
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 363, 2009 Ç.R. KhasminskiiESTIMATION OF NONLINEARFUNCTIONALS REVISITEDAbstrat. After the overview of known results onerning estimatingthe linear and nonlinear funtionals of the density for i.i.d. observationsand for funtionals of the signal observed in the White Gaussian Noise(WGN) with small intensity we onsider the similar problems for the ob-servation the Poisson random proess. Asymptotially eÆient estimatesof the one Frehet di�erentiable funtionals are proposed.1. IntrodutionEstimation nonlinear funtionals of unknown funtion related to theobservations probability distribution is one of important problems in thenonparametri statistis. The natural minimax lower bound of the esti-mation risks for di�erentiable funtionals of probability density funtionfor i.i.d. observations was obtained by B. Levit in [7℄.Let X1; : : : ; Xn be i.i.d. observations with unknown distribution den-sity p(x) = dFdx ; x ∈ R, and �(p) be the di�erentiable funtional withderivative �′(p) ∈ L2(F ) (i.e., �′(p)(x) is a square integrable funtionwith respet to the measure F (dx)). Then it was proven in [7℄ that forthe wide lass of the loss funtions l(x) and any Æ > 0 the lower boundlim infn→∞
supp∈OÆ(p0)Epl(√n(�n − �(p))) ≥ El(�(p0)�); (1)here � is the N (0; 1) random variable, OÆ(p0) is the Æ-viinity of p0 in thesuitable metri,�2(p) = ∫

R

[�′(p)(x) − Ep�′(p)(X1)℄2p(x)dx;is valid for any estimate �n (see details in [7℄ or [4, Chap. 4℄). Here andbelow Ep means the expetation with respet to the probability measurewith the density p(x). Asymptotially eÆient estimates (i.e., estimateswith the equality in (1)) for some lasses of funtionals were found in [8℄.126



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 127General method for estimation the funtionals with various smoothnesswas proposed in [2℄.Creation of asymptotially eÆient nonparametri estimate for �(p)in [2℄ has two steps. The �rst one is the reation an estimate for p(x).It is possible to onstrut uniformly onsistent estimate in L2-norm, if pbelongs to some lass of smooth funtions. Let W(�; L) be the Sobolevspae of densities with smoothness �, i.e.,
W(�; L) = {p : ∫

R1 |t|2� |p̂(t)|2dt 6 L};here p̂ is the Fourier transform of p. Then there exist a kernel estimatepn(x; !) suh that for any r > 0lim supn→∞
supp∈W(�;L)Ep[‖pn(x; !)− p(x)‖L2(R)n �2�+1 ]r < ∞: (2)(See, e.g., [1℄ or similar assertion in [3℄.)The seond step is a reation of the estimator �n making use of thesmoothness �(p).Theorem 1.1. Let X1; X2; : : : ; Xn be i.i.d. observations with the densityp(x) ∈ W(�; L), the funtional �(p) be Frehet di�erentiable and satis�esthe onditions

‖�′(p)(·)‖L2(F ) < C;
‖�′(p2)(·) − �′(p1)(·)‖L2(R) < C‖p2 − p1‖L2(R); (3)with  > (2�)−1: (4)Then there exists estimate �n, based on X1; X2; : : : ; Xn, with propertylim supn→∞
supp∈W (�;L)[nEp|�n − �(p)|2

−
∫ [�′(p)(x) − Ep�′(p)(X1)℄2p(x)dx] = 0:This theorem follows immediately from (2) and Theorem 2 in [2℄. Anal-ogous approah was used in [5, 9℄ for the estimation of smooth funtionals�(S) for the observation model \Signal plus WGN:"dX"(t) = S(t)dt+ "dw(t); 0 6 t 6 1;



