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t. We provide a strong invarian
e prin
iple for sums of indepen-dent, identi
ally distributed random ve
tors whi
h need not have �nitese
ond absolute moments. Various appli
ations are indi
ated. In parti
-ular, we show how one 
an re-obtain some re
ent LIL type results fromthis invarian
e prin
iple. 1. Introdu
tionLet X;X1; X2; : : : be independent, identi
ally distributed (i.i.d.) ran-dom ve
tors in R
d and set Sn =∑ni=1Xi, n > 1, S0 := 0. If the randomve
tors have mean zero and a �nite 
ovarian
e matrix � it follows fromthe multidimensional 
entral limit theorem thatSn=√n d→ Y ∼ normal (0;�); (1.1)where d→ stands for 
onvergen
e in distribution.There is also a mu
h more general weak 
onvergen
e result available,namely Donsker's theorem. To formulate this result we �rst have to re
allthe de�nition of the partial sum pro
ess sequen
e S(n) : 
 → Cd[0; 1℄:S(n)(t) = { Sk if t = k=n; 0 6 k 6 n;linearly interpolated elsewhere:Let {W (t); t > 0} be a standard d-dimensional Brownian motion anddenote the Eu
lidean norm on R

d by | · |. Then the d-dimensional versionof Donsker's theorem 
an be formulated as follows,Theorem (Donsker). Let X;X1; X2; : : : be i.i.d. random ve
tors su
hthat E|X |2 < ∞ and EX = 0. Let � be the positive de�nite, symmetri
matrix satisfying �2 = 
ov (X) =: �. Then we have,S(n)=√n d→ � ·W;5



6 U. EINMAHLwhere W (t), 0 6 t 6 1 is the restri
tion of W to [0; 1℄.In order to prove this result one 
an use a 
oupling argument, that isone 
an 
onstru
t the random variables X1; X2; : : : and a d-dimensionalBrownian motion {W (t) : t > 0} on a suitable p-spa
e so that one has
‖S(n) − � ·W(n)‖=√n P→ 0; (1.2)where W(n))(t) = W (nt), 0 6 t 6 1, P→ stands for 
onvergen
e in proba-bility, and ‖ · ‖ is the sup-norm on Cd[0; 1℄.Relation (1) 
learly implies Donsker's theorem sin
e we have W(n)√n d=W .It is natural now to ask whether one 
an repla
e 
onvergen
e in proba-bility by almost sure 
onvergen
e. This is not only a formal improvementof the above 
oupling result, but it also makes it possible to infer almostsure 
onvergen
e results for partial sum pro
esses from the 
orrespondingresults for Brownian motion. This was pointed out in the 
lassi
al paperby Strassen [15℄ who obtained a fun
tional law of the iterated logarithmfor general partial sum pro
esses along these lines. So one 
an pose thefollowingQuestion 1.2. Given a monotone sequen
e 
n, when is a 
onstru
tionpossible su
h that with probability one,

‖S(n) − � ·W(n)‖ = O(
n) as n → ∞?If su
h a 
onstru
tion is possible, one speaks of a strong invarian
eprin
iple with rate O(
n).We �rst look at the 1-dimensional 
ase. (Then � is simply the standarddeviation � of X .) Though it was already known at an early stage thatno better 
onvergen
e rate than O(log n) is feasible unless of 
ourse thevariables X;X1; X2; : : : are normally distributed, it had been an openquestion for a long time whether a strong invarian
e prin
iple with su
h arate is a
tually attainable. Very surprisingly, Koml�os, Major and Tusn�ady[10℄ eventually were able to show that su
h a 
onstru
tion is possiblein dimension 1 if and only if the moment generating fun
tion of X is�nite and if X has mean zero. More generally, they proved that a stronginvarian
e prin
iple with rate O(
n) is possible for any sequen
e 
n ofpositive real numbers su
h that 
n=n� is de
reasing for some � < 1=3 and
n= logn is nonde
reasing, if and only if
∞∑n=1P{|X | > 
n} <∞ and EX = 0: (1.3)



STRONG INVARIANCE PRINCIPLE 7Major [11℄ obtained analogous results for sequen
es 
n satisfying 
n=n�is nonin
reasing for some � < 1=2 and 
n=n1=3 is nonde
reasing. Thisin
ludes espe
ially the sequen
es 
n = n
 , 1=3 6 
 < 1=2. For sequen
es
n in this range one 
an also get a strong invarian
e prin
iple with rateo(
n) rather than O(
n). Moreover, it is well known that it is impossibleto obtain an analogous result for the sequen
e 
n = √n. Note that in this
ase 
ondition (1.3) is equivalent with the 
lassi
al 
ondition EX2 < ∞and EX = 0. In this 
ase the best possible strong invarian
e prin
ipleis of order o(√n log logn). The remaining gap, namely the determinationof the optimal 
onvergen
e rates for \big" sequen
es 
n of order o(√n)where no � < 1=2 exists su
h that 
n=n� is nonde
reasing, was 
losed byEinmahl [3℄. (Note that this in
ludes all sequen
es of the form √n=h(n)where h : [1;∞[→℄0;∞[ is slowly varying at in�nity and h(x) → ∞ asx → ∞.) We next mention the work of Major [12℄ who showed that underthe 
lassi
al 
ondition EX2 < ∞ and EX = 0 a strong approximationwith rate o(√n) is possible if one repla
es the Brownian motion by aslightly di�erent Gaussian pro
essFollowing up the ideas from [12, 3℄, Einmahl and Mason [9℄ �nallyobtained the following strong invarian
e prin
iple.Theorem 1.3. Let X;X1; X2; : : : be i.i.d. random variables satisfying
ondition (1:3) for a nonde
reasing sequen
e 
n of positive real numberssu
h that 
n=n1=3 is eventually nonde
reasing and 
n=√n is eventuallynonin
reasing. If the underlying p-spa
e is ri
h enough, one 
an 
onstru
ta 1-dimensional Brownian motion su
h that with probability one,
‖S(n) − �nW(n)‖ = o(
n) as n → ∞;where �2n = E

