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FOR GENERAL HIDDEN SEMI-MARKOV
PROCESSES WITH BACKWARD
RECURRENCE TIME DEPENDENCE

ABSTRACT. This article concerns the study of the asymptotic properties
of the maximum likelihood estimator (MLE) for the general hidden semi-
Markov model (HSMM) with backward recurrence time dependence. By
transforming the general HSMM into a general hidden Markov model, we
prove that under some regularity conditions, the MLE is strongly consis-
tent and asymptotically normal. We also provide useful expressions for
the asymptotic covariance matrices, involving the MLE of the conditional
sojourn times and the embedded Markov chain of the hidden semi-Markov
chain.

1. INTRODUCTION

Hidden Markov models (HMMs) were first introduced by Baum and
Petrie (1966), where it is proved the consistency and asymptotic normality
of the maximum likelihood estimator (MLE) for this model. In their study,
Baum and Petrie consider both the observable and the hidden process
with a finite state space. The hidden process forms a Markov chain (MC),
and the observable process conditioned on the MC forms a sequence of
conditionally independent random variables. This class of HMMs is often
referred to, as probabilistic functions of Markov chains. The conditions for
consistency are weakened in Petrie (1969). Leroux (1992), Bickel, Ritov
and Ryden (1998), proved the consistency and the asymptotic normality
of the MLE respectively, when the observable process has a general state
space.

The HMMs have a wide range of applications, including speech recogni-
tion (see Rabiner (1989), and Rabiner and Juang (1993)), computational
biology (see Krogh et al. (1994)), signal processing (see Elliott and Moore
(1995)). The reader is also referred to Ephraim and Merhav (2002) for an
overview of statistical and information-theoretic aspects of hidden Markov
processes (HMPs). Ferguson (1980) introduced the hidden semi-Markov
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models (HSMMs), where the hidden process actually forms a semi-Markov
chain (SMC). This setting allows arbitrary distributions for the sojourn
times in the states of the SMC, rather than geometric distributions in
the case of the HMM. Recent papers that concentrate on computational
techniques for the HSMMs are that of Guédon (2003) and Sansom and
Thomson (2001).

To the best of our knowledge, Barbu and Limnios (2006) were the first
to study asymptotic properties of the MLE for a HSMM. In this paper
we present a different approach which can be summarized as follows:

i) we generalize the results for the HSMM found therein to the general
HSMM, where the state space of the observable process is assumed
to be a subset of a Euclidean space. For this purpose, we follow the
lines of Leroux (1992) and Bickel et al. (1998),

ii) we allow the values of the observable process (Y,), conditioned on
the SMC, to depend probabilistically not only on the state Z, but
also on the time duration that the system has stayed in this current
state (backward recurrence time dependence),

iii) we use minimal representations for the parametric spaces, which are
involved in our analysis, taking into consideration the dependence
relations among the parameters. We also use for each ¢ and j the gen-
eral constants 7;; to specify the support for the conditional sojourn
times, rather than extending the parametric space with identically
Zero parameters,

iv) we do a different decomposition of the elements of the semi-Markov
kernel, from the one found in Barbu and Limnios (2006).

Together iii) and iv), open the way for explicit expressions for the
asymptotic covariance matrices (as functions of the semi-Markov kernel),
that appear in the central limit theorems for the MLE of the basic char-
acteristics of the semi-Markov chain.

This paper is organized as follows: In Section 2, we introduce the math-
ematical notation and we state a first set of conditions. In Section 3, we
give a representation of the HSMMs as a subclass of HMMs. In Section
4, we prove the strong consistency of the MLE of the HSMM, and also
of the basic characteristics of the SMC, that is, the conditional sojourn
times and the embedded Markov chain. In Section 5, we prove the asymp-
totic normality of the MLE of the HSMM and of the previously mentioned
characteristics.
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2. PRELIMINARIES AND ASSUMPTIONS

Let (Z,,Yn)nen be a hidden semi-Markov chain defined on a proba-
bility space (2,.4,Pp), where 8 € O, and © is a euclidean subset which
parametrizes our model and will be specified later in the sequel. We as-
sume that the SMC (Z,),en has finite state space F = {1,2,...,s} and
semi-Markov kernel (¢f; (k))i,jem ren. If we denote (J,,, Sp)nen- the associ-
ated Markov renewal process to Z, then qu (k) =Py(Jps1 = J, Sne1—Sn =
k| J, =1), n > 1. The process (S, )nen- keeps track of the successive time
points that changes of states in (Z,,)nen occur (jump times), and (Jp,)nen+
records the visited states at these time points. Under this consideration,
¢’ (k) =0foralli € E, k € N. We will use the notation Zﬁf to denote the
vector (Zk,, Zky41s--- 5 Zks ), k1 < ko, and iy for a d-dimensional vector
with every component equal to the element 7 € E. The distribution of Zg !

