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RISK BOUNDS FOR KERNEL
DENSITY ESTIMATORS

ABSTRACT. We use results from probability on Banach spaces and Pois-
sonization techniques to develop sharp finite sample and asymptotic mo-
ment bounds for the Lp risk for kernel density estimators. Our results are
shown to augment previous work in this area.

1. INTRODUCTION
In order to motivate our investigations consider the following minimax
result of Wertz (1974). For a given M > 1 and p > 1, let

L, (M) = {f . f is a density on R and | f|| < M}, (1)

with || f||, denoting the L, (R) norm. Wertz (1974) proved for p > 1 that

for each n > 1 there exists a density estimator ﬁ),n based on X1,...,X,,
i.i.d. with density f such that

p) 1/p

p ?

p\ 1/P
) =inf sup (E‘
P fn fELL(M)

where fn is an arbitrary density estimator of f based on Xy,..., X,. A
natural question is the following: assume that f lies in a smooth class of
densities F, then do there exist a sequence of constants a,, — oo and some
a > 0 such that

sup (EHfo,n—f fa-f

fELL(M)

fo—f

p\ 1/P
aninf  sup (E ‘ ) — a? (2)
)NF P

fn fEL,(M

This problem remains largely unsolved except for the case p = 2 and for
certain smooth classes of densities F. Refer to Schipper (1996) and the
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RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 67

references therein. (Actually, one can infer from Theorem 1 of Devroye
(1983) that the limit in (2) is infinite for any sequence of constants a,, —
oo if the supremum is taken over f € £, (M) instead of over a smooth
enough subclass of £, (M).)
Much more is known about the less precise problem of showing the

existence of constants 0 < o < < oo such that

p> 1/p

P

Fa- pr)l/p < ®
p

fo—f

a < liminf a,, inf sup <E ‘
n—ee fn FELH(M)NF

< lim sup ay, inf sup (E ‘
n—oo fn fEL(M)NF

See Bretagnolle and Huber (1979), Ibragimov and Hasminskii (1980,1982),
Efroimovich and Pinsker (1982) and Hasminskii and Ibragimov (1990), as
well as the monograph by Devroye and Gyorfi (1985).

It turns out that approximate solutions in terms of having the proper
rate to the precise problem (2), as well as to the coarser problem (3), can
often be achieved by sequences of kernel density estimators. In fact, the
right side of (3) is bounded by

1/p
limsup a, sup (E fr — sz) )
n—oo feL,(M)NF

(4)

where {f,} is any sequence of kernel density estimators. Much of this
paper will be concerned with developing bounds on the lim sup in (4).

To fix some notation and assumptions, let X, X7, Xo,... be i.i.d. with
density f. A kernel density estimator of f based on Xy,..., X, n>1,is
defined to be

fn(x):annZ;K<xhn >,xeR, (5)

where h,, are positive constants such that
hn, — 0 and nh, — o0 as n — o (h)

and K is a kernel satisfying the following condition:
(K.i) K isin Ly (R) and bounded by some constant 0 < k < oo.
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At times we shall also assume that

(K.ii) [;° W2 (x)dz < co, where for any measurable function H

Uy (x) = sup |[H(y)[, z>0.

ly|>=

Condition (K.i7) is introduced so that when needed we can apply part (c)

of Theorem 2 on page 62 of Stein (1970), which says that if

[e.°]

/\I/H(:zr)da: < 00

0

then

Hy « f(z) —» J(H)f(2), as h\,0, for almost all z € R,

where for any function H and h > 0,

J(H) = | H(u)du,
/

Hy=h'H (k™)

and

Hy* f(2) = hl/H<th) f(z) da.
R

Define for any p > 1

1/p

1= Esull = ( [ 11ala) - Efu(o)Pdo)
R

Let f, and f] be independent and f =4 fn. Notice that

2 (Bl - 112) " = (Bt 112) "+ (1 - 112) "

which by Minkowski’s inequality and Jensen’s inequality is

> (B|lfa- f,’llli)l/p > (E|lfa- Efn||g)”’”,

(6)

(7)

(10)
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Therefore for any p > 1,

1/p

(Bl - 112)"" =27 (B lfa - B2

Furthermore, by Minkowski’s inequality,

1/p

(B g = E£al2)" +17 = Eall, = (ENfa = 112)

1/p
This says that in terms of rates, 271 (E | fr — Eanﬁ) provides a lower
1/p
bound on the L, risk (E I fn — f||§) of the density estimator f,, and

1/p
(E lfn — Eanﬁ) plus the bias || f — Ef, ||, term gives an upper bound.

The first goal of this paper is to provide good bounds for the moments
E|fn— Efn||; for any p > 1 and r > 1. Our main tool will be a moment
bound for sums of independent random variables taking values in a Banach
space due to Talagrand (1989).

Our second goal will be to study the exact asymptotic behavior of
E || fo — Efull, as n — oo. Here our tools will be the Poissonization meth-
ods developed in Giné, Mason and Zaitsev (2003).

One application of our results will lead to the result that for each
1 < p < oo, under suitable regularity conditions on the density f, the
kernel K and the loss function w, and with Z denoting a standard normal
random variable,

lim Ew nhn fn = Eful, —w().  (11)

n—o00 1/17
1K1, (EIleffp/2 ) dy)
R

Another application will show that for a suitably defined class of densities
F p/2>

limsup sup Fw (\/ nhy || fn — Efn”p) < oo,

n—oo fe]—‘p/2

where K, w and p are as in (11). We also discuss conditions on f under
which Ef, can be replaced by f in these last two statements.
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We shall not treat the more intricate problem of the derivation of lower
bounds in (3). To obtain good bounds requires a considerable amount of
ingenuity and special techniques. For instance, Bretagnolle and Huber
(1979) base their bounds on a Kullbach information-type inequality, the
arguments of Ibragimov and Hasminskii (1980) and Hasminskii and Tbrag-
imov (1990) rely on Fano’s inequality, Ibragimov and Hasminskii (1982)
use a classic inequality of Hijek and Schipper (1996) utilizes the van Trees
inequality.