[X2I{|X | 6 
n}].Using this result, one 
an easily determine the optimal 
onvergen
erate for the strong invarian
e prin
iple in its 
lassi
al formulation for allsequen
es 
n in this range. (See the subsequent Corollary 2.2 for moredetails.) Note that Theorem 1.3 only applies if EX2 < ∞. This followsfrom the fa
t that 
n = O(√n) under the above assumptions and these
ond moment is �nite if 
ondition (1.3) holds for su
h a sequen
e. Veryre
ently, Einmahl [6℄ showed that Theorem 1.3 has also a version in thein�nite varian
e 
ase and he used this one to prove new fun
tional LILtype results in this setting.We return to the multidimensional 
ase. Most of the results for (1-dimensional) random variables have been extended to random ve
tors by



8 U. EINMAHLnow. We mention the work of Philipp [13℄ who extended Strassen's stronginvarian
e prin
iple with rate o(√n log logn) to the d-dimensional 
ase(a
tually also to Bana
h spa
ed valued random elements) and that ofBerger [1℄ who generalized Major's result from [11℄ to the d-dimensional
ase. This led to the best possible rate of o(n1=3) in the multidimensionalinvarian
e prin
iple at that time. This rate was further improved in [3℄to o(n�), for � > 1=4. The next major step was taken by Einmahl [5℄who was able to extend all the results of Koml�os, Major and Tusn�ady[10℄ up to order O((log n)2) to the multivariate 
ase. Moreover, it wasshown in this arti
le that under an extra smoothness assumption on thedistribution of X strong approximations with even better rates, espe
iallywith rate O(log n) are possible in higher dimensions as well. Zaitsev [16℄�nally showed that su
h 
onstru
tions are also possible for random ve
torswhi
h do not satisfy the extra smoothness 
ondition so that we now knowthat all the results of [10℄ have versions in higher dimensions.Given all this work, one has now a fairly 
omplete pi
ture for the stronginvarian
e prin
iple for sums of i.i.d. random ve
tors. In the present pa-per, we shall 
lose one of the remaining gaps. We shall show that it is alsopossible to extend Theorem `1.3 to the d-dimensional 
ase. A
tually, thisis not too diÆ
ult if one proves it as the original result is stated above, butas we have indi
ated, there is also a version of this result in the in�nitevarian
e 
ase. The purpose of this paper is to establish a general mul-tidimensional version of Theorem 1.3 whi
h also applies if E|X |2 = ∞.In this 
ase, the problem be
omes more deli
ate sin
e one has to usetrun
ation arguments whi
h lead to random ve
tors with possibly veryirregular 
ovarian
e matri
es. Most of the existing strong approximationte
hniques for sums of independent random ve
tors require some 
ondi-tions on the ratio of the largest and smallest eigenvalues of the 
ovarian
ematri
es (see, for instan
e, [4, 16℄) and, 
onsequently, they 
annot be ap-plied in this 
ase. Here a new strong approximation method whi
h is dueto Sakhanenko [14℄ will 
ome in handy.2. The main result and some 
orollariesWe �rst state our new strong invarian
e prin
iple where we only assumethat E|X | <∞. (This follows from the subsequent assumption (2.1) sin
eall sequen
es 
n 
onsidered are of order O(n). If 
ondition (2.1) is satis�edfor su
h a sequen
e, we have E|X | < ∞.)Theorem 2.1. Let X;X1; X2; : : : be i.i.d. mean zero random ve
tors in
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R
d. Assume that ∞∑n=1P{|X | > 
n} < ∞; (2.1)where 
n is a nonde
reasing sequen
e of positive real numbers su
h that

∃� ∈℄1=3; 1[: 
n=n� is eventually nonde
reasing, and (2.2)
∀ � > 0 ∃m� > 1 : 
n=
m 6 (1 + �)(n=m); m� 6 m < n: (2.3)If the underlying p-spa
e is ri
h enough, one 
an 
onstru
t a d-dimensionalstandard Brownian motion {W (t); t > 0} su
h that with probability 1,

‖S(n) − �n ·W(n)‖ = o(
n) as n→ ∞; (2.4)where �n is the sequen
e of positive semide�nite, symmetri
 matri
esdetermined by �2n = (E

[X(i)X(j)I{|X | 6 
n}])16i;j6d : (2.5)As a �rst appli
ation of our above strong invarian
e prin
iple, we showhow one 
an re-obtain the main results of [3℄ from it. Here we are assumingthat E|X |2 < ∞ so that 
ov (X) (= 
ovarian
e matrix of X) exists.Corollary 2.2. Let X;X1; X2; : : : be i.i.d. mean zero random ve
torsin R
d and assume that E|X |2 < ∞. Let � be the positive semide�nite,symmetri
 matrix satisfying �2 = 
ov (X). Assume that 
ondition (2:1)is satis�ed for a sequen
e 
n su
h that 
n=√n is eventually nonin
reasingand (2:2) holds. Then a 
onstru
tion is possible su
h that we have withprobability one:

‖S(n) − � ·W(n)‖ = o(
n ∨ 
2n√log logn=n) : (2.6)Furthermore, we have,
‖S(n) − � ·W(n)‖=
n P→ 0: (2.7)Remark 2.3. We get the following results due to [3℄ from (2.6):(1) If 
n satis�es additionally 
n = O(√n= log logn), then we also havethe almost sure rate o(
n) for the \standard" approximation by � ·W(n).



10 U. EINMAHL(2) Set �n = 
n√n= log logn . If lim infn→∞
�n > 0, we get the rate o(
n�n),where the extra fa
tor �n is sharp (see [3℄).Note also that (2.7) (with 
n = √n) immediately implies Donsker's theo-rem.To formulate the following 
orollary we need somewhat more notation:For any (d,d)-matrix A we set ‖A‖ := sup{|A ·v| : |v| 6 1}. We re
all that

