
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 363, 2009 Ç.S. Trevezas, N. LimniosMAXIMUM LIKELIHOOD ESTIMATIONFOR GENERAL HIDDEN SEMI{MARKOVPROCESSES WITH BACKWARDRECURRENCE TIME DEPENDENCEAbstrat. This artile onerns the study of the asymptoti propertiesof the maximum likelihood estimator (MLE) for the general hidden semi-Markov model (HSMM) with bakward reurrene time dependene. Bytransforming the general HSMM into a general hidden Markov model, weprove that under some regularity onditions, the MLE is strongly onsis-tent and asymptotially normal. We also provide useful expressions forthe asymptoti ovariane matries, involving the MLE of the onditionalsojourn times and the embedded Markov hain of the hidden semi-Markovhain. 1. IntrodutionHidden Markov models (HMMs) were �rst introdued by Baum andPetrie (1966), where it is proved the onsisteny and asymptoti normalityof the maximum likelihood estimator (MLE) for this model. In their study,Baum and Petrie onsider both the observable and the hidden proesswith a �nite state spae. The hidden proess forms a Markov hain (MC),and the observable proess onditioned on the MC forms a sequene ofonditionally independent random variables. This lass of HMMs is oftenreferred to, as probabilisti funtions of Markov hains. The onditions foronsisteny are weakened in Petrie (1969). Leroux (1992), Bikel, Ritovand Ryden (1998), proved the onsisteny and the asymptoti normalityof the MLE respetively, when the observable proess has a general statespae.The HMMs have a wide range of appliations, inluding speeh reogni-tion (see Rabiner (1989), and Rabiner and Juang (1993)), omputationalbiology (see Krogh et al. (1994)), signal proessing (see Elliott and Moore(1995)). The reader is also referred to Ephraim and Merhav (2002) for anoverview of statistial and information-theoreti aspets of hidden Markovproesses (HMPs). Ferguson (1980) introdued the hidden semi-Markov105



106 S. TREVEZAS, N. LIMNIOSmodels (HSMMs), where the hidden proess atually forms a semi-Markovhain (SMC). This setting allows arbitrary distributions for the sojourntimes in the states of the SMC, rather than geometri distributions inthe ase of the HMM. Reent papers that onentrate on omputationaltehniques for the HSMMs are that of Gu�edon (2003) and Sansom andThomson (2001).To the best of our knowledge, Barbu and Limnios (2006) were the �rstto study asymptoti properties of the MLE for a HSMM. In this paperwe present a di�erent approah whih an be summarized as follows:i) we generalize the results for the HSMM found therein to the generalHSMM, where the state spae of the observable proess is assumedto be a subset of a Eulidean spae. For this purpose, we follow thelines of Leroux (1992) and Bikel et al. (1998),ii) we allow the values of the observable proess (Yn), onditioned onthe SMC, to depend probabilistially not only on the state Zn butalso on the time duration that the system has stayed in this urrentstate (bakward reurrene time dependene),iii) we use minimal representations for the parametri spaes, whih areinvolved in our analysis, taking into onsideration the dependenerelations among the parameters. We also use for eah i and j the gen-eral onstants ñij to speify the support for the onditional sojourntimes, rather than extending the parametri spae with identiallyzero parameters,iv) we do a di�erent deomposition of the elements of the semi-Markovkernel, from the one found in Barbu and Limnios (2006).Together iii) and iv), open the way for expliit expressions for theasymptoti ovariane matries (as funtions of the semi-Markov kernel),that appear in the entral limit theorems for the MLE of the basi har-ateristis of the semi-Markov hain.This paper is organized as follows: In Setion 2, we introdue the math-ematial notation and we state a �rst set of onditions. In Setion 3, wegive a representation of the HSMMs as a sublass of HMMs. In Setion4, we prove the strong onsisteny of the MLE of the HSMM, and alsoof the basi harateristis of the SMC, that is, the onditional sojourntimes and the embedded Markov hain. In Setion 5, we prove the asymp-toti normality of the MLE of the HSMM and of the previously mentionedharateristis.



MAXIMUM LIKELIHOOD ESTIMATION 1072. Preliminaries and assumptionsLet (Zn; Yn)n∈N be a hidden semi-Markov hain de�ned on a proba-bility spae (
;A;P�); where � ∈ �, and � is a eulidean subset whihparametrizes our model and will be spei�ed later in the sequel. We as-sume that the SMC (Zn)n∈N has �nite state spae E = {1; 2; : : : ; s} andsemi-Markov kernel (q�ij(k))i;j∈E;k∈N: If we denote (Jn; Sn)n∈N∗ the assoi-ated Markov renewal proess to Z; then q�ij(k) = P�(Jn+1 = j; Sn+1−Sn =k | Jn = i); n ≥ 1: The proess (Sn)n∈N∗ keeps trak of the suessive timepoints that hanges of states in (Zn)n∈N our (jump times), and (Jn)n∈N∗reords the visited states at these time points. Under this onsideration,q�ii(k) = 0 for all i ∈ E; k ∈ N: We will use the notation Zk2k1 to denote thevetor (Zk1 ; Zk1+1; : : : ; Zk2); k1 ≤ k2, and id for a d-dimensional vetorwith every omponent equal to the element i ∈ E: The distribution of ZS10is seleted to be P�(Zk−10 = ik; Zk = j; S1 = k) = p�ijH �i (k−1)=��ii; wherep�ij refers to the (i; j) element of the transition matrix of the embeddedMarkov hain (Jn)n∈N∗ , H �i (·) to the survival funtion in state i, and ��iito the mean reurrene time in the i−renewal proess assoiated to thesemi-Markov hain (Zn)n∈N: We will de�ne later the above quantities asfuntions of the semi-Markov kernel. The seletion of the distribution ofZS10 is naturally justi�ed from the fat that it orresponds to the distri-bution of the same vetor in a semi-Markov system that has worked foran in�nite time period and is ensored at an arbitrary time point, thatan be onsidered as the beginning of our observation. In order to be wellde�ned, it is enough �ii <∞; for all i ∈ E:We state the following onditions onerning the sublass of SMCs tobe onsidered:(A1) There exists a minimum ñ ∈ N suh that q�ij(k) = 0; for all k >ñ; i; j ∈ E; and � ∈ �:(A2) The MC (Jn)n∈N is irreduible.Under onditions (A1) and (A2), indeed, ��ii < ∞ for all i ∈ E: It anbe shown easily that the previously de�ned distribution of ZS10 impliesthat the SMC (Zn)n∈N is stationary. Beause of the stationarity, we anallow (Zn)n∈N to be indexed by n ∈ Z: In this ase, we denote S0 =
− inf{k ∈ N : Z−k−1 6= Z−k}: For the observable proess, we assume that(Yn)n∈N takes values on the measured spae (Y;B(Y); �), where usually
Y ⊂ R

