
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 363, 2009 Ç.D. M. MasonRISK BOUNDS FOR KERNELDENSITY ESTIMATORSAbstrat. We use results from probability on Banah spaes and Pois-sonization tehniques to develop sharp �nite sample and asymptoti mo-ment bounds for the Lp risk for kernel density estimators. Our results areshown to augment previous work in this area.1. IntrodutionIn order to motivate our investigations onsider the following minimaxresult of Wertz (1974). For a given M > 1 and p ≥ 1, let
Lp (M) = {f : f is a density on R and ‖f‖p ≤ M} ; (1)with ‖f‖p denoting the Lp (R) norm. Wertz (1974) proved for p > 1 thatfor eah n ≥ 1 there exists a density estimator f̃0;n based on X1; : : : ; Xn,i.i.d. with density f suh thatsupf∈Lp(M)(E ∥∥∥f̃0;n − f∥∥∥pp)1=p = inff̃n supf∈Lp(M)(E ∥∥∥f̃n − f∥∥∥pp)1=p ;where f̃n is an arbitrary density estimator of f based on X1; : : : ; Xn. Anatural question is the following: assume that f lies in a smooth lass ofdensities F , then do there exist a sequene of onstants an → ∞ and some� > 0 suh thatan inff̃n supf∈Lp(M)∩F

(E ∥∥∥f̃n − f∥∥∥pp)1=p
→ �? (2)This problem remains largely unsolved exept for the ase p = 2 and forertain smooth lasses of densities F . Refer to Shipper (1996) and theResearh partially supported by NSF Grant DMS{0503908 and SFB 701 Universityof Bielefeld . 66



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 67referenes therein. (Atually, one an infer from Theorem 1 of Devroye(1983) that the limit in (2) is in�nite for any sequene of onstants an →
∞ if the supremum is taken over f ∈ Lp (M) instead of over a smoothenough sublass of Lp (M).)Muh more is known about the less preise problem of showing theexistene of onstants 0 < � < � < ∞ suh that� ≤ lim infn→∞

an inff̃n supf∈Lp(M)∩F

(E ∥∥∥f̃n − f∥∥∥pp)1=p
≤ lim supn→∞

an inff̃n supf∈Lp(M)∩F

(E ∥∥∥f̃n − f∥∥∥pp)1=p
≤ �: (3)See Bretagnolle and Huber (1979), Ibragimov and Hasminskii (1980,1982),Efroimovih and Pinsker (1982) and Hasminskii and Ibragimov (1990), aswell as the monograph by Devroye and Gy�or� (1985).It turns out that approximate solutions in terms of having the properrate to the preise problem (2), as well as to the oarser problem (3), anoften be ahieved by sequenes of kernel density estimators. In fat, theright side of (3) is bounded bylim supn→∞

an supf∈Lp(M)∩F

(E ‖fn − f‖pp)1=p ; (4)where {fn} is any sequene of kernel density estimators. Muh of thispaper will be onerned with developing bounds on the lim sup in (4).To �x some notation and assumptions, let X; X1; X2; : : : be i.i.d. withdensity f . A kernel density estimator of f based on X1; : : : ; Xn, n ≥ 1, isde�ned to be fn (x) = 1nhn n∑i=1 K (x−Xihn ) ; x ∈ R; (5)where hn are positive onstants suh thathn → 0 and nhn → ∞ as n→ ∞ (h)and K is a kernel satisfying the following ondition:(K:i) K is in L2 (R) and bounded by some onstant 0 < � < ∞.



68 D. M. MASONAt times we shall also assume that(K:ii) ∫∞0 	K2(x)dx < ∞; where for any measurable funtion H	H(x) = sup
|y|≥x |H(y)|; x ≥ 0:Condition (K:ii) is introdued so that when needed we an apply part ()of Theorem 2 on page 62 of Stein (1970), whih says that if

∞∫0 	H(x)dx <∞ (6)then Hh ∗ f(z) → J(H)f(z); as hց 0; for almost all z ∈ R; (7)where for any funtion H and h > 0;J(H) = ∫
R

H(u) du; (8)Hh = h−1H (·h−1) (9)and Hh ∗ f(z) := h−1 ∫
R

H (z − xh ) f(x) dx: (10)De�ne for any p ≥ 1
‖fn − Efn‖p = (∫

R

|fn(x) − Efn(x)|pdx)1=p:Let fn and f ′n be independent and f ′n =d fn. Notie that2(E ‖fn − f‖pp)1=p = (E ‖fn − f‖pp)1=p + (E ‖f ′n − f‖pp)1=p ;whih by Minkowski's inequality and Jensen's inequality is
≥
(E ‖fn − f ′n‖pp)1=p ≥

(E ‖fn − Efn‖pp)1=p :



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 69Therefore for any p ≥ 1,
(E ‖fn − f‖pp)1=p ≥ 2−1 (E ‖fn − Efn‖pp)1=p .Furthermore, by Minkowski's inequality,

(E ‖fn − Efn‖pp)1=p + ‖f − Efn‖p ≥ (E ‖fn − f‖pp)1=p :This says that in terms of rates, 2−1 (E ‖fn − Efn‖pp)1=p provides a lowerbound on the Lp risk (E ‖fn − f‖pp)1=p of the density estimator fn, and
(E ‖fn − Efn‖pp)1=p plus the bias ‖f − Efn‖p term gives an upper bound.The �rst goal of this paper is to provide good bounds for the momentsE ‖fn − Efn‖rp for any p ≥ 1 and r ≥ 1. Our main tool will be a momentbound for sums of independent random variables taking values in a Banahspae due to Talagrand (1989).Our seond goal will be to study the exat asymptoti behavior ofE ‖fn − Efn‖rp as n → ∞. Here our tools will be the Poissonization meth-ods developed in Gin�e, Mason and Zaitsev (2003).One appliation of our results will lead to the result that for eah1 ≤ p < ∞, under suitable regularity onditions on the density f , thekernel K and the loss funtion w, and with Z denoting a standard normalrandom variable,limn→∞

Ew √nhn ‖fn − Efn‖p
‖K‖2(E |Z|p ∫

R

fp=2 (y) dy)1=p = w (1) : (11)Another appliation will show that for a suitably de�ned lass of densities
Fp=2, lim supn→∞

supf∈Fp=2Ew (√nhn ‖fn − Efn‖p) < ∞;where K, w and p are as in (11). We also disuss onditions on f underwhih Efn an be replaed by f in these last two statements.