‖A‖2 is equal to the largest eigenvalue of the symmetri
 matrix AtA. Thisis due to the well known fa
t that the largest eigenvalue �(C) of a positivesemide�nite, symmetri
 (d,d)-matrix C satis�es �(C) = sup{〈v; Cv〉 :
|v| 6 1}, where 〈·; ·〉 is the standard s
alar produ
t on R

d. Furthermore,let for any t > 0,H(t) := sup{E[〈v;X〉2I{|X | 6 t}℄ : |v| 6 1}:If we look at the matri
es �n we see that ‖�n‖2 = H(
n). Similarly as in[8℄ we set for any sequen
e 
n as in Theorem 2.1,�0 = sup{� > 0 : ∞∑n=1n−1 exp(− �2
2n2nH(
n)) = ∞
} :Using Theorem 2.1, we now 
an give a very short proof of Theorem 3 [8℄in the �nite-dimensional 
ase. This result is the basis for all the LIL typeresults in [7, 8℄ and, 
onsequently, we 
an prove all these results in the�nite-dimensional 
ase via Theorem 2.1.Corollary 2.4. Let X;X1; X2; : : : be i.i.d. mean zero random ve
tors in

R
d. Assume that 
ondition (2:1) holds for a nonde
reasing sequen
e 
n ofpositive real numbers su
h that 
n=√n is eventually nonde
reasing and
ondition (2:3) is satis�ed. Then we have with probability one,lim supn→∞

|Sn|
n = �0: (2.8)Finally we show how the general law of the iterated logarithm (seeCorollary 2.5), follows dire
tly from Corollary!2.4. (In [7, 8℄, we had ob-tained this result as a 
orollary to another more general result, the law ofa very slowly varying fun
tion whi
h also follows from Corollary 2.4, butrequires a more deli
ate proof.)As usual, we set Lt = log(t ∨ e) and LLt = L(Lt), t > 0.



STRONG INVARIANCE PRINCIPLE 11Corollary 2.5 (General LIL). Let X;X1; X2; : : : be i.i.d. random ve
torsin R
d. Let p > 1 and � > 0. Then the following are equivalent:(a) We have with probability one, lim supn→∞ |Sn|=√2n(LLn)p = �;(b) lim supt→∞

H(t)=(LLt)p−1 = �2 and E[X ℄ = 0.Note that we do not expli
itely assume that
∞∑n=1P{|X | >

√n(LLn)p} < ∞;or, equivalently, E[ |X |2=(LL|X |)p℄ < ∞. In the �nite dimensional 
ase,this 
ondition follows from (b). This was already pointed out in the 1-dimensional 
ase (see, for instan
e, [6℄), and we shall give here a detailedproof of this fa
t in arbitrary �nite dimension. We mention that thisimpli
ation does not hold in the in�nite dimensional setting so that onehas an extra 
ondition in this 
ase (see [8℄).The remaining part of this paper is organized as follows: The proof ofTheorem 2.1 will be given in Se
. 3 and then we shall show in Se
. 4 howthe 
orollaries 
an be obtained.3. Proof of the strong invarian
e prin
iple3.1. Some auxiliary results. Our proof is based on the following strongapproximation result whi
h follows from the work of Sakhanenko [14℄. (Seehis Corollary 3.2.)Theorem 3.1. Let X∗j ; 1 6 j 6 n be independent mean zero randomve
tors on R
d su
h that E|X∗j |3 < ∞, 1 6 j 6 n. Let x > 0 be �xed.If the underlying p-spa
e is ri
h enough, one 
an 
onstru
t independentnormal(0; I)-distributed random ve
tors Yj , 1 6 j 6 n su
h that

P



 max16k6n ∣∣∣∣∣∣ k∑j=1(X∗j −Aj · Yj)∣∣∣∣∣∣ > x 6 C d∑j=1 E|X∗j |3=x3; (3.1)where Aj is the positive semide�nite, symmetri
 matrix satisfying A2j =
ov (X∗j ), 1 6 j 6 n and C is a positive 
onstant depending on d only.Proof. From Corollary 3.2. in [14℄, we get independent random ve
torsY1; : : : ; Yn so that the probability in (3.1) is

6 C ′x−3 n∑j=1(E|X∗j |3 + E|Y ∗j |3);



12 U. EINMAHLwhere Y ∗j := AjYj , 1 6 j 6 n and C ′ is a positive 
onstant dependingon d only. Writing Y ∗j = (Y ∗j;1; : : : ; Y ∗j;d)t and using the inequality |v|3 6d1=2∑di=1 |vi|3, v ∈ R
d (whi
h follows from the H�older inequality), we getfor 1 6 j 6 n,

E|Y ∗j |3 6 d1=2 d∑i=1 E|Y ∗j;i|3 = d1=2E|Z|3 d∑i=1(E|Y ∗j;i|2)3=2= d1=2E|Z|3 d∑i=1(E|X∗j;i|2)3=2 6 d1=2E|Z|3 d∑i=1 E|X∗j;i|3
6 d3=2E|Z|3E|X∗j |3;where Z : 
 → R is standard normal. Thus we have,

E|Y ∗j |3 6 C ′′
E|X∗j |3; 1 6 j 6 n; (3.2)where C ′′ is a positive 
onstant depending on d only and Theorem 3.1 hasbeen proved. �Corollary 3.2. Let X∗n; n > 1 be a sequen
e of independent mean zerorandom ve
tors on R

d su
h that we have, for a nonde
reasing sequen
e 
nof positive real numbers whi
h 
onverges to in�nity,
∞∑n=1E|X∗n|3=
3n <∞:If the underlying p-spa
e is ri
h enough, one 
an 
onstru
t a sequen
eof independent normal (0; I)-distributed random ve
tors su
h that withprobability one, n∑j=1(X∗j −Aj · Yj) = o(
n) as n → ∞;where An is the sequen
e of positive semide�nite, symmetri
 matri
essatifying A2n = 
ov (X∗n); n > 1.Proof. We employ a similar argument as in [4, p. 95℄. It is easy to seethat one 
an �nd another nonde
reasing sequen
e 
̃n so that 
̃n → ∞,
̃n = o(
n) as n → ∞ and still
∞∑n=1E|X∗n|3=
̃3n <∞: (3.3)



STRONG INVARIANCE PRINCIPLE 13Set m0 := 1;mn := min{k : 
̃k > 2
̃mn−1}; n > 1:By the de�nition of the subsequen
e mn, we have
̃mn−1=
̃mn−1 6 2 6 
̃mn=
̃mn−1 ; n > 1:Theorem 3.1 enables us to de�ne independent normal (0; I)-distributedrandom ve
tors {Yj : mn−1 6 j < mn} in terms of the random ve
tors
{X∗j : mn−1 6 j < mn} (for any n > 1) su
h that

