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ON ENTROPY ESTIMATION
BY M-SPACING METHOD

ABSTRACT. The m-spacing method is a very popular statistical tool in
entropy estimation and in goodness of fit testing. In this text, we focus
on the case, where the underlying probability density may have an un-
bounded support or may vanish and show that under mild conditions the
m-spacing entropy estimators have standard Gaussian limits.

1. INTRODUCTION

Suppose we are given a random vector X" = (Xi,...,X,)T whose
components are i.i.d. random variables with an unknown probability den-
sity p(z), = € RL. Our goal is to estimate the entropy

o0

H(p) = / loglp(x)]p(z) de (1)

— 00

with the help of X™. This statistical problem can be viewed as a particular
case of the general theory of nonlinear functional estimation developed in
[11, 12, 7-9]. However, the entropy is a very specific functional enabling
to construct its nontrivial estimators and the study of these estimators is
the main theme of the present paper.

Undoubtedly, principal difficulties in entropy estimation result from
two obvious facts:

e [ (p) is the nonlinear functional of p;
e log[p(x)] — —oo as p(z) — 0.

Indeed, if our target functional would be linear, for instance,

o

L(p) = / (w)p(e) de,
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then we could use the standard §-method providing the following estimate
1 n
L(X™) = L(p ith p(z,X") =— oz — Xy),
(X") = L(p), with p(z,X") n; (¢ — X;)
where §(z) is the standard Dirac é-function. Since
n 1 .
Lxm) = = 3 U(x),

statistical analysis of this estimate is simple because it is related to the
standard probabilistic facts like the law of large numbers and the central
limit theorem (for mathematical details concerning the 6 - method we refer
interested readers to [15]).

Although, the naive idea to plug-in p(xz,X") in H(p) obviously fails,
but it prompts a structure of reasonable entropy estimators

H(X") = =3 loglp(X,, X")],

i=1

where p(X;, X") is a probability density estimator. This idea reduces en-
tropy estimation to recovering probability density. Intuitively, it is clear
that the popular plug-in principle saying that good density estimators
result in good nonlinear functional estimators, does not work in this sit-
uation. This phenomenon admits a simple explanation because H (Xm)
is based on the averaging with respect to the empirical measure. So, it
finds out that the variance of the density estimator is not determinative
because of the averaging, but its bias is really important. Therefore to
construct good entropy estimators, we need density estimators with finite
variances but very small biases.
Such density estimators can be obtained by numerical differentiation
of the empirical distribution function
1 n
Fo(w) = — > 1{X; <=}

i=1
For instance, we can use the following density estimator

FalX1n] = Fa[ X)) _ 1
X+ — X n[X (1) — X5

p1(X(), X") =
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where X(l) < - K X(n) stands the nondecreasing permutation of
Xi,...,X,. This estimator admits a natural generalization
Fo[X(ivm ] — Ful X
Z/)\m(X(l)vxn) = n[ (it )] n[ ()] = o 5
X(irm) — X(3) n[X (irm) — X(5)]

which is called m-spacing density estimator. With this density estimator
we arrive at the so-called m-spacing entropy estimator

Hy(X") = = 3 log —— (0, 2)

m

The idea of this estimator goes back to [4]. We also refer interested readers
to the paper [5] which contains a reach bibliography on spacings. Notice
also that a slightly modified version of this estimator provides powerful
methods for testing True Random Numbers Generators [6].

In spite of the simplicity of H,,(X"), its statistical analysis is not banal.
In this paper, we use the famous Pyke theorem [13] to compute statistical
characteristics of this estimator.

Theorem 1. Let Uy, ... ,U, be independent random variables uniformly
distributed on [0,1] and ey,... ,ent1 be independent exponentially dis-
tributed random variables P{e; > x} = exp(—z). Then

Uy 2 Ze / > e (3)

Let us look at heuristically how does this theorem work. Denote by
F(z) the distribution function of X;. To compute the limit distribution
of H,,(X™), note that

F(X @) = Uy

and therefore we can write

Utitm) — Uiy = F(X(i4m)) — F(X(3))
F(X(itm)) — F(X())
PX i) X (i4m) — X(5)]

= (X)) [ X(i+m) — X(] X

Thus we have

Utitm) — Ugi) y P(X () [ X (im) — X3)]
p( X)) F(X(iym)) — F(X()

Xiym) — X)) =
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and substituting this in (2) and using Pyke’s theorem, we obtain

) ) . 1 n—m 1 i+m—1
Hp(X") == = > loglp(Xp)l + - > log{ﬁ 2 ek}
i=1 =t

k=1
1 nt! €
1) En 4
-( n)g[nkzk%ﬁ (@)
where
Xirmyl — F[X(3)]

€ = .