70 D. M. MASONWe shall not treat the more intriate problem of the derivation of lowerbounds in (3). To obtain good bounds requires a onsiderable amount ofingenuity and speial tehniques. For instane, Bretagnolle and Huber(1979) base their bounds on a Kullbah information-type inequality, thearguments of Ibragimov and Hasminskii (1980) and Hasminskii and Ibrag-imov (1990) rely on Fano's inequality, Ibragimov and Hasminskii (1982)use a lassi inequality of H�ajek and Shipper (1996) utilizes the van Treesinequality.Our main results are stated and proved in setion 2. In setion 3 we dis-uss the relationship of our results to known risk bounds, espeially thoseof Ibragimov and Hasminskii (1980), Hasminskii and Ibragimov (1990)and Bretagnolle and Huber (1979). Moreover, as a by-produt of our re-sults we will provide a partial solution to a onjeture of Guerre andTsybakov (1998). 2. Main results and proofsWe are �rst interested in �nding a good asymptoti bound forE ∫A |fn (x)− Efn (x)|p dx; (12)with A being a measurable set and p ≥ 1. In the following alulationswhenever ‖K‖p appears, we assume that it is �nite. Under assumption(K:i) this always holds for p ≥ 2.Case 1a. p > 2. To handle this ase we shall need a fat.Fat 1. Rosenthal's inequality. If �i are independent entered randomvariables, then, for every p ≥ 2 and n ∈ N,E ∣∣∣∣∣ n∑i=1 �i∣∣∣∣∣p ≤ ( 15plog p)pmax( n∑i=1 E�2i)p=2 ; n∑i=1 E|�i|p : (13)(This version of Rosenthal's inequality is obtained by symmetrizationof the inequality in Theorem 4.1 from Johnson, Shehtman and Zinn(1985).)By Fat 1 for eah x ∈ R, with Cp = ( 15plog p)p,E (|fn (x)− Efn (x)|p) = E ∣∣∣∣∣∣ n∑i=1 K (x−Xihn )
− EK (x−Xihn )nhn ∣∣∣∣∣∣

p



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 71
≤ Cpnp=2hpn (E (K (x−Xhn )

− EK (x−Xhn ))2)p=2+ Cpnp−1hpnE ∣∣∣∣K (x−Xhn )
− EK (x−Xhn )∣∣∣∣

p ;whih after some elementary bounds is
≤ 2pCpnp=2hpn ∫

R

K2(x− yhn ) f (y) dyp=2+ 2pCpnp−1hpn ∫
R

|K|p (x− yhn ) f (y) dy:(14)Thus
∫A E ∣∣∣∣∣∣ n∑i=1 K (x−Xihn )

− EK (x−Xihn )nhn ∣∣∣∣∣∣

p dx
≤ 2pCpnp=2hpn ∫A 


∫

R

K2(x− yhn ) f (y) dyp=2 dx+ 2pCpnp−1hpn ∫A ∫

R

|K|p(x− yhn ) f (y) dydx:Now sine ∫

R

∫

R

|K|p(x− yhn ) f (y) dydx = hn ‖K‖pp ;we get the bound E ∫A |fn (x)− Efn (x)|p dx
≤ 2pCp(nhn)p=2 ∫A 


∫

R

1hnK2(x− yhn ) f (y) dyp=2 dx+ 2pCp ‖K‖pp(nhn)p−1 : (15)Assume now that ∫

R

(f (y))p=2 dy < ∞: (16)



72 D. M. MASONCondition (K:ii) allows us to apply part () of Theorem 2 on page 63 ofStein (1970) to give
∫A 

 1hn ∫
R

K2(x− yhn ) f (y) dyp=2 dx → ‖K‖p2 ∫A (f (y))p=2 dy;whih, sine (nhn)p=2 = (nhn)p−1 → 0, implies via (15) thatlim supn→∞



(nhn)p=2E∫A |fn (x)−Efn (x)|p dx≤2pCp ‖K‖p2 ∫A (f (y))p=2 dy:Case 1b. p = 2. Obviously,E (|fn (x)− Efn (x)|2) ≤ 1nh2nEK2(x−Xhn )= 1nh2n ∫
R

K2(x− yhn ) f (y) dy:We get as before,lim supn→∞



nhnE ∫A |fn (x) − Efn (x)|2 dx ≤ ‖K‖22 ∫A f (y) dy:Case 2. 1 ≤ p < 2. In this aseE ∫A |fn (x)− Efn (x)|p dx ≤
∫A (E |fn (x)− Efn (x)|2)p=2 dx

≤ 1(nhn)p=2 ∫A 

 1hn ∫
R

K2(x− yhn ) f (y) dyp=2 dx= 1(nhn)p=2 ∫A ((K2)hn ∗ f (y))p=2 dy; (17)where for h > 0, (K2)h (·) = h−1K2(·h−1).The following lemma shows that moment onditions on X and K yielda useful bound on ∫
R

((K2)hh ∗ f (y))p=2 dy by hoosing H = K2= ‖K‖22.Its statement and proof are based on ideas and results in Chapter 7 inDevroye (1987) and Setion 3 of Devroye (1992). See espeially, Remark3 in Devroye (1992).



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 73Lemma 1. Let H and f be densities on R and let X have density f andY have density H . Choose 1s + 1t = 1; with t > 1; and � > t=s: Furtherassume that E|X |� <∞ and E|Y |� <∞. Then for any measurable subsetA of R for a �nite positive onstant C(�; s)
∫A (f(x))1=t dx ≤ C(�; s) (E [(1 + |X |�) 1 {X ∈ A}])1=t (18)and, with Hh(·) = h−1H(·h−1),

∫A (Hh ∗ f(x))1=t dx ≤ C(�; s) (E [(1 + |Xh|�) 1 {Xh ∈ A}])1=t ; (19)where Xh has density Hh ∗ f . Moreover, if H satis�es (6) thenlim supn→∞

∫A (Hh ∗ f(x))1=t dx ≤ C(�; s) (P (A) +E [|X |�1 {X ∈ A}])1=t :(20)Proof. To prove (18) observe that by H�older's inequality,
∫A (f(x))1=t dx ≤



∫

R

{1 + |x|�}−s=t dx1=s

∫A {1 + |x|�} f(x)dx1=t=: C(�; s) (E [(1 + |X |�) 1 {X ∈ A}])1=t :Next, (19) is a speial ase of (18). Finally we turn to the proof of (20).Now Xh =d X+Yh; where Yh has density Hh and Yh and X are indepen-dent. From this we get that when � ≥ 1

(E|X + Yh|�)1=� ≤
(E|X |�)1=� + (E|Yh|�)1=� (21)and when 0 < � < 1 E|X + Yh|� ≤ E|X |� +E|Yh|�: (22)By writing E|Yh|� = ∞∫

−∞

|y|�Hh(y)dy = h�E|Y |�; (23)



74 D. M. MASONwe readily infer from (21), (22) and (23) that for any 0 < � <∞,lim suphց0 E|X + Yh|� ≤ E|X |�: (24)Furthermore, sine we assume ondition (6) holds we have by (7) that foralmost every y
(1 + |y|�)Hh(y) → (1 + |y|�) f (y) as h ց 0:Pieing everything together we onlude from She��e's theorem (see ex-erise 7 on page 862 of Shorak and Wellner (1986)) thatE [(1 + |Xh|�) 1 {Xh ∈ A}]→ E [(1 + |X |�) 1 {X ∈ A}] , as h ց 0:(25)Statement (20) obviously follows from (19) and (25). �Remark 1. For use later on, observe that from inequality (19) and (23)we get from Xh =d X + Yh and the r−inequality thatE|Xh|� = E|X + Yh|� ≤ � (E|X |� + h�E|Y |�) ;where � = 2(�−1)∨1. Thus we get

∫

R

(Hh ∗ f(x))1=t dx ≤ C(�; s) (1 + � (E|X |� + h�E|Y |�))1=t : (26)We summarize these observations in the following proposition.Proposition 1. Let K be a kernel satisfying (K.i) and (K.ii). For anyp ≥ 2 suh that (16) holds, we have for some onstant Dp depending onlyon plim supn→∞



(nhn)p=2E∫A |fn (x)−Efn (x)|p dx≤Dp ‖K‖p2 ∫A (f (y))p=2 dy:(27)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 75Moreover, whenever for a given 1 ≤ p < 2, X and H = K2= ‖K‖22 theonditions of Lemma 1 are satis�ed, we have for any measurable subsetA ⊂ R lim supn→∞



