄.In order to prove this result one an use a oupling argument, that isone an onstrut the random variables X1; X2; : : : and a d-dimensionalBrownian motion {W (t) : t > 0} on a suitable p-spae so that one has
‖S(n) − � ·W(n)‖=√n P→ 0; (1.2)where W(n))(t) = W (nt), 0 6 t 6 1, P→ stands for onvergene in proba-bility, and ‖ · ‖ is the sup-norm on Cd[0; 1℄.Relation (1) learly implies Donsker's theorem sine we have W(n)√n d=W .It is natural now to ask whether one an replae onvergene in proba-bility by almost sure onvergene. This is not only a formal improvementof the above oupling result, but it also makes it possible to infer almostsure onvergene results for partial sum proesses from the orrespondingresults for Brownian motion. This was pointed out in the lassial paperby Strassen [15℄ who obtained a funtional law of the iterated logarithmfor general partial sum proesses along these lines. So one an pose thefollowingQuestion 1.2. Given a monotone sequene n, when is a onstrutionpossible suh that with probability one,

‖S(n) − � ·W(n)‖ = O(n) as n → ∞?If suh a onstrution is possible, one speaks of a strong invarianepriniple with rate O(n).We �rst look at the 1-dimensional ase. (Then � is simply the standarddeviation � of X .) Though it was already known at an early stage thatno better onvergene rate than O(log n) is feasible unless of ourse thevariables X;X1; X2; : : : are normally distributed, it had been an openquestion for a long time whether a strong invariane priniple with suh arate is atually attainable. Very surprisingly, Koml�os, Major and Tusn�ady[10℄ eventually were able to show that suh a onstrution is possiblein dimension 1 if and only if the moment generating funtion of X is�nite and if X has mean zero. More generally, they proved that a stronginvariane priniple with rate O(n) is possible for any sequene n ofpositive real numbers suh that n=n� is dereasing for some � < 1=3 andn= logn is nondereasing, if and only if
∞∑n=1P{|X | > n} <∞ and EX = 0: (1.3)



STRONG INVARIANCE PRINCIPLE 7Major [11℄ obtained analogous results for sequenes n satisfying n=n�is noninreasing for some � < 1=2 and n=n1=3 is nondereasing. Thisinludes espeially the sequenes n = n , 1=3 6  < 1=2. For sequenesn in this range one an also get a strong invariane priniple with rateo(n) rather than O(n). Moreover, it is well known that it is impossibleto obtain an analogous result for the sequene n = √n. Note that in thisase ondition (1.3) is equivalent with the lassial ondition EX2 < ∞and EX = 0. In this ase the best possible strong invariane prinipleis of order o(√n log logn). The remaining gap, namely the determinationof the optimal onvergene rates for \big" sequenes n of order o(√n)where no � < 1=2 exists suh that n=n� is nondereasing, was losed byEinmahl [3℄. (Note that this inludes all sequenes of the form √n=h(n)where h : [1;∞[→℄0;∞[ is slowly varying at in�nity and h(x) → ∞ asx → ∞.) We next mention the work of Major [12℄ who showed that underthe lassial ondition EX2 < ∞ and EX = 0 a strong approximationwith rate o(√n) is possible if one replaes the Brownian motion by aslightly di�erent Gaussian proessFollowing up the ideas from [12, 3℄, Einmahl and Mason [9℄ �nallyobtained the following strong invariane priniple.Theorem 1.3. Let X;X1; X2; : : : be i.i.d. random variables satisfyingondition (1:3) for a nondereasing sequene n of positive real numberssuh that n=n1=3 is eventually nondereasing and n=√n is eventuallynoninreasing. If the underlying p-spae is rih enough, one an onstruta 1-dimensional Brownian motion suh that with probability one,
‖S(n) − �nW(n)‖ = o(n) as n → ∞;where �2n = E

[X2I{|X | 6 n}].Using this result, one an easily determine the optimal onvergenerate for the strong invariane priniple in its lassial formulation for allsequenes n in this range. (See the subsequent Corollary 2.2 for moredetails.) Note that Theorem 1.3 only applies if EX2 < ∞. This followsfrom the fat that n = O(√n) under the above assumptions and theseond moment is �nite if ondition (1.3) holds for suh a sequene. Veryreently, Einmahl [6℄ showed that Theorem 1.3 has also a version in thein�nite variane ase and he used this one to prove new funtional LILtype results in this setting.We return to the multidimensional ase. Most of the results for (1-dimensional) random variables have been extended to random vetors by



