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ABSTRACT. After the overview of known results concerning estimating
the linear and nonlinear functionals of the density for i.i.d. observations
and for functionals of the signal observed in the White Gaussian Noise
(WGN) with small intensity we consider the similar problems for the ob-
servation the Poisson random process. Asymptotically efficient estimates
of the once Frechet differentiable functionals are proposed.

1. INTRODUCTION

Estimation nonlinear functionals of unknown function related to the
observations probability distribution is one of important problems in the
nonparametric statistics. The natural minimax lower bound of the esti-
mation risks for differentiable functionals of probability density function
for i.i.d. observations was obtained by B. Levit in [7].

Let X1,...,X, be ii.d. observations with unknown distribution den-
sity p(z) = %£,2 € R, and ®(p) be the differentiable functional with
derivative ®'(p) € La(F) (i.e., ®'(p)(z) is a square integrable function
with respect to the measure F(dz)). Then it was proven in [7] that for

the wide class of the loss functions I(z) and any § > 0 the lower bound

lim inf  sup B, l(va(®, — B(p))) > El(0(po)6): (1)

90 peOs(po)

here ¢ is the N'(0, 1) random variable, Os(pg) is the d-vicinity of py in the
suitable metric,

a*(p) = / [@'(p)(2) — B9 (p)(X1)]*p(z)dz,
R
is valid for any estimate ®,, (see details in [7] or [4, Chap. 4]). Here and
below E, means the expectation with respect to the probability measure

with the density p(z). Asymptotically efficient estimates (i.e., estimates
with the equality in (1)) for some classes of functionals were found in [8].

126



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 127

General method for estimation the functionals with various smoothness
was proposed in [2].

Creation of asymptotically efficient nonparametric estimate for ®(p)
in [2] has two steps. The first one is the creation an estimate for p(x).
It is possible to construct uniformly consistent estimate in Lo-norm, if p
belongs to some class of smooth functions. Let W(5, L) be the Sobolev
space of densities with smoothness 3, i.e.,

W(B,L) = {p : / ORI L};

here p is the Fourier transform of p. Then there exist a kernel estimate
pn(x,w) such that for any r > 0

-

. _B

limsup sup E, [|pn(x,w) — p(m)||L2(R)n26+1} < 00. (2)
n—oo peW(B,L)

(See, e.g., [1] or similar assertion in [3].)
The second step is a creation of the estimator &, making use of the
smoothness ®(p).

Theorem 1.1. Let X1, X, ..., X,, bei.i.d. observations with the density
p(x) € W(B, L), the functional ®(p) be Frechet differentiable and satisfies
the conditions

12" (P) (M 2o(r) < C5 @
H‘F(ID)(') - ‘1>/(P1)(')||L2(R) < C||P2 —p1||12(R)7
with
7> (267 (4)
Then there exists estimate ®,,, based on X1, X, ..., X,, with property

limsup sup {nEp|<I>n — ®(p)|?
n—oo peW(5,L)

- / [ (p)(2) — B,® (p)(X))Pp(x)de| = 0.

This theorem follows immediately from (2) and Theorem 2 in [2]. Anal-
ogous approach was used in [5, 9] for the estimation of smooth functionals
®(S) for the observation model “Signal plus WGN:”

dX.(t) = S(t)dt + edw(t), 0<t<1;
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here w(t) is a standard Wiener process, € — 0. In [5, 9], the result, closed
to the Theorem 1.1, was obtained if S belongs to the class of functions with
smoothness 3, and a functional ®(S) is also smooth enough. Tt is necessary
to emphasize that asymptotically efficient estimates were created in [2,
5] also for more smooth functionals under less restrictive assumptions
concerning smoothness p and S. But here we consider for simplicity only
the case of once differentiable functionals.

In this paper, we consider the functional estimation problem for the
observation of the Poisson process with unknown intensity function.

2. STATEMENT OF THE PROBLEM AND PRELIMINARIES

We consider here the nonlinear functionals estimation problem for two
observation models of the Poisson process.

Model 1. X;(t), X2(t),..., Xn(t), t € [0,T] are i.i.d. Poisson processes
with the intensity function S(t). The problem is the estimation of differ-
entiable functional ®(S) on the base of X;(-), Xa(),..., Xn(").

Model 2. X_.(t),t € [0,T] is the Poisson process with the intensity func-
tion e 1S5(t), € — 0. The problem is the estimation of S(¢) on the base of
observation X, (t).

The linear functionals estimation problem for these models is very sim-
ple. Let

T
L(S) = / F(O)S(t)dt.