\/_Z X(z))[ (i+m) — X(5)]

Statistical properties of the first term at the right-hand side of (4)
can be easily analyzed by standard probabilistic methods. Indeed, by the
central limit theorem,

\/E[—% 3 togp(X9)] - H(pﬂ

~ f% > {1og[p(X0)] + H(p)} & N(0,0°(p),  (5)

where
o

o (p) = / log? (p(e) () dz — H2(p).

— 00

Next note that the second and the third terms in (4) do not depend on
p(+). It is easy to see, using the Taylor formula, that

1 1
El — | = —
oe| 5 3oer| =0(;)
k=1
and
1 n—m 1 i+m—1 1
E— 1 — | = — 1 —
s 2 ox 2 a] = % —togtm) +0( 7).

where U(m) is digamma function

U(m) = Elog[ } = /1 z)x™ exp(—z) dr = T
k=1 3
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Note also that, by the Taylor formula,

n+1

IWFZ}~IZ N(O,1).

To analyze the second term at the right-hand side of (4), we decompose
it as follows

EE [ £ o)

i=1 k=i
1> 1 n/m [+ (m+1)s—1
:—Z Z log{ Z ek] \Il(m)}
vm = Vn/m sO{ k=l+ms
By the central limit theorem,
n/m I+(m+1)s—1
,__zjbq > a - wn [ 20,5 m)
n/ k=Il+ms
where
[ D'(m) o
by 1 m = - v =V
[ 108 @ exp(—a) do = ) = w3 m) = W' (m)
0

and therefore the third term at (4) has also a Gaussian limit. The calcu-
lation of the variance of this Gaussian low is not very easy and we refer
the interested reader to [3], where it was proved that

i+m—1 m 1 n+1
Z {log[ Z ] \Il(m)} <1—> \/ﬁlog{— Z ek} D N(0,52),
\/_ k=1 n n k=1
(6)
where
Y2 = (2m? - 2m + 1)¥'(m) — 2m + 1.
Therefore combining (6) and (5), we can hope that /n[H,(X") —
H(p) — ¥(m) + log(m)] converges in distribution to AN'(0,02(p) + £?) as
n — oo. To prove this fact it remains to check that
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e the remainder term ¢, is small, i.e., lim Ee? = 0;

n—oo

e the first term in (4) is weakly correlated with the others.

All these facts can be easily proved if we suppose the density p(-) has a
compact support and strictly bounded from zero over its support (see [1,
2]), and the derivative p’(x) is bounded over the support. For instance, to
prove the first assertion, we obtain by the Taylor formula
/
FX(im)] = FIX@] L P(&) Xy — X,
P(X (i) [X(irm) — X(5)] 2p(X (i)

where §; belongs to [X(;), X(j4+m)]. Thus, we have using that log(1+2) < =,
z =0,

1n—m
< — S logll + C(X i — X,;
€n ﬁgog[ﬂL(u) @)l

C '« Cm
< 7 ; [(X(itm) — X(5))] < Nk (7)

Here and later, on C' denotes a generic constant. To bound ¢, from below,
notice by the Taylor formula

. Cm
~ V{1l = Cmaxi[X(ipm) — Xp)l}

Next, since p(z) is assumed to be strictly bounded from zero, we have

Utirm) — Uy = F[X(i4m)] — F[X ()]
= p(&)[X(itm) — X)) = ClX(i4m) — X)),

and therefore obviously

KXiirm) = X)) < ClUGm) — U] < Cmmax(Uga) = U]-
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Thus, using Pyke’s theorem, we get for some C' > 0

2C'm
LD

Combining this with (7), we see that with a high probability €, < Cm/+/n.

Obviously, these arguments fail when the density p(z) has an un-
bounded support or vanishes. However, in spite of the fact that unbounded
support densities are widely used in statistical practice, there are only a
few papers dealing with this case. We mention here for instance [10] and
[14], where the standard entropy estimator was modified to deal with
vanishing densities.

The main goal in this paper it to demonstrate that the standard entropy
estimator has the same Gaussian limit for vanishing probability densities
as well.

P{en < - } < P{max[U(iH) U] = %} < nexp[—n/(20)].

2. ROOT n CONSISTENCY OF THE m-SPACING ENTROPY ESTIMATOR

For a given sequence r(n) > 1 define the family of balls in R! by

B ) = {us IP@) - POl < "2,

Denote also

Py | " W) } ()

D}(xz)= sup { ‘
" yEBr () P*(y) p(y)
If the second derivative of p(x) does not exist, then we set D?(z) = oo.
Let

Q= {o: 0o > VBRG], )

n

where R(n) > r(n) is a given sequence.
The main statistical fact in this section is provided by the following
lemma.
Lemma 1. Let r(n) = 5log(n) and R(n) > 7r(n). Assume that
e the number of connected components of Q;. p is bounded uniformly
in n;

e for some e > 0,

E|X; - Xo|* <0, Ep* (X)) <C, (10)
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then

Ee2 < Clog(n)vn / p(z) dz

mé@in

C'log(n) D (z) C'log(n)
Y / (@) dx + T (11)

z€Q g

The root-n consistency the m - spacing entropy estimator follows now
immediately from Lemma 1.