Our main results are stated and proved in section 2. In section 3 we dis-
cuss the relationship of our results to known risk bounds, especially those
of Ibragimov and Hasminskii (1980), Hasminskii and Ibragimov (1990)
and Bretagnolle and Huber (1979). Moreover, as a by-product of our re-
sults we will provide a partial solution to a conjecture of Guerre and
Tsybakov (1998).

2. MAIN RESULTS AND PROOFS

We are first interested in finding a good asymptotic bound for

E / o (@) — Efy (@) da, (12)
A

with A being a measurable set and p > 1. In the following calculations
whenever |K||, appears, we assume that it is finite. Under assumption
(K.i) this always holds for p > 2.

Case l1la. p > 2. To handle this case we shall need a fact.

Fact 1. Rosenthal’s inequality. If £; are independent centered random
variables, then, for every p > 2 and n € N,

P p/2
& 15p \? - .
Sl < () max <ZE£§> SEEr|. )
i=1 i=1 i=1

(This version of Rosenthal’s inequality is obtained by symmetrization
of the inequality in Theorem 4.1 from Johnson, Schechtman and Zinn
(1985).)

p
By Fact 1 for each z € R, with C,, = (1};;’1;) ,

n z—X;\ _ =%, ) |P
E(|fn(z) — Efy(z)")=E ZK( o ) EK( Ton )

i=1

E

nhy,
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o\ P/2
Cp z—X z—X\\
(E(K( ) (50))
- X z—X\|?
e e () e ()

which after some elementary bounds is

g%(/m(%y)ﬂy) ) plhp/w( ) 1wy
R

)

(14)
Thus ( ) ( ) ,
n K z—X; _EK z—X;
Tin o
/E Z i dx
i=1
p/2
2rC,
<o | ( = ( f(y)dy) dr
A
2PC
plgfl//uﬂp( )f(y) dydz.
R
Now since

Tr —
/|K|‘°< Z) 1 dys = na KT,

E/| _Ef, (o) da
A

p/2
2w 1 _,/x— 2w ||KHP
) W/ (/ e <Wy) T dy) o W (15)
n W 2 -

Assume now that

we get the bound

=
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Condition (K.ii) allows us to apply part (c) of Theorem 2 on page 63 of
Stein (1970) to give
p/2

[ [x (%’) fdy | do—IKIE [ (7).
A R A

which, since (nh,)"’? / (nhy,)*~" — 0, implies via (15) that

hmsup(nh )"°E / | fn () = Efa ( )|de)g2pcp|m|§ / (f )" dy.

n— 00
A

Case 1b. p=2. Obv10usly,

E (I () - B @) < B (5

1 s fT—yY
— e [ K () rwan
R

We get as before,

lirrjlj;p (nhnE/|fn () — Efn (w)lzdw) < IIKllﬁ/f(y) dy
A A

Case 2. 1 < p < 2. In this case

/|fn - Ef, (x)|pdx</(E|fn @ - Bfa @) do

<(nh P/z/( /KZ< h; > ()dy)p/zdx

= W/ ((Kz)hn x f(y))p/2 dy, (17)
" A

where for h >0, (K?), () = h ' K2(-h71).
The following lemma shows that moment conditions on X and K yield

. /2 .
a useful bound on [ ((Kz)hh * f (y))p dy by choosing H = K2/ ||K||3.
R

Its statement and proof are based on ideas and results in Chapter 7 in
Devroye (1987) and Section 3 of Devroye (1992). See especially, Remark
3 in Devroye (1992).
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Lemma 1. Let H and f be densities on R and let X have density f and
Y have density H. Choose % + % =1, witht > 1, and A > t/s. Further
assume that E| X |* < oo and E|Y|* < co. Then for any measurable subset
A of R for a finite positive constant C(A, s)

1/t

/(f(x))l/t dz < C(\,s) (B [(1+]X]}) 1{X € A}]) (18)
A
and, with H,(-) = h"YH(-h™1),
/(Hh w @) de < Cns) (E[(1+ X0 1{X, € A1), (19)

A

where X, has density Hy,  f. Moreover, if H satisfies (6) then

limsup/ (Hy o f@) dw < C(\5) (P(4) + B[ XM {x e )"

(20)
Proof. To prove (18) observe that by Holder’s inequality,
1/s 1/t
/(f(a:))l/tdasg /{1+|m|/\}_s/tdaz /{1+|x|>‘}f(:1:)da:

A R A

= C(s) (E[(1+]XM) 1{x e 44"

Next, (19) is a special case of (18). Finally we turn to the proof of (20).
Now X, =4 X + Y3, where Y}, has density Hy, and Y, and X are indepen-
dent. From this we get that when A > 1

1/A 1/

(EIX + ) < (BIX) + (B (21)
and when 0 < A < 1
E|X + Vi]* < E|X N + E[vy M. (22)
By writing .
B = [ 1oy = 0BV, (23)

— 00
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we readily infer from (21), (22) and (23) that for any 0 < A < oo,

limsup E|X + Y, |* < B|X ™. (24)
h\.0

Furthermore, since we assume condition (6) holds we have by (7) that for
almost every y

(1+1w1) Huw) = (1+1*) £ ) as 0.

Piecing everything together we conclude from Scheffé’s theorem (see ex-
ercise 7 on page 862 of Shorack and Wellner (1986)) that

E[(1+|X*) 1{Xr € A} = E[(1+|X*)1{X € A}], as b \, 0.
(25)
Statement (20) obviously follows from (19) and (25). O

Remark 1. For use later on, observe that from inequality (19) and (23)
we get from X =4 X + Y}, and the ¢, —inequality that

E|X)* = EIX + V) <ex (EIX]* + P E|Y]Y),

where ¢y = 20DV Thus we get
/(Hh  f@) Y de < CO ) (L+ex (EIX] + R EY) Y. (26)
R

We summarize these observations in the following proposition.

Proposition 1. Let K be a kernel satistying (K.i) and (K.ii). For any
p > 2 such that (16) holds, we have for some constant D, depending only
on p

timsup ( (nhn) 11, (2) - B, (0 do | <D, |18 [ (7 )" dy.
A

n—oo
A

(27)
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Moreover, whenever for a given 1 < p < 2, X and H = K?/ HKHg the
conditions of Lemma 1 are satisfied, we have for any measurable subset
AcCR

iimsup | ()" E [ |f, (2) = Ef (o) da
A

n—oo

p/2
)

< COus) KIS (B [(1+]XP) 1{X € 4}) (28)

where 1/s +p/2=1and A\, Y and C(\,s) are defined as in Lemma 1.