P



 maxmn−16k<mn ∣∣∣∣∣∣ k∑j=mn−1(X∗j −Aj · Yj)∣∣∣∣∣∣ > 
̃mn−1

6 C mn−1∑j=mn−1 E|X∗j |3=
̃3mn−1 6 8C mn−1∑j=mn−1 E|X∗j |3=
̃3j : (3.4)The resulting sequen
e {Yn : n > 1} 
onsists of independent randomve
tors sin
e the \blo
ks" {X∗j : mn−1 6 j < mn} are independent.Re
alling (3.3) and using the Borel{Cantelli lemma we see that we havewith probability one,maxmn−16k<mn ∣∣∣∣ k∑j=mn−1(X∗j −Aj · Yj)∣∣∣∣ 6 
̃mn−1 eventually:Employing the triangular inequality and adding up the above inequalitieswe get with probability one,
∣∣∣∣

k∑j=1(X∗j (!)−Aj · Yj(!))∣∣∣∣
6 K(!) + n−1∑i=1 
̃mi 6 K(!) + 2
̃mn−1 ;mn−1 6 k < mnand we see that our 
orollary holds. �The following lemma 
olle
ts some more or less known fa
ts.



14 U. EINMAHLLemma 3.3. Let X : 
 → R
d be a random ve
tor su
h that (2:1) holdsfor a nonde
reasing sequen
e 
n of positive real numbers.(a) If 
n satis�es 
ondition (2:2), we have:

∞∑n=1E[ |X |3I{|X | 6 
n}℄=
3n <∞:(b) If 
n satis�es 
ondition (2:3), we have
E[ |X |I{|X | > 
n}℄ = o(
n=n) as n → ∞:(
) If E[X ℄ = 0, and both 
onditions (2:2) and (2:3) are satis�ed, wehave: n∑k=1 E[XI{|X | 6 
k}℄ = o(
n) as n → ∞:Proof. First observe that setting pj = P{
j−1 < |X | 6 
j}, j > 1, where
0 = 0, we have by our assumption (2.1),

∞∑j=1 jpj < ∞: (3.5)To prove (a) we note that we have on a

ount of (2.2):
j=j� 6 
n=n� for n > j > j0 (say);whi
h in turn implies that 
j=j� 6 K1
n=n�, 1 6 j 6 n, n > 1, whereK1 > 0 is a suitable 
onstant. It follows that
j=
n 6 K1(j=n)�; 1 6 j 6 n; n > 1: (3.6)We now see that
∞∑n=1E[ |X |3I{|X | 6 
n}℄=
3n 6

∞∑n=1 n∑j=1 
3jpj=
3n = ∞∑j=1( ∞∑n=j(
j=
n)3)pj
6 K31 ∞∑j=1( ∞∑n=j n−3�)j3�pj 6 K2 ∞∑j=1 jpj < ∞:



STRONG INVARIANCE PRINCIPLE 15Here we have used the fa
t that∑∞n=j n−3� = O(j1−3�) as j → ∞ whi
hfollows easily by 
omparing this series with the integral ∞∫j x−3�dx < ∞.(Re
all that � > 1=3.)To prove (b) we observe thatnE[ |X |I{|X | > 
n}℄=
n 6

∞∑j=n+1n(
j=
n)pj 6 K3 ∞∑j=n+1 jpj ; (3.7)where we have used the fa
t that 
j=
n 6 K3j=n; j > n for some positive
onstant K3. (This easily follows from 
ondition (2.3).) Re
alling (3/5)we readily obtain (b).We turn to the proof of (
). Let Æ > 0 be �xed and 
hoose an mÆ > 1so that mE[ |X |I{|X | > 
m}℄=
m 6 Æ for m > mÆ , whi
h is possible dueto (b).Sin
e EX = 0, trivially we have
E[XI{|X | 6 
m}℄ = −E[XI{|X | > 
m}℄and we 
an 
on
lude that

∣∣∣∣
n∑k=1 E[XI{|X | 6 
k}℄=
n∣∣∣∣ 6 mÆE|X |=
n + Æ n∑k=mÆ+1 
k=(k
n):Due to (3.6) we further have,n∑k=mÆ+1 
k=(k
n) 6 K1 n∑k=mÆ+1 k�−1=n� 6 K1=�:Consequently, we have,lim supn→∞

∣∣∣∣
n∑k=1 E[XI{|X | 6 
k}℄=
n∣∣∣∣ 6 K1Æ=�:This implies (
) sin
e we 
an 
hoose Æ arbitrarily small. �The next lemma gives us more information on the matri
es �n.



16 U. EINMAHLLemma 3.4. Let the sequen
e �n be de�ned as in Theorem 2:1. Thenwe have for n > m > 1,(a) �n − �m is positive semide�nite.(b) ‖�n − �m‖2 6 E[ |X |2I{
m < |X | 6 
n}℄.Proof. By de�nition, we have
〈v; (�2n − �2m)v〉 = E[〈X; v〉2I{
m < |X | 6 
n}℄ > 0; v ∈ R

d;whi
h 
learly shows that �2n − �2m is positive semide�nite. This in turnimplies that this also holds for �n − �m sin
e f(t) = √t, t > 0 is anoperator monotone fun
tion (see [2, Proposition V.1.8℄). We thus haveproved (a).Furthermore, we 
an 
on
lude from the above formula that
‖�2n − �2m‖ 6 E[ |X |2I{
m < |X | 6 
n}℄:Here we have used the fa
t that if A is a positive semide�nite, symmetri
(d; d)-matrix, we have ‖A‖ = sup{〈v;Av〉 : |v| 6 1}.Finally, note that, by Theorem X.1.1 in [2℄

‖�n − �m‖2 6 ‖�2n − �2m‖;we see that (b) also holds. �3.2. Con
lusion of the proof(i) Set X ′n = XnI{|Xn| 6 
n}, X∗n = X ′n−EX ′n, n > 1. Then we 
learlyhave by assumption (2.1),
∞∑n=1P{Xn 6= X ′n} < ∞; (3.8)whi
h via the Borel{Cantelli lemma trivially implies that with probabilityone, ∑nj=1(Xj −X ′j) = o(
n) as n → ∞. Re
alling Lemma 3.3(
), we seethat with probability one,Sn −
n∑j=1X∗j = o(
n) as n → ∞: (3.9)