is selected to be Pp(ZE™! =iy, Zp, = 5,51 = k) = pfjﬁf(kf 1)/ué;, where

pfj refers to the (¢,j) element of the transition matrix of the embedded
Markov chain (J,)nen+, ﬁf() to the survival function in state i, and uf;
to the mean recurrence time in the i—renewal process associated to the
semi-Markov chain (Z,),cn. We will define later the above quantities as
functions of the semi-Markov kernel. The selection of the distribution of
Zg ! is naturally justified from the fact that it corresponds to the distri-
bution of the same vector in a semi-Markov system that has worked for
an infinite time period and is censored at an arbitrary time point, that
can be considered as the beginning of our observation. In order to be well
defined, it is enough p;; < oo, for all ¢ € E.

We state the following conditions concerning the subclass of SMCs to
be considered:

(A1) There exists a minimum 7 € N such that ¢f;(k) = 0, for all k >
n, i,j € E,and 6 € 0.
(A2) The MC (Jp)nen is irreducible.

Under conditions (A1) and (A2), indeed, pf; < oo for all i € E. It can
be shown easily that the previously defined distribution of Zgl implies
that the SMC (Z,)nen is stationary. Because of the stationarity, we can
allow (Z,)nen to be indexed by n € Z. In this case, we denote Sy =
—inf{k e N: Z_;_1 # Z_}. For the observable process, we assume that
(Y,)nen takes values on the measured space (), B()),v), where usually
Y C R? for some g € N*, B()) denotes the Borel subsets on ), and
v is a o-finite measure defined on (), B(Y)). Also, let the conditional
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probability densities g (y | 7, k) denote the densities that correspond to the
conditional distribution functions Pe(Y, <y | Z}_, = ixt1, Zn—k—1 # ©),
i € E, n,k € N. Under condition (A1) there exist constants n;;,7; < 00,
such as n;; = max{k € N : ¢/;(k) > 0} and n; = max;egn;;. The
quantities 7;; express the maximum time period that the SMC can stay
in state ¢ before having a direct transition in state j. These time bounds,
for practical purposes, are supposed to be known from the characteristics
of the system to which this model can be applied or they can be imposed
by the experimenter as an approximation to a more complicated system.
The existence of these time bounds is all we need for the theoretical results
that will follow. For some ¢, j € E, n;; may be equal to zero and this means
that no direct transitions from i to j are allowed. Under condition (A1),
the possible values of k, referring to the conditional densities g¢(y | 7, k),
are those for 0 < k < n; —1. In order to simplify the notation we denote by
D;; = {1,2,... ,ﬁi]‘} for i,j € E that ﬁij > 0,and by D; = {1,2,... ,7;}.

Let T be a finite index set. Different parametric spaces will be used in
the sequel. For the moment we specify the natural parametric space for
the HSMM, that is,

© :={g;;(k),0: : k € Dyj,q:5(k) > Uathj(k) =LteT}, (1)
ik

and in order to distinguish between the two different kinds of parameters
we denote

©1 :={q;;(k) : k € Dij, qi; (k) = O’Z%'j(k) =1}, (2)
ik
0, :={0;:t € T}. (3)

The space ©; parametrizes the elements of the semi-Markov kernel, and
since in the natural parametrization we have qu(k:) = prijyr(0) = q;;(k),
we can then suppress the superindex 6 from qu(k). The space ©5 refers to
a set of parameters that characterize the conditional densities gy(y | 7, k).
It can be the case that they distinguish densities from a specific para-
metric family, from different parametric families or represent transition
probabilities when ) is a finite state space. In the most simple case of a
single parametric family we have go(y | i, k) := g(y | 6(i, k)), 0(i, k) € A,
where A C R™ for some m € N. In this case, the index set T that appears
in O4 consists of all the possible couples (i, k).
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From now on, we suppose for simplicity that the cardinality of T', de-
noted by ds, is equal to > n;, that is, one one-dimensional parameter

K3
for each conditional density (m = 1). Also, we denote d; = ) 7,5, and
i,
d=d, +dy. Then, ©, C R*", O, Cc R®, © = 0, x O, C R%. Since for
alli € E, ZM ¢i; (k) = 1, there are s linear dependence relations among
the elements of the semi-Markov kernel. In order to have a minimal repre-
sentation of @, we have to express s elements of the kernel as functions of
the others. For this purpose, let J; = {j € E : n;; = n;}. We can choose
one element j; € J;, for all i € E, and express the s elements as follows

gij; () =1— Y >oow® - Y q(k). (4)

JEE—{4,ji } 1<k<ni; 1<k<ni—1

Now, we are in the position to have a minimal representation by using as a
parametric space ©* := 0] x O3, where 07 results from 0, after extracting
the parameters described as above. Then, ®F C R% and ©* C R%, where
ds=di —sanddys =di +do —s=d—s.