128 R. KHASMINSKIIhere w(t) is a standard Wiener proess, " → 0. In [5, 9℄, the result, losedto the Theorem 1.1, was obtained if S belongs to the lass of funtions withsmoothness �, and a funtional �(S) is also smooth enough. It is neessaryto emphasize that asymptotially eÆient estimates were reated in [2,5℄ also for more smooth funtionals under less restritive assumptionsonerning smoothness p and S. But here we onsider for simpliity onlythe ase of one di�erentiable funtionals.In this paper, we onsider the funtional estimation problem for theobservation of the Poisson proess with unknown intensity funtion.2. Statement of the problem and preliminariesWe onsider here the nonlinear funtionals estimation problem for twoobservation models of the Poisson proess.Model 1. X1(t); X2(t); : : : ; Xn(t), t ∈ [0; T ℄ are i.i.d. Poisson proesseswith the intensity funtion S(t). The problem is the estimation of di�er-entiable funtional �(S) on the base of X1(·); X2(·); : : : ; Xn(·).Model 2. X"(t); t ∈ [0; T ℄ is the Poisson proess with the intensity fun-tion "−1S(t), " → 0. The problem is the estimation of S(t) on the base ofobservation X"(t).The linear funtionals estimation problem for these models is very sim-ple. Let L(S) = T∫0 f(t)S(t)dt:Then the estimate Ln = 1n n∑i=1 T∫0 f(t)Xi(dt)is evidently unbiased, asymptotially normal, as n → ∞, andE|Ln − L(S)|2 = 1n T∫0 f2(t)S(t)dt;see [6℄. Here and below, E means expetation with respet to the measuregenerated by the Model 1 with the intensity S(t) or by the model 2 withthe intensity S(t)=".



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 129Analogously, the estimateL" = " T∫0 f(t)X"(dt)is unbiased, asymptotially normal, as " → 0, andE|L" − L(S)|2 = " T∫0 f2(t)S(t)dt:It is easy to see that these estimates are asymptotially unimprovable inthe minimax sense (see [4℄, [6℄ for details).Theorem 2.1 below gives asymptotially minimax lower bound of risksfor nonlinear funtionals. Let S be the set of ontinuous and stritly pos-itive funtions on [0; T ℄. Assume that the funtional �(S) is weakly (inGateaux sense) di�erentiable: for any h(t) ∈ L2(0; T ), � → 0�(S + �h) = �(S) + � T∫0 �′(S; t)h(t)dt + o(�): (5)Denote OÆ(S) the Æ-viinity of S in uniform metri, andW the set of fun-tions l : R → R
+ suh that l(−x) = l(x), l(0) = 0 and l(x) nondereasingfor x > 0 funtions.Theorem 2.1. Let �(S) be di�erentiable in the sense (5) funtional,and �′(S) ∈ L2[0; T ℄. Assume that S ∈ S, and denote Fn the set ofestimates based on X1(·); X2(·); : : : ; Xn(·) for the Model 1, and F" the setof estimates based on X"(·) for the Model 2. Then for any l ∈ W , Æ > 0,lim infn→∞
inf�n∈Fn supS∈OÆ(S0)El(√n(�n − �(S))) > El(�(S0)�); (6)and lim inf"→0 inf�"∈F" supS∈OÆ(S0)El( 1√"(�" − �(S))) > El(�(S0)�); (7)where � is the N (0; 1) random variable,�2(S0) = T∫0 (�′(S0; t))2S0(t)dt: (8)



130 R. KHASMINSKIIProof of (6) and (7) is analogous to the proof of similar assertions for theestimation di�erentiable funtionals of probability density in [7, 4℄. So, weonly give a sketh of the proof for the lower bound (7).Denote �′(S; t)N := �′(S; t)1{t:|�′(S;t)|6N}and onsider the parametri familySN (�; t) = S0(t) + (� − �0)S0(t)�′(S; t)N( T∫0 �′(S0; t)2NS0(t)dt)−1: (9)Then due to (5) we have, denoting �0 = �(S0),�(SN (�; t)) = �(S0) + (� − �0) T∫0 �′(S0; t)(�′(S0; t))NS0(t)dtT∫0 (�′(S0; t))2NS0(t)dt + o(� − �0)= � + o(� − �0); (� − �0 → 0): (10)It is easy to hek that the Fisher information I"(�) for the Model 2 withthe intensity S(�; t)=" is equal toI"(�) = 1" T∫0 (�S�� (�; t))2S(�; t) dt:Thus for S(�; t) = SN(�; t) we haveI(N)" (�0) = 1" 


T∫0 (�′(S0; t)N )2S0(t)dt−1 :It is evident that for any N > 0 and Æ > 0, the family (9) belongs to