Note that statement (28) follows from (17) and (20).
We next turn to the task of deriving a useful finite sample bound for

r/p

Ellfu—Efall = F /Ifn (@)~ Efp @ dr|
R

with p>1and r > 1.
To do this we shall need an additional fact.

Fact 2. (Theorem 1 of Talagrand (1989)). IfB is a separable Banach
space with norm |||, Z;, i € N, are independent mean zero random vectors
taking values in B, then for a universal constant D > 0 for all r > 1 and
n>1,

Dr 1/r
E (ST < ——— | E||S, E Zi" 2
(B (1S4) —1+1ogr< 1,01+ (2 e 12:17) ) 29)

where S, = Z1 + -+ + Z,.

We get from (29) and the ¢, inequality the bound,

BIS. 7 < 22 ((BIsul) + B max 1Z7) . (30)
" (14 logr)” " peien 12 )

We shall apply the bound (30) to the random functions

Zi() = K(hX)mEK (h;x) i=1,.

oy
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As before in the following calculations whenever || K[|, appears, we assume
that it is finite and when needed that (16) holds. We find by Jensen’s

inequality that,
E|Sully = E|lfu — Efall,

1/p
/
R

(31)

Case la. p > 2. By inequality (15) (it also holds when p = 2) we see

that
E [ 12 (@)~ Bfa (@) do
R

2°Cy 2(T Y
= nP/2hfL/ (/K ( hy,
R \R

Notice that

(nhy)"!

2/p

R/(R/K2 (m};y) f(y)dy)p/zdw
o2 N\ 2/P
= R/(R/KQ(hin)f(t—m)dt) /da: ,

which by Young’s inequality (see page 232 of Folland (1984)) is

2/p

R

This gives the bound

p/2
2°Cy | K]I7
) fy)dy de + ——.

(nhp)?~!

(32)

2/p
<[lxr (hi) (/ 707 (@ — 1) daz) dt=hy |1 K] (/ 77 (y) dy) .
R R

B [ 1ato) — Efy @ dr < 2 [ s, PO
R

(nhy)P/?

(33)
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Therefore for any r > 1,

r/p
v [2ec, |K|E 2°Cy |K];
_ < | ZZp 7212 p/2 - pmlp
(34)
which by (32), (34) and the ¢, inequality for any r > 1 is
e K
< —— y (35)

K" /fp/2 y)dy S h L
H ||z J ( ) (nhn)r/z_’"/p

(nhp)"?

Here to derive (35) we used for notational simplicity the rough version of
the ¢, inequality that says that for all v > 0

[z +y|” <27 (=" + [y|") (36)
with v = r/p. Next

r/p
p

dx

an (e () e (7))

r/p
L (e X[ :2’“h2/p|\KHZ
nhy, hn,

FE max
1<i<n
R

dx (37)

< 2"E max /
1<i<n
R

(nhy)"
Inserting the bounds (35) and (37) into (30) we get
Dror—1lpr 27’/1)27’0;/17 ||KH;

(nhn)r/2—r/p

< — ik / 71 (y) dy
1+1logr)” r/2 2
(1+logr)" (nh,) J

pror—lgr QTh:L/p HKH;
+ T )
(1+logr) (nhy)
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which for an appropriate constant L, > 0isforallr > 1andn >1

r/p
rL " 1 .
< P K" p/2
= (1+10g7.) (ﬂhn)r/z [F2g[ /f (y) dy
R
K| RP K|
I T/H;_T/ N I Tllp . (38)
(nhy,) P (nhn)

Case 1b. p = 2. In this case

E/|fn(x)fEfn(x)|2dx§ }l%R/EW <$X>dx: LK, (39)

nhy,

/2 K|\,
(ENfa~ Bfall)" < (Bllfe— B2 < %

Now by arguing as in Case la, we get that for an appropriate Lo

v Ly \"[_IEl; | w7
Efn — Efalll < : T2 | 40
”f f ||2 (1 +10gr) [(nhn)r/z + (nhn) ( )

Case 2. 1 < p < 2. In this case we get from inequality (17),

(h;// (), 1) dy 1)

nhy) 4

B [ 1 @) - Efo (@) do <
R

and from (37), which holds for p > 1, and (30) that for each 1 < p < 2
there is a constant L, > 0 such that forallr >1andn > 1

E|fu— Efal’
A /2 NP
r <f ((Kz)hn *f(y))p dy> hT’/P ||K||r
< < rLy > R o B )
= \T+logr (nhy)"? (nha)™ |

We shall summarize these observations in the following proposition.
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Proposition 2. Let K be a kernel satisfying (K.i). For any p > 2 such
that (16) holds we have for some constant L, > 0, and all r > 1 and
n>1,

E|fu—Efal,
r/p
rL " 1 .
< L K|’ p/2
< (i) |y |1 | [ 72w a
R
K| hP K|
H T/H2pfr/ + H T‘”p . (43)
(nhn) P (nhn)

For p = 2 we have for some constant Ly > 0, and all r > 1 and n > 1,
IKly b7 ]
(nhn)"*  (nhy)"

.mmEnM§(rh ) (44)

1+ logr

Moreover, whenever 1 < p < 2, we have for some constant L, > 0 and all
r>1landn>1,

rL "
E|fn— Ean; < (Tl(z)jgr) X

, p/2 r/p
(D{ ((K )hn * f(y)) dy) hz/p HK”;
()72 iy |

(45)

where it is assumed that || K|, < oo .

Remark 2. Whenever for a given 1 <p < 2, X and H = K2/ |K||; the
conditions of Lemma 1 are satisfied, we have using (45), (42) and (26)
that for some constant L, >0 and all* > 1 and n > 1,

E|fa = Efal,

( rL, )r [ (Cl/p()\,s) (1+ex (E|X|>\+h,\E|Y|/\))1/2)T’
) (nhy)"/?