STRONG INVARIANCE PRINCIPLE 17(ii) Note that E|X∗n|3 6 8E[ |X |3I{|X | 6 
n}℄, n > 1, we get fromLemma 3.3(a) that
∞∑n=1E|X∗n|3=
3n <∞: (3.10)In view of Corollary 3.2, we now 
an �nd a sequen
e {Yn} of independentnormal (0; I)-distributed random ve
tors su
h that with probability one,n∑j=1(X∗j −Aj · Yj) = o(
n) as n → ∞; (3.11)whereAn are the positive semide�nite symmetri
 matri
es satisfying A2n =
ov (X∗n) = 
ov (X ′n).(iii) We next 
laim that with probability one,n∑j=1(�j −Aj) · Yj = o(
n) as n → ∞: (3.12)In order to prove that it is suÆ
ient to show that

∞∑j=1 E[ |(�j −Aj) · Yj |2℄
2j < ∞: (3.13)To see that we argue as follows:Using a standard 1-dimensional result on random series 
omponent-wise, we then 
an 
on
lude that the random series∑∞j=1(�j −Aj) · Yj=
jis 
onvergent in R
d with probability one, whi
h in turn via Krone
ker'slemma (applied 
omponentwise) implies (3.12).Next observe that E[ |(�j − Aj) · Yj |2℄ 6 d‖�j − Aj‖2, j > 1 so that(3.13) follows on
e we have shown that

∞∑j=1 ‖�j −Aj‖2
2j < ∞: (3.14)>From the de�nition of these matri
es we immediately see that for anyv ∈ R
d,

〈v; (�2j −A2j )v〉 = (E[〈X; v〉I{|X | 6 
j}℄)2



18 U. EINMAHLwhi
h on a

ount of E[〈X; v〉℄ = 0 implies,
‖�2j −A2j‖ = sup

|v|61 (E[〈X; v〉I{|X | > 
j}℄)2 6 E[ |X |I{|X | > 
j}℄2:Using on
e more Theorem X.1.1. in [2℄ and re
alling Lemma 3.3(b), we�nd that
‖�j −Aj‖2 6 ‖�2j −A2j‖ 6 �j
2j=j2; j > 1;where �j → 0 as j → ∞. This trivially implies (3.14).(iv) Combining relations (3.9), (3.11), and (3.12), we see that withprobability one, Sn −

n∑j=1 �j · Yj = o(
n) as n → ∞:This of 
ourse implies that with probability one,max16k6n |Sk − k∑j=1 �j · Yj | = o(
n) as n → ∞: (3.15)Set �n := max16k6n ∣∣∣∣ k∑j=1(�n − �j)Yj∣∣∣∣; n > 1:We 
laim that with probability one,�n=
n → 0 as n → ∞: (3.16)First we show that with probability one,�2`=
2` → 0 as ` → ∞: (3.17)To that end we note that by 
ombining L�evy's inequality and the Markovinequality, we get for any � > 0,
P{�2` > �
2`} 6 2P{∣∣∣∣ 2∑̀j=1 |(�2` − �j)Yj∣∣∣∣ > �
2`}

6 2�−2
−22` 2∑̀j=1 E[ |(�2` − �j)Yj |2℄:



STRONG INVARIANCE PRINCIPLE 19As we have E[ |(�2` − �j)Yj |2℄ 6 d‖�2` − �j‖2; it suÆ
es to show,
∞∑`=1 2∑̀j=1 ‖�2` − �j‖2=
22` < ∞: (3.18)Using the inequality ‖�2` − �j‖2 6 E[ |X |2I{
j < |X | 6 
2`}℄ (seeLemma 3.4(b)), we 
an prove this by essentially the same argument asin [6, p. 908℄. (Note that we now have 
2j=
22` 6 (j=2`)2� so that one hasto modify the last two bounds on this page slightly.)(v) Let 2` < n < 2`+1. Then we have by the triangular inequality,�n 6 max16k6n ∣∣∣∣ k∑j=1(�2`+1 − �j)Yj ∣∣∣∣+ max16k6n ∣∣∣∣(�2`+1 − �n) k∑j=1 Yj∣∣∣∣whi
h in turn is

6 �2`+1 + ‖�2`+1 − �2`‖ max16k62`+1 ∣∣∣∣ k∑j=1 Yj∣∣∣∣:Here we have used the fa
t that ‖�2`+1 − �n‖ 6 ‖�2`+1 − �2`‖, 2` 6 n 62`+1 whi
h follows from Lemma 3.4(a).Using obvious modi�
ations of the proof of relation (3.11) in [6℄, we
an 
on
lude that with probabilty one,
‖�2`+1 − �2`‖ max16k62`+1 ∣∣∣∣∣∣ k∑j=1 Yj∣∣∣∣∣∣ = o(
2`) as ` → ∞: (3.19)Combining relations (3.17) and (3.19), we see that (3.16) holds.(vi) In view of (3.15) and (3.16) we have with probability one,max16k6n ∣∣∣∣Sk − �n k∑j=1 Yj∣∣∣∣ = o(
n) as n→ ∞:Letting T(n) : 
 → Cd[0; 1℄ be the partial sum pro
ess sequen
e based on∑nj=1 Yj , n > 1, we see that with probability one

‖S(n) − �n · T(n)‖ = o(
n) as n → ∞: (3.20)



20 U. EINMAHLIf the underlying p-spa
e is ri
h enough, we 
an �nd a d-dimensional Brow-nian motion {W (t) : t > 0} su
h that W (n) =∑nj=1 Yj , n > 1. Using the
orresponding result in the 1-dimensional 
ase (see [9℄) 
omponentwise,we �nd that with probability one,
‖T(n) −W(n)‖ = O(√logn) as n→ ∞and 
onsequently we have with probability one,

