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t. In this work we 
onsider a 
omplex observational s
heme,that is, survival data that are both interval 
ensored and trun
ated. Weassume a semiparametri
 Cox model for the survival fun
tion and 
on-sider 
ensoring and trun
ation distributions as in Huber, Solev and Vonta(2006, 2007). We establish the form of the least favorable model (Sludand Vonta (2005)) for the 
umulative hazard fun
tion, whi
h plays therole of the in�nite-dimensional nuisan
e parameter, for �xed values of the�nite-dimensional parameter of interest. The least favorable model 
annotbe de�ned in 
losed form.1. Introdu
tionWe 
onsider survival data that are both interval 
ensored and trun-
ated. Complex observational s
hemes o

ur due to the fa
t that observa-tion of a pro
ess is not 
ontinuous in time and is done through a windowof time whi
h 
ould ex
lude totally some individuals from the sample. Forexample, the time of onset of a disease in a patient, like HIV infe
tion ortoxi
ity of a treatment, is not exa
tly known, but it is usually known tohave taken pla
e between two dates t1 and t2; this o

urs in parti
ularwhen the event of interest results in an irreversible 
hange of state of theindividual: at time t1, the individual is in state one, while at time t2, itis in state two. Moreover, some people 
an es
ape the sample if they areobserved during a period of time not in
luding some pair of dates t1; t2having the above property.Turnbull (1976) proposed a ni
e method for nonparametri
 maximumlikelihood estimation of the distribution fun
tion in the 
ase of arbitrarily
ensored and trun
ated data. His method, slightly 
orre
ted by Frydman(1994), has been used extensively sin
e by several authors, and extendedto the Cox model by Alioum and Commenges (1996) and to the frailtyor transformation models by Huber-Carol and Vonta, (2004). In Huber,Solev and Vonta (2006) and (2007) we give 
onditions on the involved dis-tributions, namely, the 
ensoring, trun
ation and survival distributions,139



140 C. HUBER, F. VONTAimplying the 
onsisten
y of a nonparametri
 maximum likelihood esti-mator of the density of the survival pro
ess in the totally nonparametri

ase. We also provide the rate of 
onvergen
e of the NPMLE of the densitywithin a 
ertain 
lass of fun
tions.In se
tions two and three, we give a representation of the 
ensoringand trun
ation me
hanisms. As it is due to a non 
ontinuous observa-tion of the survival pro
ess, the 
ensoring me
hanism is represented asa denumerable partition of the total interval of observation time (a; b℄.Then a trun
ation is added to the 
ensoring, 
onditioning the observa-tions both of the survival and the 
ensoring pro
esses. We also 
onsider aCox semiparametri
 model for the survival fun
tion.In se
tion four we further assume, without loss of generality, the parti
-ular 
ase of right trun
ation. In order to prove that the �nite-dimensionalparameter of interest 
an be estimated eÆ
iently in the presen
e of thein�nite-dimensional nuisan
e parameter, we will follow the methodologyintrodu
ed in Slud and Vonta (2005) 
on
erning modi�ed pro�le likelihoodestimators. In this se
tion we establish the form of the least favorablemodel for the nuisan
e parameter for �xed values of the parameter ofinterest. The least favorable model is not given in 
losed form.Assumptions and regularity 
onditions under whi
h the assumptionsposed in Slud and Vonta (2005) are ful�lled, and therefore the semipara-metri
 eÆ
ien
y for the parameter of interest is derived, are 
urrentlybeing developed. 2. The observation s
hemeTime X to an event that 
hanges permanently the state of subje
t iunder study (state 0 before X , 1 afterwards) is a random variable whosedistribution is to be estimated under the following observation s
heme:1. Censorship: observation of ea
h subje
t i does not take pla
e 
ontinu-ously but is s
heduled at a (random) number K(i) of (random) timesa < Yi;1 < · · · < Yi;K(i) < bwhere usually a will be equal to 0 and b is a �nite stri
tly positive num-ber. Let �i := {Yi;j ; j = 1; · · · ;K(i)} the set of s
heduled observationtimes for subje
t i and ti := {yi;j ; j = 1; · · · ;K(i)} a realization of �i.2. Trun
ation: only those elements of ti that are inside a given (random)trun
ating window (Zi;1 Zi;2℄ give rise to an a
tual observation of sub-je
t i.