(L T IEL
1+logr (nhy)"

1+ logr
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where 1/s +p/2=1and A, Y and C(}A,s) are defined as in Lemma 1.

Remark 3. Modulo constants depending on p, inequality (33) implies
inequality (4.13) of Bretagnolle and Huber (1979) and inequalities (39)
and (41) agree with the corresponding parts of their inequalities (4.14)
and (4.15).

As an immediate corollary we get.

Corollary 1. Let K be a kernel satisfying (K.i). For any p > 2 and
M > 0 let L,/5 (M) be a class of densities defined as in (1) and for
1<p<2let

Ky (K, M)
= {f : f is a density on R and ||(I('2)h>w”||p/2 <M forall0 < h < 1}.
(47)
We have for every t > 0,
limsup sup FEexp (t\/nhn I fn — Efn||p) < o0, (48)

n—oo  fe€F,/2
where it is assumed that || K|, < oo for 1 < p < o0, Fpyo = Lo (M) for
p>2and Fpp =Ky (K, M) for1 <p<2.

Proof. Clearly by Proposition 2 for p > 1, we have for some constant
A>0forallr>1landn>1

5 A ' 1
oy Bl f, - Bf| < ’"7) T+ ——7|. (49
()" sup Ellfn = Efal, < (mogr o)

From this bound, (48) readily follows using the rough version of Stirling’s
approximation, which says for integers r > 1 that r! > (r/e)", and the
assumption that nh,, — oco. J

In the next subsection we shall prove the following result.
Proposition 3. Let K be a kernel satisfying (K.i) and (K.ii). Under the
conditions of Proposition 2 for p > 2, as n — oo,

(nha)P? B fo — Efallh — m (p, £, K), (50)

and ‘
(nha)?? || fn — Efalll —p m (p, . K) (51)
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where

m(p, f.K) = | K|} E | 2] / £7 (y) dy, (52)
R

with Z denoting a standard normal random variable. Moreover, the limits
(50) and (51) also hold for 1 < p < 2 whenever the conditions stated in
Remark 2 for (46) are fulfilled.

An immediate consequence of Corollary 1 and (51) is the following
corollary.

Corollary 2. Under the conditions of Proposition 3 for p > 1 and any
loss function w on [0, 00) that is continuous at 1 and such that for some
A>0and C >0

0<w(z) <Cexp(Ax), z €[0,00 ), (53)

we have

lim Ew Vil || fn = Efall, —w(l).  (54)

n—o00 1/17
1K1, (EIleffp/2 ) dy)
R

Remark 4. To replace ||f, — Eful, by [|fa — £, in (50), (51), (52) and
(54) requires additional smoothness conditions to control the L, (R) norm
of the bias f — Ef,. Here is a convenient set of conditions, which are
detailed in Bretagnolle and Huber (1979) which lead to a good bound for
| f = Efull,- In addition to (K.i) and (K.ii), assume that

/K (z)dz =1. (55)
R

Further assume that for some integer s > 2,
(K.iii) K is continuous,

/qu(u)duzo, 1<j<s and /|u|S|K(u)|du<oo.
R R
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For kernels K satisfying (K.iii) we define the s—Kernel ;K for v > 0,

[ y—w"

u

K (y)dy and 4K (—u) = — (=1)" 4K (u).

Bretagnolle and Huber (1979) point out that K € L; (R) NC®) and
s (Kp) = h*(sK),. (Recall the notation defined in (9).) They show
that whenever the density f is s times continuously differentiable with
s—derivative f(5) e L, (R), p>1, then for all h > 0,

If = Efall, < b ||

[+ E]; - (56)
p
Clearly then by using the inequality

1n = Flly = W = Bfall,| < 1S = Efall,

we see that whenever (56) holds and +/nh,hf — 0, then we can replace
[ fn = Efnll, by lfn — fIl, in (50), (51), (52) and (54).
2.1. Proof of Proposition 3

Before proving Proposition 3 we must gather together some facts.

Fact 3. Suppose that ‘H is a finite class of bounded real valued mea-
surable functions H in Ly (R) that satisfy (6). Then for any H € 'H, (7)
holds. Moreover, for all 0 < & < 1, there exist M,v > 0 and a Borel set C
of finite Lebesgue measure m(C') such that

Ccl[-M+v,M—v], (57)
= / f(z)dz >0, (58)
|e|>M
P(C) = /f(x) dx > 1—¢, (59)
C
f is bounded, continuous and bounded away from zero on C, (60)
and uniformly in H € 'H,
sup |f *x Hy(z) — J(H) f(z)| — 0, as h \, 0. (61)

zeC
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The first statement is just the Stein result cited above. The other state-
ments are proved exactly as in the proof of Lemma 6.1 of Gine, Mason
and Zaitsev (2003).

In order to state our next fact let £, &1,&»,- -+ be independent, identi-
cally distributed random variables satisfying E¢ = 0 and F¢2 = 1, and
let Z denote a standard normal random variable. We shall be applying a
special case of Theorem 1 of Sweeting (1977). In order to state the par-
ticular result that we need, we must first gather together some notation
from Sweeting (1977). Assume E |¢|* < oo and set

By =El¢]. (62)

(The symbol 33 is defined on page 30, lines -9 to -6, of Sweeting (1977).)
Let T denote the class of functions g on [0, 00) satisfying
(i) 9(0) =0 and g(1) = 1;
(ii) ¢ is nonnegative and nondecreasing;
(iii) t/g(¢) is defined for all ¢ € [0, 00) and is nondecreasing.
(The class I' is defined on page 35, lines 1-5 of Sweeting (1977).)
We shall use the particular function g € T,

g(t) = min(t,1), te[0,00). (63)

Let g € T and r > 2 be an integer and define

M =002 (g (n1 e -

(The symbol 7, is defined on page 35, line 9, of Sweeting (1977).)
We will always choose g as in (63) and r > 3, giving

mo =022 1 (n=20el) ] < T (64

Next let
_ &

€n N
(The symbol ¢, is defined on page 35, line -6, of Sweeting (1977).)

