
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 363, 2009 Ç.C. Huber, F. VontaA SEMIPARAMETRIC MODEL FOR INTERVALCENSORED AND TRUNCATED DATAAbstrat. In this work we onsider a omplex observational sheme,that is, survival data that are both interval ensored and trunated. Weassume a semiparametri Cox model for the survival funtion and on-sider ensoring and trunation distributions as in Huber, Solev and Vonta(2006, 2007). We establish the form of the least favorable model (Sludand Vonta (2005)) for the umulative hazard funtion, whih plays therole of the in�nite-dimensional nuisane parameter, for �xed values of the�nite-dimensional parameter of interest. The least favorable model annotbe de�ned in losed form.1. IntrodutionWe onsider survival data that are both interval ensored and trun-ated. Complex observational shemes our due to the fat that observa-tion of a proess is not ontinuous in time and is done through a windowof time whih ould exlude totally some individuals from the sample. Forexample, the time of onset of a disease in a patient, like HIV infetion ortoxiity of a treatment, is not exatly known, but it is usually known tohave taken plae between two dates t1 and t2; this ours in partiularwhen the event of interest results in an irreversible hange of state of theindividual: at time t1, the individual is in state one, while at time t2, itis in state two. Moreover, some people an esape the sample if they areobserved during a period of time not inluding some pair of dates t1; t2having the above property.Turnbull (1976) proposed a nie method for nonparametri maximumlikelihood estimation of the distribution funtion in the ase of arbitrarilyensored and trunated data. His method, slightly orreted by Frydman(1994), has been used extensively sine by several authors, and extendedto the Cox model by Alioum and Commenges (1996) and to the frailtyor transformation models by Huber-Carol and Vonta, (2004). In Huber,Solev and Vonta (2006) and (2007) we give onditions on the involved dis-tributions, namely, the ensoring, trunation and survival distributions,139



140 C. HUBER, F. VONTAimplying the onsisteny of a nonparametri maximum likelihood esti-mator of the density of the survival proess in the totally nonparametriase. We also provide the rate of onvergene of the NPMLE of the densitywithin a ertain lass of funtions.In setions two and three, we give a representation of the ensoringand trunation mehanisms. As it is due to a non ontinuous observa-tion of the survival proess, the ensoring mehanism is represented asa denumerable partition of the total interval of observation time (a; b℄.Then a trunation is added to the ensoring, onditioning the observa-tions both of the survival and the ensoring proesses. We also onsider aCox semiparametri model for the survival funtion.In setion four we further assume, without loss of generality, the parti-ular ase of right trunation. In order to prove that the �nite-dimensionalparameter of interest an be estimated eÆiently in the presene of thein�nite-dimensional nuisane parameter, we will follow the methodologyintrodued in Slud and Vonta (2005) onerning modi�ed pro�le likelihoodestimators. In this setion we establish the form of the least favorablemodel for the nuisane parameter for �xed values of the parameter ofinterest. The least favorable model is not given in losed form.Assumptions and regularity onditions under whih the assumptionsposed in Slud and Vonta (2005) are ful�lled, and therefore the semipara-metri eÆieny for the parameter of interest is derived, are urrentlybeing developed. 2. The observation shemeTime X to an event that hanges permanently the state of subjet iunder study (state 0 before X , 1 afterwards) is a random variable whosedistribution is to be estimated under the following observation sheme:1. Censorship: observation of eah subjet i does not take plae ontinu-ously but is sheduled at a (random) number K(i) of (random) timesa < Yi;1 < · · · < Yi;K(i) < bwhere usually a will be equal to 0 and b is a �nite stritly positive num-ber. Let �i := {Yi;j ; j = 1; · · · ;K(i)} the set of sheduled observationtimes for subjet i and ti := {yi;j ; j = 1; · · · ;K(i)} a realization of �i.2. Trunation: only those elements of ti that are inside a given (random)trunating window (Zi;1 Zi;2℄ give rise to an atual observation of sub-jet i.