3. REPRESENTATION OF THE HSMMS AS A suBcLASS OF HMMs

We will show that the general HSMMs with backward recurrence time
dependence can be represented as a subclass of HMMs. For this purpose,
it is enough to represent the SMCs that satisfy condition (A1) as a special
class of MCs. Let U = (Uy,)nen be the sequence of backward recurrence
times of the SMC (Z,,)nez defined as follows:

Un =1 — Sn(n), (5)

where N(n) = max{k € N: Sy <n}.
Let also H;(-) be the survival function in state i defined by

Hi(n) :=P(Sip1 = Sy>n| Ji=i)=1-Y > g;(k), n € N,l € N*. (6)
FEE k=0

It can be shown that the stochastic process (Z,U) := (Zn,Up)nen is a
Markov chain (see Limnios and Oprisan (2001), Theorem 3.12). In a recent
paper, Chryssaphinou et al. (2008) study properties of the process (Z,U).
This process plays an important role on the understanding of the semi-
Markov structure. On one hand, it can be used to study the probabilistic
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behavior and limit theorems for semi-Markov chains and on the other
hand to make statistical inference for semi-Markov chains. This role will
be extended here in the framework of the HSMMs.

Condition (A1) implies that for all i € E, the maximum time pe-
riod that (Z,)pen can stay in this state is 77;. Therefore, the back-
ward recurrence time U, € {0,1,...n; — 1} and direct transitions from
¢ to j are restricted to maximum backward recurrence time n;; — 1.
Also, it can be easily verified that conditions (A1) and (A2) and the
selection of the distribution of Z[‘?l as previously mentioned, renders
the process (Z,U) a stationary MC with initial distribution given by
Py ((Zo,Uo) = (i, k)) = Hi(k)/pii, i € E, 0 < k < 1y — 1. If we de-
note by P = (p(; k,)(j,ks)) the d2 X do transition probability matrix of the
MC (Z,U), then the following proposition specifies the transition proba-
bilities of the above MC as a function of the semi-Markov kernel (see also
Barbu and Limnios (to appear)). The proof is easy and it is omitted here.

Proposition 1. Under condition (A1), the transition probabilities of the
Markov chain (Z,U) can be written as:

ij(ky + 1)/Hi(ky), if i #j, ky =0,
and ng’l Sﬁij—l,
Plik) ko) = § Hilky +1)/H;(k1), if i=j, ks —ki=1, (7)
and 0 <k <n; —2,

0, otherwise,

where H;(-) is given by relation (6).

We present here the matrix P in a block form P = (P;;); jer, where
P;; is an n; x n; matrix, and for i = j,

0 Peio)(in) 0 .. 0
0 0 PG G2y - 0

Pi-| : : - : ) (8)
0 0 0 coe PGRi—2) (4,7 —1)
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and for i # j,
P00 0 0
PeGo 0 0
Pij = | ps,-1)G0) O 0 ®
0 0
0 0 0
Remarks.

1) From relation (7), we conclude that with every semi-Markov kernel
that satisfies condition (A1) we can associate a Markov transition matrix
with the corresponding transition probabilities.

2) If we assume additionally (A2), then p(; gy k1) > 0,7 € E, 0 <
kE<mn;—2.

3) When transitions from ¢ to j are not allowed (7;; = 0), then P;; is
a null matrix, while if 77;; = n; the first column of P;; has no fixed zero
elements.

In Proposition 1, we regarded the probabilities p(; x,)(j,k,) as functions
of the semi-Markov kernel, which is identified in the natural parametriza-
tion with ©;. These probabilities will be denoted by p?L k1) (o) whenever
we refer to this parametrization. Additionally, we consider a setting where
the parametrization, fits from the beginning, the class of Markov chains
described in Proposition 1. Let ©; = {Pi,k1) (ko) } € R™, where all the
identically zero elements that appear in P have been excluded and the
restrictions imposed on the parameters follow from the stochastic nature
of the matrix P. Notice that ©; can be regarded as the natural parametric
space of a subclass of ds—state Markov chains with transition matrices
that are given in block form by (8) and (9). The number of parameters
that appear in 0, equals d4. Since P is a stochastic matrix, there are
exactly do linear relations among the elements of P. If we exclude one
parameter for each row of P, then the remaining number of parameters
equals the dimension of ©7, that is, ds.