Let ¢ be a fixed Borel measurable function on R. For any € > 0 and
z € R, define

w5 () = sup{|6(x) — o) : [o —y| < }.
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(The symbol wj (z) is defined at the bottom of page 36 of Sweeting (1977).)
Let r > 3 be an integer and g € I'. Set

B(t) = 1+ #7g(0),

and put
6" (x) = h(jz)) ™" [p(z) — $(0)] - (66)

(The symbol ¢*(z) is defined on page 37 of Sweeting (1977).)
We will always use the choice with r > 3,

h(t) =1+ t" min(t, 1), (67)

i.e., g is asin (63).
Further for any measurable function v on R denote

[lv]| = sup{|v(x)| : z € R}.

Here is a special case of Theorem 1 of Sweeting (1977) that we will be
using.

Fact 4. Suppose for an integer r > 3
Elg|" < 0. (68)
Then there exist universal positive constants C; and Cs such that for all

measurable functions ¢ on R with ¢* bounded and defined as in 66 with
h as in (67) such that

2o (Z2L5) — poz)| < [I611 o + i) + B (2)] . (69)

n
We will be interested in the special case
é(x) = |z|”, € R, with p > 1 an integer.
In this case we choose an integer r > max (p,3). Thus

*| = rxeR3 <1.
1971l SUP{1—|—|x|rmin (x,1) v -




RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 85

Whenever |y — z| < Cse,, we get using the mean value theorem when
p > 1 and the triangle inequality when p = 1 that for some constant A,
depending on p

6(y) — $(@)| < A,Caen (2P +[Cozal” ).

Inserting these bounds into (69) we get

> &
B | = | Ee) <0 [en b+ A Coz (B 2P +1Coen” )]

(70)
We shall need the following special case of Lemma 2.1 of Giné, Mason and
Zaitsev (2003). We say that a set D is a (commutative) semigroup if it
has a commutative and associative operation, with a zero element. If D is
equipped with a o-algebra D for which the sum, +: (D x D,D® D) —
(D, D), is measurable, then we say the (D, D) is a measurable semigroup.

Fact 5. Let (D,D) be a measurable semigroup; let Yy = 0 € D and
let V)Y;, i € N, be independent identically distributed D-valued random
variables; for any given n € N let n be a Poisson random variable with
mean n independent of the sequence {Y;}; and let B € D be such that 0 <
Pr{Y € B} < 1/2. Then if H : D — R is non-negative and D-measurable,

EH <Zn: I(Y; € B)Y,-) <2EH (zn: I(Y; € B)}Q) . (71)

i=0 i=0

Important special case. We will apply the preceding fact to the semi-
group D with the operation sum generated by the point masses d,,

D= {O,Zémi :neN,zx; ES},
i=1

where S = R. For A a Borel subset of R set,

B={4,:xz€ A}.
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Notice that I(x € A) = I(d, € B). Let (R, B) be the usual Borel mea-
surable space. In this case the o-algebra D is generated by the functions
fn,A :R" — D, by

froa(@y, ..., xn) =Y I(z; € A)dyy,
i=1

n € N. It is easy to see that for any measurable function h : R — R, the
map p +— [ hdp is D-measurable (just note that

faa {MGD,/hduSt} = {(wl,-.-,m:il(xi € A)h(x;) gt}

i=1

is a measurable subset of R™). Our functions H will have the general form

H (Zn: I(6,; € B)5zi> =H (Zn: I(z; € A)émi>

(/{2

J é}L (””h:”) — b(z)

— c(x)} de | (72)

where p > 1, L is a measurable bounded function equal to zero off of a com-
pact interval [—L, L], C is a measurable set and A is the Lh-neighborhood
of C'. In this setup X, X;,¢ € N will be a sequence of i.i.d. real valued
random variables and Y; = dx,, i € N. Also

b(z) = EL (m hX> (73)

and with n a Poisson random variable with mean n independent of X,

Xy,..., )
e(x) :E< ' ) (74)

n
L(Z= Xi) —b(x
> (557) -
Now H when considered as a function on R™ can be shown to be Borel
measurable, which in this setup is equivalent to being D-measurable.
We shall also need the following fact, which is Lemma 2.3 of Giné,
Mason and Zaitsev (2003).
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Fact 6. If, for eachn € N, (,(1,(2,...,Cn, ..., are independent identi-
cally distributed random variables, (o = 0, and 7 is a Poisson random
variable with mean v > 0 and independent of the variables {(;}$°, then,
for every p > 2,

n

> G- B¢

i=0

P
E < (1:;?;) max {(VECQ)NZ 77E|C|p} . 75)

Moreover, specializing to ( = 1, we have for every p > 2,

15p \?
Elnp—~F < (1 ) max [7”2,7} : (76)
ogp

For any L > 0 let

and

1 n —(x—X; —(xz—X;
— L — EL

=: (L, (z) — EL, (z)) + (Ln(z) — EL, (2)) .
We now have the tools to prove statement (50) of Proposition 3.
Step 1. By Proposition 1 for any p > 1 there is a constant a, such that
limsup ((nhn)”* B||Co — EL,[|7) < a, [T (77)

Observe that the right side of (77) can be made as small as desired by
choosing L > 0 large enough.
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Step 2. Next by Proposition 1 there is a non-negative measurable func-
tion ¢, satisfying Ey, (X) < oo such that for any measurable subset A
of R,

lim sup (<nhn>P/2 E / Lo (2) = ELy (@) dx) < LI / oy (@) f () da
A

n—o0o “%
(78)

Step 3. Let n be a Poission random variable with mean n independent
of X1,X5,... and set

1 & z—X;
We see that
- X
EL,, (z) = EL, (z) = h;; 'EL ("”” - > , (80)
S (r—X
n Var (Ly., (z)) = h; 2 EL? (‘1’ - ) (81)
and

n Var (L, (z)) = h;2EL? (a’ - X) - {h;lEL (”“";X) }2. (82)

n n

Choose any bounded Borel set C satisfying (60) and (61) with H =
{L,L?}. Clearly for any such set C,

sup
xeC

o Vet (L () iy Ve EaoT)

< sup h”(Lhn—*f(x))z =0 (hn) (83)

vl (L2, * f(2)