A SEMIPARAMETRIC MODEL 141Thus, if subje
t i is observed in state 0 at time yi;j and in state 1 attime yi;j+1, inside its window △ := (zi;1; zi;2℄, one observes subje
t i atall times of ti in
luded in △. A suÆ
ient statisti
 for this problem is thusthe two embedded intervals \bra
keting" the unobserved X = x :zi;1 ≤ yi;k1 ≤ yi;j < x ≤ yi;j+1 ≤ yi;k2 ≤ zi;2where yi;k1 is the smallest time in ti whi
h is greater than or equal to zi;1and yi;k2 is the largest time in ti that is less than or equal to zi;2.2.1. Censorship: simple random 
overing. Let � be a random par-tition de�ned on ℄a; b℄, where usually a will be equal to 0 and b is a �nitestri
tly positive number:� =


Y0 = a < Y1 < : : : < YK < YK+1 = b; K
⋃j=0 (Yj ; Yj+1℄ = (a; b℄



(1)where K is a �xed number or a random number with known law in
{2; : : : ;K0} for some given K0 su
h that 2 < K0 <∞.For ea
h x ∈ (a; b) we de�nej(x) = inf {j : x ≤ Yj+1} : (2)#(x) = (Yj(x); Yj(x)+1] := (L(x); R(x)℄ x ∈ (a; b); (3)where L(x) and R(x) may be thought of as the left and right values inpartition � that \bra
ket" (the survival) X = x.Then it is 
lear that#(x) = #(y); or #(x) ∩ #(y) = ∅ (4)and we 
all #(x) a simple random 
overing of (a; b).2.2. Trun
ation. Let #(x) = (L(x); R(x)℄; x ∈ R; be the simple random
overing de�ned by the partition � = t := {yj ; j = 1; 2; : : : ; k}. Then, a�xed interval △ = (z1; z2℄, and z the asso
iated ve
tor (z1; z2), z1 ≤ z2,is a trun
ating interval. This means that the only available observationsof the subje
t i under investigation take pla
e at times that are thoseelements of t that are in
luded in (R(z1); L(z2)℄, whi
h behaves like thee�e
tive \trun
ating window".
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 assumption is the following: First we assume that the random
overing #(·), the random variable X and the random interval � are inde-pendent. Se
ond, we assume that the distribution of any (Ym+1; · · · ; Yn)is absolutely 
ontinuous with respe
t to the Lebesgue measure on R
n−m,and that the distribution of (Z1; Z2) is absolutely 
ontinuous with respe
tto the Lebesgue measure on R

2.In that 
ase a summary of the observations on the subje
t under in-vestigation is the pair of embedded intervals:R(z1) ≤ L(x) < R(x) ≤ L(z2)where the 
en
oring interval (L(X); R(X)℄ of the 
overing #(·), 
ontainsX , and the random interval �∗ = (R(z1); L(z2)℄ a
tually trun
ates X .When (L(X); R(X)℄ 6⊂ � we do not have any observation. Without lossof generality, from now on, we assume that a = 0.In the spe
ial 
ase of right trun
ation
△ = (0; z℄and a summary of the observations on the subje
t under investigation isthe triple of random variables (L(x); R(x); L(z)) su
h that:0 ≤ L(x) < R(x) ≤ L(z):3. The modelLet X be a random variable with density f and survival fun
tion de-�ned by S(t|� = �) = P (X > t|� = �) = e−e�′��(t) (5)where � ∈ Rp is the parameter of interest, � a p-dimensional ve
tor of
ovariates and � the 
umulative hazard fun
tion whi
h plays the role ofthe in�nite-dimensional nuisan
e parameter.Let us de�ne1) Conditionally on a �xed value t of � the random interval � is takenfrom the trun
ating distribution

Pt {A}=P {�∈A |the interval (Z1; Z2℄ 
ontains at least two points of t} :In other words, 
onditionally on �xed values of � = t the random ve
torZ = (Z1; Z2) is taken from the trun
ating distributionPt {B} = P {Z ∈ B |R(Z1) < L(Z2)} ;



