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U. Einmahl

A NEW STRONG INVARIANCE PRINCIPLE FOR
SUMS OF INDEPENDENT RANDOM VECTORS

ABSTRACT. We provide a strong invariance principle for sums of indepen-
dent, identically distributed random vectors which need not have finite
second absolute moments. Various applications are indicated. In partic-
ular, we show how one can re-obtain some recent LIL type results from
this invariance principle.

1. INTRODUCTION

Let X, X, X5,... be independent, identically distributed (i.i.d.) ran-
dom vectors in R? and set S,, = >, X;, n > 1, S := 0. If the random
vectors have mean zero and a finite covariance matrix ¥ it follows from
the multidimensional central limit theorem that

Sn/\/ﬁi Y ~ normal (0, X), (1.1)

where % stands for convergence in distribution.

There is also a much more general weak convergence result available,
namely Donsker’s theorem. To formulate this result we first have to recall
the definition of the partial sum process sequence S, : 2 — Cy4[0, 1]:

Sk if t=k/n, 0<k<n
S(n) (t) = { ’ ’

linearly interpolated elsewhere.

Let {W(t),t > 0} be a standard d-dimensional Brownian motion and
denote the Euclidean norm on R by |- |. Then the d-dimensional version
of Donsker’s theorem can be formulated as follows,

Theorem (Donsker). Let X, X;,Xs,... be iid. random vectors such
that E|X|?> < co and EX = 0. Let I' be the positive definite, symmetric
matrix satisfying I'? = cov(X) =: ¥. Then we have,
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6 U. EINMAHL

where W (t), 0 < t < 1 is the restriction of W to [0, 1].

In order to prove this result one can use a coupling argument, that is
one can construct the random variables X, X»,... and a d-dimensional
Brownian motion {W(¢) : t > 0} on a suitable p-space so that one has

P
Sty =T Wiy ll/v/n — 0, (1.2)

where W,))(t) = W(nt), 0 <t <1, % stands for convergence in proba-
bility, and || - || is the sup-norm on Cy4[0, 1].

Relation (1) clearly implies Donsker’s theorem since we have % L.

It is natural now to ask whether one can replace convergence in proba-
bility by almost sure convergence. This is not only a formal improvement
of the above coupling result, but it also makes it possible to infer almost
sure convergence results for partial sum processes from the corresponding
results for Brownian motion. This was pointed out in the classical paper
by Strassen [15] who obtained a functional law of the iterated logarithm
for general partial sum processes along these lines. So one can pose the
following

Question 1.2. Given a monotone sequence c,, when is a construction
possible such that with probability one,

1Sty =T - Winyll = O(en) as n — o0?

If such a construction is possible, one speaks of a strong invariance
principle with rate O(cy,).

We first look at the 1-dimensional case. (Then T is simply the standard
deviation o of X.) Though it was already known at an early stage that
no better convergence rate than O(logn) is feasible unless of course the
variables X, X1, Xo,... are normally distributed, it had been an open
question for a long time whether a strong invariance principle with such a
rate is actually attainable. Very surprisingly, Komlés, Major and Tusnady
[10] eventually were able to show that such a construction is possible
in dimension 1 if and only if the moment generating function of X is
finite and if X has mean zero. More generally, they proved that a strong
invariance principle with rate O(c,) is possible for any sequence ¢, of
positive real numbers such that ¢, /n® is decreasing for some « < 1/3 and
¢n/logn is nondecreasing, if and only if

> P{IX|>e¢n} <oo and EX =0. (1.3)
n=1
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Major [11] obtained analogous results for sequences ¢,, satisfying ¢, /n®
is nonincreasing for some a < 1/2 and ¢,/n'/? is nondecreasing. This
includes especially the sequences ¢, = n?, 1/3 < v < 1/2. For sequences
¢n, in this range one can also get a strong invariance principle with rate
o(cyp) rather than O(c,). Moreover, it is well known that it is impossible
to obtain an analogous result for the sequence ¢, = y/n. Note that in this
case condition (1.3) is equivalent with the classical condition EX? < oo
and EX = 0. In this case the best possible strong invariance principle
is of order o(y/nloglogn). The remaining gap, namely the determination
of the optimal convergence rates for “big” sequences c, of order o(y/n)
where no a < 1/2 exists such that c¢,/n® is nondecreasing, was closed by
Einmahl [3]. (Note that this includes all sequences of the form +/n/h(n)
where h : [1,00[—]0,00][ is slowly varying at infinity and h(z) — oo as
x — 00.) We next mention the work of Major [12] who showed that under
the classical condition EX? < oo and EX = 0 a strong approximation
with rate o(y/n) is possible if one replaces the Brownian motion by a
slightly different Gaussian process

Following up the ideas from [12, 3], Einmahl and Mason [9] finally
obtained the following strong invariance principle.

Theorem 1.3. Let X, X, X5,... be ii.d. random variables satisfying
condition (1.3) for a nondecreasing sequence ¢y, of positive real numbers
such that c,/n'/? is eventually nondecreasing and c, /v/n is eventually
nonincreasing. If the underlying p-space is rich enough, one can construct
a 1-dimensional Brownian motion such that with probability one,

1S(n) — onWn)ll = o(cn) as n — oo,

where 02 = E [X?I{|X| < ¢u}].