(see (60), (61), (81) and (82)).
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Lemma 2. Whenever h, — 0, nh, — oo and C satisfies (60) and (61)
with H = {LL,LL?}, we have for p > 1,

tim [ {(Viho ElLny (2) = ELa(2)])" — LI B|ZP 72 (2)} do =0

C
(84)
and

tim [ {(V/oh BlLu(2) — BLu(@)]) ~ LI BIZ1P 72 (1)} do = 0.

n—00
C
(85)

Proof. We will first show that

lim {E (\/%mn,n(x)

n—oo

C

—ELy(2)])” — E|Z|P (nhy, Var (Lo, (m)))l’”} dz =0 (86)

and
Tim [ {B (vl [Ln(2) - EILn(x)|)p
C
—E|Z[P (nhy, VarL,., (m))P/Q} dz = 0. (87)

Let 1; denote a Poisson random variable with mean 1, independent of

X1, Xo,..., and set
z—X
El2 .
/e (5)
(88)

— X, - X

S () - (57
J<m " n

Now VarY,(z) = 1 and it is readily checked using Fact 6 that for some

constant 4 > 0 independent of Y,, and z,

Yo(z) = [

(89)
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and for any integer r > max (3, p),

T

ha'"? B L (52X

r/2°
(' 12 (55))
Using (61) and (60), which says that for some § > 0, f(z) > § > 0 for all

z € C, we get from (89) and (90) that for all large enough n uniformly in
xz € C for some constant By > 0,

ElYn(2)]" < A

(90)

n~2 sup |V, (2)]? < (nha)~"/? Bo. (91)
zeC
and ‘
n= =272 sup BV, (2)]" < (nhy) "> By. (92)
zeC

Let Y,Sl)(x), . ,Y,Sn) (x) be i.id. Yy (x). Clearly

\/E{an(a:) — EL,(2)} _ =1
ha? BL? (5:X)

(93)

Therefore by (70), we readily conclude that for some constant D for all
large enough n,

sup E|Vnhy, {Lpy(z) — E]Ln(a:)}‘p

zeC (hﬁl EL2 (z;nx))p/g

7E|Z|P

<D (n_1/2 sup B|Y;,(z)® + n~ (=22 sup E|Yn(a:)|’“) . (94)
zeC zeC

Now by (91) and (92) using r > 3 in combination with (94) and

up (w2 (22X )Y hn Var(L PP = 0@
D | hn - = sup (nhy, Var(Ly . (x))"" = O(1),
zeC n zeC

(95)
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we get then that

/{E (\/m|an($)*Efn,L(x)|)p7E|Z|P (nhn Var(Ln,n(x)))p/z} de

-0 ()

Similarly one obtains using Fact 4 that

/{E (\/TEIILn(x) - Efn,]L(x)|)p _ E|Z|P (nhn VaI'(Ln(:L’)))p/Q} dx

C

1
-0 ,
()
which by (83) implies

JAE (Vihaltn@ = Bras@)”  BIZP (oha Var(La o))" do
C
=0 (G ta)

rz—X

n

Recalling (81), we have

nhy Var (L, , ()) = h, ' EL? ( ) =E(L?), (). (96)

Clearly (96) in combination with (61), which implies

c‘( ‘)hn ( ) H]L”z f(Z)} —>(), as h\‘o7
z€
gives

sup |nhn Var(Lya(z)) — [L|2 f(z)’ 0, as h\,0.
zeC

Lemma 2 now follows by the bounded convergence theorem keeping in
mind the properties of C. O
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We are now ready to prove statement (50) of Proposition 3. For any
0 < e <1 choose C as in Fact 3. Now (78) gives

iimsup | (1) B [ |Ln (2) = BLo (@) di | < LI [ op(a)da.
C"C

n—o0o
C(_‘
(97)
The right side of (97) can be made a small as desired since P (C°) can be
made arbitrarily small. The same is true for the term

IL|E E|z]? / F7 (2) da.
C"c

(Notice that for 1 < p < 2 statement (16) holds by inequality (18).) Since
¢ can be made arbitrarily small, an elementary argument based on (85)
now shows that (50) holds.

We next turn to the proof of (51). Choose any bounded Borel set C
satisfying (57) through (61) with H = {L,L? L*}. Since C C [-M +
v,M — v], we get that CL* C [~M,M] for all h > 0 small enough.
Moreover we can find a measurable partition Cy,...,Cy of C so that
P (Ci[’h) <1/2fori=1,...,k and all h > 0 small enough. We now get
from Fact 5 with C' = C; and A = CF" using the fact that L has support
contained in [-L, L] that for ¢ =1,...,k,

E| [ (VA lLo(@) - Bfas(o)]) do

=

B [ (Vitha [Ln (@) = Efas(@)]) do

%

Q

<2 |E [ (Vitha ILoy(2) - Efos(@)]) da
)

i

2

,E/(\/MMW(@ —Efn,]L(x)|)pdx
J

i
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=2Var ((/ (\/anm(g;) - Efnl‘(m”)pdm) . (98)

Set

S, () = zn:IL <xhnXi> — nEL <xhnXi> :

Observe that

Vhy |Lpg(2) — Efp ()] =

- vnhy,

and, moreover, S, (z) and S, (y) are independent if |z — y| > 2Lh,,. Thus
foreachi =1,...,k,

Var (C/ (Vi L o) — B fn,L(x)|)pda:)
1

- (nhn)pc/cfl(|x_y| < 2Lhy) cov (IS ()7, |Sn (9)|7) ddy.

1Sn(@)],

Notice

00 (1S (D)7, 1S W) <\ 1Sn )P\ E IS0 ().

Furthermore, by Fact 6

B1S, () < (o) (0BG 0))” LG (o) ],
where
Co () :L<xhnX> .
Now

1 1 r—X
—E(C? (x) = —FEL?
PG @) = o8 ()

converges uniformly to f (z) [L? (u) du on C and
R

L oo _ Ly (=X
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converges uniformly on C' to f (z) [ L?? (u) du. Hence uniformly in z € C
R

for some constant B, (C),
E S, (2)]?" < B, (C) ((nhy,)? +nhy,) .
Thus uniformly in s = 1,...,k, for all large enough n using nh, — oo,

(n;jn)p //1 (|z — y| < 2Lhy) cov (|Sn (2)|7,|Sn (w)|7) dzdy

i C;
< 2B, (C) / / | (j2 — y| < 2Lhy) dody,
C C

which since C is a bounded Lebesgue measurable set is for some constant
Dy (C, L)
< hn,D, (C,L).