OÆ(S0) for |� − �0| small enough. It follows from (10) that an estimationof the funtional �(S) for the family (8) is equivalent, for � → �0, to theestimation of the parameter �. The lower bound (7) follows from thesefats and the minimax lower bound for the parameter estimation (see [6℄).
�



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 1313. Asymptotially effiient estimates3.1. Estimation of intensity funtionSimilarly to the funtionals estimation for the statistial models men-tioned above, the preliminary estimation of S(t) is essential. Some a prioriknown smoothness of S(t) is neessary for it.Denote by �(�; L) the set of positive on [0; T ℄ k times di�erentiablefuntions with the property: for any t; t+ h ∈ [0; T ℄
|S(k)(t+ h)− S(k)(t)| 6 L|h|�; 0 < � 6 1; � = k + �:Lemma 3.1. Let S(t) ∈ �(�; L) and gi(t), i = 1; 2, be R → R funtionswith a ompat support and properties

∫

R

gi(t)dt = 1; ∫

R

tjgi(t)dt = 0; j = 1; : : : ; k; (11)g1(t) = 0, as t > 0; g2(t) = 0 as t < 0.Consider the estimatesSn(t) = 1nhn n∑i=1 T∫0 [g1( t− shn )1{t<T=2}+ g2( t− shn )1{t>T=2}]Xi(ds); (12)S"(t) = "h" T∫0 [g1( t− sh" )1{t<T=2} + g2( t− sh" )1{t>T=2}]X"(ds) (13)with hn = n−1=(2�+1) and h" = "1=(2�+1) for the Models 1 and 2, re-spetively. Then for any loss funtion l(x) : R → R
+ with the propertyl(x) 6 1 exp(2|x|) (i > 0 are the onstants) the upper boundlim supn→∞

supt∈[0;T ℄El(n�=(2�+1)(Ŝn(t)− S(t))) < ∞lim sup"→0 supt∈[0;T ℄El("−�=(2�+1)(Ŝ"(t)− S(t))) < ∞



132 R. KHASMINSKIIare valid.Proof of this lemma for the Model 1 and the ase where the sup over[0; T ℄ replaed by the sup over [a; b℄, 0 < a < b < T , is done in [6℄,see Proposition 6.3 there. (It was enough in [6℄ to onsider similar (12)estimate with the same funtion g(:) for all t ∈ [a; b℄). Proposed in (12),(13) modi�ation of the kernel estimates allows to make the upper boundfor risks uniform in t ∈ [0; T ℄ with help of the same reasoning, as in [6℄,see also [4℄. Let us prove, for instane, that the bias Ŝ"(t) has the order"�=(2�+1) uniformly in t ∈ [0; T ℄. Making use of well-known formula for theexpetation of the stohasti integral with respet to the Poisson proess(see, e.g. [6℄, Lemma 1.1) we have for t > T=2bias Ŝ"(t) = EŜ"(t)− S(t) = 1h " T∫0 g2( t− sh" )S(s)ds− S(t)=∫

R

g2(z)[S(t− h"z)− S(t)℄dz= ∞∫0 g2(z)[S(t− h"z)− S(t)℄dz:Applying the Taylor formula and (11), we havesupT=26t6T |bias Ŝ"(t)| 6 Ch�" = C"�=(2�+1):Applying the same reasoning for 0 < t < T=2, we arrive at the upperbound sup06t6T |bias Ŝ"(t)| 6 C"�=(2�+1):
�3.2. Funtional estimation for the Model 1LetX1(t); : : : ; Xn(t); t ∈ [0; T ℄ be i.i.d. Poisson proesses with boundedintensity funtion S(t) ∈ �(�; L). Assume that �(S) is the Frehet di�er-entiable funtional with derivative �′(S; t), satisfying the onditions

‖�′(S; ·)‖ < C; ‖�′(S2; ·)− �′(S1; ·)‖ 6 C‖S2 − S1‖ : (14)Here and below, the notation ‖f‖ is used for L2(0; T )-norm of f , by C; Ciwe denote a the onstants, independent of n; ", may be di�erent in di�erent