Using this result, one can easily determine the optimal convergence
rate for the strong invariance principle in its classical formulation for all
sequences ¢, in this range. (See the subsequent Corollary 2.2 for more
details.) Note that Theorem 1.3 only applies if EX2 < oo. This follows
from the fact that ¢, = O(y/n) under the above assumptions and the
second moment is finite if condition (1.3) holds for such a sequence. Very
recently, Einmahl [6] showed that Theorem 1.3 has also a version in the
infinite variance case and he used this one to prove new functional LIL
type results in this setting.

We return to the multidimensional case. Most of the results for (1-
dimensional) random variables have been extended to random vectors by
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now. We mention the work of Philipp [13] who extended Strassen’s strong
invariance principle with rate o(y/nloglogn) to the d-dimensional case
(actually also to Banach spaced valued random elements) and that of
Berger [1] who generalized Major’s result from [11] to the d-dimensional
case. This led to the best possible rate of o(n'/?) in the multidimensional
invariance principle at that time. This rate was further improved in [3]
to o(n®), for a¢ > 1/4. The next major step was taken by Einmahl [5]
who was able to extend all the results of Komlés, Major and Tusnady
[10] up to order O((logn)?) to the multivariate case. Moreover, it was
shown in this article that under an extra smoothness assumption on the
distribution of X strong approximations with even better rates, especially
with rate O(logn) are possible in higher dimensions as well. Zaitsev [16]
finally showed that such constructions are also possible for random vectors
which do not satisfy the extra smoothness condition so that we now know
that all the results of [10] have versions in higher dimensions.

Given all this work, one has now a fairly complete picture for the strong
invariance principle for sums of i.i.d. random vectors. In the present pa-
per, we shall close one of the remaining gaps. We shall show that it is also
possible to extend Theorem ‘1.3 to the d-dimensional case. Actually, this
is not too difficult if one proves it as the original result is stated above, but
as we have indicated, there is also a version of this result in the infinite
variance case. The purpose of this paper is to establish a general mul-
tidimensional version of Theorem 1.3 which also applies if E[X|? = co.
In this case, the problem becomes more delicate since one has to use
truncation arguments which lead to random vectors with possibly very
irregular covariance matrices. Most of the existing strong approximation
techniques for sums of independent random vectors require some condi-
tions on the ratio of the largest and smallest eigenvalues of the covariance
matrices (see, for instance, [4, 16]) and, consequently, they cannot be ap-
plied in this case. Here a new strong approximation method which is due
to Sakhanenko [14] will come in handy.

2. THE MAIN RESULT AND SOME COROLLARIES

We first state our new strong invariance principle where we only assume
that E|X| < co. (This follows from the subsequent assumption (2.1) since
all sequences c¢,, considered are of order O(n). If condition (2.1) is satisfied
for such a sequence, we have E|X| < 00.)

Theorem 2.1. Let X, X1, Xs,... be ii.d. mean zero random vectors in
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R4, Assume that -
> P{X] > e} < oo, (2.1)
n=1

where ¢, is a nondecreasing sequence of positive real numbers such that
Ja €]1/3,1]: ¢p/n® is eventually nondecreasing, and (2.2)

Ve>0ame 2 1:ep/em < (1+€)(n/m), me<m<n. (2.3)

If the underlying p-space is rich enough, one can construct a d-dimensional
standard Brownian motion {W(t),¢ > 0} such that with probability 1,

1Sty — T - Wiy |l = o(cn) as n — oo, (2.4)

where T'), is the sequence of positive semidefinite, symmetric matrices
determined by

2 = (E LX(“)(U)IHJ(|<§CH}}) (2.5)

1<ij<d

As a first application of our above strong invariance principle, we show
how one can re-obtain the main results of [3] from it. Here we are assuming
that E|X|? < oo so that cov (X) (= covariance matrix of X) exists.

Corollary 2.2. Let X,X;,Xs,... be ii.d. mean zero random vectors
in R? and assume that E|X|? < co. Let T' be the positive semidefinite,
symmetric matrix satisfying ['> = cov (X). Assume that condition (2.1)
is satisfied for a sequence ¢,, such that ¢, /+/n is eventually nonincreasing
and (2.2) holds. Then a construction is possible such that we have with
probability one:

1Sy = T'- Wyl :o(cnvCi\/loglogn/n) . (2.6)

Furthermore, we have,
P
”5(”) -I- W(n)”/cn — 0. (27)

Remark 2.3. We get the following results due to [3] from (2.6):

(1) If e, satisfies additionally ¢, = O(y/n/loglogn), then we also have
the almost sure rate o(c,) for the “standard” approximation by I -
Wi -
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(2) Set p, = m. If liminf p,, > 0, we get the rate o(c,pn),

where the extra factor pj, is sharp (see [3]).
Note also that (2.7) (with ¢, = /n) immediately implies Donsker’s theo-
rem.

To formulate the following corollary we need somewhat more notation:
For any (d,d)-matrix A we set ||A]| := sup{|A-v| : |v| < 1}. We recall that
[|A||? is equal to the largest eigenvalue of the symmetric matrix A% A. This
is due to the well known fact that the largest eigenvalue A(C) of a positive
semidefinite, symmetric (d,d)-matrix C' satisfies A(C) = sup{(v,Cv) :
|| < 1}, where (-,-) is the standard scalar product on R?. Furthermore,
let for any ¢t > 0,

H(t) = sup{E[{v, X)T{|X] < )] : o] < 1}.