Hence by the above string of inequalities, we see that foreachi =1,...,k,
as n — oo,

Var ({/ (Vi L)~ Bfop@)]) do | =0,

from which we infer from (98) that as n — oo,

J(VahalLa@) - Efus@)) e = B[ (VahalLos() - Efus@)]) " do

Ci Ci
—p 0.

This, in turn, when coupled with (84), (85) and C1, ..., C} being a parti-
tion of C implies

J(Viha ILa@) = Efas@)) e —p LS EIZP [ 127 @) ds. (99)
C C

Now P (C°) can be made arbitrarily small and thus, keeping (97) in mind,
we see that

E [ (Vitha ILu(@) - Efas @) do + LI EIZP [ 177 @) do

Ce Ce
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can be made as small as desired for all large enough n. This observation
when combined with (85) allows us to conclude that

Vil [Ln(@) = Bfur(@)]) do—p [LIZEIZP [ 1772 (@) da,
/( ) /

R R

(The necessary argument is given in the proof of Theorem 4.2 of Billingsley
(1968).) Recall from Step 1 that

limsup ((nha)"* B [T, ~ BL,7) < a, |5
n—0o0o

which can be made as small as desired by choosing L > 0 large enough.

In the same way, we can make

T 2z / 7 () de,
R

arbitrarily small. Therefore by a standard argument we conclude that
(51) holds. (As above, the argument is in the proof of Theorem 4.2 on
Billingsley (1968).) This completes the proof of Proposition 3. OJ

3. CONNECTIONS TO KNOWN RISK BOUNDS

In this section we discuss the connections of our results to some known
risk bounds of Ibragimov and Hasminskii (1980), Hasminskii and Ibragi-
mov (1990) and Bretagnolle and Huber (1979), and then we use our re-
sults to provide a partial solution to a conjecture of Guerre and Tsybakov
(1998).

3.1. Connection to results of Ibragimov and Hasminskii
Introduce the following analog of the de la Vallée-Poussin kernel,

K,y (z) = % z €R. (100)
Let f, be the density estimator based on this kernel. Ibragimov and
Hasminskii (1980) and Hasminskii and Ibragimov (1990) have obtained
bounds for any 7 > 1 and p > 1 for E| fo — Efall, and E | fn — f|, -
Their bounds for E || f, — E fn||; are of the same order as those given
in our Proposition 2 when p > 2. Refer to Lemma 4 of Ibragimov and
Hasminskii (1980).
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Specialize now to the following smooth class of densities: for a given
n>0,=r4+ar=0,1,...,0< a<1,L>0and p > 1, let denote
H I/f L denote the class of functions g € L,(R) with derivatives up to order
r and satisfy

1/p

P
[l @+m -0 @[ ar| < <n,
R
In the case o = 1, the slightly stronger condition is needed, namely,

‘pda: < Lih|, b <.

16" @40+ 9 @~ 1) - 29 0
R

Lemmas 3 and 5 in Ibragimov and Hasminskii (1980) imply that for any
density f € H I/f L and the kernel density estimator f, based on the kernel

(100),
1 & z—X;
fa @) = nhy, ;Kﬂp ( hn ) ’

we have
IEfn — fIl, < Aln)7. (101)

Choose for some ¢ > 0 the sequence of bandwidths

c

hn = nl/(23+1) "

It follows from (101), Minkowski’s inequality and our Corollary 1 that for
any p > 2, M > 0 and loss function w satisfying its conditions that

lim sup sup Ew (nﬁ/(26+1) | fn — f||p) < o0,
N0 FeHE LNL, o ((M)P=2/(=1)

which since | f|,, < Hf||;p72)/(p71) implies

lim sup sup Ew (nﬁ/(wH) | fr — pr) < 0. (102)
n—o0  reHPLNL, (M)
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Statement (102) was proved in Theorem 5 of Ibragimov and Hasminskii
(1980).

Ibragimov and Hasminsgkii (1980) establish in their Theorem 5 that if
w is also non-decreasing then for some v > 0

lim inf inf sup Ew <7n’3/(25+1) Hﬁz —f
OO feHELNL, (M)

1) >0,  (103)

where fn is an arbitrary density estimator of f based on Xi,...,X,.
Hasminskii and Ibragimov (1990) show that the rate is different when
1 < p < 2. More precisely they prove that for any r > 1

~ T
lim inf inf sup nfr/(aB+1) g an — fH >0, (104)
N0 fu feHELOL,(M) p

where ¢ = p/ (p — 1). (For the case p = 1 see also Theorem 11 of Ibragimov
and Hasminskii (1980).)

3.2. Connection to results of Bretagnolle and Huber

There are similar connections to the work of Bretagnolle and Huber
(1979). We shall restrict our discussion to the case 1 < p < 2. For r > 0,
B > 0 and a positive integer m let

Frmpa=1{f:pmp(f) <} ™) (B),

where
p/(2m+1) 2p/(2m+1)
R

pmn (£) = | £

and C[(in(z al (8) denotes the class of m times continuously differentiable
densities f with support contained in [—a,a], 0 < a < oo, and satisfying
||f(m)Hp < B. Applying the construction in their Proposition 3.1 we can

find a class © C F}. 8,q so that for some C' > 0,

‘ ~ P
lim inf n??/ ™+ inf sup E an — fH > Cr, (105)
n— 00 fn f€O P

which implies that

liminf n??/Cm+inf  sup E ‘
nmee fn FE€EFrm g0

ﬁ*ﬂEZCK (106)



98 D. M. MASON

(We assume that § > 0 is chosen so that their construction works.) Fur-
thermore, as on page 131 of Bretagnolle and Huber (1979) we can infer
that for a suitable positive constant D and for a well chosen sequence of
estimators fn,

2m+1)

lim sup n 2"/ sup FE ‘
n—00 FE€EF m 8.

o — fHZ < Dr. (107)

Notice that statement (106) implies that for any convex continuous
nondecreasing loss function w on [0, c0)

liminfinf sup FEw <n2p/(2m+1) an —f

n—oo g fE€Fr m g.a

p) >w(Cr).  (108)

Now choose any kernel K satisfying (K.i) and (55) and having support
contained in [—b,b], 0 < b < co. Applying Lemma 1 with H = K?/ HK||§
via inequality (26) we get

/2
J((#2),, 5 1) de<|KIECOS) (1+er (BIXP + R EYP)"
R

where

1
K2
113 /

E|XP = / 2 f (¢) d and EY| = W K2 () dy.