8 U. EINMAHLnow. We mention the work of Philipp [13℄ who extended Strassen's stronginvariane priniple with rate o(√n log logn) to the d-dimensional ase(atually also to Banah spaed valued random elements) and that ofBerger [1℄ who generalized Major's result from [11℄ to the d-dimensionalase. This led to the best possible rate of o(n1=3) in the multidimensionalinvariane priniple at that time. This rate was further improved in [3℄to o(n�), for � > 1=4. The next major step was taken by Einmahl [5℄who was able to extend all the results of Koml�os, Major and Tusn�ady[10℄ up to order O((log n)2) to the multivariate ase. Moreover, it wasshown in this artile that under an extra smoothness assumption on thedistribution of X strong approximations with even better rates, espeiallywith rate O(log n) are possible in higher dimensions as well. Zaitsev [16℄�nally showed that suh onstrutions are also possible for random vetorswhih do not satisfy the extra smoothness ondition so that we now knowthat all the results of [10℄ have versions in higher dimensions.Given all this work, one has now a fairly omplete piture for the stronginvariane priniple for sums of i.i.d. random vetors. In the present pa-per, we shall lose one of the remaining gaps. We shall show that it is alsopossible to extend Theorem `1.3 to the d-dimensional ase. Atually, thisis not too diÆult if one proves it as the original result is stated above, butas we have indiated, there is also a version of this result in the in�nitevariane ase. The purpose of this paper is to establish a general mul-tidimensional version of Theorem 1.3 whih also applies if E|X |2 = ∞.In this ase, the problem beomes more deliate sine one has to usetrunation arguments whih lead to random vetors with possibly veryirregular ovariane matries. Most of the existing strong approximationtehniques for sums of independent random vetors require some ondi-tions on the ratio of the largest and smallest eigenvalues of the ovarianematries (see, for instane, [4, 16℄) and, onsequently, they annot be ap-plied in this ase. Here a new strong approximation method whih is dueto Sakhanenko [14℄ will ome in handy.2. The main result and some orollariesWe �rst state our new strong invariane priniple where we only assumethat E|X | <∞. (This follows from the subsequent assumption (2.1) sineall sequenes n onsidered are of order O(n). If ondition (2.1) is satis�edfor suh a sequene, we have E|X | < ∞.)Theorem 2.1. Let X;X1; X2; : : : be i.i.d. mean zero random vetors in



STRONG INVARIANCE PRINCIPLE 9
R
d. Assume that ∞∑n=1P{|X | > n} < ∞; (2.1)where n is a nondereasing sequene of positive real numbers suh that

∃� ∈℄1=3; 1[: n=n� is eventually nondereasing, and (2.2)
∀ � > 0 ∃m� > 1 : n=m 6 (1 + �)(n=m); m� 6 m < n: (2.3)If the underlying p-spae is rih enough, one an onstrut a d-dimensionalstandard Brownian motion {W (t); t > 0} suh that with probability 1,

‖S(n) − �n ·W(n)‖ = o(n) as n→ ∞; (2.4)where �n is the sequene of positive semide�nite, symmetri matriesdetermined by �2n = (E

[X(i)X(j)I{|X | 6 n}])16i;j6d : (2.5)As a �rst appliation of our above strong invariane priniple, we showhow one an re-obtain the main results of [3℄ from it. Here we are assumingthat E|X |2 < ∞ so that ov (X) (= ovariane matrix of X) exists.Corollary 2.2. Let X;X1; X2; : : : be i.i.d. mean zero random vetorsin R
d and assume that E|X |2 < ∞. Let � be the positive semide�nite,symmetri matrix satisfying �2 = ov (X). Assume that ondition (2:1)is satis�ed for a sequene n suh that n=√n is eventually noninreasingand (2:2) holds. Then a onstrution is possible suh that we have withprobability one:

‖S(n) − � ·W(n)‖ = o(n ∨ 2n√log logn=n) : (2.6)Furthermore, we have,
‖S(n) − � ·W(n)‖=n P→ 0: (2.7)Remark 2.3. We get the following results due to [3℄ from (2.6):(1) If n satis�es additionally n = O(√n= log logn), then we also havethe almost sure rate o(n) for the \standard" approximation by � ·W(n).



10 U. EINMAHL(2) Set �n = n√n= log logn . If lim infn→∞
�n > 0, we get the rate o(n�n),where the extra fator �n is sharp (see [3℄).Note also that (2.7) (with n = √n) immediately implies Donsker's theo-rem.To formulate the following orollary we need somewhat more notation:For any (d,d)-matrix A we set ‖A‖ := sup{|A ·v| : |v| 6 1}. We reall that

‖A‖2 is equal to the largest eigenvalue of the symmetri matrix AtA. Thisis due to the well known fat that the largest eigenvalue �(C) of a positivesemide�nite, symmetri (d,d)-matrix C satis�es �(C) = sup{〈v; Cv〉 :
|v| 6 1}, where 〈·; ·〉 is the standard salar produt on R

d. Furthermore,let for any t > 0,H(t) := sup{E[〈v;X〉2I{|X | 6 t}℄ : |v| 6 1}:If we look at the matries �n we see that ‖�n‖2 = H(n). Similarly as in[8℄ we set for any sequene n as in Theorem 2.1,�0 = sup{� > 0 : ∞∑n=1n−1 exp(− �22n2nH(n)) = ∞
} :Using Theorem 2.1, we now an give a very short proof of Theorem 3 [8℄in the �nite-dimensional ase. This result is the basis for all the LIL typeresults in [7, 8℄ and, onsequently, we an prove all these results in the�nite-dimensional ase via Theorem 2.1.Corollary 2.4. Let X;X1; X2; : : : be i.i.d. mean zero random vetors in

R
d. Assume that ondition (2:1) holds for a nondereasing sequene n ofpositive real numbers suh that n=√n is eventually nondereasing andondition (2:3) is satis�ed. Then we have with probability one,lim supn→∞

|Sn|n = �0: (2.8)Finally we show how the general law of the iterated logarithm (seeCorollary 2.5), follows diretly from Corollary!2.4. (In [7, 8℄, we had ob-tained this result as a orollary to another more general result, the law ofa very slowly varying funtion whih also follows from Corollary 2.4, butrequires a more deliate proof.)As usual, we set Lt = log(t ∨ e) and LLt = L(Lt), t > 0.



