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t. We use results from probability on Bana
h spa
es and Pois-sonization te
hniques to develop sharp �nite sample and asymptoti
 mo-ment bounds for the Lp risk for kernel density estimators. Our results areshown to augment previous work in this area.1. Introdu
tionIn order to motivate our investigations 
onsider the following minimaxresult of Wertz (1974). For a given M > 1 and p ≥ 1, let
Lp (M) = {f : f is a density on R and ‖f‖p ≤ M} ; (1)with ‖f‖p denoting the Lp (R) norm. Wertz (1974) proved for p > 1 thatfor ea
h n ≥ 1 there exists a density estimator f̃0;n based on X1; : : : ; Xn,i.i.d. with density f su
h thatsupf∈Lp(M)(E ∥∥∥f̃0;n − f∥∥∥pp)1=p = inff̃n supf∈Lp(M)(E ∥∥∥f̃n − f∥∥∥pp)1=p ;where f̃n is an arbitrary density estimator of f based on X1; : : : ; Xn. Anatural question is the following: assume that f lies in a smooth 
lass ofdensities F , then do there exist a sequen
e of 
onstants an → ∞ and some� > 0 su
h thatan inff̃n supf∈Lp(M)∩F

(E ∥∥∥f̃n − f∥∥∥pp)1=p
→ �? (2)This problem remains largely unsolved ex
ept for the 
ase p = 2 and for
ertain smooth 
lasses of densities F . Refer to S
hipper (1996) and theResear
h partially supported by NSF Grant DMS{0503908 and SFB 701 Universityof Bielefeld . 66
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es therein. (A
tually, one 
an infer from Theorem 1 of Devroye(1983) that the limit in (2) is in�nite for any sequen
e of 
onstants an →
∞ if the supremum is taken over f ∈ Lp (M) instead of over a smoothenough sub
lass of Lp (M).)Mu
h more is known about the less pre
ise problem of showing theexisten
e of 
onstants 0 < � < � < ∞ su
h that� ≤ lim infn→∞

an inff̃n supf∈Lp(M)∩F

(E ∥∥∥f̃n − f∥∥∥pp)1=p
≤ lim supn→∞

an inff̃n supf∈Lp(M)∩F

(E ∥∥∥f̃n − f∥∥∥pp)1=p
≤ �: (3)See Bretagnolle and Huber (1979), Ibragimov and Hasminskii (1980,1982),Efroimovi
h and Pinsker (1982) and Hasminskii and Ibragimov (1990), aswell as the monograph by Devroye and Gy�or� (1985).It turns out that approximate solutions in terms of having the properrate to the pre
ise problem (2), as well as to the 
oarser problem (3), 
anoften be a
hieved by sequen
es of kernel density estimators. In fa
t, theright side of (3) is bounded bylim supn→∞

an supf∈Lp(M)∩F

(E ‖fn − f‖pp)1=p ; (4)where {fn} is any sequen
e of kernel density estimators. Mu
h of thispaper will be 
on
erned with developing bounds on the lim sup in (4).To �x some notation and assumptions, let X; X1; X2; : : : be i.i.d. withdensity f . A kernel density estimator of f based on X1; : : : ; Xn, n ≥ 1, isde�ned to be fn (x) = 1nhn n∑i=1 K (x−Xihn ) ; x ∈ R; (5)where hn are positive 
onstants su
h thathn → 0 and nhn → ∞ as n→ ∞ (h)and K is a kernel satisfying the following 
ondition:(K:i) K is in L2 (R) and bounded by some 
onstant 0 < � < ∞.



68 D. M. MASONAt times we shall also assume that(K:ii) ∫∞0 	K2(x)dx < ∞; where for any measurable fun
tion H	H(x) = sup
|y|≥x |H(y)|; x ≥ 0:Condition (K:ii) is introdu
ed so that when needed we 
an apply part (
)of Theorem 2 on page 62 of Stein (1970), whi
h says that if

∞∫0 	H(x)dx <∞ (6)then Hh ∗ f(z) → J(H)f(z); as hց 0; for almost all z ∈ R; (7)where for any fun
tion H and h > 0;J(H) = ∫
R

H(u) du; (8)Hh = h−1H (·h−1) (9)and Hh ∗ f(z) := h−1 ∫
R

H (z − xh ) f(x) dx: (10)De�ne for any p ≥ 1
‖fn − Efn‖p = (∫

R

|fn(x) − Efn(x)|pdx)1=p:Let fn and f ′n be independent and f ′n =d fn. Noti
e that2(E ‖fn − f‖pp)1=p = (E ‖fn − f‖pp)1=p + (E ‖f ′n − f‖pp)1=p ;whi
h by Minkowski's inequality and Jensen's inequality is
≥
(E ‖fn − f ′n‖pp)1=p ≥

(E ‖fn − Efn‖pp)1=p :



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 69Therefore for any p ≥ 1,
(E ‖fn − f‖pp)1=p ≥ 2−1 (E ‖fn − Efn‖pp)1=p .Furthermore, by Minkowski's inequality,

(E ‖fn − Efn‖pp)1=p + ‖f − Efn‖p ≥ (E ‖fn − f‖pp)1=p :This says that in terms of rates, 2−1 (E ‖fn − Efn‖pp)1=p provides a lowerbound on the Lp risk (E ‖fn − f‖pp)1=p of the density estimator fn, and
(E ‖fn − Efn‖pp)1=p plus the bias ‖f − Efn‖p term gives an upper bound.The �rst goal of this paper is to provide good bounds for the momentsE ‖fn − Efn‖rp for any p ≥ 1 and r ≥ 1. Our main tool will be a momentbound for sums of independent random variables taking values in a Bana
hspa
e due to Talagrand (1989).Our se
ond goal will be to study the exa
t asymptoti
 behavior ofE ‖fn − Efn‖rp as n → ∞. Here our tools will be the Poissonization meth-ods developed in Gin�e, Mason and Zaitsev (2003).One appli
ation of our results will lead to the result that for ea
h1 ≤ p < ∞, under suitable regularity 
onditions on the density f , thekernel K and the loss fun
tion w, and with Z denoting a standard normalrandom variable,limn→∞

Ew √nhn ‖fn − Efn‖p
‖K‖2(E |Z|p ∫

R

fp=2 (y) dy)1=p = w (1) : (11)Another appli
ation will show that for a suitably de�ned 
lass of densities
Fp=2, lim supn→∞

supf∈Fp=2Ew (√nhn ‖fn − Efn‖p) < ∞;where K, w and p are as in (11). We also dis
uss 
onditions on f underwhi
h Efn 
an be repla
ed by f in these last two statements.