Theorem 2. Suppose that the conditions of Lemma 1 hold true. Assume
also that

h?_i:p [log(n)\/ﬁmg/gl% p(x) dz + 1(7;%)(/2)26(41% ,;;Eg) dm} =0. (12)

Then N ‘
lim sup nE[H,(X") — H(p) — ¥(m) + log(m)]z <C.

n—oo

2.1. Auxiliary lemmas

Lemma 2. Assume that R(n) > 7r(n) and x € Q. Then for any
&,& € B ()

p(&1) ‘ 1
-1 —.
‘P(ﬁz) <1
Proof. Denote
d= sup p(fl)

é1,62687 (a) P(&2)
With the help of the Taylor expansion we get for some &5, & € B (x)

p&) | _ &) —p(&) _P(E)6 &) _ pE@IFE) -~ F(&)
p(&2) p(&2) p(&2) p(&2)p(&a)
_ 1 p(&) (F(1) — F(&)] p(&3)p(T)

 p@) p(&s) p(&2)p(&s)

Next we use that

(13)
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and therefore, in view of (9),
- - 7(n)
d—1<d .
R(n)
It is easy to check with a simple algebra that

A

and therefore d < 1+ 0.21, when 7(n < 1/7.
Similar arguments can be used to get the lower bound for

p(&1)
m .
€1.62€B7 (2) p(&2)

d=

By (13), we obviously obtain

thus proving the lemma. g
Our principal idea to control the remainder term is related to

Lemma 3. Assume that R(n) > Tr(n), then for any x € Q! and any

y € Bl(x)
Fly) - F(x) . ply) o) — » D7 (x)
m%p@@*@ bam)<ﬂﬂ) F@]ﬁ@) (14)
Proof. It is based on the well-known formula
Fly) = Fa) = [ ptwydu = PO Gy P e
where £ € [z,y]. Therefore we obviously obtain for some & € [z,y]
Fly) - F@]* _[,, o) —p&) 1O ]
[p(:r)(y — ) ] B [1 T ) 12p(a) Y )
ply) —p(z)  p"(§) p'2(&) 2
T ew Y e
[E8ea] ey
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The last term at the right-hand side can be controlled with the help of
ab < a?/2 + b?/2 as follows

P €)@
12p? ()

Therefore substituting this in (15) and using that F(y) — F(z) = p(&)(y —
x), for some & € [z,y], we get

‘ [Fw) - F(az)r o)
p(r)(y — ) p(z)
[F) — F)P [ [p"©lp() | #(6)
S—=Tr { (&) +2p2<53>} (16)
provided that ,
[F(z) - F)P—2 8 (17)

To finish the proof, notice that by the Taylor formula

Fo) - P pw)| |, p@) [F6) ~ F@)]’
1Og[p(:v)(y — ) } : & p(a)| : & () {p(:r)(y—w) ]
_ e p@) [[Fy) - F@)]°  py)
- lg{”p@) pr)(y—x)} p(a:)]}
p() [[F(y) - Fx)]*  ply)
<20 e 58 (18)
if
p() [F(y) - F(fﬂ)]2 _py)|_3
p(y) || plz)(y — ) plz)| = 4

In view of (17), the last display is equivalent to the following one
p(x) [F(z) F(y)]z{lp”(ﬁ)lp(w) P2 (&) } 3
W P\ e e 1

and therefore it remains to check conditions (17) and (19). To do that,
notice that by Lemma 2, for all &,&; € B?(z)

We <1 2
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Therefore we have (see (17))

16 n2 p2(z) © 16 R?(n) 21)
Thus (17) holds for all R(n) > v/2r(n).
To analyze (19) we use the same arguments. We have by (20)
p(z) [F(z) — Fy))? [ Ip"(lpx) , p*(&)
e )
5 r*n) [Ip"©lp@)p(e) | p*(&) P*(&)
<G| e e e AR
125 (n) D (z) _ 125 r%(n)
S 61 64 n2 p2(x) S 61 64 R2(n)
Noticing that this inequality holds true for R(n \/_ 2r(n), we finish the
proof. d

Lemma 4. Let ¢ > 0 be a given integer. Suppose (10) holds, then there
exists a constant C(e) such that

{B mas 1og"p(xl} " < CE)og(n +d) (22)

V< oeosm +a) (29

{E max logzq[X(j)fX(i)]

1<i<j<n

and

{Eizlmax logzq[F(X(Hm))fF(X(i))] < C(m)[log(n)+q]. (24)

yeer ,—M

Proof. Note that for any integer ¢ > 1, function L(z) = log®! (x4 e2171),
x > 0 is concave, since

2qlog™ % (v + €2171)

L//(x) — : 5
(a: + 62‘1_1)

[2q —-1- log(x + 62‘1*1)] <0.
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Therefore by the Jensen inequality we get

B o log[p(X(0)] < B log? [ S (X) 4 ()]

i=1,...,n =

N

5‘%‘1 log®? [Ei[pE(Xi) b (X)] + equ]

1 .
57 108™ [”Epf (X1) +nEp~*(X,) + } ,

thus proving (22).