‖�n · T(n) − �n ·W(n)‖ 6 ‖�n‖‖T(n) −W(n)‖= O(‖�n‖√logn) = o(
n); (3.21)where we have used the fa
t that ‖�n‖2 6 E[ |X |2I{|X | 6 
n}℄ 6 
nE|X |and (2/2). Combining (3/20) and (3.21), we obtain the assertion and thetheorem has been proved.4. Proofs of the 
orollaries4.1. Proof of Corollary 2.2. We need the following lemma.Lemma 4.1. Let X : 
 → R
d be a mean zero random ve
tor with

E|X |2 < ∞. Assume that (2:1) holds, where 
n is a nonde
reasing se-quen
e of positive real numbers su
h that 
n=√n is eventually nonin-
reasing. Then we have for �n de�ned as in Theorem 2:1,
‖�2n − 
ov (X)‖ = o(
2n=n) as n → ∞:Proof. We have,

‖�2n − 
ov (X)‖ = sup
|v|61〈v; (
ov (X)− �2n)v〉= sup
|v|61E[〈v;X〉2I{|X | > 
n}℄ (4.1)

6 E[ |X |2I{|X | > 
n}℄:Furthermore, using the fa
t that 
2m=m is eventually nonin
reasing, weget for large n,
E[ |X |2I{|X | > 
n}℄ 6 ∞∑k=n 
2k+1P{
k < |X | 6 
k+1}

6

2nn ∞∑k=n(k + 1)P{
k < |X | 6 
k+1};



STRONG INVARIANCE PRINCIPLE 21whi
h is of order o(
2n=n) sin
e the series ∑∞k=1 kP{
k < |X | 6 
k+1}
onverges by (2.1). �We next show that ‖�n − �‖ is of the same order. This is trivial indimension 1, but in higher dimensions one needs some extra arguments.Lemma 4.2. Let � be the positive semide�nite symmetri
 matrix satis-fying �2 = 
ov (X). Under the assumptions of Lemma 4:1, we have:
‖�n − �‖ = o(
2n=n) as n → ∞:Proof. We �rst look at the 
ase where 
ov (X) is not positive de�nite.Set d1 =rank(
ov(X)) and 
hoose an orthonormal basis {v1; : : : ; vd} of

R
d 
onsisting of eigenve
tors of 
ov (X), where the ve
tors vi; i > d1 
or-respond to the eigenvalue 0. Let S be the orthogonal matrix with 
olumnve
tors v1; : : : ; vd. Then we 
learly have,St
ov (X)S = ( C 00 0 )where C is a positive de�nite symmetri
 (d1; d1)-matrix. (C is a
tu-ally a diagonal matrix). Choosing the unique positive de�nite symmetri
(d1; d1)-matrix C su
h that C2 = C, we readily obtain (by uni
ity of thesquare root matrix) that � = S( C 00 0 )St:Note that E[〈X; vj〉2℄ = 0, j > d1, we see that we have also for the matri
es�2n, St�2nS = ( Cn 00 0 )where Cn are positive semide�nite symmetri
 (d1; d1)-matri
es (not ne
-essarily diagonal). This implies that�n = S( Cn 00 0 )St;



22 U. EINMAHLwhere Cn are the positive semide�nite symmetri
 matri
es satisfyingC2n = Cn. If 
ov (X) is positive de�nite, we set C = �, C = 
ov (X),Cn = �n, Cn = �2n, n > 1. Using Theorem X.1.1 in [2℄ we 
an 
on
ludefrom Lemma 4.1 that
‖Cn − C‖ = ‖�n − �‖ 6 ‖�2n − 
ov (X)‖1=2 → 0 as n → ∞:This implies that Cn is positive de�nite for large n. Moreover, we havethat the smallest eigenvalue �n of Cn 
onverges to that one of C whi
h isequal to the smallest positive eigenvalue of �. If we denote this eigenvalueby � we �nd that �n > �=2 > 0 for large n.Applying Theorem X.3.7. in [2℄ (with A = Cn; B = C and � = �2=4)we see that for large n,
‖�n − �‖ = ‖Cn − C‖ 6 �−1‖Cn − C‖ = �−1‖�2n − 
ov (X)‖;whi
h in 
onjun
tion with Lemma 4.1 implies the above assertion. �Now we 
an 
on
lude the proof of Corollary 2.2 by a simple appli
a-tion of the triangular inequality. Just observe that by Theorem 2.1, withprobability one
‖S(n) − � ·W(n)‖ 6 ‖S(n) − �n ·W(n)‖+ ‖(�n − �) ·W(n)‖

6 o(
n) + ‖�n − �‖‖W(n)‖Note that we 
an apply Theorem 2.1 sin
e we are assuming that 
n=√nis eventually nonin
reasing and we thus have for some m0 > 1, 
n=√n 6
m=√m;m0 6 m 6 n whi
h implies that 
ondition (2.3) holds.By the law of the iterated logarithm for Brownian motion we have withprobability one,
‖�n − �‖‖W(n)‖ = O(‖�n − �‖√n log logn)whi
h is in view of Lemma 4.2 of order o(
2n=√n= log logn).Sin
e W(n)=√n d= W , where W (t), 0 6 t 6 1 is the Brownian motionon the 
ompa
t interval [0; 1℄, we also have,

‖�n − �‖‖W(n)‖ = OP(‖�n − �‖√n) = oP(
2n=√n) = oP(
n):Corollary 2.2 has been proved.



STRONG INVARIANCE PRINCIPLE 23Proof of Corollary 2.4. We use the following d-dimensional version ofLemma 3 in [6℄. The proof is almost the same as in dimension 1 and it isomitted. Re
all thatH(
n) = sup{E[〈v;X〉2I{|X | 6 
n}℄ : |v| 6 1} = ‖�n‖2; n > 1:Lemma 4.3. Let X : 
 → R
d be a mean zero random ve
tor and as-sume that 
ondition (2:1) holds for a sequen
e 
n of positive real numberssu
h that 
n=√n is nonde
reasing. Whenever nk ր ∞ is a subsequen
esatisfying for large enough k,1 < a1 < nk+1=nk 6 a2 < ∞;we have: ∞∑k=1 exp(− �2
2nk2nk‖�nk‖2){ = ∞ if � < �0;< ∞ if � > �0: (4.2)4.2.1. The upper bound part. W.l.o.g. we 
an assume that �0 < ∞.We �rst show that under the assumptions of the 
orollary we have withprobability one, lim supn→∞
|Sn|=
n 6 �0: (4.3)To this end, it is suÆ
ient to show that we have for any Æ > 0 andnk = nk(Æ) = [(1 + Æ)k℄, k > 1 with probability one,lim supk→∞

max16n6nk |Sn|=
nk 6 �0: (4.4)Note that we trivially have,maxnk−16n6nk |Sn|=
n 6 (
nk=
nk−1) max16n6nk |Sn|=
nk :Moreover, it follows from 
ondition (2.3) and the de�nition of nk thatlim supk→∞

nk=
nk−1 6 lim supk→∞

nk=nk−1 = 1 + Æ:Combining these two observations with (4.4) we get for any Æ > 0 withprobability one, lim supn→∞
|Sn|=
n 6 �0(1 + Æ);