70 D. M. MASONWe shall not treat the more intri
ate problem of the derivation of lowerbounds in (3). To obtain good bounds requires a 
onsiderable amount ofingenuity and spe
ial te
hniques. For instan
e, Bretagnolle and Huber(1979) base their bounds on a Kullba
h information-type inequality, thearguments of Ibragimov and Hasminskii (1980) and Hasminskii and Ibrag-imov (1990) rely on Fano's inequality, Ibragimov and Hasminskii (1982)use a 
lassi
 inequality of H�ajek and S
hipper (1996) utilizes the van Treesinequality.Our main results are stated and proved in se
tion 2. In se
tion 3 we dis-
uss the relationship of our results to known risk bounds, espe
ially thoseof Ibragimov and Hasminskii (1980), Hasminskii and Ibragimov (1990)and Bretagnolle and Huber (1979). Moreover, as a by-produ
t of our re-sults we will provide a partial solution to a 
onje
ture of Guerre andTsybakov (1998). 2. Main results and proofsWe are �rst interested in �nding a good asymptoti
 bound forE ∫A |fn (x)− Efn (x)|p dx; (12)with A being a measurable set and p ≥ 1. In the following 
al
ulationswhenever ‖K‖p appears, we assume that it is �nite. Under assumption(K:i) this always holds for p ≥ 2.Case 1a. p > 2. To handle this 
ase we shall need a fa
t.Fa
t 1. Rosenthal's inequality. If �i are independent 
entered randomvariables, then, for every p ≥ 2 and n ∈ N,E ∣∣∣∣∣ n∑i=1 �i∣∣∣∣∣p ≤ ( 15plog p)pmax( n∑i=1 E�2i)p=2 ; n∑i=1 E|�i|p : (13)(This version of Rosenthal's inequality is obtained by symmetrizationof the inequality in Theorem 4.1 from Johnson, S
he
htman and Zinn(1985).)By Fa
t 1 for ea
h x ∈ R, with Cp = ( 15plog p)p,E (|fn (x)− Efn (x)|p) = E ∣∣∣∣∣∣ n∑i=1 K (x−Xihn )
− EK (x−Xihn )nhn ∣∣∣∣∣∣

p
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≤ Cpnp=2hpn (E (K (x−Xhn )

− EK (x−Xhn ))2)p=2+ Cpnp−1hpnE ∣∣∣∣K (x−Xhn )
− EK (x−Xhn )∣∣∣∣

p ;whi
h after some elementary bounds is
≤ 2pCpnp=2hpn ∫

R

K2(x− yhn ) f (y) dyp=2+ 2pCpnp−1hpn ∫
R

|K|p (x− yhn ) f (y) dy:(14)Thus
∫A E ∣∣∣∣∣∣ n∑i=1 K (x−Xihn )

− EK (x−Xihn )nhn ∣∣∣∣∣∣

p dx
≤ 2pCpnp=2hpn ∫A 


∫

R

K2(x− yhn ) f (y) dyp=2 dx+ 2pCpnp−1hpn ∫A ∫

R

|K|p(x− yhn ) f (y) dydx:Now sin
e ∫

R

∫

R

|K|p(x− yhn ) f (y) dydx = hn ‖K‖pp ;we get the bound E ∫A |fn (x)− Efn (x)|p dx
≤ 2pCp(nhn)p=2 ∫A 


∫

R

1hnK2(x− yhn ) f (y) dyp=2 dx+ 2pCp ‖K‖pp(nhn)p−1 : (15)Assume now that ∫

R

(f (y))p=2 dy < ∞: (16)



72 D. M. MASONCondition (K:ii) allows us to apply part (
) of Theorem 2 on page 63 ofStein (1970) to give
∫A 

 1hn ∫
R

K2(x− yhn ) f (y) dyp=2 dx → ‖K‖p2 ∫A (f (y))p=2 dy;whi
h, sin
e (nhn)p=2 = (nhn)p−1 → 0, implies via (15) thatlim supn→∞



(nhn)p=2E∫A |fn (x)−Efn (x)|p dx≤2pCp ‖K‖p2 ∫A (f (y))p=2 dy:Case 1b. p = 2. Obviously,E (|fn (x)− Efn (x)|2) ≤ 1nh2nEK2(x−Xhn )= 1nh2n ∫
R

K2(x− yhn ) f (y) dy:We get as before,lim supn→∞



nhnE ∫A |fn (x) − Efn (x)|2 dx ≤ ‖K‖22 ∫A f (y) dy:Case 2. 1 ≤ p < 2. In this 
aseE ∫A |fn (x)− Efn (x)|p dx ≤
∫A (E |fn (x)− Efn (x)|2)p=2 dx

≤ 1(nhn)p=2 ∫A 

 1hn ∫
R

K2(x− yhn ) f (y) dyp=2 dx= 1(nhn)p=2 ∫A ((K2)hn ∗ f (y))p=2 dy; (17)where for h > 0, (K2)h (·) = h−1K2(·h−1).The following lemma shows that moment 
onditions on X and K yielda useful bound on ∫
R

((K2)hh ∗ f (y))p=2 dy by 
hoosing H = K2= ‖K‖22.Its statement and proof are based on ideas and results in Chapter 7 inDevroye (1987) and Se
tion 3 of Devroye (1992). See espe
ially, Remark3 in Devroye (1992).



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 73Lemma 1. Let H and f be densities on R and let X have density f andY have density H . Choose 1s + 1t = 1; with t > 1; and � > t=s: Furtherassume that E|X |� <∞ and E|Y |� <∞. Then for any measurable subsetA of R for a �nite positive 
onstant C(�; s)
∫A (f(x))1=t dx ≤ C(�; s) (E [(1 + |X |�) 1 {X ∈ A}])1=t (18)and, with Hh(·) = h−1H(·h−1),

∫A (Hh ∗ f(x))1=t dx ≤ C(�; s) (E [(1 + |Xh|�) 1 {Xh ∈ A}])1=t ; (19)where Xh has density Hh ∗ f . Moreover, if H satis�es (6) thenlim supn→∞

∫A (Hh ∗ f(x))1=t dx ≤ C(�; s) (P (A) +E [|X |�1 {X ∈ A}])1=t :(20)Proof. To prove (18) observe that by H�older's inequality,
∫A (f(x))1=t dx ≤



∫

R

{1 + |x|�}−s=t dx1=s

∫A {1 + |x|�} f(x)dx1=t=: C(�; s) (E [(1 + |X |�) 1 {X ∈ A}])1=t :Next, (19) is a spe
ial 
ase of (18). Finally we turn to the proof of (20).Now Xh =d X+Yh; where Yh has density Hh and Yh and X are indepen-dent. From this we get that when � ≥ 1

(E|X + Yh|�)1=� ≤
(E|X |�)1=� + (E|Yh|�)1=� (21)and when 0 < � < 1 E|X + Yh|� ≤ E|X |� +E|Yh|�: (22)By writing E|Yh|� = ∞∫

−∞

|y|�Hh(y)dy = h�E|Y |�; (23)



74 D. M. MASONwe readily infer from (21), (22) and (23) that for any 0 < � <∞,lim suphց0 E|X + Yh|� ≤ E|X |�: (24)Furthermore, sin
e we assume 
ondition (6) holds we have by (7) that foralmost every y
(1 + |y|�)Hh(y) → (1 + |y|�) f (y) as h ց 0:Pie
ing everything together we 
on
lude from S
he��e's theorem (see ex-er
ise 7 on page 862 of Shora
k and Wellner (1986)) thatE [(1 + |Xh|�) 1 {Xh ∈ A}]→ E [(1 + |X |�) 1 {X ∈ A}] , as h ց 0:(25)Statement (20) obviously follows from (19) and (25). �Remark 1. For use later on, observe that from inequality (19) and (23)we get from Xh =d X + Yh and the 
r−inequality thatE|Xh|� = E|X + Yh|� ≤ 
� (E|X |� + h�E|Y |�) ;where 
� = 2(�−1)∨1. Thus we get

∫

R

(Hh ∗ f(x))1=t dx ≤ C(�; s) (1 + 
� (E|X |� + h�E|Y |�))1=t : (26)We summarize these observations in the following proposition.Proposition 1. Let K be a kernel satisfying (K.i) and (K.ii). For anyp ≥ 2 su
h that (16) holds, we have for some 
onstant Dp depending onlyon plim supn→∞



(nhn)p=2E∫A |fn (x)−Efn (x)|p dx≤Dp ‖K‖p2 ∫A (f (y))p=2 dy:(27)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 75Moreover, whenever for a given 1 ≤ p < 2, X and H = K2= ‖K‖22 the
onditions of Lemma 1 are satis�ed, we have for any measurable subsetA ⊂ R lim supn→∞



