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A SEMIPARAMETRIC MODEL FOR INTERVAL
CENSORED AND TRUNCATED DATA

ABSTRACT. In this work we consider a complex observational scheme,
that is, survival data that are both interval censored and truncated. We
assume a semiparametric Cox model for the survival function and con-
sider censoring and truncation distributions as in Huber, Solev and Vonta
(2006, 2007). We establish the form of the least favorable model (Slud
and Vonta (2005)) for the cumulative hazard function, which plays the
role of the infinite-dimensional nuisance parameter, for fixed values of the
finite-dimensional parameter of interest. The least favorable model cannot
be defined in closed form.

1. INTRODUCTION

We consider survival data that are both interval censored and trun-
cated. Complex observational schemes occur due to the fact that observa-
tion of a process is not continuous in time and is done through a window
of time which could exclude totally some individuals from the sample. For
example, the time of onset of a disease in a patient, like HIV infection or
toxicity of a treatment, is not exactly known, but it is usually known to
have taken place between two dates t; and ts; this occurs in particular
when the event of interest results in an irreversible change of state of the
individual: at time ¢, the individual is in state one, while at time %o, it
is in state two. Moreover, some people can escape the sample if they are
observed during a period of time not including some pair of dates t,t-
having the above property.

Turnbull (1976) proposed a nice method for nonparametric maximum
likelihood estimation of the distribution function in the case of arbitrarily
censored and truncated data. His method, slightly corrected by Frydman
(1994), has been used extensively since by several authors, and extended
to the Cox model by Alioum and Commenges (1996) and to the frailty
or transformation models by Huber-Carol and Vonta, (2004). In Huber,
Solev and Vonta (2006) and (2007) we give conditions on the involved dis-
tributions, namely, the censoring, truncation and survival distributions,
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implying the consistency of a nonparametric maximum likelihood esti-
mator of the density of the survival process in the totally nonparametric
case. We also provide the rate of convergence of the NPMLE of the density
within a certain class of functions.

In sections two and three, we give a representation of the censoring
and truncation mechanisms. As it is due to a non continuous observa-
tion of the survival process, the censoring mechanism is represented as
a denumerable partition of the total interval of observation time (a,b].
Then a truncation is added to the censoring, conditioning the observa-
tions both of the survival and the censoring processes. We also consider a
Cox semiparametric model for the survival function.

In section four we further assume, without loss of generality, the partic-
ular case of right truncation. In order to prove that the finite-dimensional
parameter of interest can be estimated efficiently in the presence of the
infinite-dimensional nuisance parameter, we will follow the methodology
introduced in Slud and Vonta (2005) concerning modified profile likelihood
estimators. In this section we establish the form of the least favorable
model for the nuisance parameter for fixed values of the parameter of
interest. The least favorable model is not given in closed form.

Assumptions and regularity conditions under which the assumptions
posed in Slud and Vonta (2005) are fulfilled, and therefore the semipara-
metric efficiency for the parameter of interest is derived, are currently
being developed.

2. THE OBSERVATION SCHEME

Time X to an event that changes permanently the state of subject i
under study (state 0 before X, 1 afterwards) is a random variable whose
distribution is to be estimated under the following observation scheme:
1. Censorship: observation of each subject ¢ does not take place continu-

ously but is scheduled at a (random) number K (i) of (random) times

a<Yi71<---<Y¢7K(,-)<b

where usually a will be equal to 0 and b is a finite strictly positive num-
ber. Let 7; := {Y;;, j = 1,--- , K (i)} the set of scheduled observation
times for subject i and ¢; := {y; ;, j =1,--- , K (i)} arealization of ;.

2. Truncation: only those elements of ¢; that are inside a given (random)
truncating window (Z; 1 Z; 2] give rise to an actual observation of sub-
ject 4.
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Thus, if subject 7 is observed in state 0 at time y; ; and in state 1 at
time y; i1, inside its window A := (2,1, 2;,2], one observes subject ¢ at
all times of ¢; included in A. A sufficient statistic for this problem is thus
the two embedded intervals “bracketing” the unobserved X =z :

Zi1 S Wik SYi < T <Y1 S Yike < Zi2

where y; , is the smallest time in ¢; which is greater than or equal to z;1
and y; i, is the largest time in ¢; that is less than or equal to z; 2.