(nhn)p=2E ∫A |fn (x)− Efn (x)|p dx
≤ C(�; s) ‖K‖p2 (E [(1 + |X |�) 1 {X ∈ A}])p=2 ; (28)where 1=s+ p=2 = 1 and �, Y and C(�; s) are de�ned as in Lemma 1.Note that statement (28) follows from (17) and (20).We next turn to the task of deriving a useful �nite sample bound forE ‖fn − Efn‖rp = E∫

R

|fn (x)− Efn (x)|p dxr=p ,with p ≥ 1 and r ≥ 1.To do this we shall need an additional fat.Fat 2. (Theorem 1 of Talagrand (1989)). If B is a separable Banahspae with norm ‖·‖, Zi, i ∈ N, are independent mean zero random vetorstaking values in B, then for a universal onstant D > 0 for all r ≥ 1 andn ≥ 1,(E (‖Sn‖r))1=r ≤ Dr1 + log r (E‖Sn||+(E max1≤i≤n ‖Zi‖r)1=r) ; (29)where Sn = Z1 + · · ·+ Zn.We get from (29) and the r inequality the bound,E (‖Sn‖r) ≤ Dr2r−1rr(1 + log r)r ((E‖Sn||)r +E max1≤i≤n ‖Zi‖r) : (30)We shall apply the bound (30) to the random funtionsZi (·) = K ( · −Xihn )
− EK ( · −Xhn )nhn ; i = 1; : : : ; n:



76 D. M. MASONAs before in the following alulations whenever ‖K‖p appears, we assumethat it is �nite and when needed that (16) holds. We �nd by Jensen'sinequality that, E‖Sn‖p = E ‖fn − Efn‖p= E∫
R

|fn (x)− Efn (x)|p dx1=p
≤
(E ‖fn − Efn‖pp)1=p : (31)Case 1a. p > 2. By inequality (15) (it also holds when p = 2) we seethat E ∫

R

|fn (x)− Efn (x)|p dx
≤ 2pCpnp=2hpn ∫

R



∫

R

K2(x− yhn ) f (y) dyp=2 dx+ 2pCp ‖K‖pp(nhn)p−1 : (32)Notie that


∫

R



∫

R

K2(x− yhn ) f(y)dyp=2 dx2=p
= ∫

R




∫

R

K2( thn) f (t− x) dtp=2 dx2=p ;whih by Young's inequality (see page 232 of Folland (1984)) is
≤
∫

R

|K|2( thn)∫
R

fp=2 (x− t) dx2=pdt=hn ‖K‖22∫
R

fp=2 (y) dy2=p :This gives the boundE ∫
R

|fn (x)− Efn (x)|p dx ≤ 2pCp ‖K‖p2(nhn)p=2 ∫

R

fp=2 (y) dy + 2pCp ‖K‖pp(nhn)p−1 :(33)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 77Therefore for any r ≥ 1,
(E ‖fn − Efn‖p)r ≤ 2pCp ‖K‖p2(nhn)p=2 ∫

R

fp=2 (y) dy + 2pCp ‖K‖pp(nhn)p−1 r=p ;(34)whih by (32), (34) and the r inequality for any r ≥ 1 is
≤ 2r=p2rCr=pp(nhn)r=2 

‖K‖r2∫
R

fp=2 (y) dyr=p + ‖K‖rp(nhn)r=2−r=p : (35)Here to derive (35) we used for notational simpliity the rough version ofthe r inequality that says that for all  > 0
|x+ y| ≤ 2 (|x| + |y|) (36)with  = r=p. NextE max1≤i≤n∫

R

∣∣∣∣
1nhn (K (x−Xihn )

− EK (x−Xhn ))∣∣∣∣
p dxr=p

≤ 2rE max1≤i≤n∫
R

∣∣∣∣
1nhnK (x−Xihn )∣∣∣∣

p dxr=p = 2rhr=pn ‖K‖rp(nhn)r : (37)Inserting the bounds (35) and (37) into (30) we getE ‖fn − Efn‖rp = E‖Sn‖rp
≤ Dr2r−1rr(1 + log r)r 2r=p2rCr=pp(nhn)r=2 

‖K‖r2∫
R

fp=2 (y) dyr=p + ‖K‖rp(nhn)r=2−r=p+ Dr2r−1rr(1 + log r)r 2rhr=pn ‖K‖rp(nhn)r ;



78 D. M. MASONwhih for an appropriate onstant Lp > 0 is for all r ≥ 1 and n ≥ 1
≤
( rLp1 + log r)r  1(nhn)r=2 ‖K‖r2∫

R

fp=2 (y) dyr=p
+ ‖K‖rp(nhn)r=2−r=p)+ hr=pn ‖K‖rp(nhn)r ] : (38)Case 1b. p = 2: In this aseE ∫

R

|fn (x)− Efn (x)|2 dx ≤ 1nh2n ∫
R

EK2(x−Xhn ) dx = ‖K‖22nhn : (39)Hene, (E ‖fn − Efn‖2)r ≤ (E ‖fn − Efn‖22)r=2 ≤ ‖K‖r2(nhn)r=2 :Now by arguing as in Case 1a, we get that for an appropriate L2E ‖fn − Efn‖r2 ≤
( rL21 + log r)r [ ‖K‖r2(nhn)r=2 + hr=pn ‖K‖r2(nhn)r ] : (40)Case 2. 1 ≤ p < 2. In this ase we get from inequality (17),E ∫

R

|fn (x)− Efn (x)|p dx ≤ 1(nhn)p=2 ∫A ((K2)hn ∗ f (y))p=2 dy (41)and from (37), whih holds for p ≥ 1, and (30) that for eah 1 ≤ p < 2there is a onstant Lp > 0 suh that for all r ≥ 1 and n ≥ 1E ‖fn − Efn‖rp
≤
( rLp1 + log r)r (∫R ((K2)hn ∗ f (y))p=2 dy)r=p(nhn)r=2 + hr=pn ‖K‖rp(nhn)r 

 : (42)We shall summarize these observations in the following proposition.



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 79Proposition 2. Let K be a kernel satisfying (K.i). For any p > 2 suhthat (16) holds we have for some onstant Lp > 0, and all r ≥ 1 andn ≥ 1, E ‖fn − Efn‖rp
≤
( rLp1 + log r)r  1(nhn)r=2 ‖K‖r2∫

R

fp=2 (y) dyr=p
+ ‖K‖rp(nhn)r=2−r=p)+ hr=pn ‖K‖rp(nhn)r ] : (43)For p = 2 we have for some onstant L2 > 0, and all r ≥ 1 and n ≥ 1,E ‖fn − Efn‖r2 ≤
( rL21 + log r)r [ ‖K‖r2(nhn)r=2 + hr=pn ‖K‖r2(nhn)r ] : (44)Moreover, whenever 1 ≤ p < 2, we have for some onstant Lp > 0 and allr ≥ 1 and n ≥ 1, E ‖fn − Efn‖rp ≤ ( rLp1 + log r)r×




(∫
R

((K2)hn ∗ f (y))p=2 dy)r=p(nhn)r=2 + hr=pn ‖K‖rp(nhn)r 
 ; (45)where it is assumed that ‖K‖p < ∞ .Remark 2. Whenever for a given 1 ≤ p < 2, X and H = K2= ‖K‖22 theonditions of Lemma 1 are satis�ed, we have using (45), (42) and (26)that for some onstant Lp > 0 and all r ≥ 1 and n ≥ 1,E ‖fn − Efn‖rp