If we look at the matrices 'y, we see that ||I'y||*> = H(cy). Similarly as in
[8] we set for any sequence ¢, as in Theorem 2.1,

aozsup{ i exp(%a;;(;)):oo}.

Using Theorem 2.1, we now can give a very short proof of Theorem 3 [8]
in the finite-dimensional case. This result is the basis for all the LIL type
results in [7, 8] and, consequently, we can prove all these results in the
finite-dimensional case via Theorem 2.1.

Corollary 2.4. Let X, X1, X5,... beii.d. mean zero random vectors in
R?. Assume that condition (2.1) holds for a nondecreasing sequence c,, of
positive real numbers such that c,/\/n is eventually nondecreasing and
condition (2.3) is satisfied. Then we have with probability one,

lim sup [Sul = ap. (2.8)

n—o0o Cn

Finally we show how the general law of the iterated logarithm (see
Corollary 2.5), follows directly from Corollary!2.4. (In [7, 8], we had ob-
tained this result as a corollary to another more general result, the law of
a very slowly varying function which also follows from Corollary 2.4, but
requires a more delicate proof.)

As usual, we set Lt = log(t Ve) and LLt = L(Lt), t > 0.
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Corollary 2.5 (General LIL). Let X, X7, Xs,... beli.i.d. random vectors
in RY. Let p>=1and A > 0. Then the following are equivalent:

(a) We have with probability one, limsup,,_, . |Sn|/\/2n(LLn)P = X;
(b) limsup H(t)/(LLt)?»~t = A% and E[X] = 0.
t—o0

Note that we do not explicitely assume that
(oo}
> P{IX|> /n(LLn)P} < o,
n=1

or, equivalently, E[|X|?/(LL|X|)?] < oo. In the finite dimensional case,
this condition follows from (b). This was already pointed out in the 1-
dimensional case (see, for instance, [6]), and we shall give here a detailed
proof of this fact in arbitrary finite dimension. We mention that this
implication does not hold in the infinite dimensional setting so that one
has an extra condition in this case (see [8]).

The remaining part of this paper is organized as follows: The proof of
Theorem 2.1 will be given in Sec. 3 and then we shall show in Sec. 4 how
the corollaries can be obtained.

3. PROOF OF THE STRONG INVARIANCE PRINCIPLE

3.1. Some auxiliary results. Our proof is based on the following strong
approximation result which follows from the work of Sakhanenko [14]. (See
his Corollary 3.2.)

Theorem 3.1. Let X7,1 < j < n be independent mean zero random
vectors on R? such that IEE|X]’»*|3 < 00,1 <j<mn. Let x > 0 be fixed.
If the underlying p-space is rich enough, one can construct independent
normal(0, I )-distributed random vectors Y;, 1 < j < n such that

k d
P max Y (X5 —A; V)| >z <C> E[X;P/a?, (3.1)
j=1 j=1

1<kg<n |4

where A; is the positive semidefinite, symmetric matrix satisfying A? =
cov (X7), 1 <j <n andC is a positive constant depending on d only.
Proof. From Corollary 3.2. in [14], we get independent random vectors
Y1,...,Y, so that the probability in (3.1) is
n
<Oz (BIX;PP +EYSP),

=1



12 U. EINMAHL

where V" := 4;V;, 1 < j < n and C' is a positive constant depending
on d only. Writing Y;* = (Y;,... ,Y",)" and using the inequality [v[* <
d'/2 3¢ |vif®, v € RY (which follows from the Holder inequality), we get
for 1 <j <n,

B[V < d'/? i:EIYj;IB =d'’E|Z[’ Zd:GEIYj,}|2)3/2
=1 ] =1 .
=d'?E|Z|* Y (B|X}, ") <d'?E|Z)° Y EIX},?
i=1 i=1
< &*PE|ZPE|XG)?,
where Z : Q — R is standard normal. Thus we have,
E[Y; P <CEIX;P, 1<j<n, (3:2)

where C” is a positive constant depending on d only and Theorem 3.1 has
been proved. O

Corollary 3.2. Let X,n > 1 be a sequence of independent mean zero
random vectors on R? such that we have, for a nondecreasing sequence ¢y,
of positive real numbers which converges to infinity,

S EIXGP /) < oo
n=1

If the underlying p-space is rich enough, one can construct a sequence
of independent normal (0, I)-distributed random vectors such that with
probability one,
n
Z(Xj* —A;-Y;) =o0(c,) asn — o0,

Jj=1

where A,, is the sequence of positive semidefinite, symmetric matrices
satifying A2 = cov (X}),n > 1.