STRONG INVARIANCE PRINCIPLE 11Corollary 2.5 (General LIL). Let X;X1; X2; : : : be i.i.d. random vetorsin R
d. Let p > 1 and � > 0. Then the following are equivalent:(a) We have with probability one, lim supn→∞ |Sn|=√2n(LLn)p = �;(b) lim supt→∞

H(t)=(LLt)p−1 = �2 and E[X ℄ = 0.Note that we do not expliitely assume that
∞∑n=1P{|X | >

√n(LLn)p} < ∞;or, equivalently, E[ |X |2=(LL|X |)p℄ < ∞. In the �nite dimensional ase,this ondition follows from (b). This was already pointed out in the 1-dimensional ase (see, for instane, [6℄), and we shall give here a detailedproof of this fat in arbitrary �nite dimension. We mention that thisimpliation does not hold in the in�nite dimensional setting so that onehas an extra ondition in this ase (see [8℄).The remaining part of this paper is organized as follows: The proof ofTheorem 2.1 will be given in Se. 3 and then we shall show in Se. 4 howthe orollaries an be obtained.3. Proof of the strong invariane priniple3.1. Some auxiliary results. Our proof is based on the following strongapproximation result whih follows from the work of Sakhanenko [14℄. (Seehis Corollary 3.2.)Theorem 3.1. Let X∗j ; 1 6 j 6 n be independent mean zero randomvetors on R
d suh that E|X∗j |3 < ∞, 1 6 j 6 n. Let x > 0 be �xed.If the underlying p-spae is rih enough, one an onstrut independentnormal(0; I)-distributed random vetors Yj , 1 6 j 6 n suh that

P



 max16k6n ∣∣∣∣∣∣ k∑j=1(X∗j −Aj · Yj)∣∣∣∣∣∣ > x 6 C d∑j=1 E|X∗j |3=x3; (3.1)where Aj is the positive semide�nite, symmetri matrix satisfying A2j =ov (X∗j ), 1 6 j 6 n and C is a positive onstant depending on d only.Proof. From Corollary 3.2. in [14℄, we get independent random vetorsY1; : : : ; Yn so that the probability in (3.1) is

6 C ′x−3 n∑j=1(E|X∗j |3 + E|Y ∗j |3);



12 U. EINMAHLwhere Y ∗j := AjYj , 1 6 j 6 n and C ′ is a positive onstant dependingon d only. Writing Y ∗j = (Y ∗j;1; : : : ; Y ∗j;d)t and using the inequality |v|3 6d1=2∑di=1 |vi|3, v ∈ R
d (whih follows from the H�older inequality), we getfor 1 6 j 6 n,

E|Y ∗j |3 6 d1=2 d∑i=1 E|Y ∗j;i|3 = d1=2E|Z|3 d∑i=1(E|Y ∗j;i|2)3=2= d1=2E|Z|3 d∑i=1(E|X∗j;i|2)3=2 6 d1=2E|Z|3 d∑i=1 E|X∗j;i|3
6 d3=2E|Z|3E|X∗j |3;where Z : 
 → R is standard normal. Thus we have,

E|Y ∗j |3 6 C ′′
E|X∗j |3; 1 6 j 6 n; (3.2)where C ′′ is a positive onstant depending on d only and Theorem 3.1 hasbeen proved. �Corollary 3.2. Let X∗n; n > 1 be a sequene of independent mean zerorandom vetors on R

d suh that we have, for a nondereasing sequene nof positive real numbers whih onverges to in�nity,
∞∑n=1E|X∗n|3=3n <∞:If the underlying p-spae is rih enough, one an onstrut a sequeneof independent normal (0; I)-distributed random vetors suh that withprobability one, n∑j=1(X∗j −Aj · Yj) = o(n) as n → ∞;where An is the sequene of positive semide�nite, symmetri matriessatifying A2n = ov (X∗n); n > 1.Proof. We employ a similar argument as in [4, p. 95℄. It is easy to seethat one an �nd another nondereasing sequene ̃n so that ̃n → ∞,̃n = o(n) as n → ∞ and still
∞∑n=1E|X∗n|3=̃3n <∞: (3.3)



STRONG INVARIANCE PRINCIPLE 13Set m0 := 1;mn := min{k : ̃k > 2̃mn−1}; n > 1:By the de�nition of the subsequene mn, we havẽmn−1=̃mn−1 6 2 6 ̃mn=̃mn−1 ; n > 1:Theorem 3.1 enables us to de�ne independent normal (0; I)-distributedrandom vetors {Yj : mn−1 6 j < mn} in terms of the random vetors
{X∗j : mn−1 6 j < mn} (for any n > 1) suh that

P



 maxmn−16k<mn ∣∣∣∣∣∣ k∑j=mn−1(X∗j −Aj · Yj)∣∣∣∣∣∣ > ̃mn−1

6 C mn−1∑j=mn−1 E|X∗j |3=̃3mn−1 6 8C mn−1∑j=mn−1 E|X∗j |3=̃3j : (3.4)The resulting sequene {Yn : n > 1} onsists of independent randomvetors sine the \bloks" {X∗j : mn−1 6 j < mn} are independent.Realling (3.3) and using the Borel{Cantelli lemma we see that we havewith probability one,maxmn−16k<mn ∣∣∣∣ k∑j=mn−1(X∗j −Aj · Yj)∣∣∣∣ 6 ̃mn−1 eventually:Employing the triangular inequality and adding up the above inequalitieswe get with probability one,
∣∣∣∣

k∑j=1(X∗j (!)−Aj · Yj(!))∣∣∣∣
6 K(!) + n−1∑i=1 ̃mi 6 K(!) + 2̃mn−1 ;mn−1 6 k < mnand we see that our orollary holds. �The following lemma ollets some more or less known fats.