≤
( rLp1 + log r)r ‖K‖r2 (C1=p(�; s) (1 + � (E|X |� + h�E|Y |�))1=2)r(nhn)r=2+( rLp1 + log r)r hr=pn ‖K‖rp(nhn)r ;



80 D. M. MASONwhere 1=s+ p=2 = 1 and �, Y and C(�; s) are de�ned as in Lemma 1.Remark 3. Modulo onstants depending on p, inequality (33) impliesinequality (4.13) of Bretagnolle and Huber (1979) and inequalities (39)and (41) agree with the orresponding parts of their inequalities (4.14)and (4.15).As an immediate orollary we get.Corollary 1. Let K be a kernel satisfying (K:i). For any p ≥ 2 andM > 0 let Lp=2 (M) be a lass of densities de�ned as in (1) and for1 ≤ p < 2 let
Kp=2 (K;M)= {f : f is a density on R and ∥∥(K2)h ∗ f∥∥p=2 ≤ M for all 0 < h ≤ 1} :(47)We have for every t > 0,lim supn→∞

supf∈Fp=2E exp(t√nhn ‖fn − Efn‖p) < ∞; (48)where it is assumed that ‖K‖p < ∞ for 1 ≤ p < ∞, Fp=2 = Lp=2 (M) forp ≥ 2 and Fp=2 = Kp=2 (K;M) for 1 ≤ p < 2.Proof. Clearly by Proposition 2 for p ≥ 1, we have for some onstantA > 0 for all r ≥ 1 and n ≥ 1(nhn)r=2 supf∈Fp=2E ‖fn − Efn‖rp ≤
( rA1 + log r)r [1 + 1(nhn)r=2] : (49)From this bound, (48) readily follows using the rough version of Stirling'sapproximation, whih says for integers r ≥ 1 that r! > (r=e)r, and theassumption that nhn → ∞. �In the next subsetion we shall prove the following result.Proposition 3. Let K be a kernel satisfying (K.i) and (K.ii). Under theonditions of Proposition 2 for p ≥ 2, as n→ ∞,(nhn)p=2 E ‖fn − Efn‖pp → m (p; f;K) ; (50)and (nhn)p=2 ‖fn − Efn‖pp →p m (p; f;K) ; (51)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 81where m (p; f;K) = ‖K‖p2 E |Z|p ∫
R

fp=2 (y) dy; (52)with Z denoting a standard normal random variable. Moreover, the limits(50) and (51) also hold for 1 ≤ p < 2 whenever the onditions stated inRemark 2 for (46) are ful�lled.An immediate onsequene of Corollary 1 and (51) is the followingorollary.Corollary 2. Under the onditions of Proposition 3 for p ≥ 1 and anyloss funtion w on [0;∞) that is ontinuous at 1 and suh that for some� > 0 and C > 0 0 ≤ w (x) ≤ C exp (�x) ; x ∈ [0;∞ ) ; (53)we have limn→∞
Ew √nhn ‖fn − Efn‖p

‖K‖2(E |Z|p ∫
R

fp=2 (y) dy)1=p = w (1) : (54)Remark 4. To replae ‖fn − Efn‖p by ‖fn − f‖p in (50), (51), (52) and(54) requires additional smoothness onditions to ontrol the Lp (R) normof the bias f − Efn. Here is a onvenient set of onditions, whih aredetailed in Bretagnolle and Huber (1979) whih lead to a good bound for
‖f − Efn‖p. In addition to (K:i) and (K:ii), assume that

∫

R

K (x) dx = 1: (55)Further assume that for some integer s ≥ 2,(K:iii) K is ontinuous,
∫

R

ujK (u) du = 0; 1 ≤ j < s and ∫

R

|u|s |K (u)| du < ∞:



82 D. M. MASONFor kernels K satisfying (K:iii) we de�ne the s−Kernel sK for u ≥ 0,sK (u) = (−1)s ∞∫u (y − u)s−1(s− 1)! K (y) dy and sK (−u) = − (−1)s sK (u) :Bretagnolle and Huber (1979) point out that sK ∈ L1 (R) ∩ C(s) ands (Kh) = hs (sK)h. (Reall the notation de�ned in (9).) They showthat whenever the density f is s times ontinuously di�erentiable withs−derivative f (s) ∈ Lp (R), p ≥ 1, then for all h > 0;
‖f − Efn‖p ≤ hs ∥∥∥f (s)∥∥∥p ‖sK‖1 . (56)Clearly then by using the inequality

∣∣∣‖fn − f‖p − ‖fn − Efn‖p∣∣∣ ≤ ‖f − Efn‖p ,we see that whenever (56) holds and √nhnhsn → 0, then we an replae
‖fn − Efn‖p by ‖fn − f‖p in (50), (51), (52) and (54).2.1. Proof of Proposition 3Before proving Proposition 3 we must gather together some fats.Fat 3. Suppose that H is a �nite lass of bounded real valued mea-surable funtions H in L1 (R) that satisfy (6). Then for any H ∈ H, (7)holds. Moreover, for all 0 < " < 1; there exist M; � > 0 and a Borel set Cof �nite Lebesgue measure m(C) suh thatC ⊂ [−M + �;M − �℄; (57)� := ∫

|x|>M f(x) dx > 0; (58)P (C) := ∫C f(x) dx > 1− "; (59)f is bounded, ontinuous and bounded away from zero on C; (60)and uniformly in H ∈ H,supz∈C |f ∗Hh(z)− J(H) f(z)| → 0; as h ց 0: (61)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 83The �rst statement is just the Stein result ited above. The other state-ments are proved exatly as in the proof of Lemma 6.1 of Gine, Masonand Zaitsev (2003).In order to state our next fat let �; �1; �2; · · · be independent, identi-ally distributed random variables satisfying E� = 0 and E�2 = 1, andlet Z denote a standard normal random variable. We shall be applying aspeial ase of Theorem 1 of Sweeting (1977). In order to state the par-tiular result that we need, we must �rst gather together some notationfrom Sweeting (1977). Assume E |�|3 < ∞ and set�3 = E |�|3 : (62)(The symbol �3 is de�ned on page 30, lines -9 to -6, of Sweeting (1977).)Let � denote the lass of funtions g on [0;∞) satisfying(i) g(0) = 0 and g(1) = 1;(ii) g is nonnegative and nondereasing;(iii) t=g(t) is de�ned for all t ∈ [0;∞) and is nondereasing.(The lass � is de�ned on page 35, lines 1{5 of Sweeting (1977).)We shall use the partiular funtion g ∈ �,g(t) = min(t; 1); t ∈ [0;∞) : (63)Let g ∈ � and r ≥ 2 be an integer and de�ne�n = n−(r−2)=2E [|�|rg (n−1=2|�|)] :(The symbol �n is de�ned on page 35, line 9, of Sweeting (1977).)We will always hoose g as in (63) and r ≥ 3; giving�n = n−(r−2)=2E [|�|rg (n−1=2|�|)] ≤ E|�|rn(r−2)=2 : (64)Next let "n = �3√n: (65)(The symbol "n is de�ned on page 35, line -6, of Sweeting (1977).)Let � be a �xed Borel measurable funtion on R. For any " > 0 andx ∈ R; de�ne !"�(x) = sup {|�(x) − �(y)| : |x− y| < "} :