Proof. We employ a similar argument as in [4, p. 95]. It is easy to see
that one can find another nondecreasing sequence ¢, so that ¢, — oo,
¢, = o(cn) as n — oo and still

> EIX;/E < oo (3.3)
n=1
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Set
mo = 1,my, :=min{k: ¢ > 2¢,,_,}, n=1L

By the definition of the subsequence m,,, we have
Cmp—1/Cmp_ys <2< Cm,, [Cp_ysn > 1
Theorem 3.1 enables us to define independent normal (0, I')-distributed

random vectors {Y; : mp,—1 < j < m,} in terms of the random vectors
{X; imp_1 <j <my} (for any n > 1) such that

k
Pl i, | 2 (=451 > By
J=Mn—-1
my—1 mn—1
<C Y EBIXjP/E,  <8C > E[X;P/e. (3.4)
J=mp_1 J=mn_1

The resulting sequence {Y, : n > 1} consists of independent random
vectors since the “blocks” {X]* :Mmy—1 < j < my} are independent.

Recalling (3.3) and using the Borel-Cantelli lemma we see that we have
with probability one,

k

Y (Xj-4;Y)

J=Mn—1

max

< ¢, _, eventually.
Mp_1<k<my

Employing the triangular inequality and adding up the above inequalities
we get with probability one,

EACENINA®)]

k
Jj=

1
n—1

<KW+ tm; < K(W)+%m,_,,mn1 <k <my
i=1

and we see that our corollary holds. O

The following lemma collects some more or less known facts.



14 U. EINMAHL

Lemma 3.3. Let X : Q — R? be a random vector such that (2.1) holds

for a nondecreasing sequence ¢, of positive real numbers.

(a) If ¢, satisties condition (2.2), we have:

Y ENXPH{IX] < eall/e), < oo

(b) If ¢, satisfies condition (2.3), we have

E[|X|I{|X]| > en}] = o(cn/n) as n — .

(c) If E[X] = 0, and both conditions (2.2) and (2.3) are satisfied, we

have:

> EXI{|X| < e}l =olcn) as n— oo,
k=1

Proof. First observe that setting p; = P{c;_1 < |X| < ¢;}, j > 1, where

co = 0, we have by our assumption (2.1),

[e.°]
ijj < o0.
j=1
To prove (a) we note that we have on account of (2.2):

¢j/j* <ceafn for n=j = jo (say),

(3.5)

which in turn implies that ¢;/j* < Kic,/n®, 1 < j < n,n > 1, where

K1 > 0 is a suitable constant. It follows that
¢ifen < Ki(j/n)%, 1<j<n, n>1

We now see that

o0

n=1 n=1 1 j=1 “n=j

SOE(XPIX] < )/ < 3N/ =3 (Z@j/cm

(3.6)

o

< Kfi <Zn3a)j3apj < K> ijpj < oo.

j=1 n=j j=1
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Here we have used the fact that > ° ;n~** = O(j'~**) as j — oo which

o0
follows easily by comparing this series with the integral [z 3%dz < oo.

J
(Recall that a > 1/3.)

To prove (b) we observe that

nE[|X|{|X] > e}l/en < DY nlej/en)py < Ks ) gps,  (3.7)
j=n+1 j=n+1

where we have used the fact that ¢;/c, < K3j/n,j > n for some positive
constant K5. (This easily follows from condition (2.3).) Recalling (3/5)
we readily obtain (b).

We turn to the proof of (c). Let 6 > 0 be fixed and choose an m; > 1
so that mE[ | X |I{|X]| > em}]/cm < 6 for m > mg, which is possible due
to (b).

Since EX = 0, trivially we have

EXH{|X] < em}] = —EXI{|X] > ¢m}]

and we can conclude that

<mE|X|/cn, + 6 Z e/ (kep).
k=ms+1

STEXI{|X] < ei}/en
k=1

Due to (3.6) we further have,

n

Z er/(kep) < Ky Z k7 n® < Ky /a.

k=ms+1 k=ms+1

Consequently, we have,

lim sup

n—oo

< K15/a.

SCEIXI{X] < eilfen
k=1

This implies (c) since we can choose ¢ arbitrarily small. 0

The next lemma gives us more information on the matrices T'y,.
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Lemma 3.4. Let the sequence I'), be defined as in Theorem 2.1. Then
we have forn >m > 1,

(a) T,, — 'y, is positive semidefinite.

(b) T = T[> S E[|X[PH{em < [X] < en}].

Proof. By definition, we have
(, (T2 —T2 ) = E[(X,v)’ I {cm < |X| < cn}] >0, veR?,

which clearly shows that ['2 — I'2 is positive semidefinite. This in turn
implies that this also holds for T',, — I',, since f(t) = /£, t > 0 is an
operator monotone function (see [2, Proposition V.1.8]). We thus have
proved (a).

Furthermore, we can conclude from the above formula that

IT5 = Tl S E[XPI{em < [X] < en}l-

Here we have used the fact that if A is a positive semidefinite, symmetric
(d, d)-matrix, we have ||A| = sup{{v, Av) : |v| < 1}.
Finally, note that, by Theorem X.1.1 in [2]

”Fn - FmH2 < ”Fi - F%n”a

we see that (b) also holds. O

3.2. Conclusion of the proof
(i) Set X| = X, I{|X,| < en}, X} = X|, —EX],n > 1. Then we clearly
have by assumption (2.1),

i P{X, # X'} < oo, (3.8)

n=1

which via the Borel-Cantelli lemma trivially implies that with probability
one, Z?Zl (X; — X}) = o(cn) as n — oo. Recalling Lemma 3.3(c), we see
that with probability one,