14 U. EINMAHLLemma 3.3. Let X : 
 → R
d be a random vetor suh that (2:1) holdsfor a nondereasing sequene n of positive real numbers.(a) If n satis�es ondition (2:2), we have:

∞∑n=1E[ |X |3I{|X | 6 n}℄=3n <∞:(b) If n satis�es ondition (2:3), we have
E[ |X |I{|X | > n}℄ = o(n=n) as n → ∞:() If E[X ℄ = 0, and both onditions (2:2) and (2:3) are satis�ed, wehave: n∑k=1 E[XI{|X | 6 k}℄ = o(n) as n → ∞:Proof. First observe that setting pj = P{j−1 < |X | 6 j}, j > 1, where0 = 0, we have by our assumption (2.1),

∞∑j=1 jpj < ∞: (3.5)To prove (a) we note that we have on aount of (2.2):j=j� 6 n=n� for n > j > j0 (say);whih in turn implies that j=j� 6 K1n=n�, 1 6 j 6 n, n > 1, whereK1 > 0 is a suitable onstant. It follows thatj=n 6 K1(j=n)�; 1 6 j 6 n; n > 1: (3.6)We now see that
∞∑n=1E[ |X |3I{|X | 6 n}℄=3n 6

∞∑n=1 n∑j=1 3jpj=3n = ∞∑j=1( ∞∑n=j(j=n)3)pj
6 K31 ∞∑j=1( ∞∑n=j n−3�)j3�pj 6 K2 ∞∑j=1 jpj < ∞:



STRONG INVARIANCE PRINCIPLE 15Here we have used the fat that∑∞n=j n−3� = O(j1−3�) as j → ∞ whihfollows easily by omparing this series with the integral ∞∫j x−3�dx < ∞.(Reall that � > 1=3.)To prove (b) we observe thatnE[ |X |I{|X | > n}℄=n 6

∞∑j=n+1n(j=n)pj 6 K3 ∞∑j=n+1 jpj ; (3.7)where we have used the fat that j=n 6 K3j=n; j > n for some positiveonstant K3. (This easily follows from ondition (2.3).) Realling (3/5)we readily obtain (b).We turn to the proof of (). Let Æ > 0 be �xed and hoose an mÆ > 1so that mE[ |X |I{|X | > m}℄=m 6 Æ for m > mÆ , whih is possible dueto (b).Sine EX = 0, trivially we have
E[XI{|X | 6 m}℄ = −E[XI{|X | > m}℄and we an onlude that

∣∣∣∣
n∑k=1 E[XI{|X | 6 k}℄=n∣∣∣∣ 6 mÆE|X |=n + Æ n∑k=mÆ+1 k=(kn):Due to (3.6) we further have,n∑k=mÆ+1 k=(kn) 6 K1 n∑k=mÆ+1 k�−1=n� 6 K1=�:Consequently, we have,lim supn→∞

∣∣∣∣
n∑k=1 E[XI{|X | 6 k}℄=n∣∣∣∣ 6 K1Æ=�:This implies () sine we an hoose Æ arbitrarily small. �The next lemma gives us more information on the matries �n.



16 U. EINMAHLLemma 3.4. Let the sequene �n be de�ned as in Theorem 2:1. Thenwe have for n > m > 1,(a) �n − �m is positive semide�nite.(b) ‖�n − �m‖2 6 E[ |X |2I{m < |X | 6 n}℄.Proof. By de�nition, we have
〈v; (�2n − �2m)v〉 = E[〈X; v〉2I{m < |X | 6 n}℄ > 0; v ∈ R

d;whih learly shows that �2n − �2m is positive semide�nite. This in turnimplies that this also holds for �n − �m sine f(t) = √t, t > 0 is anoperator monotone funtion (see [2, Proposition V.1.8℄). We thus haveproved (a).Furthermore, we an onlude from the above formula that
‖�2n − �2m‖ 6 E[ |X |2I{m < |X | 6 n}℄:Here we have used the fat that if A is a positive semide�nite, symmetri(d; d)-matrix, we have ‖A‖ = sup{〈v;Av〉 : |v| 6 1}.Finally, note that, by Theorem X.1.1 in [2℄

‖�n − �m‖2 6 ‖�2n − �2m‖;we see that (b) also holds. �3.2. Conlusion of the proof(i) Set X ′n = XnI{|Xn| 6 n}, X∗n = X ′n−EX ′n, n > 1. Then we learlyhave by assumption (2.1),
∞∑n=1P{Xn 6= X ′n} < ∞; (3.8)whih via the Borel{Cantelli lemma trivially implies that with probabilityone, ∑nj=1(Xj −X ′j) = o(n) as n → ∞. Realling Lemma 3.3(), we seethat with probability one,Sn −
n∑j=1X∗j = o(n) as n → ∞: (3.9)



STRONG INVARIANCE PRINCIPLE 17(ii) Note that E|X∗n|3 6 8E[ |X |3I{|X | 6 n}℄, n > 1, we get fromLemma 3.3(a) that
∞∑n=1E|X∗n|3=3n <∞: (3.10)In view of Corollary 3.2, we now an �nd a sequene {Yn} of independentnormal (0; I)-distributed random vetors suh that with probability one,n∑j=1(X∗j −Aj · Yj) = o(n) as n → ∞; (3.11)whereAn are the positive semide�nite symmetri matries satisfying A2n =ov (X∗n) = ov (X ′n).(iii) We next laim that with probability one,n∑j=1(�j −Aj) · Yj = o(n) as n → ∞: (3.12)In order to prove that it is suÆient to show that