2.1. Censorship: simple random covering. Let 7 be a random par-
tition defined on ]a; b], where usually a will be equal to 0 and b is a finite
strictly positive number:

K
T=qYo=a<Y1<...<Yg <Ygq =0 (J;,Y]l=(ab]p (1)
j=0

where K is a fixed number or a random number with known law in
{2,..., Ko} for some given Ky such that 2 < Ky < co.
For each x € (a;b) we define

j@) =inf {j: @ < Yp}. 2)

19(1') = (ij(x)ayvj(x)-i-l] = (L(x)aR(x)] T e (a’ab)u (3)

where L(z) and R(xz) may be thought of as the left and right values in
partition 7 that “bracket” (the survival) X = z.
Then it is clear that

P(z) = 9(y), or ¥(z) Nd(y) =0 (4)

and we call J(z) a simple random covering of (a,b).

2.2. Truncation. Let ¢¥(z) = (L(z), R(z)], « € R, be the simple random
covering defined by the partition 7 =t := {y;, j =1,2,... ,k}. Then, a
fixed interval A = (z1, 22], and z the associated vector (z1,22), z1 < 22,
is a truncating interval. This means that the only available observations
of the subject ¢ under investigation take place at times that are those
elements of ¢ that are included in (R(z1); L(22)], which behaves like the
effective “truncating window”.
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Our basic assumption is the following: First we assume that the random
covering ¥(+), the random variable X and the random interval A are inde-
pendent. Second, we assume that the distribution of any (Y41, --,Y},)
is absolutely continuous with respect to the Lebesgue measure on R"™™,
and that the distribution of (Z1, Z») is absolutely continuous with respect
to the Lebesgue measure on R2.

In that case a summary of the observations on the subject under in-
vestigation is the pair of embedded intervals:

R(z1) < L(z) < R(z) < L(29)

where the cencoring interval (L(X), R(X)] of the covering ¥(-), contains
X, and the random interval A* = (R(z1), L(z2)] actually truncates X.
When (L(X), R(X)] ¢ A we do not have any observation. Without loss
of generality, from now on, we assume that a = 0.

In the special case of right truncation

A =(0,2]

and a summary of the observations on the subject under investigation is
the triple of random variables (L(z), R(x), L(z)) such that:

0 < L(z) < R(z) < L(z).
3. THE MODEL

Let X be a random variable with density f and survival function de-
fined by

SHE=¢ =P(X >t{E=¢) =e < MO (5)
where 8 € RP is the parameter of interest, = a p-dimensional vector of
covariates and A the cumulative hazard function which plays the role of
the infinite-dimensional nuisance parameter.

Let us define

1) Conditionally on a fixed value t of 7 the random interval A is taken
from the truncating distribution

P {A}=P {A € Althe interval (Z;, Z5] contains at least two points of ¢} .

In other words, conditionally on fixed values of 7 = ¢ the random vector
7 = (Z1,7Z>) is taken from the truncating distribution

P, {B} =P{Z € B|R(Z1) < L(Z2)};
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2) Conditionally on a fixed value of 7 = t and A = A = (z, 23], the
random variable X is taken from the truncated distribution

PA{CY=P{X cC|X € (R(z),L(2)]}.

In other words conditionally on fixed values of 7 =t and Z; = 21,25 = 22
the random variable X is taken from the truncated distribution

P{C|t,z1,22} =P{X € C| X € (R(z1|t), L(22|t)]}. (6)

We consider now the simple case of right truncation by Z, where for a
random variable Z the random interval A = (0, Z]. We shall denote for
short when there is no ambiguity about the partition 7 = ¢ simply:

L(Z):=L(Z|r =t).

Then, conditionally on fixed values of 7 =t and Z = z the random
variable X is taken from the truncated distribution

P{Clt,z} = P{X € C| X < L(2)}.

4. ESTIMATION OF THE PARAMETER OF INTEREST

Without loss of generality we consider the right-truncation case. The
problem that we are faced with could be formulated as follows. Let
W, Wy,..., W, be iid. random vectors, W = (L(X),R(X),L(Z),=),
with density p(u, v, w, &) with respect to a measure o (Huber, Solev and
Vonta (2007)) given as

v

[ f(t¢)dt
p(u,v,w,f) = T(U7U7w) : 1;7 ) ¢(€)
[ f(t¢)dt

0

which is equal from the semiparametric model (5) to

J e*eﬁ/EA(t)eB/E/\(t) dt
U

T(U,, v, w) :

; : ¢(€) = T'(U, v, U)) 90(57 /\7 u, v, U)) : ¢(€)
(7)

o7 e e AW EN (1) d
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where 0 <u <v<w<b, £€S, ¢(€) is the known law of the covariate
=, X the hazard intensity function and r(u,v,w) the known joint law of
censoring and truncation. The law r has two components, one denoted by
r3 which is absolutely continuous with respect to the Lebesgue measure
on R? (corresponding to the case where u < v < w) and a second one,
denoted by r, which is absolutely continuous with respect to the Lebesgue
measure on R? (corresponding to the case where u < v = w). For details
and an example of such a law r see Huber, Solev and Vonta (2007).