Sp — ZX]* =o(cy) as n — oo. (3.9)

j=1
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(i) Note that E|X|> < S8E[|XPPI{|X]| < ¢u}], n = 1, we get from
Lemma 3.3(a) that

S EIXP /el < oo (3.10)
n=1

In view of Corollary 3.2, we now can find a sequence {Y,,} of independent
normal (0, I)-distributed random vectors such that with probability one,

D> (X7 —A;-Y;) =o(cn) as n— oo, (3.11)

j=1

where A,, are the positive semidefinite symmetric matrices satisfying A2 =
cov (X}5) = cov (X7).
(iil) We next claim that with probability one,

Z(I‘j —A;)-Y; =o0(c,) as n— oo. (3.12)

j=1

In order to prove that it is sufficient to show that

i E[|(T; —Cglj) Vil o (3.13)

To see that we argue as follows:

Using a standard 1-dimensional result on random series component-
wise, we then can conclude that the random series 372, (T'; — 4;) - Y;/c;
is convergent in R¢ with probability one, which in turn via Kronecker’s
lemma (applied componentwise) implies (3.12).

Next observe that E[|(T; — A;) - Y;?] < d||T; — 4;]|?, 7 = 1 so that
(3.13) follows once we have shown that

N — A2
Jj=1 i

iFrom the definition of these matrices we immediately see that for any
v e RY,
(v, (TF = A3)v) = (E[(X, ) I{|X| < ¢;}])”
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which on account of E[(X,v)] = 0 implies,

IT5 — A3l = Sup (E[X, o) I{IX| > ¢j}])* < E[IX[I{|X] > ¢;}]%.

Using once more Theorem X.1.1. in [2] and recalling Lemma 3.3(b), we
find that
IT; — A5 17 < IITF — AFl| < €5¢5 /5%, 5 > 1,
where €¢; — 0 as j — oo. This trivially implies (3.14).
(iv) Combining relations (3.9), (3.11), and (3.12), we see that with
probability one,

n
SH—ZF]--szo(cn) as n — oo.

=1

This of course implies that with probability one,

k
max |Sk — ; ;- Y| =o0(ch) as n— oo. (3.15)
Set
k
A, = max. ;(Fn -T;)Y;|, n>1L1

We claim that with probability one,

Ap/e, — 0 as n— 0. (3.16)
First we show that with probability one,

Agefege — 0 as £ — oo. (3.17)

To that end we note that by combining Lévy’s inequality and the Markov
inequality, we get for any € > 0,
- 6622}

ZZ
<2 %¢” Y E[|(Tor — Ty,
j=1

2£

> Ty = T)Y;

=1

P{Az[ 2 6622} < QP{
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As we have E[|(Tye — I';)Y;]?] < d||Tye — |2, it suffices to show,

oo 2f

3D T = T2 /e < oo (3.18)

(=1 j=1

Using the inequality [|[Tse — I'j||? < E[|X|?I{c; < |X| < coe}] (see
Lemma 3.4(b)), we can prove this by essentially the same argument as
in [6, p. 908]. (Note that we now have c‘j»/cgz < (5/252% so that one has
to modify the last two bounds on this page slightly.)

(v) Let 2¢ < n < 2+, Then we have by the triangular inequality,

k k
An < 121]?%(” z;(].—‘22+1 — F])Y} + 121]?%(” (F22+1 — Fn) z; Y}
= j:

which in turn is

< Aget1 + ||Toetr — Tye|| max
1<k<20+!

k
>y,
j=1

Here we have used the fact that |[Toer1 — Dyl < ||Toesn — Toel], 26 <n <
21 which follows from Lemma 3.4(a).

Using obvious modifications of the proof of relation (3.11) in [6], we
can conclude that with probabilty one,

1<k<20+1

k
|Toees — Toe|| max |>"¥j| =o(cy) as € — oc. (3.19)
j=1

Combining relations (3.17) and (3.19), we see that (3.16) holds.
(vi) In view of (3.15) and (3.16) we have with probability one,

k

Sk —Tn > Y;

j=1

max
1<k<n

=o(c,) as n — oo.

Letting Ty, : @ — Cq[0, 1] be the partial sum process sequence based on
> j=1 Yj, n =1, we see that with probability one

1Sty — T - T(n)ll = o(cn) as n — oo. (3.20)
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If the underlying p-space is rich enough, we can find a d-dimensional Brow-
nian motion {W(t) : ¢t > 0} such that W(n) = Z?Zl Y;, n > 1. Using the
corresponding result in the 1-dimensional case (see [9]) componentwise,
we find that with probability one,

1T(n) — Wimyll = O(\/logn) as n — oo
and consequently we have with probability one,
IT7  Tiny = T - Wiy | < [ITnllll Tiny — Wil
= O(ITn|lv/1ogn) = o(cn), (3.21)

where we have used the fact that ||T,||* < E[|X]2T{|X]| < cn}] < cnE|X]|
and (2/2). Combining (3/20) and (3.21), we obtain the assertion and the
theorem has been proved.

4. PROOFS OF THE COROLLARIES
4.1. Proof of Corollary 2.2. We need the following lemma.

Lemma 4.1. Let X : @ — R? be a mean zero random vector with
E|X|> < oco. Assume that (2.1) holds, where ¢, is a nondecreasing se-
quence of positive real numbers such that c,/+/n is eventually nonin-
creasing. Then we have for T';, defined as in Theorem 2.1,

IT2 — cov (X)| = o(c?/n) as n — oo.