The proof of (23) is quite similar and therefore it is omitted. Finally,
notice that (24) is a particular case of (23) when X; are i.i.d. uniformly
distributed on [0.1]. O

Proof of Lemma 1

To simplify technical details, we focus on the case m = 1. Decompose
€, as follows

€n = €1p + €2n,

where

Z F(X(it1y) — F(X@3)
(X)) (X(it1) — X))
F(X (11 — F(X(5)

1
€2n = —— E log .
vn i<n: Xy ¢Q7 » P(X (i) (Xirn) — X))

1
61n—%

7,<7’lX(1) EQ:vR

Let us first bound from above €3,,. We obviously have

1 F(X(iy1) — F(X») ‘
€an] < — log 1. X, ¢ QP
fe2n \/ﬁ; P(Xiy) (X(iv1) — X)) X # Qrn}
F(X(iy1) — F(X@3)

1
N 1\ X TRt
p(X(i))(X(i+1)X(i))‘\/ﬁZ {Xu ¢ Qrr}

i<n

< max|log

i<n
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Therefore by the Cauchy—Schwarz inequality and by Lemma 4 we obtain

4
E1/252n C'log(n) E/4 {% Z I{Xi ¢ QZR}}

i<n

~ Clog(n) BV | VAP (X, ¢ Qi)

S ¢ Q) - PUX F Q)]

z<n

< Clog(n)vnP{X1 ¢ Q}.5} + Clogm)P'/*{X, ¢ Q)

< Clog(n \/_P{X1¢Q R} Clog ) (25)

In the last line we used

P1/2{X1 ¢Qrgt = 1_/4”1/4P1/2{X1 ¢Qrr}
1

P{X1¢@ R}+ \/ﬁ

since ab < a?/2 + b%/2.
Our final step is to find an upper bound for Ee?, . Consider the following
set

Al = {Xn s max[F(X(i)) — F(X(i)] < 7“(n_”)}

and notice that with a very high probability X" belongs to A?. To see
this one may combine Pyke’s theorem together with Lemma 7. Indeed,
recalling that r(n) > 5log(n), we arrive at

P{X" ¢ A?} = P{m?X[U(i+1) —Upl = @}

n
n+1
r(n) c
— o> L s < — < —.
P{m;axe2 > 321 ek} < Cnexp[—r(n)] < - (26)

We begin with a rough upper bound for €;,,. By Lemma 4, we obtain

E1/4e‘11n < Cy/nlogn.
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Hence using (26) and the Cauchy—Schwarz inequality, we arrive at
C'log(n)
Voo

In order to control E'/2|e;,[21{X" € A"}, we apply Lemma 3. We have
I

EY/2¢2 1 {X" ¢ A:}} < E1/4e‘1*nP1/4{X” ¢ A:}} < (27)

C P(X(z'+1))
len| 14 X" € A7 < 14X" € AT b — E log ———~
1 { } { }\/’E i<n:X o €Qn p(X(Z))
») Clog(n) D (X))
ri{xear | =BTy Pix) FXan) ~ (X)) @

i<n:X(i)EQ;"R
In view of the definition of D?(z) and Lemma 2 it is clear that
e gn Dr(X@)
1{X € Ar} . Z;@n W[F(X(Hl)) —F(X@)]
vA)ENr R
Dn

@

@)

(29)
xEQ:,”,R

Next, since Q) ; may have only a finite number of connected components,
say N, we get

X
Z logp( (+1))

X eQL g p(X(i))

5>

k=1

N
‘ log

P(Xiyr)) ‘
(X5, (k)

N
ZD log p(Xi, ()| + 108 (X, )| < 2N max [log p(Xy)],
=1

where i;(k) and i2(k) are some indices from {1,...,n}. Therefore the
above display and Lemma 4 obviously yield
2

X
Z log p( ( +1))

E
X €EQY g PXw)

< C'log*(n).

Finally, combining this inequality with (27)7(29) we arrive at
C'log(n ) C'log(n D7 (x)
vn n?/2 p(z)

zeQy
thus finishing the proof (see also (25)). O

Eel, <
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3. CONTROLLING THE CORRELATION TERM

In the previous section, it was shown (see Lemma 1) that under some
conditions the m-spacing entropy estimator admits the following decom-
position

Vi [Hpn(X™) — H(p) — ¥(m) +log(m)] = —E" + S" + ¢,  (30)

where lim,, ... E€2 = 0 and

= >_llogp(X) ~ Elogp(x1)].

