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t. After the overview of known results 
on
erning estimatingthe linear and nonlinear fun
tionals of the density for i.i.d. observationsand for fun
tionals of the signal observed in the White Gaussian Noise(WGN) with small intensity we 
onsider the similar problems for the ob-servation the Poisson random pro
ess. Asymptoti
ally eÆ
ient estimatesof the on
e Fre
het di�erentiable fun
tionals are proposed.1. Introdu
tionEstimation nonlinear fun
tionals of unknown fun
tion related to theobservations probability distribution is one of important problems in thenonparametri
 statisti
s. The natural minimax lower bound of the esti-mation risks for di�erentiable fun
tionals of probability density fun
tionfor i.i.d. observations was obtained by B. Levit in [7℄.Let X1; : : : ; Xn be i.i.d. observations with unknown distribution den-sity p(x) = dFdx ; x ∈ R, and �(p) be the di�erentiable fun
tional withderivative �′(p) ∈ L2(F ) (i.e., �′(p)(x) is a square integrable fun
tionwith respe
t to the measure F (dx)). Then it was proven in [7℄ that forthe wide 
lass of the loss fun
tions l(x) and any Æ > 0 the lower boundlim infn→∞
supp∈OÆ(p0)Epl(√n(�n − �(p))) ≥ El(�(p0)�); (1)here � is the N (0; 1) random variable, OÆ(p0) is the Æ-vi
inity of p0 in thesuitable metri
,�2(p) = ∫

R

[�′(p)(x) − Ep�′(p)(X1)℄2p(x)dx;is valid for any estimate �n (see details in [7℄ or [4, Chap. 4℄). Here andbelow Ep means the expe
tation with respe
t to the probability measurewith the density p(x). Asymptoti
ally eÆ
ient estimates (i.e., estimateswith the equality in (1)) for some 
lasses of fun
tionals were found in [8℄.126



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 127General method for estimation the fun
tionals with various smoothnesswas proposed in [2℄.Creation of asymptoti
ally eÆ
ient nonparametri
 estimate for �(p)in [2℄ has two steps. The �rst one is the 
reation an estimate for p(x).It is possible to 
onstru
t uniformly 
onsistent estimate in L2-norm, if pbelongs to some 
lass of smooth fun
tions. Let W(�; L) be the Sobolevspa
e of densities with smoothness �, i.e.,
W(�; L) = {p : ∫

R1 |t|2� |p̂(t)|2dt 6 L};here p̂ is the Fourier transform of p. Then there exist a kernel estimatepn(x; !) su
h that for any r > 0lim supn→∞
supp∈W(�;L)Ep[‖pn(x; !)− p(x)‖L2(R)n �2�+1 ]r < ∞: (2)(See, e.g., [1℄ or similar assertion in [3℄.)The se
ond step is a 
reation of the estimator �n making use of thesmoothness �(p).Theorem 1.1. Let X1; X2; : : : ; Xn be i.i.d. observations with the densityp(x) ∈ W(�; L), the fun
tional �(p) be Fre
het di�erentiable and satis�esthe 
onditions

‖�′(p)(·)‖L2(F ) < C;
‖�′(p2)(·) − �′(p1)(·)‖L2(R) < C‖p2 − p1‖
L2(R); (3)with 
 > (2�)−1: (4)Then there exists estimate �n, based on X1; X2; : : : ; Xn, with propertylim supn→∞
supp∈W (�;L)[nEp|�n − �(p)|2

−
∫ [�′(p)(x) − Ep�′(p)(X1)℄2p(x)dx] = 0:This theorem follows immediately from (2) and Theorem 2 in [2℄. Anal-ogous approa
h was used in [5, 9℄ for the estimation of smooth fun
tionals�(S) for the observation model \Signal plus WGN:"dX"(t) = S(t)dt+ "dw(t); 0 6 t 6 1;