(nhn)p=2E ∫A |fn (x)− Efn (x)|p dx
≤ C(�; s) ‖K‖p2 (E [(1 + |X |�) 1 {X ∈ A}])p=2 ; (28)where 1=s+ p=2 = 1 and �, Y and C(�; s) are de�ned as in Lemma 1.Note that statement (28) follows from (17) and (20).We next turn to the task of deriving a useful �nite sample bound forE ‖fn − Efn‖rp = E∫

R

|fn (x)− Efn (x)|p dxr=p ,with p ≥ 1 and r ≥ 1.To do this we shall need an additional fa
t.Fa
t 2. (Theorem 1 of Talagrand (1989)). If B is a separable Bana
hspa
e with norm ‖·‖, Zi, i ∈ N, are independent mean zero random ve
torstaking values in B, then for a universal 
onstant D > 0 for all r ≥ 1 andn ≥ 1,(E (‖Sn‖r))1=r ≤ Dr1 + log r (E‖Sn||+(E max1≤i≤n ‖Zi‖r)1=r) ; (29)where Sn = Z1 + · · ·+ Zn.We get from (29) and the 
r inequality the bound,E (‖Sn‖r) ≤ Dr2r−1rr(1 + log r)r ((E‖Sn||)r +E max1≤i≤n ‖Zi‖r) : (30)We shall apply the bound (30) to the random fun
tionsZi (·) = K ( · −Xihn )
− EK ( · −Xhn )nhn ; i = 1; : : : ; n:



76 D. M. MASONAs before in the following 
al
ulations whenever ‖K‖p appears, we assumethat it is �nite and when needed that (16) holds. We �nd by Jensen'sinequality that, E‖Sn‖p = E ‖fn − Efn‖p= E∫
R

|fn (x)− Efn (x)|p dx1=p
≤
(E ‖fn − Efn‖pp)1=p : (31)Case 1a. p > 2. By inequality (15) (it also holds when p = 2) we seethat E ∫

R

|fn (x)− Efn (x)|p dx
≤ 2pCpnp=2hpn ∫

R



∫

R

K2(x− yhn ) f (y) dyp=2 dx+ 2pCp ‖K‖pp(nhn)p−1 : (32)Noti
e that


∫

R



∫

R

K2(x− yhn ) f(y)dyp=2 dx2=p
= ∫

R




∫

R

K2( thn) f (t− x) dtp=2 dx2=p ;whi
h by Young's inequality (see page 232 of Folland (1984)) is
≤
∫

R

|K|2( thn)∫
R

fp=2 (x− t) dx2=pdt=hn ‖K‖22∫
R

fp=2 (y) dy2=p :This gives the boundE ∫
R

|fn (x)− Efn (x)|p dx ≤ 2pCp ‖K‖p2(nhn)p=2 ∫

R

fp=2 (y) dy + 2pCp ‖K‖pp(nhn)p−1 :(33)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 77Therefore for any r ≥ 1,
(E ‖fn − Efn‖p)r ≤ 2pCp ‖K‖p2(nhn)p=2 ∫

R

fp=2 (y) dy + 2pCp ‖K‖pp(nhn)p−1 r=p ;(34)whi
h by (32), (34) and the 
r inequality for any r ≥ 1 is
≤ 2r=p2rCr=pp(nhn)r=2 

‖K‖r2∫
R

fp=2 (y) dyr=p + ‖K‖rp(nhn)r=2−r=p : (35)Here to derive (35) we used for notational simpli
ity the rough version ofthe 
r inequality that says that for all 
 > 0
|x+ y|
 ≤ 2
 (|x|
 + |y|
) (36)with 
 = r=p. NextE max1≤i≤n∫

R

∣∣∣∣
1nhn (K (x−Xihn )

− EK (x−Xhn ))∣∣∣∣
p dxr=p

≤ 2rE max1≤i≤n∫
R

∣∣∣∣
1nhnK (x−Xihn )∣∣∣∣

p dxr=p = 2rhr=pn ‖K‖rp(nhn)r : (37)Inserting the bounds (35) and (37) into (30) we getE ‖fn − Efn‖rp = E‖Sn‖rp
≤ Dr2r−1rr(1 + log r)r 2r=p2rCr=pp(nhn)r=2 

‖K‖r2∫
R

fp=2 (y) dyr=p + ‖K‖rp(nhn)r=2−r=p+ Dr2r−1rr(1 + log r)r 2rhr=pn ‖K‖rp(nhn)r ;



78 D. M. MASONwhi
h for an appropriate 
onstant Lp > 0 is for all r ≥ 1 and n ≥ 1
≤
( rLp1 + log r)r  1(nhn)r=2 ‖K‖r2∫

R

fp=2 (y) dyr=p
+ ‖K‖rp(nhn)r=2−r=p)+ hr=pn ‖K‖rp(nhn)r ] : (38)Case 1b. p = 2: In this 
aseE ∫

R

|fn (x)− Efn (x)|2 dx ≤ 1nh2n ∫
R

EK2(x−Xhn ) dx = ‖K‖22nhn : (39)Hen
e, (E ‖fn − Efn‖2)r ≤ (E ‖fn − Efn‖22)r=2 ≤ ‖K‖r2(nhn)r=2 :Now by arguing as in Case 1a, we get that for an appropriate L2E ‖fn − Efn‖r2 ≤
( rL21 + log r)r [ ‖K‖r2(nhn)r=2 + hr=pn ‖K‖r2(nhn)r ] : (40)Case 2. 1 ≤ p < 2. In this 
ase we get from inequality (17),E ∫

R

|fn (x)− Efn (x)|p dx ≤ 1(nhn)p=2 ∫A ((K2)hn ∗ f (y))p=2 dy (41)and from (37), whi
h holds for p ≥ 1, and (30) that for ea
h 1 ≤ p < 2there is a 
onstant Lp > 0 su
h that for all r ≥ 1 and n ≥ 1E ‖fn − Efn‖rp
≤
( rLp1 + log r)r (∫R ((K2)hn ∗ f (y))p=2 dy)r=p(nhn)r=2 + hr=pn ‖K‖rp(nhn)r 

 : (42)We shall summarize these observations in the following proposition.



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 79Proposition 2. Let K be a kernel satisfying (K.i). For any p > 2 su
hthat (16) holds we have for some 
onstant Lp > 0, and all r ≥ 1 andn ≥ 1, E ‖fn − Efn‖rp
≤
( rLp1 + log r)r  1(nhn)r=2 ‖K‖r2∫

R

fp=2 (y) dyr=p
+ ‖K‖rp(nhn)r=2−r=p)+ hr=pn ‖K‖rp(nhn)r ] : (43)For p = 2 we have for some 
onstant L2 > 0, and all r ≥ 1 and n ≥ 1,E ‖fn − Efn‖r2 ≤
( rL21 + log r)r [ ‖K‖r2(nhn)r=2 + hr=pn ‖K‖r2(nhn)r ] : (44)Moreover, whenever 1 ≤ p < 2, we have for some 
onstant Lp > 0 and allr ≥ 1 and n ≥ 1, E ‖fn − Efn‖rp ≤ ( rLp1 + log r)r×




(∫
R

((K2)hn ∗ f (y))p=2 dy)r=p(nhn)r=2 + hr=pn ‖K‖rp(nhn)r 
 ; (45)where it is assumed that ‖K‖p < ∞ .Remark 2. Whenever for a given 1 ≤ p < 2, X and H = K2= ‖K‖22 the
onditions of Lemma 1 are satis�ed, we have using (45), (42) and (26)that for some 
onstant Lp > 0 and all r ≥ 1 and n ≥ 1,E ‖fn − Efn‖rp

≤
( rLp1 + log r)r ‖K‖r2 (C1=p(�; s) (1 + 
� (E|X |� + h�E|Y |�))1=2)r(nhn)r=2+( rLp1 + log r)r hr=pn ‖K‖rp(nhn)r ;