q for some q ∈ N
∗, B(Y) denotes the Borel subsets on Y, and� is a �-�nite measure de�ned on (Y;B(Y)): Also, let the onditional



108 S. TREVEZAS, N. LIMNIOSprobability densities g�(y | i; k) denote the densities that orrespond to theonditional distribution funtions P�(Yn ≤ y | Znn−k = ik+1; Zn−k−1 6= i),i ∈ E; n; k ∈ N: Under ondition (A1) there exist onstants ñij ; ñi < ∞;suh as ñij = max{k ∈ N : q�ij(k) > 0} and ñi = maxj∈E ñij : Thequantities ñij express the maximum time period that the SMC an stayin state i before having a diret transition in state j. These time bounds,for pratial purposes, are supposed to be known from the harateristisof the system to whih this model an be applied or they an be imposedby the experimenter as an approximation to a more ompliated system.The existene of these time bounds is all we need for the theoretial resultsthat will follow. For some i; j ∈ E; ñij may be equal to zero and this meansthat no diret transitions from i to j are allowed. Under ondition (A1),the possible values of k, referring to the onditional densities g�(y | i; k);are those for 0 ≤ k ≤ ñi−1: In order to simplify the notation we denote byDij = {1; 2; : : : ; ñij} for i; j ∈ E that ñij > 0; and by Di = {1; 2; : : : ; ñi}:Let T be a �nite index set. Di�erent parametri spaes will be used inthe sequel. For the moment we speify the natural parametri spae forthe HSMM, that is,� := {qij(k); �t : k ∈ Dij ; qij(k) ≥ 0;∑j;k qij(k) = 1; t ∈ T}; (1)and in order to distinguish between the two di�erent kinds of parameterswe denote �1 :={qij(k) : k ∈ Dij ; qij(k) ≥ 0;∑j;k qij(k) = 1}; (2)�2 :={�t : t ∈ T}: (3)The spae �1 parametrizes the elements of the semi-Markov kernel, andsine in the natural parametrization we have q�ij(k) = prijk(�) = qij(k);we an then suppress the superindex � from q�ij(k). The spae �2 refers toa set of parameters that haraterize the onditional densities g�(y | i; k).It an be the ase that they distinguish densities from a spei� para-metri family, from di�erent parametri families or represent transitionprobabilities when Y is a �nite state spae. In the most simple ase of asingle parametri family we have g�(y | i; k) := g(y | �(i; k)); �(i; k) ∈ A;where A ⊂ R
m for some m ∈ N: In this ase, the index set T that appearsin �2 onsists of all the possible ouples (i; k):



MAXIMUM LIKELIHOOD ESTIMATION 109From now on, we suppose for simpliity that the ardinality of T , de-noted by d2; is equal to ∑i ñi; that is, one one-dimensional parameterfor eah onditional density (m = 1). Also, we denote d1 = ∑i;j ñij ; andd = d1 + d2: Then, �1 ⊂ R
d1 ; �2 ⊂ R

d2 ; � = �1 ×�2 ⊂ R
d: Sine forall i ∈ E; ∑j;k qij(k) = 1; there are s linear dependene relations amongthe elements of the semi-Markov kernel. In order to have a minimal repre-sentation of �; we have to express s elements of the kernel as funtions ofthe others. For this purpose, let Ji = {j ∈ E : ñij = ñi}: We an hooseone element ji ∈ Ji; for all i ∈ E, and express the s elements as followsqiji (ñi) = 1− ∑j∈E−{i;ji} ∑1≤k≤ñij qij(k)− ∑1≤k≤ñi−1 qiji (k): (4)Now, we are in the position to have a minimal representation by using as aparametri spae �∗ := �∗1×�2; where �∗1 results from �1 after extratingthe parameters desribed as above. Then, �∗1 ⊂ R

d3 and �∗ ⊂ R
d4 ; whered3 = d1 − s and d4 = d1 + d2 − s = d− s:3. Representation of the HSMMs as a sublass of HMMsWe will show that the general HSMMs with bakward reurrene timedependene an be represented as a sublass of HMMs. For this purpose,it is enough to represent the SMCs that satisfy ondition (A1) as a speiallass of MCs. Let U = (Un)n∈N be the sequene of bakward reurrenetimes of the SMC (Zn)n∈Z de�ned as follows:Un = n− SN(n); (5)where N(n) = max{k ∈ N : Sk ≤ n}:Let also H i(·) be the survival funtion in state i de�ned byHi(n) := P(Sl+1 − Sl>n | Jl = i)=1−∑j∈E n∑k=0 qij(k); n ∈ N; l ∈ N

