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ON NEW DEVELOPMENTS IN
DIVERGENCE STATISTICS

ABSTRACT. In this paper, we discuss measures of divergence and focus
on a recently introduced measure of divergence, the so called BHHJ mea-
sure (Basu et. al, 1998). A general class of such measures is introduced
and goodness of fit tests for multinomial populations are presented. Sim-
ulations are performed to check the appropriateness of the proposed test
statistics.

1. INTRODUCTION

A measure of divergence is used as a way to evaluate the distance or
divergence between any two populations or functions. Let f; and fs be two
probability density functions which may depend or not on an unknown
parameter of fixed finite dimension. The most well known measure of
(directed) divergence is the Kullback—Leibler divergence which is given
by

FEE () = [ iogt/fvdu =, og (1)),

for a measure p which, for the continuous case, is the Lebesgue measure,
and a random variable X with absolutely continuous distribution. This
notation covers not only the continuous case but also a discrete setting
where the measure p is a counting measure. Indeed, for the discrete case,
the divergence is meaningful for the probability mass functions f; and fo
whose support is a subset of the support S, finite or countable, of the
counting measure y that satisfies u(z) =1 for € S,,, and 0 otherwise.

So, for the above divergence and for the subsequent ones consider that,
if k is a measurable function, the expectation of k(X) is given by:

/k (z) f(z)dx if p is the Lebesgue measure,

E;kE(X)] =
1 [k (X)] Z k(x) f(z) if p is the counting measure.

€Sy,
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As generalizations of the Kullback—Leibler measure, the additive and
nonadditive directed divergences of order a were introduced by Rényi
(1961) and Csiszar (1963). An extension of these divergences was given
by Liese and Vajda (1987), for all a # 0, 1:

T ) = gy hos [ 4

ala
damem [(h) | eron

Furthermore, the Matusita measure (see [Matusita, (1967)]) given by

IX (f1, f2) /\/ﬁ \/E)zdﬂ

is the square of the well known Hellinger distance.
Another measure of divergence is the measure of Kagan (1963) which
is known as Pearson’s X? and is given by

(o fo) = / (1= £1/£2)? Fadpt.

log Ey,

Csiszar’s measure of information (see [Csiszar (1963), Ali, and Silvey,
(1966)] is a general divergence-type measure, known also as ¢-divergence
based on a convex function ¢ and defined by

I$9(fis fo) = /‘P(fl/fz)fzdu = by, [(%)] , pEP”

where ®* is the class of all convex functions ¢ on [0, 00) such that p(1) = 0,
0¢(0/0) = 0, and Oy (u/0) = ulingow(u) /u, for u > 0.

Observe that Csiszar’s measure reduces to Kullback—Leibler divergence
if p(u) = ulogu or p(u) = ulogu —u + 1. If p(u) = (1/2)(1 — u)? or
o(u) = (1 — \/u)? Csiszar’s measure yields the Kagan and the Matusita
divergence, respectively. More examples of p-functions and the measures
we obtain based on these functions are given in Pardo (2006).

A well known generalization of measures of divergence is the family of
power divergences introduced independently by Cressie and Read (1984)
and Liese and Vajda (1987) which is given by

CR(f,, o) = >\+ /f1 l< i;)Alldz, A€R,
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where for A = 0,—1 is defined by continuity and reduces to Kullback—
Leibler divergence. Note also that this divergence is a member of the
Csiszar’s family of measures.

1.1. The BHHJ Measure of Divergence

One of the most recently proposed measures of divergence is the BHHJ
power divergence between f and g (Basu et al., 1998) which is denoted
by BHHJ, indexed by a positive parameter a, and defined as:

I&(g,f):/{flﬂ(z)—(1+§)g<z)f“ () + Ly (Z)}dz, a>0. (1)

This family of measures was proposed by Basu et al. (1988) for the
development of a minimum divergence estimating method for robust pa-
rameter estimation. The index a controls the trade-off between robustness
and asymptotic efficiency of the parameter estimators which are the quan-
tities that minimize (1). It should be also noted that the BHHJ family
reduces to the Kullback—Leibler divergence for a tending to 0 and as it
can be easily seen, to the square of the standard Lo distance between
f and g for a = 1. As a result, for a = 0 the family, as an estimating
method, reduces to the traditional maximum likelihood estimation while
for a = 1 becomes the mean squared error estimation. In the former case
the resulting estimator is efficient but not robust while in the latter the
method results in a robust but inefficient estimator. The authors observed
that for values of a close to 0 the resulting estimators have strong robust
features without a big loss in efficiency relative to the maximum likeli-
hood estimating method. As a result one is interesting in small values of
a > 0, say between zero and one, although values larger than one are
also allowed. One should be aware though of the fact that the estimating
method becomes less and less efficient as the index a increases.