128 R. KHASMINSKIIhere w(t) is a standard Wiener pro
ess, " → 0. In [5, 9℄, the result, 
losedto the Theorem 1.1, was obtained if S belongs to the 
lass of fun
tions withsmoothness �, and a fun
tional �(S) is also smooth enough. It is ne
essaryto emphasize that asymptoti
ally eÆ
ient estimates were 
reated in [2,5℄ also for more smooth fun
tionals under less restri
tive assumptions
on
erning smoothness p and S. But here we 
onsider for simpli
ity onlythe 
ase of on
e di�erentiable fun
tionals.In this paper, we 
onsider the fun
tional estimation problem for theobservation of the Poisson pro
ess with unknown intensity fun
tion.2. Statement of the problem and preliminariesWe 
onsider here the nonlinear fun
tionals estimation problem for twoobservation models of the Poisson pro
ess.Model 1. X1(t); X2(t); : : : ; Xn(t), t ∈ [0; T ℄ are i.i.d. Poisson pro
esseswith the intensity fun
tion S(t). The problem is the estimation of di�er-entiable fun
tional �(S) on the base of X1(·); X2(·); : : : ; Xn(·).Model 2. X"(t); t ∈ [0; T ℄ is the Poisson pro
ess with the intensity fun
-tion "−1S(t), " → 0. The problem is the estimation of S(t) on the base ofobservation X"(t).The linear fun
tionals estimation problem for these models is very sim-ple. Let L(S) = T∫0 f(t)S(t)dt:Then the estimate Ln = 1n n∑i=1 T∫0 f(t)Xi(dt)is evidently unbiased, asymptoti
ally normal, as n → ∞, andE|Ln − L(S)|2 = 1n T∫0 f2(t)S(t)dt;see [6℄. Here and below, E means expe
tation with respe
t to the measuregenerated by the Model 1 with the intensity S(t) or by the model 2 withthe intensity S(t)=".



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 129Analogously, the estimateL" = " T∫0 f(t)X"(dt)is unbiased, asymptoti
ally normal, as " → 0, andE|L" − L(S)|2 = " T∫0 f2(t)S(t)dt:It is easy to see that these estimates are asymptoti
ally unimprovable inthe minimax sense (see [4℄, [6℄ for details).Theorem 2.1 below gives asymptoti
ally minimax lower bound of risksfor nonlinear fun
tionals. Let S be the set of 
ontinuous and stri
tly pos-itive fun
tions on [0; T ℄. Assume that the fun
tional �(S) is weakly (inGateaux sense) di�erentiable: for any h(t) ∈ L2(0; T ), � → 0�(S + �h) = �(S) + � T∫0 �′(S; t)h(t)dt + o(�): (5)Denote OÆ(S) the Æ-vi
inity of S in uniform metri
, andW the set of fun
-tions l : R → R
+ su
h that l(−x) = l(x), l(0) = 0 and l(x) nonde
reasingfor x > 0 fun
tions.Theorem 2.1. Let �(S) be di�erentiable in the sense (5) fun
tional,and �′(S) ∈ L2[0; T ℄. Assume that S ∈ S, and denote Fn the set ofestimates based on X1(·); X2(·); : : : ; Xn(·) for the Model 1, and F" the setof estimates based on X"(·) for the Model 2. Then for any l ∈ W , Æ > 0,lim infn→∞
inf�n∈Fn supS∈OÆ(S0)El(√n(�n − �(S))) > El(�(S0)�); (6)and lim inf"→0 inf�"∈F" supS∈OÆ(S0)El( 1√"(�" − �(S))) > El(�(S0)�); (7)where � is the N (0; 1) random variable,�2(S0) = T∫0 (�′(S0; t))2S0(t)dt: (8)



130 R. KHASMINSKIIProof of (6) and (7) is analogous to the proof of similar assertions for theestimation di�erentiable fun
tionals of probability density in [7, 4℄. So, weonly give a sket
h of the proof for the lower bound (7).Denote �′(S; t)N := �′(S; t)1{t:|�′(S;t)|6N}and 
onsider the parametri
 familySN (�; t) = S0(t) + (� − �0)S0(t)�′(S; t)N( T∫0 �′(S0; t)2NS0(t)dt)−1: (9)Then due to (5) we have, denoting �0 = �(S0),�(SN (�; t)) = �(S0) + (� − �0) T∫0 �′(S0; t)(�′(S0; t))NS0(t)dtT∫0 (�′(S0; t))2NS0(t)dt + o(� − �0)= � + o(� − �0); (� − �0 → 0): (10)It is easy to 
he
k that the Fisher information I"(�) for the Model 2 withthe intensity S(�; t)=" is equal toI"(�) = 1" T∫0 (�S�� (�; t))2S(�; t) dt:Thus for S(�; t) = SN(�; t) we haveI(N)" (�0) = 1" 


T∫0 (�′(S0; t)N )2S0(t)dt−1 :It is evident that for any N > 0 and Æ > 0, the family (9) belongs to