A SEMIPARAMETRIC MODEL 141Thus, if subjet i is observed in state 0 at time yi;j and in state 1 attime yi;j+1, inside its window △ := (zi;1; zi;2℄, one observes subjet i atall times of ti inluded in △. A suÆient statisti for this problem is thusthe two embedded intervals \braketing" the unobserved X = x :zi;1 ≤ yi;k1 ≤ yi;j < x ≤ yi;j+1 ≤ yi;k2 ≤ zi;2where yi;k1 is the smallest time in ti whih is greater than or equal to zi;1and yi;k2 is the largest time in ti that is less than or equal to zi;2.2.1. Censorship: simple random overing. Let � be a random par-tition de�ned on ℄a; b℄, where usually a will be equal to 0 and b is a �nitestritly positive number:� =


Y0 = a < Y1 < : : : < YK < YK+1 = b; K
⋃j=0 (Yj ; Yj+1℄ = (a; b℄



(1)where K is a �xed number or a random number with known law in
{2; : : : ;K0} for some given K0 suh that 2 < K0 <∞.For eah x ∈ (a; b) we de�nej(x) = inf {j : x ≤ Yj+1} : (2)#(x) = (Yj(x); Yj(x)+1] := (L(x); R(x)℄ x ∈ (a; b); (3)where L(x) and R(x) may be thought of as the left and right values inpartition � that \braket" (the survival) X = x.Then it is lear that#(x) = #(y); or #(x) ∩ #(y) = ∅ (4)and we all #(x) a simple random overing of (a; b).2.2. Trunation. Let #(x) = (L(x); R(x)℄; x ∈ R; be the simple randomovering de�ned by the partition � = t := {yj ; j = 1; 2; : : : ; k}. Then, a�xed interval △ = (z1; z2℄, and z the assoiated vetor (z1; z2), z1 ≤ z2,is a trunating interval. This means that the only available observationsof the subjet i under investigation take plae at times that are thoseelements of t that are inluded in (R(z1); L(z2)℄, whih behaves like thee�etive \trunating window".



142 C. HUBER, F. VONTAOur basi assumption is the following: First we assume that the randomovering #(·), the random variable X and the random interval � are inde-pendent. Seond, we assume that the distribution of any (Ym+1; · · · ; Yn)is absolutely ontinuous with respet to the Lebesgue measure on R
n−m,and that the distribution of (Z1; Z2) is absolutely ontinuous with respetto the Lebesgue measure on R

2.In that ase a summary of the observations on the subjet under in-vestigation is the pair of embedded intervals:R(z1) ≤ L(x) < R(x) ≤ L(z2)where the enoring interval (L(X); R(X)℄ of the overing #(·), ontainsX , and the random interval �∗ = (R(z1); L(z2)℄ atually trunates X .When (L(X); R(X)℄ 6⊂ � we do not have any observation. Without lossof generality, from now on, we assume that a = 0.In the speial ase of right trunation
△ = (0; z℄and a summary of the observations on the subjet under investigation isthe triple of random variables (L(x); R(x); L(z)) suh that:0 ≤ L(x) < R(x) ≤ L(z):3. The modelLet X be a random variable with density f and survival funtion de-�ned by S(t|� = �) = P (X > t|� = �) = e−e�′��(t) (5)where � ∈ Rp is the parameter of interest, � a p-dimensional vetor ofovariates and � the umulative hazard funtion whih plays the role ofthe in�nite-dimensional nuisane parameter.Let us de�ne1) Conditionally on a �xed value t of � the random interval � is takenfrom the trunating distribution

Pt {A}=P {�∈A |the interval (Z1; Z2℄ ontains at least two points of t} :In other words, onditionally on �xed values of � = t the random vetorZ = (Z1; Z2) is taken from the trunating distributionPt {B} = P {Z ∈ B |R(Z1) < L(Z2)} ;



A SEMIPARAMETRIC MODEL 1432) Conditionally on a �xed value of � = t and � = △ = (z1; z2℄, therandom variable X is taken from the trunated distributionPt;△ {C} = P {X ∈ C |X ∈ (R(z1); L(z2)℄} :In other words onditionally on �xed values of � = t and Z1 = z1; Z2 = z2the random variable X is taken from the trunated distributionP {C | t; z1; z2} = P {X ∈ C |X ∈ (R(z1|t); L(z2|t)℄} : (6)We onsider now the simple ase of right trunation by Z, where for arandom variable Z the random interval � = (0; Z℄. We shall denote forshort when there is no ambiguity about the partition � = t simply:L(Z) := L(Z|� = t):Then, onditionally on �xed values of � = t and Z = z the randomvariable X is taken from the trunated distributionP {C|t; z} = P {X ∈ C |X ≤ L(z)} :4. Estimation of the parameter of interestWithout loss of generality we onsider the right-trunation ase. Theproblem that we are faed with ould be formulated as follows. LetW;W1; : : : ;Wn be i.i.d. random vetors, W = (L(X); R(X); L(Z);�),with density p(u; v; w; �) with respet to a measure �0 (Huber, Solev andVonta (2007)) given asp(u; v; w; �) = r(u; v; w) · v
∫u f(t|�) dtw
∫0 f(t|�) dt · �(�)whih is equal from the semiparametri model (5) tor(u; v; w) · v