Then the estimate
n

1
L,==
n -

i=1

T

[ roxian

0

is evidently unbiased, asymptotically normal, as n — oo, and
E|L, - L(S)]” = E/fQ(t)S(t)dt,

see [6]. Here and below, E means expectation with respect to the measure
generated by the Model 1 with the intensity S(#) or by the model 2 with
the intensity S(t)/e.
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Analogously, the estimate

T
L= / (O X-(dt)

is unbiased, asymptotically normal, as £ — 0, and

T

B|L. - L(S)? = 5/f2(t)S(t)dt.

0

It is easy to see that these estimates are asymptotically unimprovable in
the minimax sense (see [4], [6] for details).

Theorem 2.1 below gives asymptotically minimax lower bound of risks
for nonlinear functionals. Let S be the set of continuous and strictly pos-
itive functions on [0,T]. Assume that the functional ®(S) is weakly (in
Gateaux sense) differentiable: for any h(t) € L2(0,T), A — 0

T
B(S + M) = B(S) + A / (S, )h(£)dt + (M) 5)
0

Denote Os(S) the §-vicinity of S in uniform metric, and W the set of func-
tions I : R — RT such that [(—z) = I(z), [(0) = 0 and I(z) nondecreasing
for > 0 functions.

Theorem 2.1. Let ®(S) be differentiable in the sense (5) functional,
and ®'(S) € L»[0,T]. Assume that S € S, and denote F, the set of
estimates based on X1(-), X2(-), ..., X, (+) for the Model 1, and F. the set
of estimates based on X.(-) for the Model 2. Then for anyl € W, § > 0,

liminf inf  sup El(Vn(®, — ®(S))) = El(c(S)E), (6)
n—00 P eFn Se4(So)

and
1
liminf inf sup FEl(—=(®. — ®(S5))) = El(c(Sp)¢), 7
mipf nf s BU (8 9(9) 2 B, (D)
where ¢ is the N'(0,1) random variable,

T

o2(Sy) = / (8'(S0,1))*So () dt. (8)

0



130 R. KHASMINSKII

Proof of (6) and (7) is analogous to the proof of similar assertions for the
estimation differentiable functionals of probability density in [7, 4]. So, we
only give a sketch of the proof for the lower bound (7).
Denote
(S, t)N = @'(S, 1) 1qpja/(5,0)| <N}

and consider the parametric family

1

T
Sn(0,1) = So(t) + (8 — 60)So (1)'(S, t)N</<I>’(SO,t)?VSO(t)dt)_ . (9)
0

Then due to (5) we have, denoting 6y = ®(Sy),

f ®'(So, t)(®'(So, 1)) N So(t)dt
B(Sn(8,t)) = B(So) + (6 — o) — +o(6 — 60)
({(‘I)/(SOat))?vso(t)dt
:9—{-0(9790), (9790~>0), (10)

It is easy to check that the Fisher information I.(6) for the Model 2 with
the intensity S(8,t)/e is equal to

o:|03
)

1.(0) =

o | =

[ (25(6,1))°
|

Thus for S(6,t) = Sy (0,1) we have

T -1

I (gy) = % / (@ (S0, ) )2 S (£)dt

0

It is evident that for any N > 0 and § > 0, the family (9) belongs to
05(So) for |8 — Og| small enough. It follows from (10) that an estimation
of the functional ®(S) for the family (8) is equivalent, for 8 — 6, to the
estimation of the parameter §. The lower bound (7) follows from these

facts and the minimax lower bound for the parameter estimation (see [6]).
O
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3. ASYMPTOTICALLY EFFICIENT ESTIMATES

3.1. Estimation of intensity function

Similarly to the functionals estimation for the statistical models men-
tioned above, the preliminary estimation of S(t) is essential. Some a priori
known smoothness of S(#) is necessary for it.

Denote by (5, L) the set of positive on [0,7] k times differentiable
functions with the property: for any ¢, t + h € [0, T

ISE (¢t +h) - SE () <LK 0<a<l, B=k+a.

Lemma 3.1. Let S(t) € (5, L) and g;(t), i = 1,2, be R — R functions
with a compact support and properties

/gi(t)dt =1; /tjgi(t)dt =0; j=1,....k (11)
R R

g1(t) =0,ast>0; g2(t) =0 ast < 0.
Consider the estimates

Sn(t) = nhy, Z/gl 1{t<T/3}

=17

+ 92 (t};—ns) 1{t2T/2}} Xi(ds), (12)

T
15 t—s
Se(t) = h_s/ 1{t<T/2}+92( e )1{t>T/2}}XE(dS) (13)
0

with hy, = n~Y@+Y) and h, = £Y/(2F+D) for the Models 1 and 2, re-
spectively. Then for any loss function I(x) : R — RT with the property
I(z) < ey exp(ea|z]) (¢; > 0 are the constants) the upper bound

limsup sup El(nﬁ/(zﬁﬂ)(g\n(t) - S(t) < oo
n—oo te[0,7]

limsup sup El(a_ﬁ/(%"'l)(@(t) - S(t))) < o0
e—0 t€[0,T]
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are valid.