OÆ(S0) for |� − �0| small enough. It follows from (10) that an estimationof the fun
tional �(S) for the family (8) is equivalent, for � → �0, to theestimation of the parameter �. The lower bound (7) follows from thesefa
ts and the minimax lower bound for the parameter estimation (see [6℄).
�



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 1313. Asymptoti
ally effi
ient estimates3.1. Estimation of intensity fun
tionSimilarly to the fun
tionals estimation for the statisti
al models men-tioned above, the preliminary estimation of S(t) is essential. Some a prioriknown smoothness of S(t) is ne
essary for it.Denote by �(�; L) the set of positive on [0; T ℄ k times di�erentiablefun
tions with the property: for any t; t+ h ∈ [0; T ℄
|S(k)(t+ h)− S(k)(t)| 6 L|h|�; 0 < � 6 1; � = k + �:Lemma 3.1. Let S(t) ∈ �(�; L) and gi(t), i = 1; 2, be R → R fun
tionswith a 
ompa
t support and properties

∫

R

gi(t)dt = 1; ∫

R

tjgi(t)dt = 0; j = 1; : : : ; k; (11)g1(t) = 0, as t > 0; g2(t) = 0 as t < 0.Consider the estimatesSn(t) = 1nhn n∑i=1 T∫0 [g1( t− shn )1{t<T=2}+ g2( t− shn )1{t>T=2}]Xi(ds); (12)S"(t) = "h" T∫0 [g1( t− sh" )1{t<T=2} + g2( t− sh" )1{t>T=2}]X"(ds) (13)with hn = n−1=(2�+1) and h" = "1=(2�+1) for the Models 1 and 2, re-spe
tively. Then for any loss fun
tion l(x) : R → R
+ with the propertyl(x) 6 
1 exp(
2|x|) (
i > 0 are the 
onstants) the upper boundlim supn→∞

supt∈[0;T ℄El(n�=(2�+1)(Ŝn(t)− S(t))) < ∞lim sup"→0 supt∈[0;T ℄El("−�=(2�+1)(Ŝ"(t)− S(t))) < ∞



132 R. KHASMINSKIIare valid.Proof of this lemma for the Model 1 and the 
ase where the sup over[0; T ℄ repla
ed by the sup over [a; b℄, 0 < a < b < T , is done in [6℄,see Proposition 6.3 there. (It was enough in [6℄ to 
onsider similar (12)estimate with the same fun
tion g(:) for all t ∈ [a; b℄). Proposed in (12),(13) modi�
ation of the kernel estimates allows to make the upper boundfor risks uniform in t ∈ [0; T ℄ with help of the same reasoning, as in [6℄,see also [4℄. Let us prove, for instan
e, that the bias Ŝ"(t) has the order"�=(2�+1) uniformly in t ∈ [0; T ℄. Making use of well-known formula for theexpe
tation of the sto
hasti
 integral with respe
t to the Poisson pro
ess(see, e.g. [6℄, Lemma 1.1) we have for t > T=2bias Ŝ"(t) = EŜ"(t)− S(t) = 1h " T∫0 g2( t− sh" )S(s)ds− S(t)=∫

R

g2(z)[S(t− h"z)− S(t)℄dz= ∞∫0 g2(z)[S(t− h"z)− S(t)℄dz:Applying the Taylor formula and (11), we havesupT=26t6T |bias Ŝ"(t)| 6 Ch�" = C"�=(2�+1):Applying the same reasoning for 0 < t < T=2, we arrive at the upperbound sup06t6T |bias Ŝ"(t)| 6 C"�=(2�+1):
�3.2. Fun
tional estimation for the Model 1LetX1(t); : : : ; Xn(t); t ∈ [0; T ℄ be i.i.d. Poisson pro
esses with boundedintensity fun
tion S(t) ∈ �(�; L). Assume that �(S) is the Fre
het di�er-entiable fun
tional with derivative �′(S; t), satisfying the 
onditions

‖�′(S; ·)‖ < C; ‖�′(S2; ·)− �′(S1; ·)‖ 6 C‖S2 − S1‖
 : (14)Here and below, the notation ‖f‖ is used for L2(0; T )-norm of f , by C; Ciwe denote a the 
onstants, independent of n; ", may be di�erent in di�erent