∫u e−e�′��(t)e�′��(t) dt
∫ w0 e−e�′��(t)e�′��(t) dt ·�(�) ≡ r(u; v; w) ·'(�; �; u; v; w) ·�(�)(7)



144 C. HUBER, F. VONTAwhere 0 ≤ u < v ≤ w ≤ b; � ∈ ℑ, �(�) is the known law of the ovariate�, � the hazard intensity funtion and r(u; v; w) the known joint law ofensoring and trunation. The law r has two omponents, one denoted byr3 whih is absolutely ontinuous with respet to the Lebesgue measureon R3 (orresponding to the ase where u < v < w) and a seond one,denoted by r2 whih is absolutely ontinuous with respet to the Lebesguemeasure on R2 (orresponding to the ase where u < v = w). For detailsand an example of suh a law r see Huber, Solev and Vonta (2007).We are interested in the eÆient estimation of the parameter of interest� in the presene of the unknown umulative hazard funtion � or equiv-alently in the presene of the hazard intensity funtion � where obviously�(t) ≥ 0. We assume for �(t) that it is �nite for �nite times t and that�(∞) = ∞. We will establish in this paper the form of the least favorablemodel �� for �xed values of � following the methodology introdued inSlud and Vonta (2005).In the notation of Slud and Vonta (2005), let the measure � denotethe Lebesgue measure on R. The data-spae D = R × R × R × Rponsists of vetors x = (u; v; w; �)′ . We denote the true parameters by(�0; �0). We de�ne the probability law for the true model byd�(x) ≡ p0(x)d�0(x)where p0(x) denotes the density p taken at the true point (�0; �0).The densities fW (x; �; �) (Slud and Vonta (2005)) are of the formv
∫u e−e�′��(t)e�′��(t) dt
∫ w0 e−e�′��(t)e�′��(t) dt × ∫ w0 e−e�′0��0(t)e�′0��0(t) dtv

∫u e−e�′0��0(t)e�′0��0(t) dt · (8)4.1. Least favorable model. Following the methodology of Slud andVonta (2005) we will �nd, for �xed �, the least favorable parametri sub-model (��; �) of the proposed semiparametri model.The Kullbak-Leibler funtional is given by
K(�; �)=−

∫ log( p(u; v; w; �;�; �)p0(u; v; w; �;�0; �0)) p0(u; v; w; �;�0; �0) d�0(u; v; w; �):Due to the form of the law r(u; v; w) the Kullbak-Leibler funtional iswritten equivalently as= −

∫ log( p3(u; v; w; �;�; �)p0;3(u; v; w; �;�0; �0)) p0;3(u; v; w; �;�0; �0) d�0;3(u; v; w; �)
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−

∫ log( p2(u; v; �;�; �)p0;2(u; v; �;�0; �0)) p0;2(u; v; �;�0; �0) d�0;2(u; v; �)whih beause of model (5) is equal to
−

∫

{ log v
∫u e−e�′��(t)e�′��(t)dt− log w

∫0 e−e�′��(t)e�′��(t)dt}p0;3(u; v; w; �;�0; �0)d�0;3(u; v; w; �)
−

∫

{ log v
∫u e−e�′��(t)e�′��(t)dt− log v

∫0 e−e�′��(t)e�′��(t)dt}p0;2(u; v; �;�0; �0)d�0;2(u; v; �) + C (9)where C denotes a term that does not depend on (�; �).Keeping � �xed we will di�erentiate now with respet to the parameter� in the sense of Gâteaux di�erentiation. We onsider perturbations offuntions � ∈ V by small multiples of funtions  in subsets of G ⊆ G0for appropriately de�ned spaes V ;G, and G0.Here and in what follows, we de�ne the di�erentiation operator D�for all funtionals � : V → R, and all  ∈ G0, by:(D� �(�))() = dd� �(�+ �) ∣∣
∣�=0 (10)where � belongs in a small neighborhood of 0. Let therefore ��(t) = �(t)+�(t) and subsequently ��(t) = �(t) + � ∫ t0 (s)ds = �(t) + ��(t). TheGâteaux di�erentiation of K(�; �) in the diretion  is given asdd�K(�; ��)|�=0 = −