84 D. M. MASON(The symbol !"�(x) is de�ned at the bottom of page 36 of Sweeting (1977).)Let r ≥ 3 be an integer and g ∈ �: Seth(t) = 1 + trg(t);and put �∗(x) = h (|x|)−1 [�(x) − �(0)℄ : (66)(The symbol �∗(x) is de�ned on page 37 of Sweeting (1977).)We will always use the hoie with r ≥ 3,h(t) = 1 + trmin(t; 1); (67)i.e., g is as in (63).Further for any measurable funtion v on R denote
||v|| = sup {|v(x)| : x ∈ R} :Here is a speial ase of Theorem 1 of Sweeting (1977) that we will beusing.Fat 4. Suppose for an integer r ≥ 3E|�|r < ∞: (68)Then there exist universal positive onstants C1 and C2 suh that for allmeasurable funtions � on R with �∗ bounded and de�ned as in 66 withh as in (67) suh that

∣∣∣∣E�(∑ni=1 �i√n )
− E�(Z)∣∣∣∣ ≤ C1 [||�∗|| ("n + �n) +E!C2"n� (Z)] : (69)We will be interested in the speial ase�(x) = |x|p , x ∈ R, with p ≥ 1 an integer.In this ase we hoose an integer r ≥ max (p; 3). Thus

||�∗|| = sup{ |x|p1 + |x|rmin (x; 1) : x ∈ R

}
≤ 1:



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 85Whenever |y − x| ≤ C2"n, we get using the mean value theorem whenp > 1 and the triangle inequality when p = 1 that for some onstant Apdepending on p
|�(y) − �(x)| ≤ ApC2"n (|x|p−1 + |C2"n|p−1) :Inserting these bounds into (69) we get

∣∣∣∣∣∣∣∣
E� n∑i=1 �i√n −E�(Z)∣∣∣∣∣∣∣∣≤C1 ["n+�n+ApC2"n (E |Z|p−1+|C2"n|p−1)] :(70)We shall need the following speial ase of Lemma 2.1 of Gin�e, Mason andZaitsev (2003). We say that a set D is a (ommutative) semigroup if ithas a ommutative and assoiative operation, with a zero element. If D isequipped with a �-algebra D for whih the sum, + : (D ×D;D ⊗D) 7→(D;D), is measurable, then we say the (D;D) is a measurable semigroup.Fat 5. Let (D;D) be a measurable semigroup; let Y0 = 0 ∈ D andlet Y; Yi, i ∈ N, be independent identially distributed D-valued randomvariables; for any given n ∈ N let � be a Poisson random variable withmean n independent of the sequene {Yi}; and let B ∈ D be suh that 0 <Pr{Y ∈ B} ≤ 1=2. Then if H : D 7→ R is non-negative and D-measurable,EH ( n∑i=0 I(Yi ∈ B)Yi) ≤ 2EH ( �∑i=0 I(Yi ∈ B)Yi) : (71)Important speial ase. We will apply the preeding fat to the semi-group D with the operation sum generated by the point masses Æxi ,D = {0; n∑i=1 Æxi : n ∈ N; xi ∈ S} ;where S = R. For A a Borel subset of R setB = {Æx : x ∈ A} :



86 D. M. MASONNotie that I(x ∈ A) = I(Æx ∈ B). Let (R;B) be the usual Borel mea-surable spae. In this ase the �-algebra D is generated by the funtionsfn;A : R
n → D, byfn;A(x1; : : : ; xn) = n∑i=1 I(xi ∈ A)Æxi ;n ∈ N. It is easy to see that for any measurable funtion h : R 7→ R, themap � 7→
∫ hd� is D-measurable (just note thatf−1n;A{� ∈ D; ∫ hd� ≤ t} = {(x1; : : : ; xn) : n∑i=1 I(xi ∈ A)h(xi) ≤ t}is a measurable subset of R

n). Our funtions H will have the general formH ( n∑i=1 I(Æxi ∈ B)Æxi) = H ( n∑i=1 I(xi ∈ A)Æxi)= ∫C {∣∣∣∣∣

n∑i=1 L

(x− xih )
− b(x)∣∣∣∣∣p − (x)} dx2 ; (72)where p ≥ 1, L is a measurable bounded funtion equal to zero o� of a om-pat interval [−L;L℄, C is a measurable set and A is the Lh-neighborhoodof C. In this setup X; Xi; i ∈ N will be a sequene of i.i.d. real valuedrandom variables and Yi = ÆXi , i ∈ N. Alsob(x) = EL

(x−Xh ) (73)and with � a Poisson random variable with mean n independent of X ,X1; : : : ; (x) = E(∣∣∣∣∣ �∑i=1 L

(x−Xih )
− b(x)∣∣∣∣∣p) : (74)Now H when onsidered as a funtion on R
n an be shown to be Borelmeasurable, whih in this setup is equivalent to being D-measurable.We shall also need the following fat, whih is Lemma 2.3 of Gin�e,Mason and Zaitsev (2003).



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 87Fat 6. If, for eah n ∈ N, �; �1; �2; : : : ; �n; : : : ; are independent identi-ally distributed random variables, �0 = 0, and � is a Poisson randomvariable with mean  > 0 and independent of the variables {�i}∞i=1 then,for every p ≥ 2,E ∣∣∣∣∣ �∑i=0 �i − E�∣∣∣∣∣p ≤ ( 15plog p)pmax [(E�2)p=2 ; E|�|p] : (75)Moreover, speializing to � ≡ 1; we have for every p ≥ 2,E |� − |p ≤ ( 15plog p)pmax [p=2; ] : (76)For any L > 0 let
L (u) = K (u) 1 {u ∈ [−L;L℄}and
L (u) = K (u) 1 {u =∈ [−L;L℄} :We an writefn(x)− Efn (x) = 1nhn n∑i=1 (K (x−Xihn )

− EK (x−Xihn ))= 1nhn n∑i=1 (L

(x−Xihn )
− EL

(x−Xihn ))+ 1nhn n∑i=1 (L

(x−Xihn )
− EL

(x−Xihn ))=: (Ln(x)− ELn (x)) + (Ln(x) − ELn (x)) :We now have the tools to prove statement (50) of Proposition 3.Step 1. By Proposition 1 for any p ≥ 1 there is a onstant ap suh thatlim supn→∞

((nhn)p=2 E ∥∥Ln − ELn∥∥pp) ≤ ap ∥∥L∥∥p2 : (77)Observe that the right side of (77) an be made as small as desired byhoosing L > 0 large enough.



88 D. M. MASONStep 2. Next by Proposition 1 there is a non-negative measurable fun-tion 'p satisfying E'p (X) < ∞ suh that for any measurable subset Aof R,lim supn→∞


(nhn)p=2E∫A |Ln (x)− ELn (x)|p dx ≤ ‖L‖p2 ∫A 'p (x) f (x) dx:(78)Step 3. Let � be a Poission random variable with mean n independentof X1; X2; : : : and set

Ln;� (x) = 1nhn �∑i=1 L

(x−Xihn ) : (79)We see that ELn;� (x) = ELn (x) = h−1n EL

(x−Xhn ) ; (80)n Var (Ln;� (x)) = h−2n EL
2 (x−Xhn ) (81)andn Var (Ln (x)) = h−2n EL

2(x−Xhn )
−
{h−1n EL

(x−Xhn )}2 : (82)Choose any bounded Borel set C satisfying (60) and (61) with H ={
L;L2}. Clearly for any suh set C;supx∈C ∣∣∣∣√nhn Var (Ln;� (x))−√nhn Var (Ln(x))∣∣∣∣

≤ supx∈C hn (Lhn ∗ f(x))2√(L2)hn ∗ f(x) = O (hn) (83)(see (60), (61), (81) and (82)).