∞∑j=1 E[ |(�j −Aj) · Yj |2℄2j < ∞: (3.13)To see that we argue as follows:Using a standard 1-dimensional result on random series omponent-wise, we then an onlude that the random series∑∞j=1(�j −Aj) · Yj=jis onvergent in R
d with probability one, whih in turn via Kroneker'slemma (applied omponentwise) implies (3.12).Next observe that E[ |(�j − Aj) · Yj |2℄ 6 d‖�j − Aj‖2, j > 1 so that(3.13) follows one we have shown that

∞∑j=1 ‖�j −Aj‖22j < ∞: (3.14)>From the de�nition of these matries we immediately see that for anyv ∈ R
d,

〈v; (�2j −A2j )v〉 = (E[〈X; v〉I{|X | 6 j}℄)2



18 U. EINMAHLwhih on aount of E[〈X; v〉℄ = 0 implies,
‖�2j −A2j‖ = sup

|v|61 (E[〈X; v〉I{|X | > j}℄)2 6 E[ |X |I{|X | > j}℄2:Using one more Theorem X.1.1. in [2℄ and realling Lemma 3.3(b), we�nd that
‖�j −Aj‖2 6 ‖�2j −A2j‖ 6 �j2j=j2; j > 1;where �j → 0 as j → ∞. This trivially implies (3.14).(iv) Combining relations (3.9), (3.11), and (3.12), we see that withprobability one, Sn −

n∑j=1 �j · Yj = o(n) as n → ∞:This of ourse implies that with probability one,max16k6n |Sk − k∑j=1 �j · Yj | = o(n) as n → ∞: (3.15)Set �n := max16k6n ∣∣∣∣ k∑j=1(�n − �j)Yj∣∣∣∣; n > 1:We laim that with probability one,�n=n → 0 as n → ∞: (3.16)First we show that with probability one,�2`=2` → 0 as ` → ∞: (3.17)To that end we note that by ombining L�evy's inequality and the Markovinequality, we get for any � > 0,
P{�2` > �2`} 6 2P{∣∣∣∣ 2∑̀j=1 |(�2` − �j)Yj∣∣∣∣ > �2`}

6 2�−2−22` 2∑̀j=1 E[ |(�2` − �j)Yj |2℄:



STRONG INVARIANCE PRINCIPLE 19As we have E[ |(�2` − �j)Yj |2℄ 6 d‖�2` − �j‖2; it suÆes to show,
∞∑`=1 2∑̀j=1 ‖�2` − �j‖2=22` < ∞: (3.18)Using the inequality ‖�2` − �j‖2 6 E[ |X |2I{j < |X | 6 2`}℄ (seeLemma 3.4(b)), we an prove this by essentially the same argument asin [6, p. 908℄. (Note that we now have 2j=22` 6 (j=2`)2� so that one hasto modify the last two bounds on this page slightly.)(v) Let 2` < n < 2`+1. Then we have by the triangular inequality,�n 6 max16k6n ∣∣∣∣ k∑j=1(�2`+1 − �j)Yj ∣∣∣∣+ max16k6n ∣∣∣∣(�2`+1 − �n) k∑j=1 Yj∣∣∣∣whih in turn is

6 �2`+1 + ‖�2`+1 − �2`‖ max16k62`+1 ∣∣∣∣ k∑j=1 Yj∣∣∣∣:Here we have used the fat that ‖�2`+1 − �n‖ 6 ‖�2`+1 − �2`‖, 2` 6 n 62`+1 whih follows from Lemma 3.4(a).Using obvious modi�ations of the proof of relation (3.11) in [6℄, wean onlude that with probabilty one,
‖�2`+1 − �2`‖ max16k62`+1 ∣∣∣∣∣∣ k∑j=1 Yj∣∣∣∣∣∣ = o(2`) as ` → ∞: (3.19)Combining relations (3.17) and (3.19), we see that (3.16) holds.(vi) In view of (3.15) and (3.16) we have with probability one,max16k6n ∣∣∣∣Sk − �n k∑j=1 Yj∣∣∣∣ = o(n) as n→ ∞:Letting T(n) : 
 → Cd[0; 1℄ be the partial sum proess sequene based on∑nj=1 Yj , n > 1, we see that with probability one

‖S(n) − �n · T(n)‖ = o(n) as n → ∞: (3.20)



20 U. EINMAHLIf the underlying p-spae is rih enough, we an �nd a d-dimensional Brow-nian motion {W (t) : t > 0} suh that W (n) =∑nj=1 Yj , n > 1. Using theorresponding result in the 1-dimensional ase (see [9℄) omponentwise,we �nd that with probability one,
‖T(n) −W(n)‖ = O(√logn) as n→ ∞and onsequently we have with probability one,

‖�n · T(n) − �n ·W(n)‖ 6 ‖�n‖‖T(n) −W(n)‖= O(‖�n‖√logn) = o(n); (3.21)where we have used the fat that ‖�n‖2 6 E[ |X |2I{|X | 6 n}℄ 6 nE|X |and (2/2). Combining (3/20) and (3.21), we obtain the assertion and thetheorem has been proved.4. Proofs of the orollaries4.1. Proof of Corollary 2.2. We need the following lemma.Lemma 4.1. Let X : 
 → R
d be a mean zero random vetor with

E|X |2 < ∞. Assume that (2:1) holds, where n is a nondereasing se-quene of positive real numbers suh that n=√n is eventually nonin-reasing. Then we have for �n de�ned as in Theorem 2:1,
‖�2n − ov (X)‖ = o(2n=n) as n → ∞:Proof. We have,

‖�2n − ov (X)‖ = sup
|v|61〈v; (ov (X)− �2n)v〉= sup
|v|61E[〈v;X〉2I{|X | > n}℄ (4.1)