∫

{

∫ vu e−e�′��(t)e�′�(−�(t)e�′��(t) + (t))dt
∫ vu e−e�′��(t)e�′��(t)dt

−

∫ w0 e−e�′��(t)e�′�(−�(t)e�′��(t) + (t))dt
∫ w0 e−e�′��(t)e�′��(t)dt }p0;3d�0;3

−

∫

{

∫ vu e−e�′��(t)e�′�(−�(t)e�′��(t) + (t))dt
∫ vu e−e�′��(t)e�′��(t)dt



146 C. HUBER, F. VONTA
−

∫ v0 e−e�′��(t)e�′�(−�(t)e�′��(t) + (t))dt
∫ v0 e−e�′��(t)e�′��(t)dt }p0;2d�0;2: (11)By an integration by parts, the integral

−

v
∫u e−e�′��(t)e�′��(t)e�′��(t)dt = �(t)e−e�′��(t)e�′�∣∣

∣

vu
−

v
∫u e−e�′��(t)e�′�(t)dtand therefore the �rst numerator of (11) simpli�es to �(t)e−e�′��(t)e�′�∣∣

∣

vu.By a similar integration by parts we simplify the other three numeratorsof (11) to get thatdd�K(�; ��)|�=0 = −

∫

{�(v)e−e�′��(v)e�′� − �(u)e−e�′��(u)e�′�
∫ vu e−e�′��(t)e�′��(t)dt

−
�(w)e−e�′��(w)e�′� − �(0)e−e�′��(0)e�′�

∫ w0 e−e�′��(t)e�′��(t)dt }p0;3d�0;3
−

∫

{�(v)e−e�′��(v)e�′� − �(u)e−e�′��(u)e�′�
∫ vu e−e�′��(t)e�′��(t)dt

−
�(v)e−e�′��(v)e�′� − �(0)e−e�′��(0)e�′�

∫ v0 e−e�′��(t)e�′��(t)dt }p0;2d�0;2:Finally, we havedd�K(�; ��)|�=0= ∫ { (�(u)S(u)− �(v)S(v))e�′�S(u)− S(v) + �(w)S(w)e�′�1− S(w) }p0;3d�0;3+ ∫ { (�(u)S(u)− �(v)S(v))e�′�S(u)− S(v) + �(v)S(v)e�′�1− S(v) }p0;2d�0;2:The survival funtion S(:) = S(:|�) but the dependene on � is omittedfor onveniene of notation.



A SEMIPARAMETRIC MODEL 147Then we set the above derivative equal to 0 to obtain the equation
∫

{ (�(u)S(u)− �(v)S(v))e�′�S(u)− S(v) + �(w)S(w)e�′�1− S(w) }p0;3d�0;3+ ∫ { (�(u)S(u)− �(v)S(v))e�′�S(u)− S(v) + �(v)S(v)e�′�1− S(v) }p0;2d�0;2 = 0(12)whih should hold ∀ ∈ G0. Equation (12) de�nes impliitly the minimizer�� through whih �� is subsequently de�ned.Now, as in Kosorok et al. (2004) we will de�ne a reursive equationfor ��(t) from equation (12) by onsidering diretions (s) = Is∈[0;t℄�(s)where t ∈ [0; b℄. Depending on the position of t in relation to u; v; w forr = r3 and in relation to u; v = w for r = r2 respetively, we have di�erentases to onsider. Equation (12) beomes
∫0≤t≤u<v<w≤b �(t)(1 + S(w)1− S(w)) e�′�p0;3d�0;3+ ∫0≤u<t≤v<w≤b (�(u)S(u)− �(t)S(v)S(u)− S(v) + �(t)S(w)1− S(w)) e�′�p0;3d�0;3+ ∫0≤u<v<t≤w≤b (�(u)S(u)− �(v)S(v)S(u)− S(v) + �(t)S(w)1− S(w)) e�′�p0;3d�0;3+ ∫0≤u<v<w<t≤b (�(u)S(u)− �(v)S(v)S(u)− S(v) + �(w)S(w)1− S(w) ) e�′�p0;3d�0;3+ ∫0≤t≤u<v≤b �(t)(1 + S(v)1− S(v)) e�′�p0;2d�0;2+ ∫0≤u<t≤v≤b (�(u)S(u)− �(t)S(v)S(u)− S(v) + �(t)S(v)1− S(v)) e�′�p0;2d�0;2+ ∫0≤u<v<t≤b (�(u)S(u)− �(v)S(v)S(u)− S(v) + �(v)S(v)1− S(v) ) e�′�p0;2d�0;2 = 0:(13)Colleting the terms that involve �(t) ≡ ��(t) whih an be pulled out