80 D. M. MASONwhere 1=s+ p=2 = 1 and �, Y and C(�; s) are de�ned as in Lemma 1.Remark 3. Modulo 
onstants depending on p, inequality (33) impliesinequality (4.13) of Bretagnolle and Huber (1979) and inequalities (39)and (41) agree with the 
orresponding parts of their inequalities (4.14)and (4.15).As an immediate 
orollary we get.Corollary 1. Let K be a kernel satisfying (K:i). For any p ≥ 2 andM > 0 let Lp=2 (M) be a 
lass of densities de�ned as in (1) and for1 ≤ p < 2 let
Kp=2 (K;M)= {f : f is a density on R and ∥∥(K2)h ∗ f∥∥p=2 ≤ M for all 0 < h ≤ 1} :(47)We have for every t > 0,lim supn→∞

supf∈Fp=2E exp(t√nhn ‖fn − Efn‖p) < ∞; (48)where it is assumed that ‖K‖p < ∞ for 1 ≤ p < ∞, Fp=2 = Lp=2 (M) forp ≥ 2 and Fp=2 = Kp=2 (K;M) for 1 ≤ p < 2.Proof. Clearly by Proposition 2 for p ≥ 1, we have for some 
onstantA > 0 for all r ≥ 1 and n ≥ 1(nhn)r=2 supf∈Fp=2E ‖fn − Efn‖rp ≤
( rA1 + log r)r [1 + 1(nhn)r=2] : (49)From this bound, (48) readily follows using the rough version of Stirling'sapproximation, whi
h says for integers r ≥ 1 that r! > (r=e)r, and theassumption that nhn → ∞. �In the next subse
tion we shall prove the following result.Proposition 3. Let K be a kernel satisfying (K.i) and (K.ii). Under the
onditions of Proposition 2 for p ≥ 2, as n→ ∞,(nhn)p=2 E ‖fn − Efn‖pp → m (p; f;K) ; (50)and (nhn)p=2 ‖fn − Efn‖pp →p m (p; f;K) ; (51)
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R

fp=2 (y) dy; (52)with Z denoting a standard normal random variable. Moreover, the limits(50) and (51) also hold for 1 ≤ p < 2 whenever the 
onditions stated inRemark 2 for (46) are ful�lled.An immediate 
onsequen
e of Corollary 1 and (51) is the following
orollary.Corollary 2. Under the 
onditions of Proposition 3 for p ≥ 1 and anyloss fun
tion w on [0;∞) that is 
ontinuous at 1 and su
h that for some� > 0 and C > 0 0 ≤ w (x) ≤ C exp (�x) ; x ∈ [0;∞ ) ; (53)we have limn→∞
Ew √nhn ‖fn − Efn‖p

‖K‖2(E |Z|p ∫
R

fp=2 (y) dy)1=p = w (1) : (54)Remark 4. To repla
e ‖fn − Efn‖p by ‖fn − f‖p in (50), (51), (52) and(54) requires additional smoothness 
onditions to 
ontrol the Lp (R) normof the bias f − Efn. Here is a 
onvenient set of 
onditions, whi
h aredetailed in Bretagnolle and Huber (1979) whi
h lead to a good bound for
‖f − Efn‖p. In addition to (K:i) and (K:ii), assume that

∫

R

K (x) dx = 1: (55)Further assume that for some integer s ≥ 2,(K:iii) K is 
ontinuous,
∫

R

ujK (u) du = 0; 1 ≤ j < s and ∫

R

|u|s |K (u)| du < ∞:



82 D. M. MASONFor kernels K satisfying (K:iii) we de�ne the s−Kernel sK for u ≥ 0,sK (u) = (−1)s ∞∫u (y − u)s−1(s− 1)! K (y) dy and sK (−u) = − (−1)s sK (u) :Bretagnolle and Huber (1979) point out that sK ∈ L1 (R) ∩ C(s) ands (Kh) = hs (sK)h. (Re
all the notation de�ned in (9).) They showthat whenever the density f is s times 
ontinuously di�erentiable withs−derivative f (s) ∈ Lp (R), p ≥ 1, then for all h > 0;
‖f − Efn‖p ≤ hs ∥∥∥f (s)∥∥∥p ‖sK‖1 . (56)Clearly then by using the inequality

∣∣∣‖fn − f‖p − ‖fn − Efn‖p∣∣∣ ≤ ‖f − Efn‖p ,we see that whenever (56) holds and √nhnhsn → 0, then we 
an repla
e
‖fn − Efn‖p by ‖fn − f‖p in (50), (51), (52) and (54).2.1. Proof of Proposition 3Before proving Proposition 3 we must gather together some fa
ts.Fa
t 3. Suppose that H is a �nite 
lass of bounded real valued mea-surable fun
tions H in L1 (R) that satisfy (6). Then for any H ∈ H, (7)holds. Moreover, for all 0 < " < 1; there exist M; � > 0 and a Borel set Cof �nite Lebesgue measure m(C) su
h thatC ⊂ [−M + �;M − �℄; (57)� := ∫

|x|>M f(x) dx > 0; (58)P (C) := ∫C f(x) dx > 1− "; (59)f is bounded, 
ontinuous and bounded away from zero on C; (60)and uniformly in H ∈ H,supz∈C |f ∗Hh(z)− J(H) f(z)| → 0; as h ց 0: (61)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 83The �rst statement is just the Stein result 
ited above. The other state-ments are proved exa
tly as in the proof of Lemma 6.1 of Gine, Masonand Zaitsev (2003).In order to state our next fa
t let �; �1; �2; · · · be independent, identi-
ally distributed random variables satisfying E� = 0 and E�2 = 1, andlet Z denote a standard normal random variable. We shall be applying aspe
ial 
ase of Theorem 1 of Sweeting (1977). In order to state the par-ti
ular result that we need, we must �rst gather together some notationfrom Sweeting (1977). Assume E |�|3 < ∞ and set�3 = E |�|3 : (62)(The symbol �3 is de�ned on page 30, lines -9 to -6, of Sweeting (1977).)Let � denote the 
lass of fun
tions g on [0;∞) satisfying(i) g(0) = 0 and g(1) = 1;(ii) g is nonnegative and nonde
reasing;(iii) t=g(t) is de�ned for all t ∈ [0;∞) and is nonde
reasing.(The 
lass � is de�ned on page 35, lines 1{5 of Sweeting (1977).)We shall use the parti
ular fun
tion g ∈ �,g(t) = min(t; 1); t ∈ [0;∞) : (63)Let g ∈ � and r ≥ 2 be an integer and de�ne�n = n−(r−2)=2E [|�|rg (n−1=2|�|)] :(The symbol �n is de�ned on page 35, line 9, of Sweeting (1977).)We will always 
hoose g as in (63) and r ≥ 3; giving�n = n−(r−2)=2E [|�|rg (n−1=2|�|)] ≤ E|�|rn(r−2)=2 : (64)Next let "n = �3√n: (65)(The symbol "n is de�ned on page 35, line -6, of Sweeting (1977).)Let � be a �xed Borel measurable fun
tion on R. For any " > 0 andx ∈ R; de�ne !"�(x) = sup {|�(x) − �(y)| : |x− y| < "} :