We denote by ©f C RY a minimal representation of ©1. Similarly, we
have © = ©; x O C R%2+ds and 0* = (:){ X Oy C R% . Let Py the generic
element of this subclass of ds x ds stochastic matrices. We will show the
existence of the inverse transformation that represents every MC with ds

S
states (d2 = )_ ;) and transition matrix Pj, as an s-state SMC with a
i=1
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kernel that satisfies condition (A1).

Proposition 2. There exists a continuous function ¥; from (:)1‘ into ©7
that reparametrizes every ds—state Markov chain with transition proba-
bility matrix given by P; by an s-state semi-Markov chain with a kernel
satisfying condition (A1), where the states of the SMC correspond to the
blocks that the decomposition of P indicates from relations (8) and (9).

Proof. From Theorem 6.7 in Barbu and Limnios (to appear), modified
by taking into consideration the constants 7;;, we have for 4, j such that
ﬁi]‘ >0

D(i,0)(3,0) it k=1,

qij (k) = k=2 . _ (10)
! D k—1)(4,0) Hop(i,r)(i,rJrl) if 2<k<ny.
r=

The proof is complete by letting all the other elements ¢;;(k) = 0, for
n;; = 0. For our statistical purposes we will need a specific minimal rep-
resentation (:)*1‘, so as to consider this transformation as a continuous func-
tion from the domain (:){ to ©7F. For this purpose, we find convenient to
express p(; r,)(j;,0) a8 a function of the other parameters in the same row
of P, where j; is defined before relation (4). Therefore, for all i € E,
0 § kl < ﬁz - ]-7

L= > Pk G0) —Plik)(ik+1) i 0 <k < — 2,
Jini;>k1+1
Pi.k)(3:.0) = 7 _ N
L— > PaknGo if ki =n; —1,
JEG:

(11)
where Gl = {_] ] 75 ji, ﬁij = ﬁl}
We define ¥; : O] — OF, the desired transformation

‘I’l(p(i,kl)(j,m)) = (Qij(k))7 (12)

where the component functions of ¥y, for 4, j € E such that n;; > 0, are
given as follows:

L— > P0),Go) — PGy i J=Jis (13)

P00 i F Jis
(1) =
jeG;
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k-2
P(i,k—1)(j,0) Hop(i,r)(i,r+1) if § #Ji,2 <k < nyj,

gij (k) = o
<1— > PGk (,0) _p(i,kl)(i,k1+l)> I p6mGr+n) if 5 =702 <k <.

JjEG; r=0

(14)
By (13) and (14), we conclude that ¥, is continuous.

Remark. 1) The s parameters of ©; that have been excluded in order
to obtain ©F can be written as follows:

n;—1

¢ij: () = (1= _ pa-16.0) L1 Paryire,. (15)
r=0

jea
4. CONSISTENCY RESULTS

By following the representation of the previous section, the initial
HSMM can now be described by this special kind of HMM ((Z,U),Y).

The stationarity of (Z,U) implies the stationarity of ((Z,U),Y"). We
make the assumption in the sequel that the natural parametric space ©*
is a compact subset of R%. Since ©F is a compact subset of R% | it is
enough O, to be compact. If this is not the case, we can use a standard
compactification technique (see Leroux (1992), and Kiefer and Wolfowitz
(1956)). In the most simple case of a single parametric family we have
go(y | i, k) := g(y | 6(i,k)), 6(i,k) € A, where A C R. Here, O, = A2,
The likelihood function for an observation {Y§ = y§} can be written as

n—1 n
po(¥o) = Z 7o (70, ko) H p?i]-,k]—)(z’j+1,kj+1) Hg(yj | 0(ij,kj)),
(4,k)2 j=0 J=0

where 7y (i, k) is the stationary distribution of Py. We denote the real value
of the parameter by 8y and 50 when it refers to ©* and to ©* respectively.
Since for the results of asymptotic normality of some characteristics of
the system we obtain the asymptotic covariance matrices and we calcu-
late derivatives with respect to 8, we keep the minimal representation.
The estimation problem is to draw inference about this value from a tra-
jectory of (¥,)nen. The MLE denoted by 8,, maximizes po(yl) over OF.
In the “best” case, it is a class, consisting of the parameters 6, induced
by permutations of a specific value that maximizes the given likelihood.
For this reason, we define an equivalence relation ~ in ©*, where 6; ~ 65
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if Py, = Pp,. Then, the results for the estimators should be understood
in the context of ©®*/ ~, that is, in the quotient topology induced by this
equivalence (see, e.g., Leroux (1992)).

Now, we state some extra conditions in order to deduce that the MLE
is consistent. These conditions are found in Leroux (1992), and they are
adapted here to our model.

(B1) Identifiability condition) The family of mixtures of at most ds ele-
ments of {g(y | #),0 € A} is identifiable.

(B2) The density function g(y | -) is continuous in A, for any y € R.