1 n—m
S"= N ; {IOg[F(X(ier)) —F(X (i) —Elog[F(X(i1m)) _F(X(i))]}'

The main goal in this section is to show that E™ and S™ are weakly
correlated.

Theorem 3. Assume that the conditions of Lemma 1 and (12) hold true.
Then
lim sup‘EE"S”| =0. (31)

n—oo

To simplify technical detail we assume that m = 1 and that Q! has
the only one connected component. Denote

PO = P{X1 e QQR}, PW =1 pO),

Notice that the sample X" can be generated as follows. Let x; € {0,1}
be i.i.d. such that

P{x; =k} =P® k=01

Denote
n

=Y 1{xi=k} k=01
=1
Then X™ can be represented as (Xl(o), e ,Xﬁg),Xl(l), e ,Xﬁll)), where
X}go) and X,gl) are i.i.d. random variables with the densities

p@)e € Qlnt p(@)Hz ¢ Q7 g}

(1) —
P(O) nd p (;L‘) - P(l) >

P (z) =




166 F. EL HAJE HUSSEIN, YU. GOLUBEV

respectively. Denote also for brevity

With the samples (Xl(o), . ,Xﬁg)) and (Xl(l), e- ,Xg)) we associate (k =
0,1) the following statistics

1 & . )
Bp = 2= 3 flogp™ (X[") ~ Blogy ™ (x})],
i=1

" 1 & k k
5t = 7 2 {1oBlP M Xy = PO
i=1

~EloglF®(x[}) )~ F (ng>)]}. (32)

The proof of Lemma 3 is essentially based the following fact.

Lemma 5. Under the conditions of Lemma 1 and (12),

limsup EEF Sy = 0.

n—oo

Proof. To simplify notations, we denote
X0 = Xy pO@) =pla), FO(a) = Fla).

It clear that
1 &
Ey = —=> [logp(X(;) — Elogp(X1)],
0 Jn v [ (1) ]

and to evaluate the correlation of E and S§ we can use Pyke’s theorem
(see Theorem 1) which permits to represent these random variables in
terms of er,...,ery41-

% To+1
X(i) :Fil(U(i)) =r! (Zek/ Zek>
k=1 k=1
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Let us first look at Si'. We have

log[F(X(i1)) — F(X(1))]
To+1

=log(eit1) — log {1 + | ; (e — 1)] + log(mo + 1).

Next expanding log(1 + -) (see for details Lemma 10), we can write

1 To+1 1 To+1 1
log|1 -1 = e — 1 —
o1+ = > (0| = =7 Yt +0( ),

k=1 k=1

and, therefore,

n 1 et n-1 N =
S¢ = 7 2 log(eir) ~Blog(en)]+ 2 D [e’“m()(ﬁ)
pa k=1

70

_ %Z:[log(ei)—l—ei—Elog(el)—1]+0(%) = §3}+0(%), (33)

18
SO = % ;[log(ez) +e;— Elog(el) - 1]

In view of (33) and the Cauchy—Schwarz inequality, it is clear that

- 1
EE!S! = EE!SY + O (E—) (34)

VTo

The representation of Ef in terms of e,...,er41 is quite similar.
Denote for brevity
G(u) = log plF ' (u)].

Notice that instead of EJ we can deal with

- 1 70 1 70
Ey e —=Y logp(X() = —= > :

because _ s
EE;Sy = EEFS]. (35)
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So, in view of (34), it remains to compute EE{{S’E’ We do that with the
help of Lemma 8. Denote

[ n
= {Z e; — 1{k < i}ek]/[z €; — ek]
s=1 s=1
and notice that e; and U(;)k are independent. Therefore we have

-~ 1 0
EE;S) = —F > EG[U;)][log(ex) + e — Elog(er) — 1]
i,k=1

—E Z EG[U*][log(er) + e, — Elog(er) — 1] (36)
i,k=1

+ %E Z E{G[U(,-)] - G[U(;)k]}[log(ek) + e, — Elog(er) — 1]

i,k=1
1. &
= EE Z E{G[U(i)] - G[U(;)k]}[log(ek) + e — Elog(er) — 1].
i,k=1

To control the right-hand side at the above display, we use the following
Tailor expansion

GlUw] - GlUG fl= G'(Ug ) [Ua) — Ui |+ fl+ G”(fz)[ -Uay 1%, (37)

e 1 p'(F~(u)) p(F~ (W)’
0= sy e (o) |

and & € [min(Ugy, U(Z) ), max(Ugy), Uy k)]. Substituting (37) in (36), we

obtain the following formula

(i)
EE}SE = RY + RY, (38)
with

1 O K K
T= EE Z EG/(U(Z.)L) [U(i) - U(i)k] [log(er) + ex — Elog(er) — 1],
i,k=1
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2
" llog(ex) + ex — Elog(er) — 1],

1. &
—FE Z EG" (&) Uy — U(;)’“

Ry =
2 2n
i,k=1
and our goal is to show that R} and RY are small.