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 89Lemma 2. Whenever hn → 0, nhn → ∞ and C satis�es (60) and (61)with H = {L;L2}, we have for p ≥ 1,limn→∞

∫C {(√nhnE|Ln;� (x)− ELn(x)|)p − ‖L‖p2 E|Z|pfp=2 (x)} dx = 0(84)andlimn→∞

∫C {(√nhnE|Ln(x)− ELn(x)|)p − ‖L‖p2 E|Z|pfp=2 (x)} dx = 0:(85)Proof. We will �rst show thatlimn→∞

∫C {E (√nhn |Ln;�(x)
−ELn(x)|)p − E|Z|p (nhnVar (Ln;� (x)))p=2} dx = 0 (86)and limn→∞

∫C {E (√nhn |Ln(x) − ELn(x)|)p
−E|Z|p (nhnVarLn;� (x))p=2} dx = 0: (87)Let �1 denote a Poisson random variable with mean 1, independent ofX1; X2; : : : ; and setYn(x) = ∑j≤�1 L

(x−Xjhn )
− EL

(x−Xhn )

/√EL2(x−Xhn ) :(88)Now VarYn(x) = 1 and it is readily heked using Fat 6 that for someonstant A > 0 independent of Yn and x,E|Yn(x)|3 ≤ A h−3=2n E ∣∣∣L(x−Xhn )∣∣∣3

(h−1n EL2 (x−Xhn ))3=2 (89)



90 D. M. MASONand for any integer r ≥ max (3; p),E|Yn(x)|r ≤ A h−r=2n E ∣∣∣L(x−Xhn )∣∣∣r
(h−1n EL2 (x−Xhn ))r=2 : (90)Using (61) and (60), whih says that for some Æ > 0, f(x) ≥ Æ > 0 for allx ∈ C; we get from (89) and (90) that for all large enough n uniformly inx ∈ C for some onstant B0 > 0;n−1=2 supx∈CE|Yn(x)|3 ≤ (nhn)−1=2B0: (91)and n−(r−2)=2 supx∈CE|Yn(x)|r ≤ (nhn)−r=2+1B0: (92)Let Y (1)n (x); : : : ; Y (n)n (x) be i.i.d. Yn(x): Clearly

√n {Ln;�(x) − ELn(x)}√h−2n EL2 (x−Xhn ) =d n∑i=1 Y (i)n (x)
√n : (93)Therefore by (70), we readily onlude that for some onstant D for alllarge enough n,supx∈C ∣∣∣∣∣∣∣E ∣∣√nhn {Ln;�(x) − ELn(x)}∣∣p

(h−1n EL2 (x−Xhn ))p=2 − E|Z|p∣∣∣∣∣∣∣
≤ D(n−1=2 supx∈CE|Yn(x)|3 + n−(r−2)=2 supx∈CE|Yn(x)|r) : (94)Now by (91) and (92) using r ≥ 3 in ombination with (94) andsupx∈C(h−1n EL

2 (x−Xhn ))p=2 = supx∈C (nhn Var(L�;n(x)))p=2 = O(1);(95)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 91we get then that
∣∣∣∣∣∣

∫C {E (√nhn |L�;n(x)−Efn;L(x)|)p−E|Z|p (nhnVar(L�;n(x)))p=2} dx∣∣∣∣∣∣= O( 1√nhn) :Similarly one obtains using Fat 4 that
∣∣∣∣∣∣

∫C {E (√nhn |Ln(x) − Efn;L(x)|)p − E|Z|p (nhn Var(Ln(x)))p=2} dx ∣∣∣∣∣∣= O( 1√nhn) ;whih by (83) implies
∣∣∣∣∣∣

∫C {E (√nhn|Ln(x) − Efn;L(x)|)p − E|Z|p (nhnVar(L�;n(x)))p=2} dx∣∣∣∣∣∣= O( 1√nhn + hn) :Realling (81), we havenhnVar (Ln;� (x)) = h−1n EL
2(x−Xhn ) = E (L2)hn (x) : (96)Clearly (96) in ombination with (61), whih impliessupz∈C ∣∣∣(L2)hn ∗ (z)− ‖L‖22 f(z)∣∣∣→ 0; as h ց 0;gives supz∈C ∣∣∣nhn Var(L�;n(x))− ‖L‖22 f(z)∣∣∣→ 0; as h ց 0:Lemma 2 now follows by the bounded onvergene theorem keeping inmind the properties of C. �



92 D. M. MASONWe are now ready to prove statement (50) of Proposition 3. For any0 < " < 1 hoose C as in Fat 3. Now (78) giveslim supn→∞


(nhn)p=2E ∫C |Ln (x) − ELn (x)|p dx ≤ ‖L‖p2 ∫C 'p(x)dx:(97)The right side of (97) an be made a small as desired sine P (C) an bemade arbitrarily small. The same is true for the term

‖L‖p2 E|Z|p ∫C fp=2 (x) dx:(Notie that for 1 ≤ p < 2 statement (16) holds by inequality (18).) Sine" an be made arbitrarily small, an elementary argument based on (85)now shows that (50) holds.We next turn to the proof of (51). Choose any bounded Borel set Csatisfying (57) through (61) with H = {
L;L2;L2p}. Sine C ⊂ [−M +�;M − �℄, we get that CLh ⊂ [−M;M ℄ for all h > 0 small enough.Moreover we an �nd a measurable partition C1; : : : ; Ck of C so thatP (CLhi )

≤ 1=2 for i = 1; : : : ; k and all h > 0 small enough. We now getfrom Fat 5 with C = Ci and A = CLhi using the fat that L has supportontained in [−L;L℄ that for i = 1; : : : ; k;E ∫Ci (√nhn |Ln(x)− Efn;L(x)|)p dx
−E ∫Ci (√nhn |Ln;�(x)− Efn;L(x)|)p dx2
≤ 2E ∫Ci (√nhn |Ln;�(x) − Efn;L(x)|)p dx
−E ∫Ci (√nhn |Ln;�(x)− Efn;L(x)|)p dx2



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 93= 2V ar∫Ci (√nhn |Ln;�(x) − Efn;L(x)|)p dx : (98)Set Sn (x) = �∑i=1 L

(x−Xihn )
− nEL

(x−Xihn ) :Observe that
√nhn |Ln;�(x) − Efn;L(x)| = 1√nhn |Sn(x)|;and, moreover, Sn (x) and Sn (y) are independent if |x− y| > 2Lhn. Thusfor eah i = 1; : : : ; k,Var∫Ci (√nhn |Ln;�(x)− Efn;L(x)|)p dx= 1(nhn)p ∫Ci ∫Ci 1 (|x− y| ≤ 2Lhn) ov (|Sn (x)|p ; |Sn (y)|p) dxdy:Notie

|ov (|Sn (x)|p ; |Sn (y)|p)| ≤√E |Sn (x)|2p√E |Sn (y)|2p:Furthermore, by Fat 6E |Sn (x)|2p ≤ ( 30plog (2p))pmax [(nE�2n (x))p ; nE|�n (x) |2p] ;where �n (x) = L

(x−Xhn ) :Now 1hnE�2n (x) = 1hnEL
2 (x−Xhn )onverges uniformly to f (x) ∫

R

L
2 (u) du on C and1hnE�2pn (x) = 1hnL

2p(x−Xhn )