6 E[ |X |2I{|X | > n}℄:Furthermore, using the fat that 2m=m is eventually noninreasing, weget for large n,
E[ |X |2I{|X | > n}℄ 6 ∞∑k=n 2k+1P{k < |X | 6 k+1}

6
2nn ∞∑k=n(k + 1)P{k < |X | 6 k+1};



STRONG INVARIANCE PRINCIPLE 21whih is of order o(2n=n) sine the series ∑∞k=1 kP{k < |X | 6 k+1}onverges by (2.1). �We next show that ‖�n − �‖ is of the same order. This is trivial indimension 1, but in higher dimensions one needs some extra arguments.Lemma 4.2. Let � be the positive semide�nite symmetri matrix satis-fying �2 = ov (X). Under the assumptions of Lemma 4:1, we have:
‖�n − �‖ = o(2n=n) as n → ∞:Proof. We �rst look at the ase where ov (X) is not positive de�nite.Set d1 =rank(ov(X)) and hoose an orthonormal basis {v1; : : : ; vd} of

R
d onsisting of eigenvetors of ov (X), where the vetors vi; i > d1 or-respond to the eigenvalue 0. Let S be the orthogonal matrix with olumnvetors v1; : : : ; vd. Then we learly have,Stov (X)S = ( C 00 0 )where C is a positive de�nite symmetri (d1; d1)-matrix. (C is atu-ally a diagonal matrix). Choosing the unique positive de�nite symmetri(d1; d1)-matrix C suh that C2 = C, we readily obtain (by uniity of thesquare root matrix) that � = S( C 00 0 )St:Note that E[〈X; vj〉2℄ = 0, j > d1, we see that we have also for the matries�2n, St�2nS = ( Cn 00 0 )where Cn are positive semide�nite symmetri (d1; d1)-matries (not ne-essarily diagonal). This implies that�n = S( Cn 00 0 )St;



22 U. EINMAHLwhere Cn are the positive semide�nite symmetri matries satisfyingC2n = Cn. If ov (X) is positive de�nite, we set C = �, C = ov (X),Cn = �n, Cn = �2n, n > 1. Using Theorem X.1.1 in [2℄ we an onludefrom Lemma 4.1 that
‖Cn − C‖ = ‖�n − �‖ 6 ‖�2n − ov (X)‖1=2 → 0 as n → ∞:This implies that Cn is positive de�nite for large n. Moreover, we havethat the smallest eigenvalue �n of Cn onverges to that one of C whih isequal to the smallest positive eigenvalue of �. If we denote this eigenvalueby � we �nd that �n > �=2 > 0 for large n.Applying Theorem X.3.7. in [2℄ (with A = Cn; B = C and � = �2=4)we see that for large n,
‖�n − �‖ = ‖Cn − C‖ 6 �−1‖Cn − C‖ = �−1‖�2n − ov (X)‖;whih in onjuntion with Lemma 4.1 implies the above assertion. �Now we an onlude the proof of Corollary 2.2 by a simple applia-tion of the triangular inequality. Just observe that by Theorem 2.1, withprobability one
‖S(n) − � ·W(n)‖ 6 ‖S(n) − �n ·W(n)‖+ ‖(�n − �) ·W(n)‖

6 o(n) + ‖�n − �‖‖W(n)‖Note that we an apply Theorem 2.1 sine we are assuming that n=√nis eventually noninreasing and we thus have for some m0 > 1, n=√n 6m=√m;m0 6 m 6 n whih implies that ondition (2.3) holds.By the law of the iterated logarithm for Brownian motion we have withprobability one,
‖�n − �‖‖W(n)‖ = O(‖�n − �‖√n log logn)whih is in view of Lemma 4.2 of order o(2n=√n= log logn).Sine W(n)=√n d= W , where W (t), 0 6 t 6 1 is the Brownian motionon the ompat interval [0; 1℄, we also have,

‖�n − �‖‖W(n)‖ = OP(‖�n − �‖√n) = oP(2n=√n) = oP(n):Corollary 2.2 has been proved.



STRONG INVARIANCE PRINCIPLE 23Proof of Corollary 2.4. We use the following d-dimensional version ofLemma 3 in [6℄. The proof is almost the same as in dimension 1 and it isomitted. Reall thatH(n) = sup{E[〈v;X〉2I{|X | 6 n}℄ : |v| 6 1} = ‖�n‖2; n > 1:Lemma 4.3. Let X : 
 → R
d be a mean zero random vetor and as-sume that ondition (2:1) holds for a sequene n of positive real numberssuh that n=√n is nondereasing. Whenever nk ր ∞ is a subsequenesatisfying for large enough k,1 < a1 < nk+1=nk 6 a2 < ∞;we have: ∞∑k=1 exp(− �22nk2nk‖�nk‖2){ = ∞ if � < �0;< ∞ if � > �0: (4.2)4.2.1. The upper bound part. W.l.o.g. we an assume that �0 < ∞.We �rst show that under the assumptions of the orollary we have withprobability one, lim supn→∞
|Sn|=n 6 �0: (4.3)To this end, it is suÆient to show that we have for any Æ > 0 andnk = nk(Æ) = [(1 + Æ)k℄, k > 1 with probability one,lim supk→∞

max16n6nk |Sn|=nk 6 �0: (4.4)Note that we trivially have,maxnk−16n6nk |Sn|=n 6 (nk=nk−1) max16n6nk |Sn|=nk :Moreover, it follows from ondition (2.3) and the de�nition of nk thatlim supk→∞
nk=nk−1 6 lim supk→∞

nk=nk−1 = 1 + Æ:Combining these two observations with (4.4) we get for any Æ > 0 withprobability one, lim supn→∞
|Sn|=n 6 �0(1 + Æ);