84 D. M. MASON(The symbol !"�(x) is de�ned at the bottom of page 36 of Sweeting (1977).)Let r ≥ 3 be an integer and g ∈ �: Seth(t) = 1 + trg(t);and put �∗(x) = h (|x|)−1 [�(x) − �(0)℄ : (66)(The symbol �∗(x) is de�ned on page 37 of Sweeting (1977).)We will always use the 
hoi
e with r ≥ 3,h(t) = 1 + trmin(t; 1); (67)i.e., g is as in (63).Further for any measurable fun
tion v on R denote
||v|| = sup {|v(x)| : x ∈ R} :Here is a spe
ial 
ase of Theorem 1 of Sweeting (1977) that we will beusing.Fa
t 4. Suppose for an integer r ≥ 3E|�|r < ∞: (68)Then there exist universal positive 
onstants C1 and C2 su
h that for allmeasurable fun
tions � on R with �∗ bounded and de�ned as in 66 withh as in (67) su
h that

∣∣∣∣E�(∑ni=1 �i√n )
− E�(Z)∣∣∣∣ ≤ C1 [||�∗|| ("n + �n) +E!C2"n� (Z)] : (69)We will be interested in the spe
ial 
ase�(x) = |x|p , x ∈ R, with p ≥ 1 an integer.In this 
ase we 
hoose an integer r ≥ max (p; 3). Thus

||�∗|| = sup{ |x|p1 + |x|rmin (x; 1) : x ∈ R

}
≤ 1:



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 85Whenever |y − x| ≤ C2"n, we get using the mean value theorem whenp > 1 and the triangle inequality when p = 1 that for some 
onstant Apdepending on p
|�(y) − �(x)| ≤ ApC2"n (|x|p−1 + |C2"n|p−1) :Inserting these bounds into (69) we get

∣∣∣∣∣∣∣∣
E� n∑i=1 �i√n −E�(Z)∣∣∣∣∣∣∣∣≤C1 ["n+�n+ApC2"n (E |Z|p−1+|C2"n|p−1)] :(70)We shall need the following spe
ial 
ase of Lemma 2.1 of Gin�e, Mason andZaitsev (2003). We say that a set D is a (
ommutative) semigroup if ithas a 
ommutative and asso
iative operation, with a zero element. If D isequipped with a �-algebra D for whi
h the sum, + : (D ×D;D ⊗D) 7→(D;D), is measurable, then we say the (D;D) is a measurable semigroup.Fa
t 5. Let (D;D) be a measurable semigroup; let Y0 = 0 ∈ D andlet Y; Yi, i ∈ N, be independent identi
ally distributed D-valued randomvariables; for any given n ∈ N let � be a Poisson random variable withmean n independent of the sequen
e {Yi}; and let B ∈ D be su
h that 0 <Pr{Y ∈ B} ≤ 1=2. Then if H : D 7→ R is non-negative and D-measurable,EH ( n∑i=0 I(Yi ∈ B)Yi) ≤ 2EH ( �∑i=0 I(Yi ∈ B)Yi) : (71)Important spe
ial 
ase. We will apply the pre
eding fa
t to the semi-group D with the operation sum generated by the point masses Æxi ,D = {0; n∑i=1 Æxi : n ∈ N; xi ∈ S} ;where S = R. For A a Borel subset of R setB = {Æx : x ∈ A} :
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e that I(x ∈ A) = I(Æx ∈ B). Let (R;B) be the usual Borel mea-surable spa
e. In this 
ase the �-algebra D is generated by the fun
tionsfn;A : R
n → D, byfn;A(x1; : : : ; xn) = n∑i=1 I(xi ∈ A)Æxi ;n ∈ N. It is easy to see that for any measurable fun
tion h : R 7→ R, themap � 7→
∫ hd� is D-measurable (just note thatf−1n;A{� ∈ D; ∫ hd� ≤ t} = {(x1; : : : ; xn) : n∑i=1 I(xi ∈ A)h(xi) ≤ t}is a measurable subset of R

n). Our fun
tions H will have the general formH ( n∑i=1 I(Æxi ∈ B)Æxi) = H ( n∑i=1 I(xi ∈ A)Æxi)= ∫C {∣∣∣∣∣

n∑i=1 L

(x− xih )
− b(x)∣∣∣∣∣p − 
(x)} dx2 ; (72)where p ≥ 1, L is a measurable bounded fun
tion equal to zero o� of a 
om-pa
t interval [−L;L℄, C is a measurable set and A is the Lh-neighborhoodof C. In this setup X; Xi; i ∈ N will be a sequen
e of i.i.d. real valuedrandom variables and Yi = ÆXi , i ∈ N. Alsob(x) = EL

(x−Xh ) (73)and with � a Poisson random variable with mean n independent of X ,X1; : : : ; 
(x) = E(∣∣∣∣∣ �∑i=1 L

(x−Xih )
− b(x)∣∣∣∣∣p) : (74)Now H when 
onsidered as a fun
tion on R
n 
an be shown to be Borelmeasurable, whi
h in this setup is equivalent to being D-measurable.We shall also need the following fa
t, whi
h is Lemma 2.3 of Gin�e,Mason and Zaitsev (2003).
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t 6. If, for ea
h n ∈ N, �; �1; �2; : : : ; �n; : : : ; are independent identi-
ally distributed random variables, �0 = 0, and � is a Poisson randomvariable with mean 
 > 0 and independent of the variables {�i}∞i=1 then,for every p ≥ 2,E ∣∣∣∣∣ �∑i=0 �i − 
E�∣∣∣∣∣p ≤ ( 15plog p)pmax [(
E�2)p=2 ; 
E|�|p] : (75)Moreover, spe
ializing to � ≡ 1; we have for every p ≥ 2,E |� − 
|p ≤ ( 15plog p)pmax [
p=2; 
] : (76)For any L > 0 let
L (u) = K (u) 1 {u ∈ [−L;L℄}and
L (u) = K (u) 1 {u =∈ [−L;L℄} :We 
an writefn(x)− Efn (x) = 1nhn n∑i=1 (K (x−Xihn )

− EK (x−Xihn ))= 1nhn n∑i=1 (L

(x−Xihn )
− EL

(x−Xihn ))+ 1nhn n∑i=1 (L

(x−Xihn )
− EL

(x−Xihn ))=: (Ln(x)− ELn (x)) + (Ln(x) − ELn (x)) :We now have the tools to prove statement (50) of Proposition 3.Step 1. By Proposition 1 for any p ≥ 1 there is a 
onstant ap su
h thatlim supn→∞

((nhn)p=2 E ∥∥Ln − ELn∥∥pp) ≤ ap ∥∥L∥∥p2 : (77)Observe that the right side of (77) 
an be made as small as desired by
hoosing L > 0 large enough.



88 D. M. MASONStep 2. Next by Proposition 1 there is a non-negative measurable fun
-tion 'p satisfying E'p (X) < ∞ su
h that for any measurable subset Aof R,lim supn→∞


(nhn)p=2E∫A |Ln (x)− ELn (x)|p dx ≤ ‖L‖p2 ∫A 'p (x) f (x) dx:(78)Step 3. Let � be a Poission random variable with mean n independentof X1; X2; : : : and set

Ln;� (x) = 1nhn �∑i=1 L

(x−Xihn ) : (79)We see that ELn;� (x) = ELn (x) = h−1n EL

(x−Xhn ) ; (80)n Var (Ln;� (x)) = h−2n EL
2 (x−Xhn ) (81)andn Var (Ln (x)) = h−2n EL

2(x−Xhn )
−
{h−1n EL

(x−Xhn )}2 : (82)Choose any bounded Borel set C satisfying (60) and (61) with H ={
L;L2}. Clearly for any su
h set C;supx∈C ∣∣∣∣√nhn Var (Ln;� (x))−√nhn Var (Ln(x))∣∣∣∣

≤ supx∈C hn (Lhn ∗ f(x))2√(L2)hn ∗ f(x) = O (hn) (83)(see (60), (61), (81) and (82)).