94 D. M. MASONonverges uniformly on C to f (x) ∫
R

L
2p (u) du. Hene uniformly in x ∈ Cfor some onstant Bp (C),E |Sn (x)|2p ≤ Bp (C) ((nhn)p + nhn) :Thus uniformly in i = 1; : : : ; k, for all large enough n using nhn → ∞,1(nhn)p ∫Ci ∫Ci 1 (|x− y| ≤ 2Lhn) ov (|Sn (x)|p ; |Sn (y)|p) dxdy

≤ 2Bp (C) ∫C ∫C 1 (|x− y| ≤ 2Lhn) dxdy;whih sine C is a bounded Lebesgue measurable set is for some onstantDp (C;L)
≤ hnDp (C;L) :Hene by the above string of inequalities, we see that for eah i = 1; : : : ; k,as n → ∞, V ar∫Ci (√nhn |Ln;�(x) − Efn;L(x)|)p dx→ 0;from whih we infer from (98) that as n → ∞,

∫Ci(√nhn|Ln(x)−Efn;L(x)|)pdx − E∫Ci(√nhn|Ln;�(x)−Efn;L(x)|)p dx
→P 0:This, in turn, when oupled with (84), (85) and C1; : : : ; Ck being a parti-tion of C implies

∫C (√nhn |Ln(x) − Efn;L(x)|)pdx →P ‖L‖p2 E|Z|p ∫C fp=2 (x) dx: (99)Now P (C) an be made arbitrarily small and thus, keeping (97) in mind,we see thatE ∫C (√nhn |Ln(x) − Efn;L(x)|)p dx+ ‖L‖p2 E|Z|p ∫C fp=2 (x) dx



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 95an be made as small as desired for all large enough n: This observationwhen ombined with (85) allows us to onlude that
∫

R

(√nhn |Ln(x) − Efn;L(x)|)p dx →P ‖L‖p2 E|Z|p ∫
R

fp=2 (x) dx:(The neessary argument is given in the proof of Theorem 4.2 of Billingsley(1968).) Reall from Step 1 thatlim supn→∞

((nhn)p=2 E ∥∥Ln − ELn∥∥pp) ≤ ap ∥∥L∥∥p2 ;whih an be made as small as desired by hoosing L > 0 large enough.In the same way, we an make
∥∥L
∥∥p2 E|Z|p ∫

R

fp=2 (x) dx;arbitrarily small. Therefore by a standard argument we onlude that(51) holds. (As above, the argument is in the proof of Theorem 4.2 onBillingsley (1968).) This ompletes the proof of Proposition 3. �3. Connetions to known risk boundsIn this setion we disuss the onnetions of our results to some knownrisk bounds of Ibragimov and Hasminskii (1980), Hasminskii and Ibragi-mov (1990) and Bretagnolle and Huber (1979), and then we use our re-sults to provide a partial solution to a onjeture of Guerre and Tsybakov(1998).3.1. Connetion to results of Ibragimov and HasminskiiIntrodue the following analog of the de la Vall�ee-Poussin kernel,Kvp (x) = osx− os 2x�x2 ; x ∈ R: (100)Let fn be the density estimator based on this kernel. Ibragimov andHasminskii (1980) and Hasminskii and Ibragimov (1990) have obtainedbounds for any r ≥ 1 and p ≥ 1 for E ‖fn − Efn‖rp and E ‖fn − f‖rp.Their bounds for E ‖fn − Efn‖rp are of the same order as those givenin our Proposition 2 when p ≥ 2. Refer to Lemma 4 of Ibragimov andHasminskii (1980).



96 D. M. MASONSpeialize now to the following smooth lass of densities: for a given� > 0, � = r + �, r = 0; 1; : : : ; 0 < � < 1, L > 0 and p ≥ 1, let denoteH�p L denote the lass of funtions g ∈ Lp(R) with derivatives up to orderr and satisfy



∫

R

∣∣∣g(r) (x+ h)− g(r) (x)∣∣∣p dx1=p
≤ L |h|� ; |h| ≤ �;In the ase � = 1, the slightly stronger ondition is needed, namely,




∫

R

∣∣∣g(r) (x+ h) + g(r) (x− h)− 2g(r) (x)∣∣∣p dx ≤ L |h| ; |h| ≤ �:Lemmas 3 and 5 in Ibragimov and Hasminskii (1980) imply that for anydensity f ∈ H�pL and the kernel density estimator fn based on the kernel(100), fn (x) = 1nhn n∑i=1 Kvp(x−Xihn ) ;we have
‖Efn − f‖p ≤ A |h|� : (101)Choose for some  > 0 the sequene of bandwidthshn = n1=(2�+1) :It follows from (101), Minkowski's inequality and our Corollary 1 that forany p ≥ 2, M > 0 and loss funtion w satisfying its onditions thatlim supn→∞

supf∈H�pL∩Lp=2((M)(p−2)=(p−1))Ew (n�=(2�+1) ‖fn − f‖p) < ∞;whih sine ‖f‖p=2 ≤ ‖f‖(p−2)=(p−1)p implieslim supn→∞
supf∈H�pL∩Lp(M)Ew (n�=(2�+1) ‖fn − f‖p) <∞: (102)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 97Statement (102) was proved in Theorem 5 of Ibragimov and Hasminskii(1980).Ibragimov and Hasminskii (1980) establish in their Theorem 5 that ifw is also non-dereasing then for some  > 0lim infn→∞
inff̃n supf∈H�pL∩Lp(M)Ew(n�=(2�+1) ∥∥∥f̃n − f∥∥∥p) > 0; (103)where f̃n is an arbitrary density estimator of f based on X1; : : : ; Xn:Hasminskii and Ibragimov (1990) show that the rate is di�erent when1 ≤ p < 2. More preisely they prove that for any r ≥ 1lim infn→∞

inff̃n supf∈H�pL∩Lp(M)n�r=(q�+1)E ∥∥∥f̃n − f∥∥∥rp > 0; (104)where q = p= (p− 1). (For the ase p = 1 see also Theorem 11 of Ibragimovand Hasminskii (1980).)3.2. Connetion to results of Bretagnolle and HuberThere are similar onnetions to the work of Bretagnolle and Huber(1979). We shall restrit our disussion to the ase 1 ≤ p < 2. For r > 0,� > 0 and a positive integer m letFr;m;�;a = {f : �m;p (f) ≤ r} ⊂ C(m)[−a;a℄ (�) ;where �m;p (f) = ∥∥∥f (m)∥∥∥p=(2m+1)p ‖f‖2p=(2m+1)p=2and C(m)[−a;a℄ (�) denotes the lass of m times ontinuously di�erentiabledensities f with support ontained in [−a; a℄, 0 < a < ∞, and satisfying∥∥f (m)∥∥p ≤ �. Applying the onstrution in their Proposition 3.1 we an�nd a lass � ⊂ Fr;m;�;a so that for some C > 0;lim infn→∞
n2p=(2m+1) inff̃n supf∈�E ∥∥∥f̃n − f∥∥∥pp ≥ Cr; (105)whih implies thatlim infn→∞

n2p=(2m+1) inff̃n supf∈Fr;m;�;aE ∥∥∥f̃n − f∥∥∥pp ≥ Cr: (106)



98 D. M. MASON(We assume that � > 0 is hosen so that their onstrution works.) Fur-thermore, as on page 131 of Bretagnolle and Huber (1979) we an inferthat for a suitable positive onstant D and for a well hosen sequene ofestimators f̃n,lim supn→∞
n2p=(2m+1) supf∈Fr;m;�;aE ∥∥∥f̃n − f∥∥∥pp ≤ Dr: (107)Notie that statement (106) implies that for any onvex ontinuousnondereasing loss funtion w on [0;∞)lim infn→∞

inff̃n supf∈Fr;m;�;aEw(n2p=(2m+1) ∥∥∥f̃n − f∥∥∥pp) ≥ w (Cr) : (108)Now hoose any kernel K satisfying (K:i) and (55) and having supportontained in [−b; b℄, 0 < b < ∞. Applying Lemma 1 with H = K2= ‖K‖22via inequality (26) we get
∫