24 U. EINMAHLwhi
h 
learly implies (up0).In view of our strong invarian
e prin
iple, (4.4) follows if we 
an showthat with probability one,lim supk→∞
‖�nk ·W(nk)‖=
nk 6 �0: (4.5)In order to prove the last relation, we need a deviation inequality formax06t61 |W (t)|. The following simple (suboptimal) inequality will be suÆ-
ient for our purposes.Lemma 4.4. Let {W (t) : t > 0} be a standard d-dimensional Brownianmotion and let Æ be a positive 
onstant. Then there exists a 
onstantCÆ = CÆ(d) > 0 whi
h depends only on Æ and d su
h that

P

{max06t61 |W (t)| > u} 6 CÆ exp(−u2=(2 + 2Æ)); u > 0: (4.6)Proof. Sin
e W d= −W , we 
an infer from the L�evy inequality that foru > 0,
P

{max06t61 |W (t)| > u} 6 2P {|W (1)| > u} :The random variable |W (1)|2 has a 
hi-square distribution with d degreesof freedom and thus we have
P {|W (1)| > u} = 2−d=2�(d=2)−1 ∞∫u2 xd=2−1 exp(−x=2)dx

6 Kud−2 exp(−u2=2); u > 1;where K > 0 is a 
onstant depending on d only.Obviously we 
an �nd a positive 
onstant C ′Æ so that the last term isbounded above by
6 C ′Æ exp(−u2=(2 + 2Æ)):Setting CÆ = 2C ′Æ ∨ e1=(2+2Æ), we see that inequality (4.6) holds for anyu > 0 and the lemma has been proved. �



STRONG INVARIANCE PRINCIPLE 25We are ready to prove (4.5). Let Æ > 0 be �xed and set �Æ = (1 +Æ)(�0 + Æ). Re
all that (W(n)(t)=√n)06t61 d= (W (t))06t61. Then we 
aninfer from (4.2) that
∞∑k=1P{‖�nk ·W(nk)‖ > �Æ
nk} 6

∞∑k=1P{‖�nk‖‖W(nk)‖ > �Æ
nk}
6 CÆ ∞∑k=1 exp(− (1 + Æ)(�0 + Æ)2
2nk2nk‖�nk‖2 ) < ∞:This implies via the Borel{Cantelli lemma that with probability one,lim supk→∞

‖�nk ·W(nk)‖=
nk 6 (1 + Æ)(�0 + Æ):Sin
e this holds for any Æ > 0 we get (4.5) and 
onsequently (4.3).4.2.2. The lower bound part. We assume that �0 > 0. Otherwise,there is nothing to prove.Furthermore, we 
an assume that 
n=√n → ∞. If 
n = O(√n), thenwe have �0 = ∞ unless of 
ourse X = 0 with probability one. Ap-plying Corollary 2.4 with 
n = √n(log logn)1=4, it follows that evenlim supn→∞
|Sn|=(√n(log logn)1=4) = ∞ if X is nondegenerate. This triviallyimplies Corollary 2.4 for any sequen
e 
n of order O(√n).We need the following lemma. Sin
e the proof is almost identi
al withthat one in the 1-dimensional 
ase (see [7, Lemma 1℄) it is omitted. Aninspe
tion of this proof also reveals that one needs not assume that X hasa �nite mean and thus we haveLemma 4.5. Let X : 
 → R

d be a random ve
tor satisfying 
ondition(2:1) for a sequen
e 
n of positive real numbers su
h that 
n=√n is non-de
reasing and 
onverges to in�nity. Then we have,
E[ |X |2I{|X | 6 
n}℄ = o(
2n=n) as n → ∞: (4.7)Let Æ ∈℄0; 1[ be �xed and m > 1+ Æ−1 a natural number. Consider thesubsequen
e nk = mk, k > 1. We �rst show that if 0 < �(1 + Æ) < �0 wehave with probability one,lim supk→∞

|Snk+1 − Snk |=
nk+1 > �: (4.8)



26 U. EINMAHLRewriting Snk+1 − Snk as S(nk+1)(1) − S(nk+1)(1=m), we see that Theo-rem 2.1 implies that (4.8) holds if and only if one has with probabilityone, lim supk→∞
|�nk+1 · (W (nk+1)−W (nk))|=
nk+1 > �: (4.9)Consider the independent eventsAk := {|�nk+1 · (W (nk+1)−W (nk))| > �
nk+1}; k > 1:As ‖�nk+1‖ is the largest eigenvalue of �nk+1 , we 
an �nd an orthonormalve
tor vk+1 ∈ R

d so that �nk+1vk+1 = ‖�nk+1‖vk+1 and we 
an 
on
ludethat
P(Ak) > P{|〈vk+1;�nk+1 · (W (nk+1)−W (nk))〉| > �
nk+1}= P{‖�nk+1‖√nk+1 − nk|Z| > �
nk+1};where Z : 
 → R is standard normal.Employing the trivial inequality P{|Z| > t} > exp(−t2(1+Æ)=2), t > tÆ ,where tÆ is a positive 
onstant depending on Æ only, we see that for large k,

P(Ak) > exp(−
�2(1 + Æ)
2nk+12(nk+1 − nk)‖�nk+1‖2):We 
an apply the above inequality for large k sin
e by Lemma 4.5