∗: (6)It an be shown that the stohasti proess (Z;U) := (Zn; Un)n∈N is aMarkov hain (see Limnios and Oprisan (2001), Theorem 3.12). In a reentpaper, Chryssaphinou et al. (2008) study properties of the proess (Z;U):This proess plays an important role on the understanding of the semi-Markov struture. On one hand, it an be used to study the probabilisti



110 S. TREVEZAS, N. LIMNIOSbehavior and limit theorems for semi-Markov hains and on the otherhand to make statistial inferene for semi-Markov hains. This role willbe extended here in the framework of the HSMMs.Condition (A1) implies that for all i ∈ E; the maximum time pe-riod that (Zn)n∈N an stay in this state is ñi. Therefore, the bak-ward reurrene time Un ∈ {0; 1; : : : ñi − 1} and diret transitions fromi to j are restrited to maximum bakward reurrene time ñij − 1:Also, it an be easily veri�ed that onditions (A1) and (A2) and theseletion of the distribution of ZS10 as previously mentioned, rendersthe proess (Z;U) a stationary MC with initial distribution given by
P� ((Z0; U0) = (i; k)) = Hi(k)=�ii; i ∈ E; 0 ≤ k ≤ ñi − 1: If we de-note by P = (p(i;k1)(j;k2)) the d2 × d2 transition probability matrix of theMC (Z;U), then the following proposition spei�es the transition proba-bilities of the above MC as a funtion of the semi-Markov kernel (see alsoBarbu and Limnios (to appear)). The proof is easy and it is omitted here.Proposition 1. Under ondition (A1), the transition probabilities of theMarkov hain (Z;U) an be written as:

p(i;k1)(j;k2) =  qij(k1 + 1)=Hi(k1); if i 6= j; k2 = 0;and 0 ≤ k1 ≤ ñij − 1;H i(k1 + 1)=Hi(k1); if i = j; k2 − k1 = 1;and 0 ≤ k1 ≤ ñi − 2;0; otherwise, (7)
where H i(·) is given by relation (6).We present here the matrix P in a blok form P = (Pij)i;j∈E ; wherePij is an ñi × ñj matrix, and for i = j;Pii =  0 p(i;0)(i;1) 0 : : : 00 0 p(i;1)(i;2) : : : 0... ... ... . . . ...0 0 0 : : : p(i;ñi−2)(i;ñi−1)0 0 0 : : : 0



; (8)



MAXIMUM LIKELIHOOD ESTIMATION 111and for i 6= j; Pij = 
p(i;0)(j;0) 0 : : : 0p(i;1)(j;0) 0 : : : 0... ... . . . ...p(i;ñij−1)(j;0) 0 : : : 00 0 : : : 0... ... . . . ...0 0 : : : 0




: (9)Remarks.1) From relation (7), we onlude that with every semi-Markov kernelthat satis�es ondition (A1) we an assoiate a Markov transition matrixwith the orresponding transition probabilities.2) If we assume additionally (A2), then p(i;k)(i;k+1) > 0; i ∈ E; 0 ≤k ≤ ñi − 2:3) When transitions from i to j are not allowed (ñij = 0); then Pij isa null matrix, while if ñij = ñi the �rst olumn of Pij has no �xed zeroelements.In Proposition 1, we regarded the probabilities p(i;k1)(j;k2) as funtionsof the semi-Markov kernel, whih is identi�ed in the natural parametriza-tion with �1: These probabilities will be denoted by p�(i;k1)(j;k2) wheneverwe refer to this parametrization. Additionally, we onsider a setting wherethe parametrization, �ts from the beginning, the lass of Markov hainsdesribed in Proposition 1. Let �̃1 = {p(i;k1)(j;k2)} ⊂ R
d4 ; where all theidentially zero elements that appear in P have been exluded and therestritions imposed on the parameters follow from the stohasti natureof the matrix P . Notie that �̃1 an be regarded as the natural parametrispae of a sublass of d2−state Markov hains with transition matriesthat are given in blok form by (8) and (9). The number of parametersthat appear in �̃1 equals d4: Sine P is a stohasti matrix, there areexatly d2 linear relations among the elements of P: If we exlude oneparameter for eah row of P; then the remaining number of parametersequals the dimension of �∗1; that is, d3:We denote by �̃∗1 ⊂ R

d3 a minimal representation of �̃1: Similarly, wehave �̃ = �̃1×�2 ⊂ R
d2+d4 ; and �̃∗ = �̃∗1×�2 ⊂ R

d4 : Let P�̃ the generielement of this sublass of d2 × d2 stohasti matries. We will show theexistene of the inverse transformation that represents every MC with d2states (d2 = s∑i=1 ñi) and transition matrix P�̃; as an s-state SMC with a