We are interested in the efficient estimation of the parameter of interest
B in the presence of the unknown cumulative hazard function A or equiv-
alently in the presence of the hazard intensity function A where obviously
A(t) > 0. We assume for A(¢) that it is finite for finite times ¢ and that
A(00) = oo. We will establish in this paper the form of the least favorable
model Ag for fixed values of § following the methodology introduced in
Slud and Vonta (2005).

In the notation of Slud and Vonta (2005), let the measure v denote
the Lebesgue measure on R. The data-space D = R x R x R x R?
consists of vectors z = (u,v,w, )’ . We denote the true parameters by
(Bo, Ao). We define the probability law for the true model by

du(r) = po(x)dpuo(z)

where po(x) denotes the density p taken at the true point (So, Ao).
The densities fw (z,5,A) (Slud and Vonta (2005)) are of the form

[ e—e® A0 o' /
{6 € )\(t) dt fou; efeﬁDEAO(t)eB[I)E)\O(t) dt

w B’ ! . :
[ e A DI EN (1) di }efeﬂoEAo(t)eﬁéﬁ/\o(t) dt

u

(8)

4.1. Least favorable model. Following the methodology of Slud and
Vonta (2005) we will find, for fixed 8, the least favorable parametric sub-
model (Ag, 3) of the proposed semiparametric model.

The Kullback-Leibler functional is given by

10, A
’C(Ba )‘) = _/log (pf((;j;’i’i’é,g;’ A)O)) pO(”a v, w, 55 /607 )‘0) dIU/O(ua v, w, 5)

Due to the form of the law r(u,v,w) the Kullback-Leibler functional is
written equivalently as

pg(u,v,w,f;ﬁ,)\)
= — 1 .
/ 0g (pO,S(u; v, W, é-’ BO, AO) pO,S(Ua v, w, 55 /607 )‘0) dNO,S(Uy v, w, 5)
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p2(u7v7£;67)‘) .
*/ log (pog(%%f;ﬁo,%)) Po,2(u, v, & Bo, Ao) do,2 (u, v, )

which because of model (5) is equal to

w

- / {1og / e MO EN Yt | — log / =" MO BEN (1) dt }
0

u

p(),?)(u’ v, w, 55 /607 )\O)dNO,S(Uy v, w, 5)

v v

- / {1og / e MDA\ dt | — log / e A BE\ (1) dt }
u 0
Po,2(u, v, &; Bo, Xo)dpo,2(u,v,€) + C 9)

where C denotes a term that does not depend on (5, A).

Keeping j fixed we will differentiate now with respect to the parameter
A in the sense of Géateaux differentiation. We consider perturbations of
functions A € V by small multiples of functions v in subsets of G C Gy
for appropriately defined spaces V, G, and Gg.

Here and in what follows, we define the differentiation operator D)
for all functionals @ : V — R, and all v € Gy, by:

d
Dy ®(\ = —®(A+40 1
(DA = Z @A+87)| (10)
where 6 belongs in a small neighborhood of 0. Let therefore Ap(t) = A(t) +
0y(t) and subsequently Ag(t) = A(t) + Gfg v(s)ds = A(t) + 6T'(¢t). The
Gateaux differentiation of IC(8, A) in the direction v is given as

e [ {000
ag P Ae lo—o0 = —/ [ e M BB EN(t)dt

Ji e EAD BE (X (1)eP ST (E) + v (8))dt
wa e—¢? ML) eBEN(t)dt

}p0,3duo,3

/ { S e MO (A () ST () + 4 (1))dt
[V e M B eBEN(t)dt
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Sy e MO (N (1) ST (1) + (1)) dt

, odiig . 11
TP AW e EN(H)dt }po,z Ho,2 (11)
By an integration by parts, the integral

v

v

- / —e®EAW B\ (1)eB €D (1) dt = T(t)e—¢” MO 56

u

u
v

f/e*eﬁ/eA(t)eB/E'y(t)dt

u

’ |V
and therefore the first numerator of (11) simplifies to I‘(t)e’eﬁ A1) B’

By a similar integration by parts we simplify the other three numerators
of (11) to get that