Proof. We have,
IT% — cov (X)|| = sup (v, (cov (X) —7)v)

[v]<1
= |SF<I)1E[<U’X>QI{|X| > ent] (4.1)
< E[[XPI{|X] > ea}]-

Furthermore, using the fact that ¢2, /m is eventually nonincreasing, we
get for large n,

BXPI{X] > e}] € 3 b aPlos < |X] < )
k=n
2 &
S D (k+ DP{ep < [X| < cr ),

k=n
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which is of order o(c2/n) since the series Y~ kP{cy < |X| < ¢py1}
converges by (2.1). O

We next show that ||[I',, — I'|| is of the same order. This is trivial in
dimension 1, but in higher dimensions one needs some extra arguments.

Lemma 4.2. Let I' be the positive semidefinite symmetric matrix satis-
fying I'? = cov (X). Under the assumptions of Lemma 4.1, we have:

ITn — T = o(c2/n) as n — oo.

Proof. We first look at the case where cov (X) is not positive definite.

Set dy =rank(cov(X)) and choose an orthonormal basis {vy, ... ,vq} of
R? consisting of eigenvectors of cov (X), where the vectors v;,i > d; cor-
respond to the eigenvalue 0. Let S be the orthogonal matrix with column
vectors vi,... ,vq. Then we clearly have,

Steov (X)S = <%’%>

where C is a positive definite symmetric (dy,d;)-matrix. (C is actu-
ally a diagonal matrix). Choosing the unique positive definite symmetric

(dy,dy)-matrix C such that =0 , we readily obtain (by unicity of the

square root matrix) that
clo),,
c=s(3f2)e

Note that E[(X,v;)?] =0, j > di, we see that we have also for the matrices

T2,
‘ Cn |0
t12 n
SFnS_< 5 0)

where C), are positive semidefinite symmetric (dy,d; )-matrices (not nec-
essarily diagonal). This implies that

C,|0\ .,
ro-s( G518 )s
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where C,, are the positive semidefinite symmetric matrices satisfying
62 = C,. If cov(X) is positive definite, we set C' = T', C' = cov (X),
C,=T,,C, =T2 n > 1. Using Theorem X.1.1 in [2] we can conclude
from Lemma 4.1 that

n’

IC = C| = ||ITn =T <|IT2 = cov(X)||/2 - 0 as n — .

This implies that C,, is positive definite for large n. Moreover, we have
that the smallest eigenvalue \,, of C,, converges to that one of C' which is
equal to the smallest positive eigenvalue of I'. If we denote this eigenvalue
by A we find that A, > A/2 > 0 for large n.

Applying Theorem X.3.7. in [2] (with A = C,,, B = C and a = \?/4)
we see that for large n,

T =T = [Cr = Cll <X C = €|l = AT}, = cov (X)),

which in conjunction with Lemma 4.1 implies the above assertion. O

Now we can conclude the proof of Corollary 2.2 by a simple applica-
tion of the triangular inequality. Just observe that by Theorem 2.1, with
probability one

1Sty =T Wiyl < 1Sn) = T - Wiy | + [|(Ty = 1) - Wiy |
<o(cn) + [ITn = TIl[|[Wl
Note that we can apply Theorem 2.1 since we are assuming that ¢, /v/n
is eventually nonincreasing and we thus have for some mg > 1, ¢, //n <
Cm/[v/m,mo < m < n which implies that condition (2.3) holds.

By the law of the iterated logarithm for Brownian motion we have with
probability one,

[T = Ll[[[Winy | = O(ITs — Tf[\/n loglog n)

which is in view of Lemma 4.2 of order o(c2/+/n/loglogn).
Since Wy /v/n 4 W, where W(t), 0 < t < 1 is the Brownian motion
on the compact interval [0, 1], we also have,

ITs = TIIWny | = Op(IITn — Tllvn) = op(cs/v/n) = op(cn).-

Corollary 2.2 has been proved.
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Proof of Corollary 2.4. We use the following d-dimensional version of
Lemma 3 in [6]. The proof is almost the same as in dimension 1 and it is
omitted. Recall that

H(en) = sup{E[(v, X)’I{|X| < cp}] : [u] < 1} = |[Tu]?, n>1L

Lemma 4.3. Let X : Q — R? be a mean zero random vector and as-
sume that condition (2.1) holds for a sequence ¢, of positive real numbers
such that c¢,/\/n is nondecreasing. Whenever ny, / oo is a subsequence
satisfying for large enough k,

1<a; <nk+1/nk < az < o0,

we have:
Z azcz =0 if a< ay, (4.2)
ex .
P 2nk||rnk|\2 <oo if a> ag.