112 S. TREVEZAS, N. LIMNIOSkernel that satis�es ondition (A1):Proposition 2. There exists a ontinuous funtion 	1 from �̃∗1 into �∗1that reparametrizes every d2−state Markov hain with transition proba-bility matrix given by P�̃ by an s-state semi-Markov hain with a kernelsatisfying ondition (A1), where the states of the SMC orrespond to thebloks that the deomposition of P indiates from relations (8) and (9).Proof. From Theorem 6.7 in Barbu and Limnios (to appear), modi�edby taking into onsideration the onstants ñij ; we have for i; j suh thatñij > 0qij(k) =  p(i;0)(j;0) if k = 1;p(i;k−1)(j;0) k−2∏r=0 p(i;r)(i;r+1) if 2 ≤ k ≤ ñij : (10)The proof is omplete by letting all the other elements qij(k) = 0; forñij = 0: For our statistial purposes we will need a spei� minimal rep-resentation �̃∗1; so as to onsider this transformation as a ontinuous fun-tion from the domain �̃∗1 to �∗1: For this purpose, we �nd onvenient toexpress p(i;k1)(ji;0) as a funtion of the other parameters in the same rowof P; where ji is de�ned before relation (4). Therefore, for all i ∈ E,0 ≤ k1 ≤ ñi − 1;p(i;k1)(ji;0) = 1− ∑j:ñij≥k1+1j 6=ji p(i;k1)(j;0)−p(i;k1)(i;k1+1) if 0 ≤ k1 ≤ ñi − 2;1− ∑j∈Gi p(i;k1)(j;0) if k1 = ñi − 1; (11)where Gi = {j : j 6= ji; ñij = ñi}.We de�ne 	1 : �̃∗1 → �∗1; the desired transformation	1(p(i;k1)(j;k2)) = (qij(k)); (12)where the omponent funtions of 	1; for i; j ∈ E suh that ñij > 0; aregiven as follows:qij(1) = { p(i;0)(j;0) if j 6= ji;1− ∑j∈Gi p(i;0);(j;0) − p(i;0);(i;1) if j = ji; (13)



MAXIMUM LIKELIHOOD ESTIMATION 113qij(k) =  p(i;k−1)(j;0) k−2∏r=0 p(i;r)(i;r+1) if j 6= ji; 2 ≤ k ≤ ñij ;
(1− ∑j∈Gi p(i;k1)(j;0)−p(i;k1)(i;k1+1))k−2∏r=0p(i;r)(i;r+1) if j = ji; 2 ≤ k < ñi:(14)By (13) and (14), we onlude that 	1 is ontinuous.Remark. 1) The s parameters of �1 that have been exluded in orderto obtain �∗1 an be written as follows:qiji(ñi) = (1−∑j∈G p(i;ñi−1)(j;0)) ñi−1∏r=0 p(i;r)(i;r+1): (15)4. Consisteny resultsBy following the representation of the previous setion, the initialHSMM an now be desribed by this speial kind of HMM ((Z;U); Y ).The stationarity of (Z;U) implies the stationarity of ((Z;U); Y ): Wemake the assumption in the sequel that the natural parametri spae �∗is a ompat subset of R

d4 . Sine �∗1 is a ompat subset of R
d3 ; it isenough �2 to be ompat. If this is not the ase, we an use a standardompati�ation tehnique (see Leroux (1992), and Kiefer and Wolfowitz(1956)). In the most simple ase of a single parametri family we haveg�(y | i; k) := g(y | �(i; k)); �(i; k) ∈ A; where A ⊂ R: Here, �2 = Ad2 :The likelihood funtion for an observation {Yn0 = yn0 } an be written asp�(yn0 ) = ∑(i;k)n0 ��(i0; k0) n−1∏j=0 p�(ij ;kj)(ij+1;kj+1) n∏j=0 g(yj | �(ij ; kj));where ��(i; k) is the stationary distribution of P�:We denote the real valueof the parameter by �0 and �̃0 when it refers to �∗ and to �̃∗ respetively.Sine for the results of asymptoti normality of some harateristis ofthe system we obtain the asymptoti ovariane matries and we alu-late derivatives with respet to �; we keep the minimal representation.The estimation problem is to draw inferene about this value from a tra-jetory of (Yn)n∈N. The MLE denoted by �̂n maximizes p�(yn0 ) over �∗:In the \best" ase, it is a lass, onsisting of the parameters �; induedby permutations of a spei� value that maximizes the given likelihood.For this reason, we de�ne an equivalene relation ∼ in �∗; where �1 ∼ �2



114 S. TREVEZAS, N. LIMNIOSif P�1 = P�2 : Then, the results for the estimators should be understoodin the ontext of �∗= ∼; that is, in the quotient topology indued by thisequivalene (see, e.g., Leroux (1992)).Now, we state some extra onditions in order to dedue that the MLEis onsistent. These onditions are found in Leroux (1992), and they areadapted here to our model.(B1) Identi�ability ondition) The family of mixtures of at most d2 ele-ments of {g(y | �); � ∈ A} is identi�able.(B2) The density funtion g(y | ·) is ontinuous in A; for any y ∈ R:(B3) E�0 [|log g(Y1 | �0(i; k))|℄ < ∞; for all i; k:(B4) E�0 [sup|�′−�|<Æ(log g(Y1 | �′))+℄ < ∞ for any � ∈ A; for some Æ > 0,where x+ = max(x; 0):In this setting, the identi�ability of our model is guaranteed if (A1),(A2) and (B1) hold, and additionally the �(i; k) are distint. For details seeLeroux (1992). We are now at the point where the results of onsistenyfor MLE onerning the general HSMMs an be dedued from the orre-sponding results of the general HMMs. We denote by (q̂ij(k; n); �̂t(n)) theMLE of �0 = (q0ij(k); �0t ) over �∗:Theorem 1. If onditions (A1)-(A2), (B1)-(B4) hold, then the MLE �̂nis strongly onsistent estimator of �0 in the quotient topology, and onse-quently (q̂ij(k; n)) is strongly onsistent estimator of (q0ij(k)) in the samesense.Proof. From Proposition 1 the general HSMM (Z; Y ) parametrized by�∗; an be viewed as a type of a general HMM ((Z;U); Y ) with the sameparametri spae �∗: The result will follow from Theorem 3, Setion 6,in Leroux (1992), if the onditions 1-6 of that artile hold. Indeed, it iseasy to verify that Cond.1 of Leroux is dedued from (A1) and (A2).Conditions 2 and 3 are idential to (B1) and (B2). Cond.4 is deduedfrom the fat that the transition probabilities given in Proposition 1 areontinuous funtions of the semi-Markov kernel and Conditions 5 and 6are idential to (B3) and (B4).Let the matrix (pij) denote the probability matrix of the embeddedMarkov hain (Jn)n∈N; and (fij(k)) the onditional sojourn times, thatis, for i; j ∈ E;