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 89Lemma 2. Whenever hn → 0, nhn → ∞ and C satis�es (60) and (61)with H = {L;L2}, we have for p ≥ 1,limn→∞

∫C {(√nhnE|Ln;� (x)− ELn(x)|)p − ‖L‖p2 E|Z|pfp=2 (x)} dx = 0(84)andlimn→∞

∫C {(√nhnE|Ln(x)− ELn(x)|)p − ‖L‖p2 E|Z|pfp=2 (x)} dx = 0:(85)Proof. We will �rst show thatlimn→∞

∫C {E (√nhn |Ln;�(x)
−ELn(x)|)p − E|Z|p (nhnVar (Ln;� (x)))p=2} dx = 0 (86)and limn→∞

∫C {E (√nhn |Ln(x) − ELn(x)|)p
−E|Z|p (nhnVarLn;� (x))p=2} dx = 0: (87)Let �1 denote a Poisson random variable with mean 1, independent ofX1; X2; : : : ; and setYn(x) = ∑j≤�1 L

(x−Xjhn )
− EL

(x−Xhn )

/√EL2(x−Xhn ) :(88)Now VarYn(x) = 1 and it is readily 
he
ked using Fa
t 6 that for some
onstant A > 0 independent of Yn and x,E|Yn(x)|3 ≤ A h−3=2n E ∣∣∣L(x−Xhn )∣∣∣3

(h−1n EL2 (x−Xhn ))3=2 (89)



90 D. M. MASONand for any integer r ≥ max (3; p),E|Yn(x)|r ≤ A h−r=2n E ∣∣∣L(x−Xhn )∣∣∣r
(h−1n EL2 (x−Xhn ))r=2 : (90)Using (61) and (60), whi
h says that for some Æ > 0, f(x) ≥ Æ > 0 for allx ∈ C; we get from (89) and (90) that for all large enough n uniformly inx ∈ C for some 
onstant B0 > 0;n−1=2 supx∈CE|Yn(x)|3 ≤ (nhn)−1=2B0: (91)and n−(r−2)=2 supx∈CE|Yn(x)|r ≤ (nhn)−r=2+1B0: (92)Let Y (1)n (x); : : : ; Y (n)n (x) be i.i.d. Yn(x): Clearly

√n {Ln;�(x) − ELn(x)}√h−2n EL2 (x−Xhn ) =d n∑i=1 Y (i)n (x)
√n : (93)Therefore by (70), we readily 
on
lude that for some 
onstant D for alllarge enough n,supx∈C ∣∣∣∣∣∣∣E ∣∣√nhn {Ln;�(x) − ELn(x)}∣∣p

(h−1n EL2 (x−Xhn ))p=2 − E|Z|p∣∣∣∣∣∣∣
≤ D(n−1=2 supx∈CE|Yn(x)|3 + n−(r−2)=2 supx∈CE|Yn(x)|r) : (94)Now by (91) and (92) using r ≥ 3 in 
ombination with (94) andsupx∈C(h−1n EL

2 (x−Xhn ))p=2 = supx∈C (nhn Var(L�;n(x)))p=2 = O(1);(95)
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∣∣∣∣∣∣

∫C {E (√nhn |L�;n(x)−Efn;L(x)|)p−E|Z|p (nhnVar(L�;n(x)))p=2} dx∣∣∣∣∣∣= O( 1√nhn) :Similarly one obtains using Fa
t 4 that
∣∣∣∣∣∣

∫C {E (√nhn |Ln(x) − Efn;L(x)|)p − E|Z|p (nhn Var(Ln(x)))p=2} dx ∣∣∣∣∣∣= O( 1√nhn) ;whi
h by (83) implies
∣∣∣∣∣∣

∫C {E (√nhn|Ln(x) − Efn;L(x)|)p − E|Z|p (nhnVar(L�;n(x)))p=2} dx∣∣∣∣∣∣= O( 1√nhn + hn) :Re
alling (81), we havenhnVar (Ln;� (x)) = h−1n EL
2(x−Xhn ) = E (L2)hn (x) : (96)Clearly (96) in 
ombination with (61), whi
h impliessupz∈C ∣∣∣(L2)hn ∗ (z)− ‖L‖22 f(z)∣∣∣→ 0; as h ց 0;gives supz∈C ∣∣∣nhn Var(L�;n(x))− ‖L‖22 f(z)∣∣∣→ 0; as h ց 0:Lemma 2 now follows by the bounded 
onvergen
e theorem keeping inmind the properties of C. �



92 D. M. MASONWe are now ready to prove statement (50) of Proposition 3. For any0 < " < 1 
hoose C as in Fa
t 3. Now (78) giveslim supn→∞


(nhn)p=2E ∫C
 |Ln (x) − ELn (x)|p dx ≤ ‖L‖p2 ∫C
 'p(x)dx:(97)The right side of (97) 
an be made a small as desired sin
e P (C
) 
an bemade arbitrarily small. The same is true for the term

‖L‖p2 E|Z|p ∫C
 fp=2 (x) dx:(Noti
e that for 1 ≤ p < 2 statement (16) holds by inequality (18).) Sin
e" 
an be made arbitrarily small, an elementary argument based on (85)now shows that (50) holds.We next turn to the proof of (51). Choose any bounded Borel set Csatisfying (57) through (61) with H = {
L;L2;L2p}. Sin
e C ⊂ [−M +�;M − �℄, we get that CLh ⊂ [−M;M ℄ for all h > 0 small enough.Moreover we 
an �nd a measurable partition C1; : : : ; Ck of C so thatP (CLhi )

≤ 1=2 for i = 1; : : : ; k and all h > 0 small enough. We now getfrom Fa
t 5 with C = Ci and A = CLhi using the fa
t that L has support
ontained in [−L;L℄ that for i = 1; : : : ; k;E ∫Ci (√nhn |Ln(x)− Efn;L(x)|)p dx
−E ∫Ci (√nhn |Ln;�(x)− Efn;L(x)|)p dx2
≤ 2E ∫Ci (√nhn |Ln;�(x) − Efn;L(x)|)p dx
−E ∫Ci (√nhn |Ln;�(x)− Efn;L(x)|)p dx2



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 93= 2V ar∫Ci (√nhn |Ln;�(x) − Efn;L(x)|)p dx : (98)Set Sn (x) = �∑i=1 L

(x−Xihn )
− nEL

(x−Xihn ) :Observe that
√nhn |Ln;�(x) − Efn;L(x)| = 1√nhn |Sn(x)|;and, moreover, Sn (x) and Sn (y) are independent if |x− y| > 2Lhn. Thusfor ea
h i = 1; : : : ; k,Var∫Ci (√nhn |Ln;�(x)− Efn;L(x)|)p dx= 1(nhn)p ∫Ci ∫Ci 1 (|x− y| ≤ 2Lhn) 
ov (|Sn (x)|p ; |Sn (y)|p) dxdy:Noti
e

|
ov (|Sn (x)|p ; |Sn (y)|p)| ≤√E |Sn (x)|2p√E |Sn (y)|2p:Furthermore, by Fa
t 6E |Sn (x)|2p ≤ ( 30plog (2p))pmax [(nE�2n (x))p ; nE|�n (x) |2p] ;where �n (x) = L

(x−Xhn ) :Now 1hnE�2n (x) = 1hnEL
2 (x−Xhn )
onverges uniformly to f (x) ∫

R

L
2 (u) du on C and1hnE�2pn (x) = 1hnL

2p(x−Xhn )
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onverges uniformly on C to f (x) ∫
R

L
2p (u) du. Hen
e uniformly in x ∈ Cfor some 
onstant Bp (C),E |Sn (x)|2p ≤ Bp (C) ((nhn)p + nhn) :Thus uniformly in i = 1; : : : ; k, for all large enough n using nhn → ∞,1(nhn)p ∫Ci ∫Ci 1 (|x− y| ≤ 2Lhn) 
ov (|Sn (x)|p ; |Sn (y)|p) dxdy