‖�n‖2 6 E[ |X |2I{|X | 6 
n}℄ = o(
2n=n) as n → ∞and, 
onsequently,
nk+1=(√nk+1 − nk‖�nk+1‖) → ∞ as k → ∞:Sin
e we have 
hosen m > 1 + Æ−1, it follows thatnk+1 − nk = nk+1(1− 1=m) > nk+1(1 + Æ)−1:We 
an 
on
lude that for large enough k,
P(Ak) > exp(−

�2(1 + Æ)2
2nk+12nk+1‖�nk+1‖2 );



STRONG INVARIANCE PRINCIPLE 27and, 
onsequently, we have on a

ount of (4.2),
∞∑k=1 P(Ak) = ∞:Using the Borel{Cantelli lemma, we see that (4.9) holds whi
h in turnimplies (4.8).If �0 = ∞ , we use the trivial inequalitylim supk→∞

|Snk+1 − Snk |=
nk+1 6 2 lim supk→∞
|Snk |=
nk ;whi
h in 
onjun
tion with (4.8) (where we set Æ = 1=2 and m = 3) impliesthat we have for any � > 0 with probability one,lim supk→∞

|Snk |=
nk > �=2:It is now obvious that lim supn→∞
|Sn|=
n = �0 = ∞ with probability one.If �0 < ∞ we get from the upper bound part and the de�nition of nkwith probability one,lim supk→∞

|Snk |=
nk+1 6 �0 lim supk→∞

nk=
nk+1 6 2�0=√m:Combining this with (4.8) we see that we have if �(1 + Æ) < �0 for anym > 1 + Æ−1 with probability one,lim supn→∞

|Sn|=
n > �− 2�0=√m:Sin
e we 
an make Æ arbitrarily small, we see that lim supn→∞
|Sn|=
n > �0with probability one and Corollary 2.4 has been proved.4.3. Proof of Corollary 2.5. We only show how (b) implies (a) and wedo this if p > 1. For the impli
ation \(a) ⇒ (b)" we refer to [7℄. We needanother lemma.Lemma 2.5. Let X : 
 → R

d be a random ve
tor and setH̃(t) = E[ |X |2I{|X | 6 t}℄ ∨ 1; t > 0:



28 U. EINMAHLThen we have for any Æ > 0 : E[ |X |2=(H̃(|X |))1+Æ ℄ < ∞.Proof. Without loss of generality we 
an assume that E|X |2 = ∞ and
onsequently that H(t) → ∞ as t → ∞, where H(t) = E[ |X |2I{|X | 6 t}℄,t > 0. Obviously,H is right 
ontinuous and nonde
reasing. Therefore thereexists a unique Lebesgue{Stieltjes measure � on the Borel subsets of R+satisfying, �(℄a; b℄) = H(b)−H(a); 0 6 a < b < ∞:Let G be the generalized inverse fun
tion of H, i.e.,G(u) = inf{x > 0 : H(x) > u}; 0 < u <∞:As H is right 
ontinuous, the above in�mum is a
tually a minimum. Inparti
ular, we have H(G(u)) > u, u > 0. Moreover:G(u) 6 x ⇐⇒ u 6 H(x): (4.10)Let � the Lebesgue measure on the Borel subsets of R+. From (4.10) iteasily follows that � is equal to the image measure �G.Next set � = G(1) so that H̃(x) = 1, x < � and H(x) = H̃(x), x > �.It trivially follows that
E

[
|X |2=H̃(|X |)1+Æ] 6 E

[
|X |2I{|X | 6 �}]+ ∫℄�;∞[ H(x)−1−Æ�(dx):The �rst term is obviously �nite. As for the se
ond term we have

∫℄�;∞[ H(x)−1−Æ�(dx) = ∫℄�;∞[ H(x)−1−Æ�G(dx)= ∞∫H(�) H(G(u))−1−Ædu 6

∞∫1 u−1−Ædu < ∞and the lemma has been proved. �As we trivially have H(t) 6 dH(t), t > 0, we get from (b) that H̃(t) =O((LLt)p−1) as t → ∞ and we readily obtain that for some positive
onstant C,
E[ |X |2=(LL|X |)p℄ 6 CE[ |X |2=(H̃(|X |))p=(p−1)℄



STRONG INVARIANCE PRINCIPLE 29whi
h is �nite in view of Lemma 4.6.Consequently, we have,
∞∑n=1P{|X | >

√n(LLn)p} < ∞:We 
an apply Corollary 2.4 with 
n = √n(LLn)p and we see that withprobability one, lim supn→∞
|Sn|=√2n(LLn)p = �0=√2;where �0 = sup{� > 0 : ∞∑n=1 1n exp(− �2(LLn)p2H(√n(LLn)p)) = ∞

}:It remains to show that �0 = �√2.Consider � = �2√2, where �2 > �. If �1 ∈℄�; �2[, we 
learly have by(b) for large n, H(√n(LLn)p) 6 �21(LLn)p−1and it follows that1n exp(− �2(LLn)p2H(√n(LLn)p)) 6
1n(Ln)(�2=�1)2 ;whi
h leads to a 
onvergent series. Thus, we have �0 6 �√2.As for the opposite inequality, we 
an and do assume that � > 0.Consider � = �1√2, where 0 < �1 < �. Let further �2; �3 be positivenumbers su
h that �1 < �2 < �3 < �.Choose a sequen
e tk ↑ ∞ su
h thatH(tk) > �2(1− 1=k)(LLtk)p−1:Set mk = min{m : tk 6

√m(LLm)p}:It is easy to see that tk ∼
√mk(LLmk)p as k → ∞ and we thus have forlarge k, H(√mk(LLmk)p) > �23(LLmk)p−1;



30 U. EINMAHLHere we have used the fa
t that LLt ∼ LL(t2) as t → ∞, from whi
h we
an also infer that for large k,(LLn)p 6 (�2=�1)2(LLmk)p; mk 6 n 6 m2k =: nk:Re
alling that � = √2�1 we get for large k,nk∑n=mk 1n exp(− �2(LLn)p2H(√n(LLn)p)) >

nk∑n=mk 1n(Lmk)(�2=�3)2
> (Lmk)1−(�2=�3)2 :The last term 
onverges to in�nity and thus the series in the de�nition of�0 diverges, whi
h means that �0 > �1√2 for any �1 < �. Thus we have�0 > �√2 and the 
orollary has been proved.A
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