We begin with R%. By Lemma 8,

K _ _ 1
U(z’)U(i)’»:U(i)kek/;esl{k < z}ek/;eﬁ_O(%)’
i ’ 39
1 (39)
)

U(l)U(Z)k:U(Z)ek/Zesl{k < z}ek/Zes+O<

This obviously yields that [U;) — U(;)k| < O(1/1p), and with the Cauchy—

Schwarz inequality we get

|R,g| <
n Ty T
i,k=1

- (40)

In the above inequality we used (see (9)) that |G"'(&)| < n/R(n).
Let us look at RY. Denoting for brevity p = E[log(ex)+er —Elog(er)—

1]ex, we obtain with the help of (39)
—1
es] U — 1k < i}]

P=2E > G (U T
s#k
(41)

T==
n
i,k=1

1.1 & ‘
+0(—E—. > E'2GP (U )
no T by ( (2))

ZEE f: EG (U)) [Z
s#£k

i k=1

Consider
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1 70 To+1 -1
— ! . . _— ),
SE D> EG(Us) [ es} Uty — 1{k < i}]

i,k:l s=1
1 70 1 To+1 -1 i
=—E EG/ Uz [— (& :| |:Uz - —:|
- ; Vi) DL I K
1 & i 1 7! i
o (S ]
n ; T0 T0 — s @) T0
1 70 1 To+1 -1 i 2
+-E) EG"(&) {% > es} [U(i) —~ ﬂ : (42)
=1 s=1

Since |G”(&)| < n/R(n), the last term can be controlled very easily

1 70 1 To+1 -1 i 2
= mieN| L v
e e e 7]

s=1
1 o T1 To+1 —2 i 4 C
<——EY E'Y/? [— es] El/z[Ui —} < ——. 43
ORI LA PP 0% SrR@ W

The same upper bound holds true for the first therm at the right-hand
side of (42). By Lemma 11, we have

1 70 1 To+1 -1 i
“E E|— Uiy — —
2 EDIRLE

“(3)
= 70 s=1

X

Therefore, combining the above inequalities, we obtain

%E; EG'(U) [i; es} h Uy — Uk <i}] = 0(%)- (44)

Recall that we need to control a little bit different term, namely

%E > EG(US) {Z es} : (U — 1k <d}].

ik=1 s£k
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However, noticing that

[Z ] o [fj } B

Uy = Ut < 0(l) and
s#k s=1

To

we can do that very easily. Indeed, applying several times the Taylor
formula, we obtain

2B > B Y [ -1tk

i,k=1

_1n N po
_nEZEG (U

i k=1

s#k

s#£k

[Z es] B UG - 1{k <i}]

+ O(l)%E% > EG"(&) [Z es] ) UG — 1k < i}]

_1n N o
_nEZEG (U

i,k=1

s#k

“s#k

Z 68] h [U&)k -1k <i}] + O(

)

_1g i EG' (U _Toil es} - [Uak -1k <i}] + O<L>
= L= : R(n)
_lg i EG' (U -Toil es} B Uy — 1k <i}] + O(L).
= L= R(n)
Therefore, by (44),
' i EG'(UG)) {Z es} - Uk —1{k <i}] < O<L>_
" R(n)

i,k=1

s#k

This inequality, together with (34)—(36), (40), and (41), finish the proof.

O

Lemma 6. Under the conditions of Lemma 1 and (12)

lim supE[Ef‘]2 =0, lim supE[Sf”]2 =0

n—0o0o

n—0o0o
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(see (32) for definitions of E and ST).

Proof. It remains to notice that in view of condition (12)

Er =nPWY =1n / p(z) dr < Cy/n.
m¢QZ,R

Therefore, by the independence of X ,51), we get

T1

s 1 2

i=1
ET1 2 C
<= 1 dr < CPW < —.
" [ o)) do v
*¢Qr
To compute E[Sﬂ 2, we use Pyke’s theorem. So, we have
) 1 T1—m 1 i+m—1 1 i+m—1
E[S!]" = EE{ Z log{a Z ek] —Elog{a Z ek}
=1 k=i k=1
1 1 N\ _CEn _C
(nm)log{;l ;ek] +E(Tlm)log{;1 ;ek}} < - < %
]

Proof of Theorem 3. It is clear that
E" = E}' + ET.
On the other hand, the decomposition of S™ is not so banal because of

the chaining. It means that ordering (Xl(o)7 - ,Xﬁoo),Xl(l), - ,Xﬁll)), we
get a vector with the following structure

(1) (1) 3 (0) 0) 5@ (1)
(X(1)v'-' ,X(t) ,X(l),... ,X(TO),X(t+1),... ’X(n))

with some integer ¢ € [0, 71]. This results in the following decomposition
S™ =S5+ Sp

1

+ = {loglP(X(1)) = FOX())] — BloglF(XE)) — FOX))
1 1 0 1 0

+ ﬁ{log[F(X((tll)) — F(X((Tg))] — ElOg[F(X((t-?q)) - F(X((rg))]}
1

— —={10g[F(X{}},)) = F(X)))] - Elog[F(X{}},)) = F(X))]}.
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By Pyke’s theorem and Lemma 7, three remainder terms at the right-hand
side of the above display are bounded by C'log(n)/+/n. This remark and
Lemmas 5 and 6 finish the proof. O

The following theorem summarizes the principal facts of this paper.