4.2.1. The upper bound part. W.l.o.g. we can assume that ay < co.
We first show that under the assumptions of the corollary we have with
probability one,
lim sup |Sn|/cn < . (4.3)
n—oo
To this end, it is sufficient to show that we have for any 6 > 0 and
ng = ni(8) = [(1+ 8)*], k > 1 with probability one,

limsup max [Sp|/cn, < ao. (4.4)

k—oo 1<n<ng

Note that we trivially have,

nk}fgfgnk |Sul/en < (Cny/Cns_y) 13711{?{ |Sul/cny,-

Moreover, it follows from condition (2.3) and the definition of nj that

lim sup ¢y, /cn,_, < limsupng/ng_1 =14 96.

k—o0 k—o0

Combining these two observations with (4.4) we get for any 6 > 0 with
probability one,
lim sup |Sp|/cn < ao(1 +9),

n—oo
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which clearly implies (up0).
In view of our strong invariance principle, (4.4) follows if we can show
that with probability one,

limsup [Ty, - W) I/ Cni < @o- (4.5)

k—oo

In order to prove the last relation, we need a deviation inequality for

Jnax |[W (¢)|. The following simple (suboptimal) inequality will be suffi-

cient for our purposes.

Lemma 4.4. Let {W(¢) : t > 0} be a standard d-dimensional Brownian
motion and let 6 be a positive constant. Then there exists a constant
Cs = Cs(d) > 0 which depends only on 6 and d such that

2
P {0122(1 [W(t)| > u} < Csexp(—u?/(2 +28)), u=>0. (4.6)

Proof. Since W < —W, we can infer from the Lévy inequality that for
u =0,

> < .
P {Orgfgxl W ()| > U} L2P{{W(1)| > u}

The random variable | (1)|? has a chi-square distribution with d degrees
of freedom and thus we have

P{W(1)| > u} = 2-Y%0(d/2)~* /xd/H exp(—z/2)dx

< KuZexp(—u?/2), u>1,

where K > 0 is a constant depending on d only.
Obviously we can find a positive constant Cj so that the last term is
bounded above by

< Chexp(—u?/(2 + 26)).

Setting C5 = 2C% V !/(+29) " we see that inequality (4.6) holds for any
u > 0 and the lemma has been proved. O
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We are ready to prove (4.5). Let § > 0 be fixed and set a5 = (1 +

8) (o + 8). Recall that (W) (t)/v/R)ocict = (W (#))o<i<i- Then we can
infer from (4.2) that

ZP{HFm' ol = asen} < PUITn, [I1Winll > asen, }
k=1

<0 Zexp (_ (14 6)(ao + 5‘)%3%) .

i1 20 || T, |12

This implies via the Borel-Cantelli lemma that with probability one,

lim sup | Ty, - Wl /m < (14 6) (a0 + 6).

k—o0

Since this holds for any ¢ > 0 we get (4.5) and consequently (4.3).

4.2.2. The lower bound part. We assume that ag > 0. Otherwise,
there is nothing to prove.

Furthermore, we can assume that ¢,//n — oo. If ¢, = O(y/n), then
we have ag = oo unless of course X = 0 with probability one. Ap-
plying Corollary 2.4 with ¢, = /n(loglogn)'/*, it follows that even
limsup |S,|/(v/n(loglogn)'/*) = cc if X is nondegenerate. This trivially

n—oo
implies Corollary 2.4 for any sequence ¢,, of order O(\/n).

We need the following lemma. Since the proof is almost identical with
that one in the 1-dimensional case (see [7, Lemma 1]) it is omitted. An
inspection of this proof also reveals that one needs not assume that X has
a finite mean and thus we have

Lemma 4.5. Let X : O — R? be a random vector satisfying condition
(2.1) for a sequence c,, of positive real numbers such that c,/\/n is non-
decreasing and converges to infinity. Then we have,

E[[XPI{|X| < ca}] = o(c;,/n) as n — oo. (4.7)

Let § €]0, 1] be ﬁxed and m > 1+ 6! a natural number. Consider the
subsequence n; = m*, k > 1. We first show that if 0 < a(1 + ) < ap we
have with probability one,

limsup [Sp,yy — S|/ gy = (4.8)

k—o0
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Rewriting Sy,,, — Sn. 88 Snyyy) (1) — S(nypr)(1/m), we see that Theo-
rem 2.1 implies that (4.8) holds if and only if one has with probability
one,

lim up Doy - (W (nies1) = W) fem, >0 (49)

k—o0

Consider the independent events
Ak = {|Fnk+1 : (W(ﬂk+1) - W(nk))l = acnk+1}7 k>1.

As ||Ty, ., || is the largest eigenvalue of 'y, ., , we can find an orthonormal

vector v € R? so that Iy, vg1 = ||Tnyy, [|k41 and we can conclude
that

P(Ak) = P{|<Uk+17rnk+1 : (W(nk-i-l) - W(ﬂk))>| = acnk+1}
= P{”FnkJrlH VE+1 — nk|Z| 2 acnk+1}7
where Z : ) — R is standard normal.