24 U. EINMAHLwhih learly implies (up0).In view of our strong invariane priniple, (4.4) follows if we an showthat with probability one,lim supk→∞
‖�nk ·W(nk)‖=nk 6 �0: (4.5)In order to prove the last relation, we need a deviation inequality formax06t61 |W (t)|. The following simple (suboptimal) inequality will be suÆ-ient for our purposes.Lemma 4.4. Let {W (t) : t > 0} be a standard d-dimensional Brownianmotion and let Æ be a positive onstant. Then there exists a onstantCÆ = CÆ(d) > 0 whih depends only on Æ and d suh that

P

{max06t61 |W (t)| > u} 6 CÆ exp(−u2=(2 + 2Æ)); u > 0: (4.6)Proof. Sine W d= −W , we an infer from the L�evy inequality that foru > 0,
P

{max06t61 |W (t)| > u} 6 2P {|W (1)| > u} :The random variable |W (1)|2 has a hi-square distribution with d degreesof freedom and thus we have
P {|W (1)| > u} = 2−d=2�(d=2)−1 ∞∫u2 xd=2−1 exp(−x=2)dx

6 Kud−2 exp(−u2=2); u > 1;where K > 0 is a onstant depending on d only.Obviously we an �nd a positive onstant C ′Æ so that the last term isbounded above by
6 C ′Æ exp(−u2=(2 + 2Æ)):Setting CÆ = 2C ′Æ ∨ e1=(2+2Æ), we see that inequality (4.6) holds for anyu > 0 and the lemma has been proved. �



STRONG INVARIANCE PRINCIPLE 25We are ready to prove (4.5). Let Æ > 0 be �xed and set �Æ = (1 +Æ)(�0 + Æ). Reall that (W(n)(t)=√n)06t61 d= (W (t))06t61. Then we aninfer from (4.2) that
∞∑k=1P{‖�nk ·W(nk)‖ > �Ænk} 6

∞∑k=1P{‖�nk‖‖W(nk)‖ > �Ænk}
6 CÆ ∞∑k=1 exp(− (1 + Æ)(�0 + Æ)22nk2nk‖�nk‖2 ) < ∞:This implies via the Borel{Cantelli lemma that with probability one,lim supk→∞

‖�nk ·W(nk)‖=nk 6 (1 + Æ)(�0 + Æ):Sine this holds for any Æ > 0 we get (4.5) and onsequently (4.3).4.2.2. The lower bound part. We assume that �0 > 0. Otherwise,there is nothing to prove.Furthermore, we an assume that n=√n → ∞. If n = O(√n), thenwe have �0 = ∞ unless of ourse X = 0 with probability one. Ap-plying Corollary 2.4 with n = √n(log logn)1=4, it follows that evenlim supn→∞
|Sn|=(√n(log logn)1=4) = ∞ if X is nondegenerate. This triviallyimplies Corollary 2.4 for any sequene n of order O(√n).We need the following lemma. Sine the proof is almost idential withthat one in the 1-dimensional ase (see [7, Lemma 1℄) it is omitted. Aninspetion of this proof also reveals that one needs not assume that X hasa �nite mean and thus we haveLemma 4.5. Let X : 
 → R

d be a random vetor satisfying ondition(2:1) for a sequene n of positive real numbers suh that n=√n is non-dereasing and onverges to in�nity. Then we have,
E[ |X |2I{|X | 6 n}℄ = o(2n=n) as n → ∞: (4.7)Let Æ ∈℄0; 1[ be �xed and m > 1+ Æ−1 a natural number. Consider thesubsequene nk = mk, k > 1. We �rst show that if 0 < �(1 + Æ) < �0 wehave with probability one,lim supk→∞

|Snk+1 − Snk |=nk+1 > �: (4.8)



26 U. EINMAHLRewriting Snk+1 − Snk as S(nk+1)(1) − S(nk+1)(1=m), we see that Theo-rem 2.1 implies that (4.8) holds if and only if one has with probabilityone, lim supk→∞
|�nk+1 · (W (nk+1)−W (nk))|=nk+1 > �: (4.9)Consider the independent eventsAk := {|�nk+1 · (W (nk+1)−W (nk))| > �nk+1}; k > 1:As ‖�nk+1‖ is the largest eigenvalue of �nk+1 , we an �nd an orthonormalvetor vk+1 ∈ R

d so that �nk+1vk+1 = ‖�nk+1‖vk+1 and we an onludethat
P(Ak) > P{|〈vk+1;�nk+1 · (W (nk+1)−W (nk))〉| > �nk+1}= P{‖�nk+1‖√nk+1 − nk|Z| > �nk+1};where Z : 
 → R is standard normal.Employing the trivial inequality P{|Z| > t} > exp(−t2(1+Æ)=2), t > tÆ ,where tÆ is a positive onstant depending on Æ only, we see that for large k,

P(Ak) > exp(−
�2(1 + Æ)2nk+12(nk+1 − nk)‖�nk+1‖2):We an apply the above inequality for large k sine by Lemma 4.5

‖�n‖2 6 E[ |X |2I{|X | 6 n}℄ = o(2n=n) as n → ∞and, onsequently,nk+1=(√nk+1 − nk‖�nk+1‖) → ∞ as k → ∞:Sine we have hosen m > 1 + Æ−1, it follows thatnk+1 − nk = nk+1(1− 1=m) > nk+1(1 + Æ)−1:We an onlude that for large enough k,
P(Ak) > exp(−