Theorem 4. Let r(n) = 5log(n) and R(n) > 7r(n). Assume that
e the number of connected components of Q; p is bounded uniformly
in n;

e for somee >0

E|X; — X[ <00, Ep™(X;) < o,

: 1 Di(z) ] _
llflnjolép log(n) [\/ﬁ / p(x) dz + wEYE / @) d ] =0. (46)
2¢Q2 5 €} 5
Then
lim /n[H,(X") = H(p) — ¥(m) + log(m)] = N(0, 5 + 0> (p)),
where
¥? = (2m? - 2m + 1)¥' (m) — 2m + 1,
70 = [ og* o(@))ple) do — Hp),
and

~

lim nE[H.(X") - H(p) — ¥(m) + log(m)]* = *(p) + =2.

n—oo

4. EXAMPLES

In this section, we show that the conditions of Theorem 4 can be
checked for standard densities. Our attention is focused on two distinct
densities such as Gaussian and Cauchy but our arguments can be easily
extended to very general density families. Notice however that the main
difficulties are related to checking the condition (46).
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1. The Gaussian density. We start with controlling Q' . Since

P2@)] | ")
> P@ | o

>x2+|x271|>1,

we obviously have

e B 53

r,R —
def {x: |z] <, /2log

R(n)m}' 47

On the other hand, it is easy to check that

P2 @)
2@ T p@)

<222 41,

and therefore for all sufficiently large n

Dn(z) < sup {{F—l [F(a:) + r(n—n)] }2 + 1}

©>0: 2€Qy
b -rmme
< QIOgL\/% - T(:)L +1, z€Qrp  (48)

In the above display we used two well-known inequalities:

. Flz)<1-— exp(—z%/2)

2rx

. F(z) > 1—exp(—2*/2), or equivalently F~!(z) < v/—2log(1 — z).

Thus if R(n) > 24/2log(n)r(n), then with (48) we arrive at

oo D i}

L2 o o " .
_{ 2 |<\/21 gR(n)\/Swlog@n)} (49)
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Finally, integrating by parts, we obtain by (49)

CR(n)+/log(n)

/ pz)de <

wf@in

and, by (47),

D), _ Cn
/ o) S Ry

xEQiR
Thus, in order to check condition (46), we choose R(n) > 7log(n) and
obtain the following equivalent form of this condition
R(n)+/log(n) N 1 _o
vn R(n)yn]
2. Cauchy density. In this case, it is easy to see that

@) | @) C
2@ ) S 1tra

B:(:c)g{y;y%_ r(n) }

np(x)

lim log(n)

n—0o0o

Therefore since

we get that if for some « € (0,1)

0 < aal,
np()
then o

These facts immediately imply that for some C; < Cy

Cin Con
: < cQr, C : < .
{x = R<n>}— “R—{x = R<n>}

Thus we easily obtain
D (z) [ Cn r
r dr <
/ p(z) R(n)

z€Q} g
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and

mﬁzQZ,R

Therefore the principal condition (46) is fulfilled if
R(n) vn } _0

Jim_log(n) [W I

It is easy to see than R(n) = n'/3 provides the optimal choice guaranteing
this property.

5. APPENDIX

In this section, we collect some simple technical facts. They are well-
known, and we provide them only for reader convenience. Let e; be i.i.d.
standard exponentially distributed random variables.

Lemma 7. Uniformly in z € [0,/n]

P{ max ey > log )2 Z ek } Cexp(—x). (50)

k=1,n
k=1

Proof. By the Markov inequality and the Taylor formula, we obtain

log( ) = log(n) + = =
T e W E RS

k=1

< nP{el (1 - log(zl) —i—:z:) > log(zl) +r Zn:ek}

k=2
log(n) + &
—nE e TET Nt
" exp( n —log(n) — kzﬂek

= nexp [—(n -1) log(l - %)}
= nexp [f(log(n) +2)(1+0(m Y2) + 0(1)} < exp[—z + O(1)].
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Lemma 8. For some C' < oo

2
E!/? {U k Uy — (;)kek/Zes + 1{k < i}eg Zes] < g
s#£k s#k n’®

where

zgei/zez and Ul = [Ze,—l{k z}ek]/[;ei—ek}

Proof. Define the following subset in R"”

n+1 n
An:{xi20: ;%25}

If e” € A", it follows immediately from the Taylor formula that

Ug _263/268—1{k<i}ek/2es

s#£k s#k
nt! e; +e
U()+UZ)eL/Zes—l{k z}ek/Zes—l—O( k k) (51)
s#£k
—|—U ek/Zesl{k z}ek/Zes+O<ektek>.
s#k s#k n

Next note that using the Chernov inequality with A = 1, we get

Ple" ¢ A"} = P{gei < g} - P{Zia —e) > g} (52)

gexp{fnm/\ax[log(l—i—/\)f/\/Q]} = exp{—n[log(2)—1/2]} < exp[—0.19n].