≤ 2Bp (C) ∫C ∫C 1 (|x− y| ≤ 2Lhn) dxdy;whi
h sin
e C is a bounded Lebesgue measurable set is for some 
onstantDp (C;L)
≤ hnDp (C;L) :Hen
e by the above string of inequalities, we see that for ea
h i = 1; : : : ; k,as n → ∞, V ar∫Ci (√nhn |Ln;�(x) − Efn;L(x)|)p dx→ 0;from whi
h we infer from (98) that as n → ∞,

∫Ci(√nhn|Ln(x)−Efn;L(x)|)pdx − E∫Ci(√nhn|Ln;�(x)−Efn;L(x)|)p dx
→P 0:This, in turn, when 
oupled with (84), (85) and C1; : : : ; Ck being a parti-tion of C implies

∫C (√nhn |Ln(x) − Efn;L(x)|)pdx →P ‖L‖p2 E|Z|p ∫C fp=2 (x) dx: (99)Now P (C
) 
an be made arbitrarily small and thus, keeping (97) in mind,we see thatE ∫C
 (√nhn |Ln(x) − Efn;L(x)|)p dx+ ‖L‖p2 E|Z|p ∫C
 fp=2 (x) dx
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an be made as small as desired for all large enough n: This observationwhen 
ombined with (85) allows us to 
on
lude that
∫

R

(√nhn |Ln(x) − Efn;L(x)|)p dx →P ‖L‖p2 E|Z|p ∫
R

fp=2 (x) dx:(The ne
essary argument is given in the proof of Theorem 4.2 of Billingsley(1968).) Re
all from Step 1 thatlim supn→∞

((nhn)p=2 E ∥∥Ln − ELn∥∥pp) ≤ ap ∥∥L∥∥p2 ;whi
h 
an be made as small as desired by 
hoosing L > 0 large enough.In the same way, we 
an make
∥∥L
∥∥p2 E|Z|p ∫

R

fp=2 (x) dx;arbitrarily small. Therefore by a standard argument we 
on
lude that(51) holds. (As above, the argument is in the proof of Theorem 4.2 onBillingsley (1968).) This 
ompletes the proof of Proposition 3. �3. Conne
tions to known risk boundsIn this se
tion we dis
uss the 
onne
tions of our results to some knownrisk bounds of Ibragimov and Hasminskii (1980), Hasminskii and Ibragi-mov (1990) and Bretagnolle and Huber (1979), and then we use our re-sults to provide a partial solution to a 
onje
ture of Guerre and Tsybakov(1998).3.1. Conne
tion to results of Ibragimov and HasminskiiIntrodu
e the following analog of the de la Vall�ee-Poussin kernel,Kvp (x) = 
osx− 
os 2x�x2 ; x ∈ R: (100)Let fn be the density estimator based on this kernel. Ibragimov andHasminskii (1980) and Hasminskii and Ibragimov (1990) have obtainedbounds for any r ≥ 1 and p ≥ 1 for E ‖fn − Efn‖rp and E ‖fn − f‖rp.Their bounds for E ‖fn − Efn‖rp are of the same order as those givenin our Proposition 2 when p ≥ 2. Refer to Lemma 4 of Ibragimov andHasminskii (1980).
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ialize now to the following smooth 
lass of densities: for a given� > 0, � = r + �, r = 0; 1; : : : ; 0 < � < 1, L > 0 and p ≥ 1, let denoteH�p L denote the 
lass of fun
tions g ∈ Lp(R) with derivatives up to orderr and satisfy



∫

R

∣∣∣g(r) (x+ h)− g(r) (x)∣∣∣p dx1=p
≤ L |h|� ; |h| ≤ �;In the 
ase � = 1, the slightly stronger 
ondition is needed, namely,




∫

R

∣∣∣g(r) (x+ h) + g(r) (x− h)− 2g(r) (x)∣∣∣p dx ≤ L |h| ; |h| ≤ �:Lemmas 3 and 5 in Ibragimov and Hasminskii (1980) imply that for anydensity f ∈ H�pL and the kernel density estimator fn based on the kernel(100), fn (x) = 1nhn n∑i=1 Kvp(x−Xihn ) ;we have
‖Efn − f‖p ≤ A |h|� : (101)Choose for some 
 > 0 the sequen
e of bandwidthshn = 
n1=(2�+1) :It follows from (101), Minkowski's inequality and our Corollary 1 that forany p ≥ 2, M > 0 and loss fun
tion w satisfying its 
onditions thatlim supn→∞

supf∈H�pL∩Lp=2((M)(p−2)=(p−1))Ew (n�=(2�+1) ‖fn − f‖p) < ∞;whi
h sin
e ‖f‖p=2 ≤ ‖f‖(p−2)=(p−1)p implieslim supn→∞
supf∈H�pL∩Lp(M)Ew (n�=(2�+1) ‖fn − f‖p) <∞: (102)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 97Statement (102) was proved in Theorem 5 of Ibragimov and Hasminskii(1980).Ibragimov and Hasminskii (1980) establish in their Theorem 5 that ifw is also non-de
reasing then for some 
 > 0lim infn→∞
inff̃n supf∈H�pL∩Lp(M)Ew(
n�=(2�+1) ∥∥∥f̃n − f∥∥∥p) > 0; (103)where f̃n is an arbitrary density estimator of f based on X1; : : : ; Xn:Hasminskii and Ibragimov (1990) show that the rate is di�erent when1 ≤ p < 2. More pre
isely they prove that for any r ≥ 1lim infn→∞

inff̃n supf∈H�pL∩Lp(M)n�r=(q�+1)E ∥∥∥f̃n − f∥∥∥rp > 0; (104)where q = p= (p− 1). (For the 
ase p = 1 see also Theorem 11 of Ibragimovand Hasminskii (1980).)3.2. Conne
tion to results of Bretagnolle and HuberThere are similar 
onne
tions to the work of Bretagnolle and Huber(1979). We shall restri
t our dis
ussion to the 
ase 1 ≤ p < 2. For r > 0,� > 0 and a positive integer m letFr;m;�;a = {f : �m;p (f) ≤ r} ⊂ C(m)[−a;a℄ (�) ;where �m;p (f) = ∥∥∥f (m)∥∥∥p=(2m+1)p ‖f‖2p=(2m+1)p=2and C(m)[−a;a℄ (�) denotes the 
lass of m times 
ontinuously di�erentiabledensities f with support 
ontained in [−a; a℄, 0 < a < ∞, and satisfying∥∥f (m)∥∥p ≤ �. Applying the 
onstru
tion in their Proposition 3.1 we 
an�nd a 
lass � ⊂ Fr;m;�;a so that for some C > 0;lim infn→∞
n2p=(2m+1) inff̃n supf∈�E ∥∥∥f̃n − f∥∥∥pp ≥ Cr; (105)whi
h implies thatlim infn→∞

n2p=(2m+1) inff̃n supf∈Fr;m;�;aE ∥∥∥f̃n − f∥∥∥pp ≥ Cr: (106)
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hosen so that their 
onstru
tion works.) Fur-thermore, as on page 131 of Bretagnolle and Huber (1979) we 
an inferthat for a suitable positive 
onstant D and for a well 
hosen sequen
e ofestimators f̃n,lim supn→∞
n2p=(2m+1) supf∈Fr;m;�;aE ∥∥∥f̃n − f∥∥∥pp ≤ Dr: (107)Noti
e that statement (106) implies that for any 
onvex 
ontinuousnonde
reasing loss fun
tion w on [0;∞)lim infn→∞

inff̃n supf∈Fr;m;�;aEw(n2p=(2m+1) ∥∥∥f̃n − f∥∥∥pp) ≥ w (Cr) : (108)Now 
hoose any kernel K satisfying (K:i) and (55) and having support
ontained in [−b; b℄, 0 < b < ∞. Applying Lemma 1 with H = K2= ‖K‖22via inequality (26) we get
∫