(B3) Ey,[|llogg(Y1 | 6o(i,k))|] < oo, for all i, k.

(B4) Ejy, [sup|9/_9|<6(logg(Y1 |8'))T] < 0o for any @ € A, for some § > 0,
where 7 = max(z,0).

In this setting, the identifiability of our model is guaranteed if (A1),
(A2) and (B1) hold, and additionally the 8(i, k) are distinct. For details see
Leroux (1992). We are now at the point where the results of consistency
for MLE concerning the general HSMMs can be deduced from the corre-
sponding results of the general HMMs. We denote by (g;;(k,n),6:(n)) the
MLE of 8y = (qf;(k),87) over ©*.

Theorem 1. If conditions (A1)-(A2), (B1)-(B4) hold, then the MLE 6,
is strongly consistent estimator of 6y in the quotient topology, and conse-
quently (gi;(k,n)) is strongly consistent estimator of (qf;(k)) in the same
sense.

Proof. From Proposition 1 the general HSMM (Z,Y") parametrized by
©*, can be viewed as a type of a general HMM ((Z,U),Y) with the same
parametric space ©*. The result will follow from Theorem 3, Section 6,
in Leroux (1992), if the conditions 1-6 of that article hold. Indeed, it is
easy to verify that Cond.1 of Leroux is deduced from (Al) and (A2).
Conditions 2 and 3 are identical to (B1) and (B2). Cond.4 is deduced
from the fact that the transition probabilities given in Proposition 1 are
continuous functions of the semi-Markov kernel and Conditions 5 and 6
are identical to (B3) and (B4).

Let the matrix (p;;) denote the probability matrix of the embedded
Markov chain (J,)nen, and (fi;(k)) the conditional sojourn times, that
is, for i,j € E,
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ﬁi]‘
i (k ifn;; >0,
pij = k; (k) Y (16)
0 if 7 =0,
qij (k) ¢ ~ ~
=it ngy >0, 1<k < ngj,
fij(k)y=9 #a Y ! (17)
0 if Nij =0.

Since these quantities are expressed as functions of the semi-Markov ker-
nel, we refer to them as pgj and fj(k) to show that they are parametrized
over O*. Nevertheless, we will omit the superindex 6 for the estima-

tors. Therefore, we denote by (p;;(n)) and (ﬁ](k,n)) the correspond-

ing MLE for the true values (p?;) and (fj(k)) respectively (regarded
as vectors), where we exclude the identically zero parameters. Also, let
c; =card{j : n;; >0}, foralli € E,and c =), ;.

Then, the following asymptotic results hold:

Corollary 3. Under conditions (A1)-(A2), (B1)-(B4),
i) the MLE of the embedded Markov chain (p;;(n)) is strongly consis-
tent estimator of (py;),

ii) the MLE of the conditional sojourn time (ﬁ-j(k, n)) is strongly con-

sistent estimator of (ff;(k)) .

Proof. i) We define the function ® : ©* — R®, where from relation (16),
ﬁi]‘

@(9) = @(qij (k),@t) = (kgl q”(k’)) = (pgj) (fOI' Z,] € FE such that ’ﬁij > O)

We conclude that (p;;(n)) = ®(8)(n) = &(6,) = ( w2, Gij(k,n)), where
the second equality holds from the property of MLE. Consequently, we
get from the continuous mapping theorem, using Theorem 1 together with
the continuity of ® that

Bi(m) % o).
ii) Let prijx(8) = ¢;;(k) denote the projection of § € ©* into the
corresponding element of the semi-Markov kernel, and ®;; the component

function of ® which corresponds to pf;. Let also T' : ©* — R%, where
T(0) = (Tijx(0)) = (prijx(0)/®:;(6)) . Then, for 4,j € E such that n;; >
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0, 1 <k < nyj, we have

ij k Tijk 0
e = (1) = (57) = o

and since T is continuous, the result follows along the line of reasoning of
theorem 1 i).

5. ASYMPTOTIC NORMALITY RESULTS

Two very useful notions for statistical inference, closely connected with
MLE, are the rate of entropy of a stochastic process and the generalized
Kullback—Leibler divergence. Because of the stationarity of ((Z,U),Y),
we can allow ((Z,,U,), Y, )nen to be indexed by n € Z. In this case, the
rate of entropy of the stochastic process ((Z,U),Y") is defined as

—H(ao) = —Ego [logIP’go (Y() | Y_l, Y_Q, . )]
and the generalized Kullback—Leibler divergence is defined as
HQO(G) = Ego[logpg(YO | Y 1,Y o, ... )], 0 e O

More details about their use in the proofs of consistency can be found in
Leroux (1992). We denote by o(6p) the opposite of the Hessian matrix of
0°Hy, ()

Hy, (#), calculated in 6y, i.e.,
7(60) = (7unlt)), == < 96,00 )
Uv w0y gy, w

A third set of conditions will be established, which is based on the
article of Bickel et al. (1998), to ensure asymptotic normality of the MLE.
The conditions, adapted to our model, can be stated as follows:

(C1) The MC (Z,,Up)nen is aperiodic.