Combining this with (51) and using the Cauchy—Schwarz inequality, we

obtain
E {U( ) Uy — (;)kek/ Zes +1{k < i}ek/z es]

s#k s#k
= E{U(;)k —Up) — U(;)kek/Zes +1{k < i}ek/Zes] 1{e" € A"}
s#k s#k
—k k ) n C
+E[U(i)k _ U(i)’»ek/z:es +1{k < z}ek/Zes} 1{e" ¢ A"} < vt
s#k s#k

O
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Lemma 9. For some C' > 0, uniformly in z € [0,/n/2]

P{max\/ﬁ

Uiy — %‘ > x} < exp(—Cz?). (53)
Proof. Let F; = o(ey,... ,e;). Since for any given A € (0, 1),

X\(t) = exp [)\Z(ek — 1)+ t[llog(1 — A) + A]
k=1

is martingale such that EX(¢) = 1, by the Doob inequality we obtain
P{ max X)(¢) > xg} < exp(—z?).

1<t<n

Therefore choosing A = z/+/n, we obtain

P{lrél&xn Ln zt:(ek ) g [log(l - %) + %]} < exp(—z?).

Similarly

P{lrg%xn % ;(1 ) > % [log(l + %) - %] } < exp(—z?).

Next notice that

log(1—2)+ 2
F(z) = — 2 *€ (—00,1]
is decreasing and F'(0.5) = —0.7726. Therefore, for any z < /n/2
¢
1
— —ep)| >y < —2?/4).
P{fg?gxn\/ﬁ Z(l k) /a:} < 2exp(—z”/4)
k=1
Combining this inequality with
\/ﬁmax U(i) L
% n
—maxii(e —1)—L‘i(e -1 l—l—li(e -1)
= max| k =Y K - k
k=1 k=1 k=1
< = S e - b+ S e - o] /s s ),
I P et "=

we finish the proof. d
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Lemma 10.

E{nlog<% zn:e> =) (ei— 1)}2 <C.

Proof. Note that since log(

ofioe( 1350

i=1

+1z) < 7,

+ i=1
On the other hand,

E [ - log(% zn:e,-)r < E[- log(min e;)]}

i=1 +

4 ln 4
} <g(! (ei—1>) <
n

— B[~ log(ex/m)]}. < C'log' (n)

and therefore
E log4 <

S|

Z ei) < Clog*(n).
i=1

Let
A" = {xl >0:

i(mil)‘gg}.

i=1
It was already proved (see (52)) that for some C > 0
P{e" ¢ A"} <exp(—Chn).

Therefore using the Taylor formula and the Cauchy—Schwarz inequality,

we get

- n n 2
E _n log(% ; e¢> - Z;(ei - 1)]

- i=1 i=1
n

i=1 =1

n

< CE% <Z(e,- — 1))2 + 2n°E log? (% Zei) 1{e" ¢ A"}

i=1 i=1

+E{i(ei - 1)]21{e" ¢ A" <O O

i=1

+E :nlog(% ie) ~S (e - 1)]21{e" ¢ A"}

=E nlog<1 + %Z(ei - 1)) = (ei - 1)}21{e" € A"}
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Lemma 11.

AR T i 1
et o st -o3)

Proof. We use the same argument as in the proof of Lemma 10. First of
all notice that

7 . n+1 7 . n+1
7 i
Zeki n+1 Zek :Z(ekil)i n—l—lz(ek*l) :O(\/ﬁ)'
k=1 k=1 k=1 k=1
Next, by the Taylor formula,
1 n+1 —2 9 n+1 3 n+1 2 1
[—n—i-l Z ek} =1- oo Z(ek _1)+4(n+1)2 [Z(ek — 1)] +0 (_n3/2 ) .
k=1 k=1 k=1
Therefore

=1 k
n+1 n+1 2
2 3
:E{ (er — 1)+ : {Z(ekn} }
n+1 & (n+1) —
7 ’L n+1 1
Ze- e o)
k=1 k=1
Finally, it is easy to see with a simple algebra that
n+1 7 n+1 2 4
BY (er - 1) e =i, E[Z(ek - 1>] S ep = i+ 3i.
k=1 k=1 k=1 k=1

So, substituting this in (54), we finish the proof. O
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