R

((K2)hn ∗ f(x))p=2dx≤‖K‖p2 C(�; s) (1+
� (E|X |� + h�E|Y |�))p=2 ;whereE|X |� = ∫
R

|x|� f (x) dx and E|Y |� = 1
‖K‖22 ∫

R

|y|�K2 (y) dy:Obviously E|X |� ≤ a� and E|Y |� ≤ b�. Thus uniformly in 0 < h ≤ 1 andf ∈ Fr;m;�;a,


∫

R

((K2)hn ∗ f(x))p=2dx2=p
≤‖K‖22 C(�; s)2=p (1+ 
� (a�+ b�))=:M:(109)Let fn be a kernel density estimator with kernel K and a sequen
e ofbandwidths satisfying (h): On a

ount of (109) we 
an apply Corollary 1to infer that for any su
h kernel and all t > 0,lim supn→∞

supf∈Fr;m;�;aE exp(t√nhn ‖fn − Efn‖p) < ∞: (110)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 99Assume in addition that K satis�es (K:iii) then for any f ∈ Fr;m;�;a,
‖f − Efn‖p ≤ hmn � ‖mK‖1 : (111)Now 
hoose for some 
 > 0 the sequen
e of bandwidthshn = 
n1=(2m+1) :We see then by (111), Minkowski's inequality and (110) that for all t > 0,lim supn→∞

supf∈Fr;m;�;aE exp(tnm=(2m+1) ‖fn − f‖p) < ∞: (112)Therefore for any loss fun
tion w on [0;∞) su
h that for some � > 0 andC > 0, 0 ≤ w (xp) ≤ C exp (�x) ; x ∈ [0;∞) ; (113)we have lim supn→∞
supf∈Fr;m;�;aEw (npm=(2m+1) ‖fn − f‖pp) < ∞: (114)3.3. Partial solution to a 
onje
ture of Guerre and TsybakovWe shall 
on
lude our paper by showing that our results lead to a par-tial solution to a 
onje
ture of Guerre and Tsybakov (1998). Let F (
; L)be a 
lass of density fun
tions su
h that ea
h f ∈ F (
; L) admits an an-alyti
al 
ontinuation to the strip D
 = {x+ iy : |y| ≤ 
} with 
 > 0 su
hthat f (x+ iy) is analyti
 on the interior of D
 , bounded on D
 and forsome L > 0 ∫

R

|f (x+ iy)|2 dx ≤ L:Clearly, sin
e f is bounded on D
 , for all r ≥ 1,
∫

R

fr (x) dx < ∞: (115)Let f̂ (t) = ∫
R

exp (itx) f (x) dx;



100 D. M. MASONdenote the Fourier transform of f . We have for any f ∈ F (
; L)12� ∫
R


osh2 (
t) ∣∣∣f̂ (t)∣∣∣2 dt ≤ L:(For this and other fa
ts about the 
lass F (
; L) 
onsult Guerre andTsybakov (1998) and the referen
es therein.) Introdu
e the sin
 kernelS (t) = sin t�t ; t ∈ R;were sin 00 := 1: The kernel S is not in L1 (R) but it is in L2 (R). It satis�eslimA→∞

A∫
−A S (t) dt = 1 and ∫

R

S2 (t) dt = 1� ;and its Fourier transform iŝS (t) = 1 {|t| ≤ 1} :Choose the sequen
e of bandwidths hn = 2
= logn and 
onsider the kerneldensity estimator fn (x) = 1nhn n∑i=1 S (x−Xihn ) :Part of the 
onje
ture in Remark 5 of Guerre and Tsybakov (1998) sur-mises that for a general 
lass of loss fun
tions w for ea
h p ≥ 2 andf ∈ F (
; L) one haslimn→∞
Ew √ 2�
nlogn ‖fn − f‖p

(E |Z|p ∫
R
fp=2 (y) dy)1=p = w (1) : (116)Note that sin
e (115) holds for any f ∈ F (
; L) and S ful�lls (K:i) and(K:ii), our Corollary 2 implies that for any loss fun
tion w 
ontinuous at1 and satisfying (53), p ≥ 2 and f ∈ F (
; L),limn→∞

Ew √ 2�
nlogn ‖fn − Efn‖p
(E |Z|p ∫

R

fp=2 (y) dy)1=p = w (1) : (117)



RISK BOUNDS FOR KERNEL DENSITY ESTIMATORS 101To infer from (117) that (116) also holds it suÆ
es to verify that
√ nlogn ‖f − Efn‖p → 0: (118)For any h > 0 write Sh (·) = h−1S (·h−1). The bias at ea
h �xed x ∈ Rbased on the kernel S and bandwidth h > 0 isbh (x) = f (x) − Sh ∗ f (x) :The argument in the proof of Lemma 1 of Guerre and Tsybakov (1998)shows that the essential supremum of |bh| satis�esess sup |bh| ≤√ L2�
 exp (−
=h) : (119)Now by Plan
herel's theorem

∫

R

b2h (x) dx = ∫
R

(f (x)− Sh ∗ f (x))2 dx= 12� ∫
R

∣∣∣f̂ (t)− Ŝ (ht) f̂ (t)∣∣∣2 dt = 12� ∫
R

∣∣∣f̂ (t) 1 {|t| ≥ 1=h}∣∣∣2 dt
≤ 12� ∫

R


osh2 (
t) ∣∣∣f̂ (t)∣∣∣2 dt ∞∫1=h 1
osh2 (
t)dt
≤ L� ∞∫1=h exp (−2
t) dt = L2�
 exp (−2
=h) : (120)Therefore we see from (119) that (120) that for any h > 0 and p ≥ 2



∫

R

bph (x) dx1=p
≤


(ess sup |bh|)p−2 ∫

R

b2h (x) dx1=p
≤
√ L2�
 exp (−
=h) : (121)



102 D. M. MASONClearly from inequality (121) we get
√ nlogn ‖f − Efn‖p ≤ ( L2�
)1=2 1√logn; (122)whi
h implies (118) and thus (116) for loss fun
tions w as in Corollary 2.We do not know whether the limit in (116) is uniform for f ∈ F (
; L),or even for f in the sub
lass Lp=2 (M) ∩ F (
; L), for any M > 0: Onthe other hand, sin
e (122) holds uniformly for f ∈ F (
; L), it is easy to
ombine this with Corollary 1 to show that for any M > 0, 2 ≤ p < ∞and loss fun
tion w satisfying (53)lim supn→∞

supf∈Lp=2(M)∩F(
;L)Ew (√nhn ‖fn − f‖p) <∞:Guerre and Tsybakov (1998) also 
onje
tured in their Remark 5 that aminimax result of the forminff̃n supf∈F
Ew √ 2�
nlogn ∥∥∥f̃n − f∥∥∥p

(E |Z|p ∫
R

fp=2 (y) dy)1=p→ w (1)for a general 
lass of loss fun
tions w, where the in�mum is taken overall estimators f̃n of f based on X1; : : : ; Xn, i.i.d. with density f and thesupremum is over a sub
lass F of F (
; L) with p ≥ 2. The only resultin this dire
tion known to the author is Theorem 2 of S
hipper (1996),whi
h says in the 
ase p = 2 thatinff̃n supf∈F(
;L) 2�
nlogn E ∥∥∥f̃n − f∥∥∥22 → 1:Noti
e that a spe
ial 
ase of (116) says thatlimn→∞

2�
nlog n E ‖fn − f‖22 → 1:For 
losely related results refer to Theorems 7 and 10 of Ibragimov andHashminskii (1980).
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