148 C. HUBER, F. VONTAof the integrals and solving for ��(t) we obtain the reursive equation��(t){ ∫0≤t≤u<v<w≤b (1 + S(w)1− S(w)) e�′�p0;3d�0;3+ ∫0≤t≤u<v≤b (1 + S(v)1− S(v)) e�′�p0;2d�0;2
−

∫0≤u<t≤v<w≤b ( S(v)S(u)− S(v) − S(w)1− S(w)) e�′�p0;3d�0;3
−

∫0≤u<t≤v≤b ( S(v)S(u)− S(v) − S(v)1− S(v)) e�′�p0;2d�0;2+ ∫0≤u<v<t≤w≤b ( S(w)1− S(w)) e�′�p0;3d�0;3}= −

∫0≤u<t≤v<w≤b ( ��(u)S(u)S(u)− S(v)) e�′�p0;3d�0;3
−

∫0≤u<t≤v≤b ( ��(u)S(u)S(u)− S(v)) e�′�p0;2d�0;2
−

∫0≤u<v<t≤w≤b (��(u)S(u)− ��(v)S(v)S(u)− S(v) ) e�′�p0;3d�0;3
−

∫0≤u<v<w<t≤b (��(u)S(u)− ��(v)S(v)S(u)− S(v) + ��(w)S(w)1− S(w) ) e�′�p0;3d�0;3
−

∫0≤u<v<t≤b (��(u)S(u)− ��(v)S(v)S(u)− S(v) + ��(v)S(v)1− S(v) ) e�′�p0;2d�0;2:(14)Equation (14) an be rewritten as��(t) = I1(t; b; �)I2(t; b; �) (15)



A SEMIPARAMETRIC MODEL 149where I1(t; b; �) = Ep0 (��(R(X))S(R(X))e�′�S(L(X))− S(R(X)) ∣∣∣R(X) > t)
− Ep0(��(L(X))S(L(X))e�′�S(L(X))− S(R(X)) ∣∣∣L(X) > t)
− Ep0(��(L(Z))S(L(Z))e�′�1− S(L(Z)) ∣

∣

∣
L(Z) > t)and I2(t; b; �) = Ep0 (e�′�∣∣

∣L(X) ≥ t)+Ep0(��(L(Z))S(L(Z))e�′�1− S(L(Z)) ∣

∣

∣L(Z) ≥ t)
− Ep0(��(R(X))S(R(X))e�′�S(L(X))− S(R(X)) ∣∣∣L(X) < t ≤ R(X)) :The least favorable diretion  is de�ned (Slud and Vonta (2005)) impli-itly through equation (15) as ∇� d��(t)dt |�=�0 = ∇���(t)|�=�0 .Referenes1. A. Alioum, D. Commenges, A proportional hazards model for arbitrarily ensoredand trunated data. | Biometris 52 (1996), 512{524.2. H. Frydman, A note on nonparametri estimation of the distribution funtion frominterval-ensored and trunated observations. | Journal of the Royal StatistialSoiety, Series B 56 (1994), 71{74.3. C. Huber-Carol, V. Solev, and F. Vonta, Interval ensored and trunated data: rateof onvergene of NPMLE of the density. | Journal of Statistial Planning andInferene (to appear).4. C. Huber-Carol, V. Solev, and F. Vonta, Estimation of density for arbitrarily en-sored and trunated data. | Probability, Statistis and Modelling in Publi Health,Nikulin, M. S., Commenges, D., and Huber-Carol, C. eds., Springer (Kluwer Aad.Publ.), New York (2007), pp. 246{265.5. C. Huber-Carol, F. Vonta, Frailty models for arbitrarily ensored and trunateddata. | Lifetime Data Analysis, 10 (2004), 369{388.6. M. Kosorok, B. Lee, J. Fine, Robust inferene for univariate proportional hazardsfrailty regression models. | Ann. Statist. 32, No. 4 (2004), 1448{1491.7. E. Slud, F. Vonta, EÆient semiparametri estimators via modi�ed pro�le likeli-hood. | Jour. Statist. Planning and Inferene 129 (2005), 339{367.
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