A SEMIPARAMETRIC MODEL 1432) Conditionally on a �xed value of � = t and � = △ = (z1; z2℄, therandom variable X is taken from the trun
ated distributionPt;△ {C} = P {X ∈ C |X ∈ (R(z1); L(z2)℄} :In other words 
onditionally on �xed values of � = t and Z1 = z1; Z2 = z2the random variable X is taken from the trun
ated distributionP {C | t; z1; z2} = P {X ∈ C |X ∈ (R(z1|t); L(z2|t)℄} : (6)We 
onsider now the simple 
ase of right trun
ation by Z, where for arandom variable Z the random interval � = (0; Z℄. We shall denote forshort when there is no ambiguity about the partition � = t simply:L(Z) := L(Z|� = t):Then, 
onditionally on �xed values of � = t and Z = z the randomvariable X is taken from the trun
ated distributionP {C|t; z} = P {X ∈ C |X ≤ L(z)} :4. Estimation of the parameter of interestWithout loss of generality we 
onsider the right-trun
ation 
ase. Theproblem that we are fa
ed with 
ould be formulated as follows. LetW;W1; : : : ;Wn be i.i.d. random ve
tors, W = (L(X); R(X); L(Z);�),with density p(u; v; w; �) with respe
t to a measure �0 (Huber, Solev andVonta (2007)) given asp(u; v; w; �) = r(u; v; w) · v
∫u f(t|�) dtw
∫0 f(t|�) dt · �(�)whi
h is equal from the semiparametri
 model (5) tor(u; v; w) · v

∫u e−e�′��(t)e�′��(t) dt
∫ w0 e−e�′��(t)e�′��(t) dt ·�(�) ≡ r(u; v; w) ·'(�; �; u; v; w) ·�(�)(7)



144 C. HUBER, F. VONTAwhere 0 ≤ u < v ≤ w ≤ b; � ∈ ℑ, �(�) is the known law of the 
ovariate�, � the hazard intensity fun
tion and r(u; v; w) the known joint law of
ensoring and trun
ation. The law r has two 
omponents, one denoted byr3 whi
h is absolutely 
ontinuous with respe
t to the Lebesgue measureon R3 (
orresponding to the 
ase where u < v < w) and a se
ond one,denoted by r2 whi
h is absolutely 
ontinuous with respe
t to the Lebesguemeasure on R2 (
orresponding to the 
ase where u < v = w). For detailsand an example of su
h a law r see Huber, Solev and Vonta (2007).We are interested in the eÆ
ient estimation of the parameter of interest� in the presen
e of the unknown 
umulative hazard fun
tion � or equiv-alently in the presen
e of the hazard intensity fun
tion � where obviously�(t) ≥ 0. We assume for �(t) that it is �nite for �nite times t and that�(∞) = ∞. We will establish in this paper the form of the least favorablemodel �� for �xed values of � following the methodology introdu
ed inSlud and Vonta (2005).In the notation of Slud and Vonta (2005), let the measure � denotethe Lebesgue measure on R. The data-spa
e D = R × R × R × Rp
onsists of ve
tors x = (u; v; w; �)′ . We denote the true parameters by(�0; �0). We de�ne the probability law for the true model byd�(x) ≡ p0(x)d�0(x)where p0(x) denotes the density p taken at the true point (�0; �0).The densities fW (x; �; �) (Slud and Vonta (2005)) are of the formv
∫u e−e�′��(t)e�′��(t) dt
∫ w0 e−e�′��(t)e�′��(t) dt × ∫ w0 e−e�′0��0(t)e�′0��0(t) dtv

∫u e−e�′0��0(t)e�′0��0(t) dt · (8)4.1. Least favorable model. Following the methodology of Slud andVonta (2005) we will �nd, for �xed �, the least favorable parametri
 sub-model (��; �) of the proposed semiparametri
 model.The Kullba
k-Leibler fun
tional is given by
K(�; �)=−

∫ log( p(u; v; w; �;�; �)p0(u; v; w; �;�0; �0)) p0(u; v; w; �;�0; �0) d�0(u; v; w; �):Due to the form of the law r(u; v; w) the Kullba
k-Leibler fun
tional iswritten equivalently as= −

∫ log( p3(u; v; w; �;�; �)p0;3(u; v; w; �;�0; �0)) p0;3(u; v; w; �;�0; �0) d�0;3(u; v; w; �)
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−

∫ log( p2(u; v; �;�; �)p0;2(u; v; �;�0; �0)) p0;2(u; v; �;�0; �0) d�0;2(u; v; �)whi
h be
ause of model (5) is equal to
−