(C2) The conditional densities g(y | 6(i, k)) have two continuous deriva-
tives with respect to 8 € ©*, in some neighborhood of g, for all the
possible values 7, k, y.

(C3) There exists a § > 0, for all 4,k such as

d
—log g(Y1 | )

D) B df

sup
|6—60(i.k)| <6

2
]<oo,
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2

. d
ii) Ep, sup ¥7E

16—00(i,k) | <8

iii) / sup
1000 (i,k)| <o

(C4) For 6y € ©*, there exists a § > 0 such as, if

log (¥ | 9)‘ < o0,

d7
Wg(y |0)| v(dy) < oo, forl<j<2.

gy | 0(i1, k1))
r ‘= sup max @ o
o0 () 10—00]| <6 (k1) (i2,k2) g(y | O(ia, k2))

then, Py, (19, (Y1) = 00 | (Z1,U1) = (i, k)) < 1, for all 4, k.
(C5) The true value 6y is an interior point of ©*.
(C6) The matrix o(fp) is nonsingular.

Remark. The conditions (C1)-(C3), which involve the densities g(y |
0(i, k)), can be substituted with similar conditions for the more general
conditional densities go(y | i, k), as they appear in Bickel et al. (1998).

Theorem 2. Under conditions (A1)—-(A2), (B1)-(B4) and (C1)—(C6), the
MLE 6,, of 8y is asymptotically normal, that is,

V(B —6o) 25 N(0,0(60)7"). (2)

n—oo

Proof. Since Proposition 1 holds, the result will follow from Theorem 1,
Section 3 of Bickel et al. (1998), if the conditions for asymptotic normality
that are stated there hold. Indeed, conditions (A1), (A2) and (C1) render
the process (Z,U) an ergodic Markov chain with finite state space and
therefore condition (A1) of Bickel et al. (1998) is satisfied. The conditions
(B1)-(B4), together with (A1) and (A2) imply (A6) of Bickel et al. (1998).
The other conditions are adapted naturally to our model.

At this point we will connect the two natural parametric spaces ©* and
©* for the general HSMM and the type of the general HMM that we have
already considered respectively, by giving a connection between the two
asymptotic covariance matrices of the MLE of the HMM and the MLE of
the associated HSMM given from Proposition 1.

As we can see from relation (12), ¥, is differentiable on ©%. By ex-
tending the domain of ¥; in order to include the dy parameters for the
conditional densities, but keeping the same range, we define ¥ : o* — G
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where U = (U4, pry,), and prg, is the projection function on ©s. This
function is differentiable at § € ©*, and we denote by ¥’ the total deriva-
tive of ¥ calculated at 6. Let also 0(fy) ! be the asymptotic covariance

matrix of the MLE 8 ,, of 6. Whenever necessary we will use the following
decomposition of the matrix o(6) 7!,

SN N
o)~ = [0 o)y | bds (18)

0(50)511 U(go)éz }ds

The following theorem expresses the asymptotic covariance matrix of the
MLE that corresponds to the HSMM in terms of the natural parametric
space ©* associated to the HMM.

Theorem 3. Under conditions (A1)-(A2), (B1)—(B4) and (C1)—(C6),
the MLE @\n of 0y, that corresponds to the natural parametric space of
the general HSMM satisfies: /n(6, — 6o) A N0, ¥ 0(8,) "1 ()T as
n — 0o.

Consequently, /n(Gi;(k,n) — a%;(k)) = N(0,¥,0(60)1,! (¥))7),
where the matrix ¥ is given analytically from relations (31)(35), and
\Il/1 is the submatrix of ¥, taking its first d3 rows and columns.

Proof. Let for any i € FE, - 1), Miry(2),--- > Nir;(c;), the ordered se-
quence of n;;, for those j such as n;; > 0. In the case that some elements
are equal, the ordering is considered to be done according to the order
of the indexes j as natural numbers. Note that since 1., (c;) = n;, then
7i(¢ci) € J;, and therefore we can choose j; = 7;(¢;). Let for all ¢ € E,

(@irs () D) @irs () (2), - -+ s Cima(iy (i) 1< <ei—1,
(4 (1), 45, (2), - - s @iz, (Mg, — 1)) if j=g¢.