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 133appearan
es. Similar the models, des
ribed above, the 
reation of an esti-mate �n for �(S) has two steps. On the �rst step we use [nÆ℄; 0 < Æ < 1,�rst observations for the estimation S(t). Due to Lemma 3.1 and Cau
hy{S
hwarz inequality this estimate Sn(t) is 
onsistent, andlim supn→∞
supS∈�(�;L)E‖Sn(·)− S(·)‖r 6 Crn−�Ær=(2�+1) (15)for any r > 0.Assume now that 
 > (2�)−1 and 
onsider the estimate�n = �(Sn) + 1n− [nÆ℄ n∑i=[nÆ ℄+1 T∫0 �′(Sn; t)(Xi(dt)− Sn(t)dt) (16)with Æ ∈ ( 1+1=(2�)1+
 ; 1).Theorem 3.2. Let S(t) ∈ �(�; L); t ∈ [0; T ℄, and the fun
tional �(S) sat-is�es 
onditions (14) with 
 > (2�)−1. Then the normalized estimate (16)�n = √n(�n−�(S)) is asymptoti
ally normal with parameters (0; �2(S))and asymptoti
ally eÆ
ient uniformly in �(�; L) for any loss fun
tion l(x)admitting a polynomial majorant.Proof. Denote by Gn the �-algebra generated by X1(·); : : : ; X[nÆ℄(·).Then we have from (16):E{�n|Gn} = �(Sn) + T∫0 �′(Sn; t)(S(t)− Sn(t))dt: (17)On the other hand, it follows from Lagrange mean value theorem and (14)that�(S) = �(Sn)+ T∫0 �′(Sn; t)(S(t)−Sn(t))dt+O(‖S(·)−Sn(·)‖1+
): (18)Hen
e E{�n|Gn} = �(S) + O(‖S(·) − Sn(·)‖1+
) and we have, makinguse of (15) and Æ > [1+ 1=(2�)℄=(1+ 
), that uniformly in S(t) ∈ �(�; L)

|E�n − �(S)| 6 CE‖S(·)− Sn(·)‖1+

6 Cn−Æ�(1+
)=(2�+1) = o(n−1=2): (19)



134 R. KHASMINSKIIAnalogously, making use of (14) again, we have
√n(�n − �(S)) = 1√n n∑i=[nÆ ℄+1 T∫0 �′(S; t)(Xi(dt)− S(t)dt) + �n: (20)Here �n → 0 in probability uniformly in S(t) ∈ �(�; L). The asymptoti
normality of �n with parameters (0; �2(S)) follows from (19), (20), andthe 
entral limit theorem. The asymptoti
 eÆ
ien
y of �n for the boundedloss fun
tions also follows. In order to �nish the proof of theorem, it isenough to prove thatlim supn→∞

supS∈∑(�;L)E|√n(�n − E(�n|Gn))|2r < ∞:Making use of Lemma 1.2 in [6℄, we have for r > 1,E|√n(�n − E(�n|Gn))|2r = E{E|√n(�n − E(�n|Gn))|2r |Gn}= E{E∣∣∣∣
√nn− [nÆ℄ T∫0 �′(Sn; t)( n∑i=[nÆ ℄+1Xi(dt)− (n− [nÆ ℄)S(t)dt)∣∣∣∣

2r∣∣∣∣Gn}

6
1nrE{ T∫0 |�′(Sn; t)|2r(n− [nÆ℄)S(t)dt+( T∫0 |�′(Sn; t)|2(n− [nÆ℄)S(t)dt)r}(1 + o(1)) 6 C:

�3.3. Fun
tional estimation for the Model 2We 
onsider the estimation of a smooth fun
tional �(S) on the base ofthe X"(t), t ∈ [0; T ℄. As before, X"(t) is the Poisson pro
ess with intensityfun
tion S(t)=". In order to 
reate estimate for �(S), we need the followingelementary result, known as the thining of a Poisson pro
ess, see, e.g., [10,Proposition 5.2℄. Let X(t), t ∈ [0; T ℄ be the Poisson pro
ess with intensityfun
tion �(t). Let �i, i = 1; 2; : : : be the times of \jumps" for X(t), sothat X(t) = ∑i 1{�i<t}:



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 135Let �1; �2; : : : be i.i.d. and independent of X(t) random variables su
h thatP{�i = 1} = p = 1− P{�i = 0}. Create the new pro
ess Y (t) as followsY (t) = ∑i �i1{�i<t} (21)Lemma 3.3. The pro
ess Y (t) is a Poisson pro
ess with the intensityfun
tion p�(t). The pro
ess X(t)− Y (t) is also Poissonian with intensityfun
tion (1−p)�(t). The pro
esses Y (t) and X(t)−Y (t) are independent.As above, the 
reation of the estimate �" for �(S) will 
onsist of severalsteps.Step 1. Create the pro
ess Y"(t) by (21) with X(t) = X"(t), p = "Æ ,0 < Æ < 1. Note that Y"(t) is 
reated on the base the observable pro
essX"(t) and the auxiliary i.i.d. random variables �1; �2; : : : . Hen
e Y"(t) isalso observable one.Step 2. Create a kernel estimate S"(t) for S(t) on the base of Y"(t). Due tothe Lemma 3.3 the pro
ess Y"(t) has the intensity fun
tion S(t)="1−Æ.Hen
e, applying Lemma lm3.1, we haveE‖Ŝ"(t)− S(t)‖r 6 C" (1−Æ)r�2�+1 : (22)Step 3. Create the estimate�" = �(S") + T∫0 �′(S"; t)[ "1− "Æ (X"(dt)− Y"(dt)) − S"(t)dt]: (23)Let �2(S) be de�ned by (8).Theorem 3.4. Let S(·) ∈ ∑(�; L), the fun
tional �(S) satis�es 
ondi-tions (14) with 
 > (2�)−1. Let the estimate S" and Æ in Step 2 are 
hosenso that (1 + (2�)−1)=(1 + 
) < 1− Æ < 1: (24)Then the normalized estimate �" = "− 12 (�" − �(S)) is asymptoti
allyGaussian with parameters (0; �2(S)) and asymptoti
ally eÆ
ient uni-formly in ∑(�; L) for any loss fun
tion l(x) with polynomial majorant.Proof. Denote G" the �-algebra generated by the pro
ess Y"(t), t ∈ [0; T ℄.Due to Lemma 3.3, the pro
ess X"(t) − Y"(t) is independent of this �-algebra. Hen
eE(�"|G") = �(S") + T∫0 �′(S"; t)(S(t)− S"(t))dt: (25)



136 R. KHASMINSKIIThen, analogously to (19), we obtain from (25), (22), and (24) that for
 > (2�)−1
|E�" − �(S)| = o(√") (" → 0): (26)Analogously to (20), we �nd also that1√" (�" − �(S))= √"1− "Æ T∫0 �′(S; t)[X"(dt)− Y"(dt) − 1− "Æ" S(t)dt]+ �" := Z" + �";here �" → 0 in probability, as " → 0. Note thatE(X"(t)− Y"(t)) = 1− "Æ" S(t);so Z" is the integral with respe
t to the 
entered Poisson pro
ess. So,making use of Lemma 1.1 in [6℄ again, we have, as " → 0E exp(i�Z")= exp{ T∫0 [ei �"1=21− "Æ �′(S;t)

− 1− i�"1=21− "Æ�′(S; t)]S(t)(1− "Æ)" ds}= exp




T∫0 −12 �2"(1− "Æ)2 (�′(S; t))2S(t)(1− "Æ)" dt(1 + o(1))= exp


−�22 T∫0 (�′(S; t))2S(t)dt (1 + o(1)):Hen
e 1√" (�" − �(S)) is asymptoti
ally Gaussian N (0; �2(S)) for " →0. The rest part of the proof is 
ompletely analogous to the proof ofTheorem 3.2. �4. Con
luding remarks1. The Model 1 
an be redu
ed to the Model 2: for independent Poissonpro
esses X1(t); : : : ; Xn(t) with the intensity fun
tion S(t) the pro
ess



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 137Zn(t) = ∑ni=1Xi(t) is a Poisson pro
ess with the intensity nS(t). ThusZn(t) is a parti
ular 
ase of the Model 2 with " = 1=n. Nevertheless wehave 
onsidered the estimation of nonlinear fun
tionals for the Models1 and 2 separately be
ause estimate (16) for the Model 1 is essentiallysimpler: the auxiliary Poisson pro
ess Y"(t) is not needed for this 
ase.2. We have 
onsidered here the estimation nonlinear fun
tionals of theintensity fun
tion for the Poisson random pro
ess X(t), t ∈ [0; T ℄. Theanalogous problem for the 
ase of observation of Poisson random measureX(A), A ⊂ D, D is the subset of R
l, 
an be 
onsidered by the similarapproa
h.3. The estimation problem of on
e 
ontinuously di�erentiable fun
tionalhas been 
onsidered here. Other estimates, analogous to the ones proposedin [2, 5, 9℄ for more smooth fun
tionals, 
an be applied for the models
onsidered here, too. I suppose that these estimates will be asymptoti
allyeÆ
ient under less restri
tive assumptions 
on
erning the smoothness ofintensity fun
tion.A
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