R

Obviously E|X|} < a* and E|Y|* < b*. Thus uniformly in 0 < h < 1 and
f € Fr,m,B,aa

2/p

2
/((KZ)M * f(g:))p/daz <|K[ZCO, )P (1+ex (a*+0Y)) = M.
R
(109)
Let f, be a kernel density estimator with kernel K and a sequence of
bandwidths satisfying (h). On account of (109) we can apply Corollary 1
to infer that for any such kernel and all ¢ > 0,

limsup sup FEexp (t\/nhn | fn — Efn||p) < 0. (110)

n—00 f€EF, mga
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Assume in addition that K satisfies (K.ii4) then for any f € Fr m 8.4,
1f = Efall, < ha'Bllm K], - (111)

Now choose for some ¢ > 0 the sequence of bandwidths

c

hn = nl/Cm+1) "

We see then by (111), Minkowski’s inequality and (110) that for all ¢ > 0,

limsup sup FEexp (tnm/(zmH) Il fn— pr) < 0. (112)

n—00 f€EF. mga

Therefore for any loss function w on [0, c0) such that for some A > 0 and
C >0,
0<w(aP) < Cexp(Az), z €[0,00), (113)

we have

limsup sup FEuw (npm/(zmﬂ) | fr — f||£) < 0. (114)
n—oo fEF,. m g,a

3.3. Partial solution to a conjecture of Guerre and Tsybakov

We shall conclude our paper by showing that our results lead to a par-
tial solution to a conjecture of Guerre and Tsybakov (1998). Let F (v, L)
be a class of density functions such that each f € F (v, L) admits an an-
alytical continuation to the strip D, = {z + iy : |y| < v} with v > 0 such
that f (z + iy) is analytic on the interior of D.,, bounded on D. and for
some L >0

/|f(x+z'y)|2dx <L
R
Clearly, since f is bounded on D,, for all r > 1,

/f’" () dz < . (115)
R

Let

Fy = / exp (it) f (x) da,

R
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denote the Fourier transform of f. We have for any f € F (v, L)
L /cosh2 (yt) ‘f(t)‘z dt <L
2 -
R

(For this and other facts about the class F (v, L) consult Guerre and

Tsybakov (1998) and the references therein.) Introduce the sinc kernel
int
St)=0 teR,
it
were 80 .= 1. The kernel S is not in Ly (R) but it is in L (R). It satisfies

A
lim [ S(t)dt=1and /52 (t)dt = —,
A—oo ™
A R
and its Fourier transform is
S(t)=1{t/ <1}

Choose the sequence of bandwidths h,, = 27/ logn and consider the kernel
density estimator

fo () = nizs(“;X)

Part of the conjecture in Remark 5 of Guerre and Tsybakov (1998) sur-
mises that for a general class of loss functions w for each p > 2 and
f € F(v,L) one has

, ) £ — £,
lim Fw 7 =w(l). (116)
e (E1Z]" Jg f72 (y) dy)

Note that since (115) holds for any f € F (v, L) and S fulfills (K.7) and
(K.ii), our Corollary 2 implies that for any loss function w continuous at
1 and satisfying (53), p > 2 and f € F (v, L),

, 20 || £ — Efall,
lim Ew =w(l). (117)

n—o00 1/17
(B12f o2 01 )
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To infer from (117) that (116) also holds it suffices to verify that

n

oy I = Efull, = 0. (118)

For any h > 0 write S, (-) = h™1S (-h™!). The bias at each fixed z € R
based on the kernel S and bandwidth A > 0 is

bu () = [ (2) = Snx [ (2).

The argument in the proof of Lemma 1 of Guerre and Tsybakov (1998)
shows that the essential supremum of |by,| satisfies

L
ess sup |by| < 1/% exp (—y/h). (119)

Now by Plancherel’s theorem

2
1 ‘ SO
R 1/h v
<L7e (—298) dt = 2 exp (~2/h) (120)
= xp (— = —exp(— .
< p(—2y 7my O (2
1/h

Therefore we see from (119) that (120) that for any i > 0 and p > 2

1/p
b (z) da:) < ((ess sup |bp)?2 [ b3 (2) d:z:)
[/ /
<[5 e (v/n). (121)

1/p
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Clearly from inequality (121) we get

n L\ 1
—-E < | =— 122
logn If anp - (27r’y) Viogn’ (122)

which implies (118) and thus (116) for loss functions w as in Corollary 2.

We do not know whether the limit in (116) is uniform for f € F (v, L),
or even for f in the subclass L/, (M) N F (v, L), for any M > 0. On
the other hand, since (122) holds uniformly for f € F (v, L), it is easy to
combine this with Corollary 1 to show that for any M > 0,2 < p < c©
and loss function w satisfying (53)

lim sup sup Ew (\/nhn | fr — f||p) < 0.

=00 felyo(M)NF(v,L)

Guerre and Tsybakov (1998) also conjectured in their Remark 5 that a
minimax result of the form

2myn }7 —f

logn n
inf sup Fw £ —w (1)
fn fEF

(B12 { o2 ) ) v

for a general class of loss functions w, where the infimum is taken over
all estimators f, of f based on Xi,...,X,, i.i.d. with density f and the
supremum is over a subclass F of F (v, L) with p > 2. The only result
in this direction known to the author is Theorem 2 of Schipper (1996),
which says in the case p = 2 that

9 ~ 2
n ol A
Fu €7 (,L) logn 2

inf  sup

Notice that a special case of (116) says that

2
lim yn

E|f, — flI? — 1.
LU v I fn = fll5 —

For closely related results refer to Theorems 7 and 10 of Ibragimov and
Hashminskii (1980).
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