Employing the trivial inequality P{|Z| > t} > exp(—t>(14+4)/2),t > ts,
where t; is a positive constant depending on ¢ only, we see that for large &,

Nk +1
2(nk+1 - nk) ||Fnk+1 ”2

P(AL) > exp (_ a?(1+6)c )

We can apply the above inequality for large k since by Lemma 4.5
ITall* < E[XPI{|IX| < ca}] = 0(ch/n) as n — oo
and, consequently,
Crpsr /(W Mky1 — || Ty ||) — 00 as & — oo.
Since we have chosen m > 1+ 61, it follows that
Npr1 — k= npe1 (1 —1/m) > np (1+ )70
We can conclude that for large enough &,

M1

a?(1+6)%c2 )
an+1||Fnk+1||2 ’

P(Ag) > exp (
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and, consequently, we have on account of (4.2),

k=1

Using the Borel-Cantelli lemma, we see that (4.9) holds which in turn
implies (4.8).
If , we use the trivial inequality

limsup [Sp,yy — Snil/Cnpyy < 2limsup Sy, |/cny, s
k—oo k—o0

which in conjunction with (4.8) (where we set § = 1/2 and m = 3) implies
that we have for any a > 0 with probability one,

limsup [Sp,|/cn, = /2.

k—oo

It is now obvious that lim sup |S,|/¢n = ap = oo with probability one.

n—oo
If m we get from the upper bound part and the definition of ny
with probability one,

lim sup | Sy, |/¢npyr < o limsup ep,, /Cn,yy < 200/y/m.

k—oo k—o00

Combining this with (4.8) we see that we have if a(1 + J) < ap for any
m > 14 6! with probability one,

limsup |Sy,|/cn = a — 2a9/v/m.

n—oo

Since we can make 0 arbitrarily small, we see that limsup|S,|/cn = ao
n—oo

with probability one and Corollary 2.4 has been proved.

4.3. Proof of Corollary 2.5. We only show how (b) implies (a) and we
do this if p > 1. For the implication “(a) = (b)” we refer to [7]. We need
another lemma.

Lemma 2.5. Let X : Q — R? be a random vector and set

H(t) = B[|X)PI{|X| < t}]V1,t>0.
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Then we have for any 6 > 0 : E[|X|2/(H (| X|))**?] < oc.

Proof. Without loss of generality we can assume that E|X|?> = oo and
consequently that H(t) — oo ast — oo, where H(t) = E[| X |2I{|X| < t}],
t > 0. Obviously, H is right continuous and nondecreasing. Therefore there
exists a unique Lebesgue—Stieltjes measure i on the Borel subsets of R4
satisfying,

p(la,b]) = H(b) —H(a), 0<a<b< cc.
Let G be the generalized inverse function of H, i.e.,
Gu)=inf{z >0: H(z) >u}, 0<u<oo.

As H is right continuous, the above infimum is actually a minimum. In
particular, we have H(G(u)) > u, u > 0. Moreover:

Gu) <z <= u< H(®). (4.10)

Let A the Lebesgue measure on the Borel subsets of R,. From (4.10) it
easily follows that j is equal to the image measure A\g.

Next set o = G(1) so that H(z) = 1, < a and H(z) = H(z), z > a.
It trivially follows that

B[ 1XP/H(X)] <E[IXPI(X| <ol + [ H@) ™ u(da).
Jer,00]

The first term is obviously finite. As for the second term we have

H(x) ™ p(der) = / H(x) "N (de)

Jer,00[ Jer,00]
= H(G(u) ' 0du < /u_l_édu < oo
H(a) !
and the lemma has been proved. O

As we trivially have H(t) < dH(t), t > 0, we get from (b) that H(t) =
O((LLt)P~ ') as t — oo and we readily obtain that for some positive
constant C,

E[|X[?/(LLIX|)"] < CE[|X[?/(H(X|))»/*~]



STRONG INVARIANCE PRINCIPLE 29

which is finite in view of Lemma. 4.6.
Consequently, we have,

ZIP’{|X| > y/n(LLn)P} < 0.

We can apply Corollary 2.4 with ¢, = \/n(LLn)P and we see that with
probability one,

lim sup [S,|/v/2n(LLn)? = ao/V2,

n—oo

where

cawtas0. 5 Lo [ @I ) _
“0= p{ 20';71 p( 2H( n(LLn)P)>_ }

It remains to show that ag = AV2.
Consider o = X\3v/2, where Ay > X. If A\; €)X, X[, we clearly have by

(b) for large n,
H(\/n(LLn)?) < X3(LLn)P~*

and it follows that

1 o a*(LLn)? < 1
Zexp | — < 7
n P\ T 2H(/n(LLnyp) ) n(n)0eP0?

which leads to a convergent series. Thus, we have oy < 2.
As for the opposite inequality, we can and do assume that A > 0.
Consider a = £1v/2, where 0 < 81 < \. Let further S5, 33 be positive
numbers such that 81 < 82 < 83 < A.
Choose a sequence t; T oo such that

H(ty) = N (1 — 1/k)(LLty)P .
Set
my = min{m : t;, < /m(LLm)P}.

It is easy to see that tg ~ v/mg(LLmyg)P as k — oo and we thus have for
large k,
H( my (LLmk)P) > 6?% (LLmk)pil,
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Here we have used the fact that LLt ~ LL(t?) as t — oo, from which we
can also infer that for large k,

(LLn)? < (B2/B1)?(LLmy)?, my <n < mi =:ny.

Recalling that o = v/28; we get for large k,

i 1o o®(ELLny - i 1
i P 2H (\/n(LLn)P) /n:mk n(Lmy,)(62/53)

> (Lmk)1*(52/53)2.

The last term converges to infinity and thus the series in the definition of

Qo
Qg

diverges, which means that ay > 61\/5 for any 81 < A. Thus we have
> A2 and the corollary has been proved.
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