(im0 = {
(19)
q(i) = (q(ii(1)), q(i7:(2)), - . - ,q(ijs)). (20)

Then, if we denote by 6® the parameters that correspond to ©s, an
arrangement of the parameters of ©*, can be presented as follows:

and also

(qij (k)aet) = (2(1)72(2)7 o 7&(5)7Q(2)> (21)
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We will need a corresponding arrangement of the elements of ©*. For this
purpose, let foralli € B, 1 <j <¢; —1,

P(i1) =(D5,0)(,1)5 P(1,1)(1,2)5 - - - > P(i,7i—2), (6705 1) ) » (22)
B(ZT,(])) :(p(i70)(Ti(j)70)7p(ia1)(7'i(j)a0) s 7p(i,7liri(j)*1)(Ti(j)70))'
(23)
Then, denoting by
p(i) = (p(ii(1)), p(i7s(2)), . .. , pliTi(c; — 1)), p(ii)), (24)

an expression for an arrangement of the parameters of ©* is given by

(p(i,k1)(j,k2)70t) = (2(1)72_9(2)7 s 72_9(8)7Q(2))' (25)

Using relations (13), (14), (21), (25), we have a block decomposition for
U’ as indicated below.

MO 0 0 0
0o M® .. 0 0
v = : : - : , (26)
0 0 MG 0
0 0 0 I

where for all i € E, M) = (g%gg) . Using relations (13), (14), (20), (24),

we decompose M (" into blocks as follows:

M9 o0 . 0 Mf?
o M ... 0 M)
0 — : L : : , (27)
o o ..o oM . M),
v w oM@, Ml

where for 1 <7 <¢; — 1,

M@ = <32(i7i(j))) M@ — <8g(ir,-(.j))) M = (8@(1‘7’,-(9,-))) ’

7 op(iri(5)) )7
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and

CiCi

9q(iti(ci))
Op(it) '
These four different types of matrices summarize all the information we

want in order to have an explicit matrix form for \I'/, and we study each

one of them.
Forallie E, 1<k <mn;—1,let

k—1
a;(k) = H P(i,r) (isr41) 5 (28)
r=0

ikl =— %% (29)
Pii—1)(,0)

bEZ;’(k;l) =P(i,u)(ri(),0 @i (k3 1), 1 <1<k, 1<u<n; —1

Recall that j; = 7;(c;) and we will also use the abbreviation c;j = N, ;) —
2 C%r- = Cz’j + 1 Then,

» Cig
MY = diag{1,a;(1),a:(2), ... ,ai(cf)}. (31)
() T
(@ _ (A O
Mcij - ( (c)] QT) ’ (32)
where '
AY, = — diag{1,a:(1), a:i(2), ... , ai(cij)}, (33)
0 0 0 0 ... 0
b9 (151) 0
(z) — b5]2>(2§1) b5]2>(2§2) (34)
Jeq . )
bl(?c)j;(c:g,l) bl(?c)j_(c:g,Q) bz(?c)j;(clt’cji) 0 ... 0
1 0 0 0
b9 (151) —a;(1) 0
MG = b3 (2;1) bI0(22) ... 0 0 (35)

B, eigis 1) L) (eiqis?) e L) (eigseiss) —aileas,)

¢4, ¢4,
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Since

\/E(é\n - 90) = \/ﬁ(lp(gn) - ‘I’(go))a (36)
where W is differentiable at 8 0, then Theorem 3 follows from Theorem 2,
by an application of the delta method.
Remark. In order to find the asymptotic covariance matrix of
V(Gij(k,n) — ¢f;(k)), regarded in ©; instead of ©Ff, we add the param-
eters g;;, (7;), given from (15), and using relation (4) we conclude that
Vid@ij (k. n) = af; (k) — N(0,CW10(8o);1 (¥,)TCT), where

C =diag{C;,i € E}, C; = ( 17«1) y Ti = Zﬁin(j) - L
1 =

Let ®; and 77 be ® and T respectively, regarded as functions with domain
1, where ® and T are defined in Corollary 3. We give in the following

two propositions the asymptotic normality results for the MLE of the

characteristics of the semi-Markov system, defined by (16) and (17).

Proposition 4. Under conditions (A1)-(A2), (B1)-(B4) and (C1)-(C6),
the MLE of the embedded Markov chain is asymptotically normal, that
. ~ D ’ ’ =~ ’ ’ ’ ro.
is, v/n((pi,;(n)) — (P?j)) — N(0,2,%,0(60) " (®,%,)"), where ® ¥, is
given by relations (41) and (42).