R

((K2)hn ∗ f(x))p=2dx≤‖K‖p2 C(�; s) (1+� (E|X |� + h�E|Y |�))p=2 ;whereE|X |� = ∫
R

|x|� f (x) dx and E|Y |� = 1
‖K‖22 ∫

R

|y|�K2 (y) dy:Obviously E|X |� ≤ a� and E|Y |� ≤ b�. Thus uniformly in 0 < h ≤ 1 andf ∈ Fr;m;�;a,


∫

R

((K2)hn ∗ f(x))p=2dx2=p
≤‖K‖22 C(�; s)2=p (1+ � (a�+ b�))=:M:(109)Let fn be a kernel density estimator with kernel K and a sequene ofbandwidths satisfying (h): On aount of (109) we an apply Corollary 1to infer that for any suh kernel and all t > 0,lim supn→∞

supf∈Fr;m;�;aE exp(t√nhn ‖fn − Efn‖p) < ∞: (110)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 99Assume in addition that K satis�es (K:iii) then for any f ∈ Fr;m;�;a,
‖f − Efn‖p ≤ hmn � ‖mK‖1 : (111)Now hoose for some  > 0 the sequene of bandwidthshn = n1=(2m+1) :We see then by (111), Minkowski's inequality and (110) that for all t > 0,lim supn→∞

supf∈Fr;m;�;aE exp(tnm=(2m+1) ‖fn − f‖p) < ∞: (112)Therefore for any loss funtion w on [0;∞) suh that for some � > 0 andC > 0, 0 ≤ w (xp) ≤ C exp (�x) ; x ∈ [0;∞) ; (113)we have lim supn→∞
supf∈Fr;m;�;aEw (npm=(2m+1) ‖fn − f‖pp) < ∞: (114)3.3. Partial solution to a onjeture of Guerre and TsybakovWe shall onlude our paper by showing that our results lead to a par-tial solution to a onjeture of Guerre and Tsybakov (1998). Let F (; L)be a lass of density funtions suh that eah f ∈ F (; L) admits an an-alytial ontinuation to the strip D = {x+ iy : |y| ≤ } with  > 0 suhthat f (x+ iy) is analyti on the interior of D , bounded on D and forsome L > 0 ∫

R

|f (x+ iy)|2 dx ≤ L:Clearly, sine f is bounded on D , for all r ≥ 1,
∫

R

fr (x) dx < ∞: (115)Let f̂ (t) = ∫
R

exp (itx) f (x) dx;



100 D. M. MASONdenote the Fourier transform of f . We have for any f ∈ F (; L)12� ∫
R

osh2 (t) ∣∣∣f̂ (t)∣∣∣2 dt ≤ L:(For this and other fats about the lass F (; L) onsult Guerre andTsybakov (1998) and the referenes therein.) Introdue the sin kernelS (t) = sin t�t ; t ∈ R;were sin 00 := 1: The kernel S is not in L1 (R) but it is in L2 (R). It satis�eslimA→∞

A∫
−A S (t) dt = 1 and ∫

R

S2 (t) dt = 1� ;and its Fourier transform iŝS (t) = 1 {|t| ≤ 1} :Choose the sequene of bandwidths hn = 2= logn and onsider the kerneldensity estimator fn (x) = 1nhn n∑i=1 S (x−Xihn ) :Part of the onjeture in Remark 5 of Guerre and Tsybakov (1998) sur-mises that for a general lass of loss funtions w for eah p ≥ 2 andf ∈ F (; L) one haslimn→∞
Ew √ 2�nlogn ‖fn − f‖p

(E |Z|p ∫
R
fp=2 (y) dy)1=p = w (1) : (116)Note that sine (115) holds for any f ∈ F (; L) and S ful�lls (K:i) and(K:ii), our Corollary 2 implies that for any loss funtion w ontinuous at1 and satisfying (53), p ≥ 2 and f ∈ F (; L),limn→∞

Ew √ 2�nlogn ‖fn − Efn‖p
(E |Z|p ∫

R

fp=2 (y) dy)1=p = w (1) : (117)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 101To infer from (117) that (116) also holds it suÆes to verify that
√ nlogn ‖f − Efn‖p → 0: (118)For any h > 0 write Sh (·) = h−1S (·h−1). The bias at eah �xed x ∈ Rbased on the kernel S and bandwidth h > 0 isbh (x) = f (x) − Sh ∗ f (x) :The argument in the proof of Lemma 1 of Guerre and Tsybakov (1998)shows that the essential supremum of |bh| satis�esess sup |bh| ≤√ L2� exp (−=h) : (119)Now by Planherel's theorem

∫

R

b2h (x) dx = ∫
R

(f (x)− Sh ∗ f (x))2 dx= 12� ∫
R

∣∣∣f̂ (t)− Ŝ (ht) f̂ (t)∣∣∣2 dt = 12� ∫
R

∣∣∣f̂ (t) 1 {|t| ≥ 1=h}∣∣∣2 dt
≤ 12� ∫

R

osh2 (t) ∣∣∣f̂ (t)∣∣∣2 dt ∞∫1=h 1osh2 (t)dt
≤ L� ∞∫1=h exp (−2t) dt = L2� exp (−2=h) : (120)Therefore we see from (119) that (120) that for any h > 0 and p ≥ 2



∫

R

bph (x) dx1=p
≤


(ess sup |bh|)p−2 ∫

R

b2h (x) dx1=p
≤
√ L2� exp (−=h) : (121)



102 D. M. MASONClearly from inequality (121) we get
√ nlogn ‖f − Efn‖p ≤ ( L2�)1=2 1√logn; (122)whih implies (118) and thus (116) for loss funtions w as in Corollary 2.We do not know whether the limit in (116) is uniform for f ∈ F (; L),or even for f in the sublass Lp=2 (M) ∩ F (; L), for any M > 0: Onthe other hand, sine (122) holds uniformly for f ∈ F (; L), it is easy toombine this with Corollary 1 to show that for any M > 0, 2 ≤ p < ∞and loss funtion w satisfying (53)lim supn→∞

supf∈Lp=2(M)∩F(;L)Ew (√nhn ‖fn − f‖p) <∞:Guerre and Tsybakov (1998) also onjetured in their Remark 5 that aminimax result of the forminff̃n supf∈F
Ew √ 2�nlogn ∥∥∥f̃n − f∥∥∥p

(E |Z|p ∫
R

fp=2 (y) dy)1=p→ w (1)for a general lass of loss funtions w, where the in�mum is taken overall estimators f̃n of f based on X1; : : : ; Xn, i.i.d. with density f and thesupremum is over a sublass F of F (; L) with p ≥ 2. The only resultin this diretion known to the author is Theorem 2 of Shipper (1996),whih says in the ase p = 2 thatinff̃n supf∈F(;L) 2�nlogn E ∥∥∥f̃n − f∥∥∥22 → 1:Notie that a speial ase of (116) says thatlimn→∞

2�nlog n E ‖fn − f‖22 → 1:For losely related results refer to Theorems 7 and 10 of Ibragimov andHashminskii (1980).
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