MAXIMUM LIKELIHOOD ESTIMATION 115pij = ñij∑k=1 qij(k) if ñij > 0;0 if ñij = 0; (16)fij(k) = { qij (k)pij if ñij > 0; 1 ≤ k ≤ ñij ;0 if ñij = 0: (17)Sine these quantities are expressed as funtions of the semi-Markov ker-nel, we refer to them as p�ij and f�ij(k) to show that they are parametrizedover �∗: Nevertheless, we will omit the superindex � for the estima-tors. Therefore, we denote by (p̂ij(n)) and (f̂ij(k; n)) the orrespond-ing MLE for the true values (p0ij) and (f0ij(k)) respetively (regardedas vetors), where we exlude the identially zero parameters. Also, leti = ard{j : ñij > 0}; for all i ∈ E; and ̃ =∑i i:Then, the following asymptoti results hold:Corollary 3. Under onditions (A1)-(A2), (B1)-(B4),i) the MLE of the embedded Markov hain (p̂ij(n)) is strongly onsis-tent estimator of (p0ij) ;ii) the MLE of the onditional sojourn time (f̂ij(k; n)) is strongly on-sistent estimator of (f0ij(k)) :Proof. i) We de�ne the funtion � : �∗ → R
̃; where from relation (16),�(�) = �(qij(k); �t) = ( ñij∑k=1 qij(k)) = (p�ij) (for i; j ∈ E suh that ñij > 0):We onlude that (p̂ij(n)) = �̂(�)(n) = �(�̂n) = (∑ñijk=1 q̂ij(k; n)); wherethe seond equality holds from the property of MLE. Consequently, weget from the ontinuous mapping theorem, using Theorem 1 together withthe ontinuity of � that (p̂ij(n)) a:s:−→n→∞

(p0ij):ii) Let prijk(�) = qij(k) denote the projetion of � ∈ �∗ into theorresponding element of the semi-Markov kernel, and �ij the omponentfuntion of � whih orresponds to p�ij . Let also T : �∗ → R
d1 ; whereT (�) = (Tijk(�)) = (prijk(�)=�ij(�)) : Then, for i; j ∈ E suh that ñij >



116 S. TREVEZAS, N. LIMNIOS0; 1 ≤ k ≤ ñij , we have
(f�ij(k)) = (qij(k)p�ij ) = (prijk(�)�ij(�) ) = T (�);and sine T is ontinuous, the result follows along the line of reasoning oftheorem 1 i). 5. Asymptoti normality resultsTwo very useful notions for statistial inferene, losely onneted withMLE, are the rate of entropy of a stohasti proess and the generalizedKullbak{Leibler divergene. Beause of the stationarity of ((Z;U); Y ),we an allow ((Zn; Un); Yn)n∈N to be indexed by n ∈ Z: In this ase, therate of entropy of the stohasti proess ((Z;U); Y ) is de�ned as
−H(�0) := −E�0 [logP�0(Y0 | Y−1; Y−2; : : : )℄:and the generalized Kullbak{Leibler divergene is de�ned as

H�0(�) := E�0 [logP�(Y0 | Y−1; Y−2; : : : )℄; � ∈ �∗:More details about their use in the proofs of onsisteny an be found inLeroux (1992). We denote by �(�0) the opposite of the Hessian matrix of
H�0(�); alulated in �0; i.e.,�(�0) = (�u;v(�0))u;v := −

( �2H�0(�)��u��v ∣∣∣∣�=�0)u;vA third set of onditions will be established, whih is based on theartile of Bikel et al. (1998), to ensure asymptoti normality of the MLE.The onditions, adapted to our model, an be stated as follows:(C1) The MC (Zn; Un)n∈N is aperiodi.(C2) The onditional densities g(y | �(i; k)) have two ontinuous deriva-tives with respet to � ∈ �∗; in some neighborhood of �0; for all thepossible values i; k; y:(C3) There exists a Æ > 0; for all i; k suh asi) E�0 [ sup
|�−�0(i;k)|<Æ ∣∣∣∣ dd� log g(Y1 | �)∣∣∣∣2] < ∞;