@K (8, Mo)loo = {F@)ee“weﬁ’ﬁ — D)o A0S
7 y Ag)|o=0 = f;f e—eﬂ’fl\(t)eﬁ/é)\(t)dt

T(w)e—” “Aw) B _ (0)e—e” A0) B
W _ple / }P0,3duo,3
Jo et DB EN(t)dL

/ {p(v)e—eﬂ’%weﬁ's CD(u)ee” Mweh'e
[V e M B eBEN(t)dt

I‘(v)e‘eﬂ,ﬁ/\(”)eﬁl5 - I‘(O)e_eﬁ/f/\(o)eﬁ/5 } d
e AN BEN (1) di Po,2¢H0,2-

Finally, we have
@IC(B, Ao)lo=0

/ { (C(w)S(u) —T(v)S(v)e's

D(w)S(w)ef'é
S(u) — S(v) 1— S(w) }PO,Bduo,s
(T(u)S(u) — T(v)S(v))ef s T(v)S(v)efs
+/ { S(u) = 5(v) ) }pwdﬂov?'

The survival function S(.) = S(.|¢) but the dependence on £ is omitted
for convenience of notation.
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Then we set the above derivative equal to 0 to obtain the equation

(T(u)S(u) — T(v)S))e?'s  T(w)S(w)ed '
/{ S(u — S(U) 1_ S(w) }p073dl1’0,3
(T'(u)S(u) — T(v)S(v))e’'s  T(v)S(v)ef ' -
! /{ S(u) = S(v) Tz S(v) }p‘)’?dl‘ov? = 0(12)

which should hold Vv € Gy. Equation (12) defines implicitly the minimizer
Ag through which Ag is subsequently defined.

Now, as in Kosorok et al. (2004) we will define a recursive equation
for Ag(t) from equation (12) by considering directions v(s) = I;¢[o,qA(5)
where t € [0,b]. Depending on the position of ¢ in relation to u,v,w for
r = r3 and in relation to u,v = w for r = ry respectively, we have different
cases to consider. Equation (12) becomes

/ A(t) (1 + ISA) %o 3dpio 3

0<t<uSv<w<b — S(w)
+0§u<t§v<wgb <A(U)§((z)) _;\((35(”) * /1\(_’5)2((5))) ¢ po,3dpuo,3
S = s e
Y (et e e,
+ / A(?) (1 + %) € po adiio 5

0<t<u<v<h

. / (A(u)S(u) ~A®MSE) | A(t)S(v)) epo adjio.s

0<u<t<v<b S(u) = S(v) 1—S(v)
A(u)S(u) — A(v)S(v) = A(v)S(v) e -
+0<u<!<t<b S(u) = S(v) + 1-S(v) ) Po,2dpo,2 ?13)

Collecting the terms that involve A(t) = Ag(t) which can be pulled out
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of the integrals and solving for Ag(t) we obtain the recursive equation

Aﬁ(t){ / (1 + M) eﬁlgpo,sd/io,z

1—S(w)
0<t<u<v<w<b
Sw) '\ e
+ / (1 + - S(v)) e” *po2dpio,2
0<t<u<v<b
[ (swsm st ¢ mas
o<u<t<v<w<b
N S(v) N S(U) 6/5
<S(u) TS 18 )¢ Pozdee:
0<u<t<v<b
S 8¢
+ (;U()w ) € po sd,uo 3
0<u<v<t<w<b
S(u
= [ (st e

O<u<t<v<w<b

S
] ()

0<u<t<v<bh

S v ’
- / < ) 66 Epo,sduo,a’

0<u<v<t<w<b

_ Ag(u)S(u) — Ag(v)S(v) | Ag(w)S(w) 5
/ < S(u) — S(v) Tt S(w) ) Po,3dfio,3

0<u<v<w<t<b

_ Ag(u)S(u) — Ag(v)S(v)  Ag(v)S(v) e |
/ < S(u) — S(v) * 1-S(v) ) p072dﬂo,z-(14)
0<u<v<t<b

Equation (14) can be rewritten as

(15)
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where
o (AS(R())S(R(X))eE
1t = En ( =z —sacy 110 >
A(L(X))S(L(X))e”
= B S(L(X)) — S(R(X)) LX) >
A(L(2)S(L(Z))e”
— B, | -2 L ST L(Z) >t
and
L(t,b,8) = E,, (eﬁ’E L(X) > t)
65/5
[ MEEISUDY
A (R(X)S(R(X))e?=
Bl Tsx) - s(rexy) (MR <= RO

The least favorable direction + is defined (Slud and Vonta (2005)) implic-

itly through equation (15) as ngAst(t)m:go = VAs(t)|5=3,-
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