�2(1 + Æ)22nk+12nk+1‖�nk+1‖2 );



STRONG INVARIANCE PRINCIPLE 27and, onsequently, we have on aount of (4.2),
∞∑k=1 P(Ak) = ∞:Using the Borel{Cantelli lemma, we see that (4.9) holds whih in turnimplies (4.8).If �0 = ∞ , we use the trivial inequalitylim supk→∞

|Snk+1 − Snk |=nk+1 6 2 lim supk→∞
|Snk |=nk ;whih in onjuntion with (4.8) (where we set Æ = 1=2 and m = 3) impliesthat we have for any � > 0 with probability one,lim supk→∞

|Snk |=nk > �=2:It is now obvious that lim supn→∞
|Sn|=n = �0 = ∞ with probability one.If �0 < ∞ we get from the upper bound part and the de�nition of nkwith probability one,lim supk→∞

|Snk |=nk+1 6 �0 lim supk→∞
nk=nk+1 6 2�0=√m:Combining this with (4.8) we see that we have if �(1 + Æ) < �0 for anym > 1 + Æ−1 with probability one,lim supn→∞

|Sn|=n > �− 2�0=√m:Sine we an make Æ arbitrarily small, we see that lim supn→∞
|Sn|=n > �0with probability one and Corollary 2.4 has been proved.4.3. Proof of Corollary 2.5. We only show how (b) implies (a) and wedo this if p > 1. For the impliation \(a) ⇒ (b)" we refer to [7℄. We needanother lemma.Lemma 2.5. Let X : 
 → R

d be a random vetor and setH̃(t) = E[ |X |2I{|X | 6 t}℄ ∨ 1; t > 0:



28 U. EINMAHLThen we have for any Æ > 0 : E[ |X |2=(H̃(|X |))1+Æ ℄ < ∞.Proof. Without loss of generality we an assume that E|X |2 = ∞ andonsequently that H(t) → ∞ as t → ∞, where H(t) = E[ |X |2I{|X | 6 t}℄,t > 0. Obviously,H is right ontinuous and nondereasing. Therefore thereexists a unique Lebesgue{Stieltjes measure � on the Borel subsets of R+satisfying, �(℄a; b℄) = H(b)−H(a); 0 6 a < b < ∞:Let G be the generalized inverse funtion of H, i.e.,G(u) = inf{x > 0 : H(x) > u}; 0 < u <∞:As H is right ontinuous, the above in�mum is atually a minimum. Inpartiular, we have H(G(u)) > u, u > 0. Moreover:G(u) 6 x ⇐⇒ u 6 H(x): (4.10)Let � the Lebesgue measure on the Borel subsets of R+. From (4.10) iteasily follows that � is equal to the image measure �G.Next set � = G(1) so that H̃(x) = 1, x < � and H(x) = H̃(x), x > �.It trivially follows that
E

[
|X |2=H̃(|X |)1+Æ] 6 E

[
|X |2I{|X | 6 �}]+ ∫℄�;∞[ H(x)−1−Æ�(dx):The �rst term is obviously �nite. As for the seond term we have

∫℄�;∞[ H(x)−1−Æ�(dx) = ∫℄�;∞[ H(x)−1−Æ�G(dx)= ∞∫H(�) H(G(u))−1−Ædu 6

∞∫1 u−1−Ædu < ∞and the lemma has been proved. �As we trivially have H(t) 6 dH(t), t > 0, we get from (b) that H̃(t) =O((LLt)p−1) as t → ∞ and we readily obtain that for some positiveonstant C,
E[ |X |2=(LL|X |)p℄ 6 CE[ |X |2=(H̃(|X |))p=(p−1)℄



STRONG INVARIANCE PRINCIPLE 29whih is �nite in view of Lemma 4.6.Consequently, we have,
∞∑n=1P{|X | >

√n(LLn)p} < ∞:We an apply Corollary 2.4 with n = √n(LLn)p and we see that withprobability one, lim supn→∞
|Sn|=√2n(LLn)p = �0=√2;where �0 = sup{� > 0 : ∞∑n=1 1n exp(− �2(LLn)p2H(√n(LLn)p)) = ∞

}:It remains to show that �0 = �√2.Consider � = �2√2, where �2 > �. If �1 ∈℄�; �2[, we learly have by(b) for large n, H(√n(LLn)p) 6 �21(LLn)p−1and it follows that1n exp(− �2(LLn)p2H(√n(LLn)p)) 6
1n(Ln)(�2=�1)2 ;whih leads to a onvergent series. Thus, we have �0 6 �√2.As for the opposite inequality, we an and do assume that � > 0.Consider � = �1√2, where 0 < �1 < �. Let further �2; �3 be positivenumbers suh that �1 < �2 < �3 < �.Choose a sequene tk ↑ ∞ suh thatH(tk) > �2(1− 1=k)(LLtk)p−1:Set mk = min{m : tk 6

√m(LLm)p}:It is easy to see that tk ∼
√mk(LLmk)p as k → ∞ and we thus have forlarge k, H(√mk(LLmk)p) > �23(LLmk)p−1;



30 U. EINMAHLHere we have used the fat that LLt ∼ LL(t2) as t → ∞, from whih wean also infer that for large k,(LLn)p 6 (�2=�1)2(LLmk)p; mk 6 n 6 m2k =: nk:Realling that � = √2�1 we get for large k,nk∑n=mk 1n exp(− �2(LLn)p2H(√n(LLn)p)) >

nk∑n=mk 1n(Lmk)(�2=�3)2
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