MAXIMUM LIKELIHOOD ESTIMATION 117ii) E�0 [ sup
|�−�0(i;k)|<Æ ∣∣∣∣ d2d�2 log g(Y1 | �)∣∣∣∣] < ∞;iii) ∫ sup

|�−�0(i;k)|<Æ ∣∣∣∣ djd�j g(y | �)∣∣∣∣ �(dy) <∞; for 1 ≤ j ≤ 2:(C4) For �0 ∈ �∗; there exists a Æ > 0 suh as, ifr�0(y) := sup
‖�−�0‖<Æ max(i1;k1);(i2;k2) g(y | �(i1; k1))g(y | �(i2; k2)) ;then, P�0(r�0(Y1) = ∞ | (Z1; U1) = (i; k)) < 1; for all i; k:(C5) The true value �0 is an interior point of �∗.(C6) The matrix �(�0) is nonsingular.Remark. The onditions (C1){(C3), whih involve the densities g(y |�(i; k)); an be substituted with similar onditions for the more generalonditional densities g�(y | i; k); as they appear in Bikel et al. (1998).Theorem 2. Under onditions (A1){(A2), (B1){(B4) and (C1){(C6), theMLE �̂n of �0 is asymptotially normal, that is,

√n(�̂n − �0) D−→n→∞
N (0; �(�0)−1): (2)Proof. Sine Proposition 1 holds, the result will follow from Theorem 1,Setion 3 of Bikel et al. (1998), if the onditions for asymptoti normalitythat are stated there hold. Indeed, onditions (A1), (A2) and (C1) renderthe proess (Z;U) an ergodi Markov hain with �nite state spae andtherefore ondition (A1) of Bikel et al. (1998) is satis�ed. The onditions(B1){(B4), together with (A1) and (A2) imply (A6) of Bikel et al. (1998).The other onditions are adapted naturally to our model.At this point we will onnet the two natural parametri spaes �∗ and�̃∗ for the general HSMM and the type of the general HMM that we havealready onsidered respetively, by giving a onnetion between the twoasymptoti ovariane matries of the MLE of the HMM and the MLE ofthe assoiated HSMM given from Proposition 1.As we an see from relation (12), 	1 is di�erentiable on �̃∗1: By ex-tending the domain of 	1 in order to inlude the d2 parameters for theonditional densities, but keeping the same range, we de�ne 	 : �̃∗ → �∗,



118 S. TREVEZAS, N. LIMNIOSwhere 	 = (	1; prd2); and prd2 is the projetion funtion on �2: Thisfuntion is di�erentiable at �̃ ∈ �̃∗; and we denote by 	′ the total deriva-tive of 	 alulated at �̃0: Let also �(�̃0)−1 be the asymptoti ovarianematrix of the MLE ̂̃� n of �̃0:Whenever neessary we will use the followingdeomposition of the matrix �(�̃0)−1,�(�̃0)−1 = d3︷︸︸︷ d2︷︸︸︷

�(�̃0)−111 �(�̃0)−112�(�̃0)−121 �(�̃0)122  } d3

} d2 : (18)The following theorem expresses the asymptoti ovariane matrix of theMLE that orresponds to the HSMM in terms of the natural parametrispae �̃∗ assoiated to the HMM.Theorem 3. Under onditions (A1){(A2), (B1){(B4) and (C1){(C6),the MLE �̂n of �0; that orresponds to the natural parametri spae ofthe general HSMM satis�es: √n(�̂n − �0) D→ N (0;	′�(�̃0)−1(	′)⊤) asn → ∞.Consequently, √n(q̂ij(k; n) − q0ij(k)) D→ N (0;	′1�(�̃0)−111 (	′1)⊤),where the matrix 	′ is given analytially from relations (31){(35), and	′1 is the submatrix of 	′ ; taking its �rst d3 rows and olumns.Proof. Let for any i ∈ E; ñi�i(1); ñi�i(2); : : : ; ñi�i(i); the ordered se-quene of ñij ; for those j suh as ñij > 0: In the ase that some elementsare equal, the ordering is onsidered to be done aording to the orderof the indexes j as natural numbers. Note that sine ñi�i(i) = ñi, then�i(i) ∈ Ji; and therefore we an hoose ji = �i(i). Let for all i ∈ E;q(i�i(j)) = { (qi�i(j)(1); qi�i(j)(2); : : : ; qi�i(j)(ñi�i(j))) if 1 ≤ j ≤ i − 1;
(qiji (1); qiji(2); : : : ; qiji(ñiji − 1)) if j = i: (19)and also q(i) = (q(i�i(1)); q(i�i(2)); : : : ; q(iji)): (20)Then, if we denote by �(2) the parameters that orrespond to �2; anarrangement of the parameters of �∗; an be presented as follows:(qij(k); �t) = (q(1); q(2); : : : ; q(s); �(2)): (21)



MAXIMUM LIKELIHOOD ESTIMATION 119We will need a orresponding arrangement of the elements of �̃∗: For thispurpose, let for all i ∈ E; 1 ≤ j ≤ i − 1;p(ii) =(p(i;0)(i;1); p(i;1)(i;2); : : : ; p(i;ñi−2);(i;ñi−1)); (22)p(i�i(j)) =(p(i;0)(�i(j);0); p(i;1)(�i(j);0) : : : ; p(i;ñi�i(j)−1)(�i(j);0)): (23)Then, denoting byp(i) = (p(i�i(1)); p(i�i(2)); : : : ; p(i�i(i − 1)); p(ii)); (24)an expression for an arrangement of the parameters of �̃∗; is given by(p(i;k1)(j;k2); �t) = (p(1); p(2); : : : ; p(s); �(2)): (25)Using relations (13), (14), (21), (25), we have a blok deomposition for	′ as indiated below.	′ = M (1) 0 : : : 0 00 M (2) : : : 0 0... ... . . . ...0 0 : : : M (s) 00 0 : : : 0 Id2