Proof of this lemma for the Model 1 and the case where the sup over
[0,T] replaced by the sup over [a,b], 0 < a < b < T, is done in [6],
see Proposition 6.3 there. (It was enough in [6] to consider similar (12)
estimate with the same function g(.) for all ¢ € [a,b]). Proposed in (12),
(13) modification of the kernel estimates allows to make the upper bound
for risks uniform in ¢ € [0,7] with help of the same reasoning, as in [6],
see also [4]. Let us prove, for instance, that the bias S.(¢) has the order
£#/(2B+1) yniformly in ¢ € [0, T]. Making use of well-known formula for the
expectation of the stochastic integral with respect to the Poisson process
(see, e.g. [6], Lemma 1.1) we have for t > T'/2

- / g[St — hez) — S(B)]dz= / g2 (2)[S(t — hez) — S()dz.
R 0

Applying the Taylor formula and (11), we have

sup |bias S.(t)] < ChS = CP/(2A+D),
T/2<t<T

Applying the same reasoning for 0 < t < T/2, we arrive at the upper
bound

sup |biasS.(t)| < Cef/(AH1),
0<t<T

O

3.2. Functional estimation for the Model 1

Let Xy (t),... ,Xn(t),t € [0,T] bei.i.d. Poisson processes with bounded
intensity function S(t) € (5, L). Assume that ®(S) is the Frechet differ-
entiable functional with derivative ®'(.5,¢), satisfying the conditions

1°(S, ) < C; [12°(S2,) = (S, )l < ClIS2 = Sul|”. (14)

Here and below, the notation || f|| is used for Lo (0, T')-norm of f, by C, C;
we denote a the constants, independent of n, £, may be different in different



ESTIMATION OF NONLINEAR FUNCTIONALS REVISITED 133

appearances. Similar the models, described above, the creation of an esti-
mate ®,, for ®(S) has two steps. On the first step we use [2°],0 < § < 1,
first observations for the estimation S(¢). Due to Lemma 3.1 and Cauchy-
Schwarz inequality this estimate Sy, (¢) is consistent, and

limsup sup  E[[S,(-) ~ S()|" < Con H/CHD (15
n—oo 562(671‘)

for any r > 0.
Assume now that v > (28)~! and consider the estimate

n

T
b= 8(S) 4 Y [ (S0 - Su0d) (10
0

n — [nﬁ] i= n5]+1

with § € (M2 1),

Theorem 3.2. Let S(t) € (8, L),t € [0,T], and the functional ®(S) sat-
isfies conditions (14) with v > (28)~. Then the normalized estimate (16)
Cn = /n(®, — ®(S)) is asymptotically normal with parameters (0,0>(S))
and asymptotically efficient uniformly in X(3, L) for any loss function I(x)
admitting a polynomial majorant.

Proof. Denote by G, the g-algebra generated by Xi(-),..., X[s(-).
Then we have from (16):

T
B{®,G,} = 8(5,) + / (S, 1)(S) - Su®)dt.  (17)

On the other hand, it follows from Lagrange mean value theorem and (14)
that

T
®(5) = ‘I>(Sn)+/‘P’(Smt)(s(t)—Sn(t))dt+0(|\5(-)—Sn(-)HH”)- (18)
0

Hence E{®,|G,} = ®(S5) + O(||S(:) — Sn()[|'*?) and we have, making
use of (15) and § > [1+1/(28)]/(1+ ), that uniformly in S(t) € £(8, L)

|E®, — ®(S)| < CE||S(-) — Su ()|
< Cn 0B/ (26+1) — O(n71/2). (19)
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Analogously, making use of (14) again, we have

(@, — B Z / (S, 6)(X;(dt) — SB)E) + &n. (20)

z [nS]+1

Here £, — 0 in probability uniformly in S(t) € (8, L). The asymptotic
normality of ®, with parameters (0,02(S)) follows from (19), (20), and
the central limit theorem. The asymptotic efficiency of ®,, for the bounded
loss functions also follows. In order to finish the proof of theorem, it is
enough to prove that

limsup sup E|V/n(®, — E(®,]G.))]*" < co.
n—oo SEY(B,L)

Making use of Lemma 1.2 in [6], we have for r > 1,

EWVn(®, — E(,|6,))]”" = E{E|Vn(®, — E(®,G,))[*"|Gn}

:E{E n‘f[n(s]/T Sn,t( zn: X;(d —[né])S(t)dt)
T

i=[nd]+1
/ 2r _n6
B{ [ 19070~ Doy

0

2r

3

0.

N
<]~

T

n (/T|<I>’(Sn,t)|2(n [né])S(t)dt) }(1-1—0(1)) <C.