Proof. Let for alli € E,

Be (Z) = (pi‘ri(l)upi‘ri(Q)u cee 7pi‘ri(ci))' (37)

Then, an arrangement of the parameters (p;;) of the embedded MC can
be presented as follows:

(pij) = (°(1),p°(2), ... ,p°(5)). (38)
ap° (i1) iy _ ) . (9p°()
If we denote by (@(izl) ) = (8q:j12(1k)) =&/, and V) .= (%(i) ) ,
then, ‘
&,/ = diag{V¥,i € E}, (39)
where )
137 Q. 0 0
o 14 0o 0
v = : : : S (40)
L A |
1@ 4@ _1(® 0

=c;1 =c;2 s —ci,ci—l
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and 15’]), E)j, are n;r, (jy—dimensional row vectors, with entries 1, for all
jsuch that 1 < j <¢ —1.

Since /1 ((Bij(n)) — (p%))) = v/ (®1(Gij (k,n)) — ®1(qf;(k))) , by us-
ing Theorem 3 and the differentiability of ®; on ©j, we conclude
from an application of the delta method that v/n ((p;,;(n)) — (p?j)) —

N, %, 0(6y) " (®,%,)T), where
&\, = diag{VW M i c B}, (41)

and V) M are given by (40) and (27) respectively.
The explicit form of their product for all s € E, is given as follows:

a4’ 0 0 0
0 4y 0 0
V@O MO = : , (42)
00 v, 0
—d" —d? d? 0

where c_ig-i) = (1,ai(1),ai(2),... ,ai(c};)), and a;(k) are given by (28).

ij
Proposition 5. Under conditions (A1)-(A2), (B1)-(B4) and (C1)—(C6),
the MLE of the conditional sojourn times is asymptotically normal, that
is,

Vi ((Figthm) = (5 0m)) B N(O, T W0(00) " (T]W;)1).

n—oo
Proof. Let foralli € E, 1 <j <g¢;,

f(ZTZ( )) (fzn ( )7 fl‘r,(]) (2) s 7fzn (nzr, ]))) (43)

and for all 7 € E,

f0) = (f(imi(1)), £(i7i(2)), .. , f(imi(ci)).- (44)

Then, an arrangement of the parameters (f;;(k)) of the conditional so-
journ times can be presented as follows:

(fi (k) = (£(1), £(2),.-. . £(5)) - (45)
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If we denote by (2583) = (%) =T/, and F() .= (258) , then,
T, = diag{F" i € E}, (46)
where )
FY o . 0 0
o Y .. 0 0
FO=| 0 0 N (47)
o o ... FV .., o0
FO F9 . FO _ F,
and the matrices Fj(fz‘z = (%) , for the different values of j; and

jo that correspond to the non zero matrices in (47), are given by

_k§l qiri(j)(k) qiri(j)(l) qiri(j)(l)
Qiri(j)(Q) - Qiri(j)(k) qiri(j)(Q)
(i) 1 k7
F:7 = — 2 . . . )
R e : : :
Giry () Pirs()) G () Bimi () - = D i (R)
k#nir. ()
(48)
ij; (1) qij; (1) e gij; (1)
; 1 : : - :
F(l). - - ~ ~ 49
“ T ph | G- g (=1 g (e —1) |7 (19)
— > g (k) = >0 (k) . = > g (k)
ki ki ki
. 1 ,
FO = — (IS’ ) , where s; = ¢ (50)
i \ 1 i

Since v/t ((fij (£)) = (£ (8))) = Vi (T3(@;(k,m) = Ta(a () , by us-
ing Theorem 3, and the differentiability of 77 on ©F, we conclude
from an application of delta method that \/ﬁ((ﬁj(k)) —( 2](k))) —

N0, T, ¥ 0(60) " (T, %)), where

T, ¥, = diag{FP MY i € E}, (51)
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and F( M®  are given by (47) and (27) respectively. The explicit form
of these matrices for all i € E, is given as follows:

p o .. 0 0
o DY .. 0 0
FOMO = 0 : Ll G2
0 0 Dgf)fl,clfl 0
p{ D) pf., ., DY
where for 1 <7 <¢; — 1,
*Iglqz‘riu)(l‘?) a;()gir, (1) ... ai(c;)air; () (1)
o1 Gir; (5H(2) *ai(l)k%é:zqz‘ri(j)(’f) ai(cfj)qz‘r,»(j)@)
R : : ) : 7
Gz () Mz () @i (W ir; 5y Piry ) - - —01(0;92‘7{2 @ir () (k)
ST Nir; ()
(53)
= > aij; (k) ai (L)giz; (1) - ai(ef;)aij; (1)
K1
D _ 1 %i5;(2) —ai(1) 3 ps2 qiji (B) ... ‘li(cjj)qm 2
! p?ji . . ’
¢ij; (M) ai(1)gij; (7ii) —az’(c;;)k; aij; (k)
BENGTY
and ,
D, = 3 FOL, 2
)

where F'”) 1" are given by (34)-(35) and (49)-(50).

iJ? jei
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