; (26)where for all i ∈ E, M (i) = ( �q(i)�p(i)) : Using relations (13), (14), (20), (24),we deompose M (i) into bloks as follows:M (i) = M (i)11 0 : : : 0 M (i)1i0 M (i)22 : : : 0 M (i)2i... ... . . . ... ...0 0 : : : M (i)i−1;i−1 M (i)i−1;iM (i)i1 M (i)i2 : : : M (i)i;i−1 M (i)ii



; (27)where for 1 ≤ j ≤ i − 1;M (i)jj = (�q(i�i(j))�p(i�i(j))) ;M (i)ji = (�q(i�i(j))�p(ii) ) ;M (i)ij = (�q(i�i(i))�p(i�i(j)) ) ;



120 S. TREVEZAS, N. LIMNIOSand M (i)ii = (�q(i�i(i))�p(ii) ) :These four di�erent types of matries summarize all the information wewant in order to have an expliit matrix form for 	′ ; and we study eahone of them.For all i ∈ E; 1 ≤ k ≤ ñi − 1; letai(k) = k−1∏r=0 p(i;r)(i;r+1); (28)ai(k; l) = ai(k)p(i;l−1)(i;l) ; 1 ≤ l ≤ k; (29)b(j)iu (k; l) =p(i;u)(�i(j);0)ai(k; l); 1 ≤ l ≤ k; 1 ≤ u ≤ ñi�i(j) − 1: (30)Reall that ji = �i(i) and we will also use the abbreviation ij = ñi�i(j)−2; +ij = ij + 1: Then,M (i)jj = diag{1; ai(1); ai(2); : : : ; ai(+ij)}: (31)M (i)ij = (�(i)ij 0⊤0 0⊤) ; (32)where �(i)ij = − diag{1; ai(1); ai(2); : : : ; ai(ij)}; (33)M(i)ji =  0 0 : : : 0 0 : : : 0b(j)i1 (1; 1) 0 : : : 0 0 : : : 0b(j)i2 (2; 1) b(j)i2 (2; 2) : : : 0 0 : : : 0... ... . . . ... ... . . . ...b(j)i;+ij (+ij ; 1) b(j)i;+ij (+ij ; 2) : : : b(j)i;+ij (+ij ; +ij) 0 : : : 0 ; (34)
M(i)ii =  −1 0 : : : 0 0b(ji)i1 (1; 1) −ai(1) : : : 0 0b(ji)i2 (2; 1) b(ji)i2 (2; 2) : : : 0 0... ... . . . ... ...b(ji)i;iji (iji ; 1) b(ji)i;iji (iji ; 2) : : : b(ji)i;iji (iji ; iji ) −ai(iji ) (35)



MAXIMUM LIKELIHOOD ESTIMATION 121Sine √n(�̂n − �0) = √n(	(̂̃� n)−	(�̃ 0)); (36)where 	 is di�erentiable at �̃ 0; then Theorem 3 follows from Theorem 2,by an appliation of the delta method.Remark. In order to �nd the asymptoti ovariane matrix of√n(q̂ij(k; n) − q0ij(k)), regarded in �1 instead of �∗1; we add the param-eters qiji (ñi); given from (15), and using relation (4) we onlude that√n(q̂ij(k; n)− q0ij(k)) → N (0; C	′1�(�̃0)−111 (	′1)⊤C⊤); whereC = diag{Ci; i ∈ E}; Ci = ( Iri
−1 ) ; ri = i∑j=1 ñi�i(j) − 1:Let �1 and T1 be � and T respetively, regarded as funtions with domain�∗1; where � and T are de�ned in Corollary 3. We give in the followingtwo propositions the asymptoti normality results for the MLE of theharateristis of the semi-Markov system, de�ned by (16) and (17).Proposition 4. Under onditions (A1){(A2), (B1){(B4) and (C1){(C6),the MLE of the embedded Markov hain is asymptotially normal, thatis, √n((p̂i;j(n)) − (p0ij)) D→ N (0;�′1	′1�(�̃0)−1(�′1	′1)⊤); where �′1	′1 isgiven by relations (41) and (42).Proof. Let for all i ∈ E;pe(i) = (pi�i(1); pi�i(2); : : : ; pi�i(i)): (37)Then, an arrangement of the parameters (pij) of the embedded MC anbe presented as follows:(pij) = (pe(1); pe(2); : : : ; pe(s)): (38)If we denote by (�pe(i1)�q(i2) ) := ( �pi1j1�qi2j2 (k)) = �1′; and V (i) := (�pe(i)�q(i) ) ;then, �1′ = diag{V (i); i ∈ E}; (39)where V (i) =  1(i)11 0 : : : 0 00 1(i)22 : : : 0 0... ... . . . ... ...0 0 : : : 1(i)i−1;i−1 0

−1(i)i1 −1(i)i2 : : : −1(i)i;i−1 0


; (40)



122 S. TREVEZAS, N. LIMNIOSand 1(i)jj ; 1(i)ij ; are ñi�i(j)−dimensional row vetors, with entries 1, for allj suh that 1 ≤ j ≤ i − 1:Sine √n ((p̂i;j(n))− (p0ij)) = √n (�1(q̂ij(k; n))− �1(q0ij(k))) ; by us-ing Theorem 3 and the di�erentiability of �1 on �∗1; we onludefrom an appliation of the delta method that √n ((p̂i;j(n))− (p0ij)) →
N (0;�′1	′1�(�̃0)−1(�′1	′1)⊤); where�′1	′1 = diag{V (i)M (i); i ∈ E}; (41)and V (i);M (i) are given by (40) and (27) respetively.The expliit form of their produt for all i ∈ E; is given as follows:V (i)M (i) =  d(i)1 0 : : : 0 00 d(i)2 : : : 0 0... ... . . . ...0 0 : : : d(i)i−1 0