O
3.3. Functional estimation for the Model 2

We consider the estimation of a smooth functional ®(S) on the base of
the X, (t), t € [0,T]. As before, X, (t) is the Poisson process with intensity
function S(¢)/e. In order to create estimate for ®(S), we need the following
elementary result, known as the thining of a Poisson process, see, e.g., [10,
Proposition 5.2]. Let X (t), t € [0,T'] be the Poisson process with intensity
function A(t). Let 75, ¢ = 1,2,... be the times of “jumps” for X (t), so

that
(t) = Z 1{n‘<t}-
A
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Let &1, &2, ... beii.d. and independent of X (¢) random variables such that
P{¢, =1} =p=1— P{¢ = 0}. Create the new process Y (t) as follows

(t) = Zfz’l{nq} (21)

Lemma 3.3. The process Y (t) is a Poisson process with the intensity
function pA(t). The process X (t) — Y (t) is also Poissonian with intensity
function (1 —p)A(t). The processes Y (t) and X (t) — Y (t) are independent.

As above, the creation of the estimate ®, for ®(.S) will consist of several
steps.

Step 1. Create the process Y:(t) by (21) with X(t) = X.(t), p = &9,

0 < ¢ < 1. Note that Y. (¢) is created on the base the observable process

X:(t) and the auxiliary i.i.d. random variables &1, &, .... Hence Y. (1) is

also observable one.

Step 2. Create a kernel estimate Se (t) for S(¢) on the base of Y. (¢). Due to
the Lemma 3.3 the process Y- (t) has the intensity function S(t)/e!=°.
Hence, applying Lemma Im3.1, we have

E||S.(t) — S@)|" < Ce = (22)

Step 3. Create the estimate

T

b, = B(S.) + /@’(Se,t) [15—65()(5(6#) ~Yi(dt)) — S-(t)dt|.  (23)

Let 0%(S) be defined by (8).

Theorem 3.4. Let S(-) € > (8, L), the functional ®(S) satisfies condi-
tions (14) with v > (28) L. Let the estimate S. and ¢ in Step 2 are chosen
so that

1+ H/1+y)<1-6<1. (24)
Then the normalized estimate (. = £ 2(®. — ®(S)) is asymptotically

Gaussian with parameters (0,02(S)) and asymptotically efficient uni-
formly in Y (8, L) for any loss function l(x) with polynomial majorant.

Proof. Denote G. the o-algebra generated by the process Y. (), ¢t € [0,T].
Due to Lemma 3.3, the process X.(¢) — Y:(¢) is independent of this o-
algebra. Hence

T
B(®.]G.) = 8(S.) + / (S, 1)(S(t) — S.(t))dt. (25)
0
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Then, analogously to (19), we obtain from (25), (22), and (24) that for
v> (287"

B3, — 8(S)| = o(v5) (e —0). (26)
Analogously to (20), we find also that
1
72(®e ~ 2(5))
T
/ 1—¢f
= 1\_/556 /<I> (S,t) |:X5(dt) —Y.(dt) — c SMdt| + ¢ = Z. + (.

0
here (. — 0 in probability, as € — 0. Note that

1

B(X.() = Ya(t) = —

S(),

so Z. is the integral with respect to the centered Poisson process. So,
making use of Lemma 1.1 in [6] again, we have, as € — 0

Eexp(irZ,)

T
i———®'(S,t N\el/2 _ 0
:exp{/[e 1! )71 1A qﬂ(s’t)} Mds}
0

19

1
Hence 75(% — ®(S)) is asymptotically Gaussian N(0,02(S)) for ¢ —

0. The rest part of the proof is completely analogous to the proof of
Theorem 3.2. g

4. CONCLUDING REMARKS

1. The Model 1 can be reduced to the Model 2: for independent Poisson
processes Xq(t),...,X(t) with the intensity function S(¢) the process
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Zn(t) = i, Xi(t) is a Poisson process with the intensity nS(t). Thus
Zy(t) is a particular case of the Model 2 with ¢ = 1/n. Nevertheless we
have considered the estimation of nonlinear functionals for the Models
1 and 2 separately because estimate (16) for the Model 1 is essentially
simpler: the auxiliary Poisson process Yz (¢) is not needed for this case.

2. We have considered here the estimation nonlinear functionals of the
intensity function for the Poisson random process X (t), ¢ € [0,7]. The
analogous problem for the case of observation of Poisson random measure
X(A), A C D, D is the subset of R!, can be considered by the similar
approach.

3. The estimation problem of once continuously differentiable functional
has been considered here. Other estimates, analogous to the ones proposed
in [2, 5, 9] for more smooth functionals, can be applied for the models
considered here, too. I suppose that these estimates will be asymptotically
efficient under less restrictive assumptions concerning the smoothness of
intensity function.
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