∫

{ log v
∫u e−e�′��(t)e�′��(t)dt− log w

∫0 e−e�′��(t)e�′��(t)dt}p0;3(u; v; w; �;�0; �0)d�0;3(u; v; w; �)
−

∫

{ log v
∫u e−e�′��(t)e�′��(t)dt− log v

∫0 e−e�′��(t)e�′��(t)dt}p0;2(u; v; �;�0; �0)d�0;2(u; v; �) + C (9)where C denotes a term that does not depend on (�; �).Keeping � �xed we will di�erentiate now with respe
t to the parameter� in the sense of Gâteaux di�erentiation. We 
onsider perturbations offun
tions � ∈ V by small multiples of fun
tions 
 in subsets of G ⊆ G0for appropriately de�ned spa
es V ;G, and G0.Here and in what follows, we de�ne the di�erentiation operator D�for all fun
tionals � : V → R, and all 
 ∈ G0, by:(D� �(�))(
) = dd� �(�+ �
) ∣∣
∣�=0 (10)where � belongs in a small neighborhood of 0. Let therefore ��(t) = �(t)+�
(t) and subsequently ��(t) = �(t) + � ∫ t0 
(s)ds = �(t) + ��(t). TheGâteaux di�erentiation of K(�; �) in the dire
tion 
 is given asdd�K(�; ��)|�=0 = −

∫

{

∫ vu e−e�′��(t)e�′�(−�(t)e�′��(t) + 
(t))dt
∫ vu e−e�′��(t)e�′��(t)dt

−

∫ w0 e−e�′��(t)e�′�(−�(t)e�′��(t) + 
(t))dt
∫ w0 e−e�′��(t)e�′��(t)dt }p0;3d�0;3

−

∫

{

∫ vu e−e�′��(t)e�′�(−�(t)e�′��(t) + 
(t))dt
∫ vu e−e�′��(t)e�′��(t)dt
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−

∫ v0 e−e�′��(t)e�′�(−�(t)e�′��(t) + 
(t))dt
∫ v0 e−e�′��(t)e�′��(t)dt }p0;2d�0;2: (11)By an integration by parts, the integral

−

v
∫u e−e�′��(t)e�′��(t)e�′��(t)dt = �(t)e−e�′��(t)e�′�∣∣

∣

vu
−

v
∫u e−e�′��(t)e�′�
(t)dtand therefore the �rst numerator of (11) simpli�es to �(t)e−e�′��(t)e�′�∣∣

∣

vu.By a similar integration by parts we simplify the other three numeratorsof (11) to get thatdd�K(�; ��)|�=0 = −

∫

{�(v)e−e�′��(v)e�′� − �(u)e−e�′��(u)e�′�
∫ vu e−e�′��(t)e�′��(t)dt

−
�(w)e−e�′��(w)e�′� − �(0)e−e�′��(0)e�′�

∫ w0 e−e�′��(t)e�′��(t)dt }p0;3d�0;3
−

∫

{�(v)e−e�′��(v)e�′� − �(u)e−e�′��(u)e�′�
∫ vu e−e�′��(t)e�′��(t)dt

−
�(v)e−e�′��(v)e�′� − �(0)e−e�′��(0)e�′�

∫ v0 e−e�′��(t)e�′��(t)dt }p0;2d�0;2:Finally, we havedd�K(�; ��)|�=0= ∫ { (�(u)S(u)− �(v)S(v))e�′�S(u)− S(v) + �(w)S(w)e�′�1− S(w) }p0;3d�0;3+ ∫ { (�(u)S(u)− �(v)S(v))e�′�S(u)− S(v) + �(v)S(v)e�′�1− S(v) }p0;2d�0;2:The survival fun
tion S(:) = S(:|�) but the dependen
e on � is omittedfor 
onvenien
e of notation.



A SEMIPARAMETRIC MODEL 147Then we set the above derivative equal to 0 to obtain the equation
∫