−d(i)1 −d(i)2 : : : −d(i)i−1 0


; (42)where d(i)j = (1; ai(1); ai(2); : : : ; ai(+ij)); and ai(k) are given by (28).Proposition 5. Under onditions (A1){(A2), (B1){(B4) and (C1){(C6),the MLE of the onditional sojourn times is asymptotially normal, thatis,

√n((f̂ij(k; n))− (f0ij(k; n))) D→n→∞
N (0; T ′1	′1�(�0)−1(T ′1	′1)t):Proof. Let for all i ∈ E; 1 ≤ j ≤ i;f(i�i(j)) = (fi�i(j)(1); fi�i(j)(2) : : : ; fi�i(j)(ñi�i(j))); (43)and for all i ∈ E;f(i) = (f(i�i(1)); f(i�i(2)); : : : ; f(i�i(i))): (44)Then, an arrangement of the parameters (fij(k)) of the onditional so-journ times an be presented as follows:(fij(k)) = (f(1); f(2); : : : ; f(s)) : (45)



MAXIMUM LIKELIHOOD ESTIMATION 123If we denote by (�f(i1)�q(i2)) := (�fi1j1 (k1)�qi2j2 (k2)) = T ′1; and F (i) := (�f(i)�q(i)) ; then,T ′1 = diag{F (i); i ∈ E}; (46)where F (i) = F (i)11 0 : : : 0 00 F (i)22 : : : 0 0... ... . . . ... ...0 0 : : : F (i)i−1;i−1 0F (i)i1 F (i)i2 : : : F (i)i;i−1 F (i)ii


; (47)and the matries F (i)j1j2 := (�f(i�i(j1))�q(i�i(j2))) ; for the di�erent values of j1 andj2 that orrespond to the non zero matries in (47), are given byF (i)jj = −

1p2i�i(j) −
∑k 6=1 qi�i(j)(k) qi�i(j)(1) : : : qi�i(j)(1)qi�i(j)(2) −

∑k 6=2 qi�i(j)(k) : : : qi�i(j)(2)... ... . . . ...qi�i(j)(ñi�i(j)) qi�i(j)(ñi�i(j)) : : : −
∑k 6=ñi�i(j) qi�i(j)(k)




;(48)F (i)ij = 1p2iji  qiji (1) qiji (1) : : : qiji (1)... ... . . . ...qiji(ñi − 1) qiji(ñi − 1) : : : qiji(ñi − 1)
− ∑k 6=ñi qiji(k) − ∑k 6=ñi qiji(k) : : : − ∑k 6=ñi qiji(k) ; (49)F (i)ii = 1piji ( Isi−1) ; where si = +iji : (50)Sine √n((f̂ij(k))− (f0ij(k))) = √n (T1(q̂ij(k; n))− T1(q0ij(k))) ; by us-ing Theorem 3, and the di�erentiability of T1 on �∗1; we onludefrom an appliation of delta method that √n((f̂ij(k))− (f0ij(k))) →

N (0; T ′1	′1�(�0)−1(T ′1	′1)⊤); whereT ′1	′1 = diag{F (i)M (i); i ∈ E}; (51)



124 S. TREVEZAS, N. LIMNIOSand F (i); M (i); are given by (47) and (27) respetively. The expliit formof these matries for all i ∈ E; is given as follows:F (i)M (i) = D(i)11 0 : : : 0 00 D(i)22 : : : 0 0... ... . . . ... ...0 0 : : : D(i)i−1;i−1 0D(i)i1 D(i)i2 : : : D(i)i;i−1 D(i)i;i


; (52)where for 1 ≤ j ≤ i − 1;D(i)jj =−

1p2i�i(j) −
∑k 6=1 qi�i(j)(k) ai(1)qi�i(j)(1) : : : ai(+ij)qi�i(j)(1)qi�i(j)(2) −ai(1) ∑k 6=2 qi�i(j)(k) : : : ai(+ij)qi�i(j)(2)... ... . . . ...qi�i(j)(ñi�i(j)) ai(1)qi�i(j)(ñi�i(j)) : : : −ai(+ij) ∑k 6=ñi�i(j)qi�i(j)(k)




;(53)D(i)ij = 1p2iji −
∑k 6=1 qiji(k) ai(1)qiji (1) : : : ai(+ij)qiji (1)qiji (2) −ai(1)∑k 6=2 qiji (k) : : : ai(+ij)qiji (2)... ... . . . ...qiji(ñi) ai(1)qiji (ñi) : : : −ai(+ij) ∑k 6=ñi qiji (k)




;(54)and D(i)i;i = i∑j=1 F (i)ijM (i)ji ; (55)where F (i)ij ; M (i)ji are given by (34){(35) and (49){(50).Referenes1. V. Barbu, N. Limnios, Maximum likelihood estimation for hidden semi-Markovmodels. | C. R. Aad. Si. Paris 342 (2006), 201{205.2. V. Barbu, N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models to-ward Appliations. Springer3. L. E. Baum and T. Petrie, Statistial inferene for probabilisti funtions of �nitestate Markov hains. | Ann. Math. Stat., 37, (1966), 1554{1563,
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