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 133appearanes. Similar the models, desribed above, the reation of an esti-mate �n for �(S) has two steps. On the �rst step we use [nÆ℄; 0 < Æ < 1,�rst observations for the estimation S(t). Due to Lemma 3.1 and Cauhy{Shwarz inequality this estimate Sn(t) is onsistent, andlim supn→∞
supS∈�(�;L)E‖Sn(·)− S(·)‖r 6 Crn−�Ær=(2�+1) (15)for any r > 0.Assume now that  > (2�)−1 and onsider the estimate�n = �(Sn) + 1n− [nÆ℄ n∑i=[nÆ ℄+1 T∫0 �′(Sn; t)(Xi(dt)− Sn(t)dt) (16)with Æ ∈ ( 1+1=(2�)1+ ; 1).Theorem 3.2. Let S(t) ∈ �(�; L); t ∈ [0; T ℄, and the funtional �(S) sat-is�es onditions (14) with  > (2�)−1. Then the normalized estimate (16)�n = √n(�n−�(S)) is asymptotially normal with parameters (0; �2(S))and asymptotially eÆient uniformly in �(�; L) for any loss funtion l(x)admitting a polynomial majorant.Proof. Denote by Gn the �-algebra generated by X1(·); : : : ; X[nÆ℄(·).Then we have from (16):E{�n|Gn} = �(Sn) + T∫0 �′(Sn; t)(S(t)− Sn(t))dt: (17)On the other hand, it follows from Lagrange mean value theorem and (14)that�(S) = �(Sn)+ T∫0 �′(Sn; t)(S(t)−Sn(t))dt+O(‖S(·)−Sn(·)‖1+): (18)Hene E{�n|Gn} = �(S) + O(‖S(·) − Sn(·)‖1+) and we have, makinguse of (15) and Æ > [1+ 1=(2�)℄=(1+ ), that uniformly in S(t) ∈ �(�; L)

|E�n − �(S)| 6 CE‖S(·)− Sn(·)‖1+
6 Cn−Æ�(1+)=(2�+1) = o(n−1=2): (19)



134 R. KHASMINSKIIAnalogously, making use of (14) again, we have
√n(�n − �(S)) = 1√n n∑i=[nÆ ℄+1 T∫0 �′(S; t)(Xi(dt)− S(t)dt) + �n: (20)Here �n → 0 in probability uniformly in S(t) ∈ �(�; L). The asymptotinormality of �n with parameters (0; �2(S)) follows from (19), (20), andthe entral limit theorem. The asymptoti eÆieny of �n for the boundedloss funtions also follows. In order to �nish the proof of theorem, it isenough to prove thatlim supn→∞

supS∈∑(�;L)E|√n(�n − E(�n|Gn))|2r < ∞:Making use of Lemma 1.2 in [6℄, we have for r > 1,E|√n(�n − E(�n|Gn))|2r = E{E|√n(�n − E(�n|Gn))|2r |Gn}= E{E∣∣∣∣
√nn− [nÆ℄ T∫0 �′(Sn; t)( n∑i=[nÆ ℄+1Xi(dt)− (n− [nÆ ℄)S(t)dt)∣∣∣∣

2r∣∣∣∣Gn}

6
1nrE{ T∫0 |�′(Sn; t)|2r(n− [nÆ℄)S(t)dt+( T∫0 |�′(Sn; t)|2(n− [nÆ℄)S(t)dt)r}(1 + o(1)) 6 C:

�3.3. Funtional estimation for the Model 2We onsider the estimation of a smooth funtional �(S) on the base ofthe X"(t), t ∈ [0; T ℄. As before, X"(t) is the Poisson proess with intensityfuntion S(t)=". In order to reate estimate for �(S), we need the followingelementary result, known as the thining of a Poisson proess, see, e.g., [10,Proposition 5.2℄. Let X(t), t ∈ [0; T ℄ be the Poisson proess with intensityfuntion �(t). Let �i, i = 1; 2; : : : be the times of \jumps" for X(t), sothat X(t) = ∑i 1{�i<t}:



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 135Let �1; �2; : : : be i.i.d. and independent of X(t) random variables suh thatP{�i = 1} = p = 1− P{�i = 0}. Create the new proess Y (t) as followsY (t) = ∑i �i1{�i<t} (21)Lemma 3.3. The proess Y (t) is a Poisson proess with the intensityfuntion p�(t). The proess X(t)− Y (t) is also Poissonian with intensityfuntion (1−p)�(t). The proesses Y (t) and X(t)−Y (t) are independent.As above, the reation of the estimate �" for �(S) will onsist of severalsteps.Step 1. Create the proess Y"(t) by (21) with X(t) = X"(t), p = "Æ ,0 < Æ < 1. Note that Y"(t) is reated on the base the observable proessX"(t) and the auxiliary i.i.d. random variables �1; �2; : : : . Hene Y"(t) isalso observable one.Step 2. Create a kernel estimate S"(t) for S(t) on the base of Y"(t). Due tothe Lemma 3.3 the proess Y"(t) has the intensity funtion S(t)="1−Æ.Hene, applying Lemma lm3.1, we haveE‖Ŝ"(t)− S(t)‖r 6 C" (1−Æ)r�2�+1 : (22)Step 3. Create the estimate�" = �(S") + T∫0 �′(S"; t)[ "1− "Æ (X"(dt)− Y"(dt)) − S"(t)dt]: (23)Let �2(S) be de�ned by (8).Theorem 3.4. Let S(·) ∈ ∑(�; L), the funtional �(S) satis�es ondi-tions (14) with  > (2�)−1. Let the estimate S" and Æ in Step 2 are hosenso that (1 + (2�)−1)=(1 + ) < 1− Æ < 1: (24)Then the normalized estimate �" = "− 12 (�" − �(S)) is asymptotiallyGaussian with parameters (0; �2(S)) and asymptotially eÆient uni-formly in ∑(�; L) for any loss funtion l(x) with polynomial majorant.Proof. Denote G" the �-algebra generated by the proess Y"(t), t ∈ [0; T ℄.Due to Lemma 3.3, the proess X"(t) − Y"(t) is independent of this �-algebra. HeneE(�"|G") = �(S") + T∫0 �′(S"; t)(S(t)− S"(t))dt: (25)



136 R. KHASMINSKIIThen, analogously to (19), we obtain from (25), (22), and (24) that for > (2�)−1
|E�" − �(S)| = o(√") (" → 0): (26)Analogously to (20), we �nd also that1√" (�" − �(S))= √"1− "Æ T∫0 �′(S; t)[X"(dt)− Y"(dt) − 1− "Æ" S(t)dt]+ �" := Z" + �";here �" → 0 in probability, as " → 0. Note thatE(X"(t)− Y"(t)) = 1− "Æ" S(t);so Z" is the integral with respet to the entered Poisson proess. So,making use of Lemma 1.1 in [6℄ again, we have, as " → 0E exp(i�Z")= exp{ T∫0 [ei �"1=21− "Æ �′(S;t)

− 1− i�"1=21− "Æ�′(S; t)]S(t)(1− "Æ)" ds}= exp




T∫0 −12 �2"(1− "Æ)2 (�′(S; t))2S(t)(1− "Æ)" dt(1 + o(1))= exp


−�22 T∫0 (�′(S; t))2S(t)dt (1 + o(1)):Hene 1√" (�" − �(S)) is asymptotially Gaussian N (0; �2(S)) for " →0. The rest part of the proof is ompletely analogous to the proof ofTheorem 3.2. �4. Conluding remarks1. The Model 1 an be redued to the Model 2: for independent Poissonproesses X1(t); : : : ; Xn(t) with the intensity funtion S(t) the proess



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 137Zn(t) = ∑ni=1Xi(t) is a Poisson proess with the intensity nS(t). ThusZn(t) is a partiular ase of the Model 2 with " = 1=n. Nevertheless wehave onsidered the estimation of nonlinear funtionals for the Models1 and 2 separately beause estimate (16) for the Model 1 is essentiallysimpler: the auxiliary Poisson proess Y"(t) is not needed for this ase.2. We have onsidered here the estimation nonlinear funtionals of theintensity funtion for the Poisson random proess X(t), t ∈ [0; T ℄. Theanalogous problem for the ase of observation of Poisson random measureX(A), A ⊂ D, D is the subset of R
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