{ (�(u)S(u)− �(v)S(v))e�′�S(u)− S(v) + �(w)S(w)e�′�1− S(w) }p0;3d�0;3+ ∫ { (�(u)S(u)− �(v)S(v))e�′�S(u)− S(v) + �(v)S(v)e�′�1− S(v) }p0;2d�0;2 = 0(12)whi
h should hold ∀
 ∈ G0. Equation (12) de�nes impli
itly the minimizer�� through whi
h �� is subsequently de�ned.Now, as in Kosorok et al. (2004) we will de�ne a re
ursive equationfor ��(t) from equation (12) by 
onsidering dire
tions 
(s) = Is∈[0;t℄�(s)where t ∈ [0; b℄. Depending on the position of t in relation to u; v; w forr = r3 and in relation to u; v = w for r = r2 respe
tively, we have di�erent
ases to 
onsider. Equation (12) be
omes
∫0≤t≤u<v<w≤b �(t)(1 + S(w)1− S(w)) e�′�p0;3d�0;3+ ∫0≤u<t≤v<w≤b (�(u)S(u)− �(t)S(v)S(u)− S(v) + �(t)S(w)1− S(w)) e�′�p0;3d�0;3+ ∫0≤u<v<t≤w≤b (�(u)S(u)− �(v)S(v)S(u)− S(v) + �(t)S(w)1− S(w)) e�′�p0;3d�0;3+ ∫0≤u<v<w<t≤b (�(u)S(u)− �(v)S(v)S(u)− S(v) + �(w)S(w)1− S(w) ) e�′�p0;3d�0;3+ ∫0≤t≤u<v≤b �(t)(1 + S(v)1− S(v)) e�′�p0;2d�0;2+ ∫0≤u<t≤v≤b (�(u)S(u)− �(t)S(v)S(u)− S(v) + �(t)S(v)1− S(v)) e�′�p0;2d�0;2+ ∫0≤u<v<t≤b (�(u)S(u)− �(v)S(v)S(u)− S(v) + �(v)S(v)1− S(v) ) e�′�p0;2d�0;2 = 0:(13)Colle
ting the terms that involve �(t) ≡ ��(t) whi
h 
an be pulled out



148 C. HUBER, F. VONTAof the integrals and solving for ��(t) we obtain the re
ursive equation��(t){ ∫0≤t≤u<v<w≤b (1 + S(w)1− S(w)) e�′�p0;3d�0;3+ ∫0≤t≤u<v≤b (1 + S(v)1− S(v)) e�′�p0;2d�0;2
−

∫0≤u<t≤v<w≤b ( S(v)S(u)− S(v) − S(w)1− S(w)) e�′�p0;3d�0;3
−

∫0≤u<t≤v≤b ( S(v)S(u)− S(v) − S(v)1− S(v)) e�′�p0;2d�0;2+ ∫0≤u<v<t≤w≤b ( S(w)1− S(w)) e�′�p0;3d�0;3}= −

∫0≤u<t≤v<w≤b ( ��(u)S(u)S(u)− S(v)) e�′�p0;3d�0;3
−

∫0≤u<t≤v≤b ( ��(u)S(u)S(u)− S(v)) e�′�p0;2d�0;2
−

∫0≤u<v<t≤w≤b (��(u)S(u)− ��(v)S(v)S(u)− S(v) ) e�′�p0;3d�0;3
−

∫0≤u<v<w<t≤b (��(u)S(u)− ��(v)S(v)S(u)− S(v) + ��(w)S(w)1− S(w) ) e�′�p0;3d�0;3
−

∫0≤u<v<t≤b (��(u)S(u)− ��(v)S(v)S(u)− S(v) + ��(v)S(v)1− S(v) ) e�′�p0;2d�0;2:(14)Equation (14) 
an be rewritten as��(t) = I1(t; b; �)I2(t; b; �) (15)



A SEMIPARAMETRIC MODEL 149where I1(t; b; �) = Ep0 (��(R(X))S(R(X))e�′�S(L(X))− S(R(X)) ∣∣∣R(X) > t)
− Ep0(��(L(X))S(L(X))e�′�S(L(X))− S(R(X)) ∣∣∣L(X) > t)
− Ep0(��(L(Z))S(L(Z))e�′�1− S(L(Z)) ∣

∣

∣
L(Z) > t)and I2(t; b; �) = Ep0 (e�′�∣∣

∣L(X) ≥ t)+Ep0(��(L(Z))S(L(Z))e�′�1− S(L(Z)) ∣

∣

∣L(Z) ≥ t)
− Ep0(��(R(X))S(R(X))e�′�S(L(X))− S(R(X)) ∣∣∣L(X) < t ≤ R(X)) :The least favorable dire
tion 
 is de�ned (Slud and Vonta (2005)) impli
-itly through equation (15) as ∇� d��(t)dt |�=�0 = ∇���(t)|�=�0 .Referen
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