It is interesting to note that the BHH.J measure can be considered as a
special case of the Bregman divergence (Jones and Byrne, 1990; Csiszar,
1991) which has the general form

[ @) - B} - (9 - F) )] i

where H is a convex function. Observe that a Taylor series expansion
of the integrand of the Bregman divergence when f is close to g gives
%(f —g)2H"(f). If ones wants the Bregman divergence to reduce to the
square of the Lo distance for a = 1 (and consequently to the mean squared
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error estimating method) then H”(f) oc f®! for some a > 0 so that
H(f) oc fo*! in which case the Bregman divergence reduces to (1).
Some motivation for the form of the BHHJ divergence can be obtained
by looking at the location model, where [ f,%(z)dz is independent of any
parameter. In this case, the proposed estimators maximize > .| f&(X;),

with the corresponding estimating equations having the form
> ug (X3) f§ (X3) =0, (2)
i=1

where ug (z) = dlog fp (z) /00 is the maximum likelihood score function.
This can be viewed as a weighted version of the efficient maximum like-
lihood score equation. When a > 0, (2) provides a relative-to-the-model
downweighting for outlying observations; observations that are wildly dis-
crepant with respect to the model will get nearly zero weights. In the
fully efficient case a = 0, all observations, including very severe outliers,
get weights equal to one.

We generalize now the family (1) to a more general family of the fol-
lowing form that involves a general function ®(-).

Definition 1.1. For a general function ® € G and for a > 0, we define
the divergence between two functions f and g by

500 =E(re(D)) = [ore@e(f)an o

where p represents the Lebesgue measure and G is the class of all convex
functions ® on [0,00) such that ®(1) = 0, ®’(1) = 0 and " (1) # 0. In
the expression of I (g, f), we assume the conventions

0®(0/0) =0 and 0® (u/0) = lim ® (u) /u for u > 0.

Uu—00

The BHHJ measure of Basu et. al (1998) can be obtained from the
above general BHHJ family if the function & takes the special form

P (u) =u't — <1+2> u“+%- (4)

Expression (3) covers not only the continuous case presented in (1) but
also a discrete setting where the measure p is a counting measure. Indeed,
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for the discrete case, the divergence in (3) is meaningful for probability
mass functions f and g whose support is a subset of the support S,,, finite
or countable, of the counting measure y that satisfies u(z) =1 for z € S,
and 0 otherwise.

Consider now two multinomial distributions P = (p1,... ,pn) and Q =
(g1, ... ,qm) with sample space Q = {z : p(z) - ¢(z) > 0} where p(z) and
g(z) are the probability mass functions of the two distributions. Then the
discrete version of the Cressie and Read measure is given by

I)CgR(P,Q):ﬁipi[(%)/\l}, AeER, A£0,-1. (5)
i=1 ¢

The above measure was introduced by Cressie and Read (1984) for good-
ness of fit tests for multinomial distributions. Observe that the family
includes important and well known test statistics like the Pearson’s X2
statistic (for A = 1), the loglikelihood ratio statistic (for A — 0) and the
Freeman—Tukey statistic (for A = —1/2). Cressie and Read (1984) devoted
their work to the analytic study of the asymptotic properties of the above
measure and found that the A = 2/3 case constitutes an excellent and
compromising alternative between the traditional A — 0 (loglikelihood
ratio test) and A = 1 (Pearson’s X? test) cases.

The discrete version of Csiszar’s measure is given in a similar fashion,
by

de = qio (pi/ai) -
i=1

The discrete Csiszér’s measure has been used by Zografos et al. (1990)
for purposes analogous to the ones of the discrete Cressie and Read mea-
sure, namely, for goodness of fit tests for multinomial distributions.

In what follows we extend the class of measures of divergence (3) to
a discrete setting analogous to the above discrete versions of Csiszar’s or
Cressie and Read’s measures for multinomial distributions.

Definition 1.2. For two discrete distributions P = (pi,... ,pm) and
Q= (q1,--.,qm) with sample space Q = {x : p(x) - q(z) > 0}, where p(z)
and q(z) are the probability mass functions of the two distributions, the
discrete version of the general BHHJ family of divergence measures with
a general function ® as in Definition 1.1 and a > 0 is given by

do=d, (Q,P) = E, (q”(X)‘P(%)) = zm:q}“‘l’ (Iqi) (©6)

2
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which for ® as in (4) becomes the discrete BHHJ measure given by

m m m

do=d, (Q,P)=) pt*— <1+ 1) aip? i1 R
(@, P) ; " ; " ; (7)
For a — 0 the measure reduces to the Kullback—Leibler divergence
while for ®(u) = ¢(u) and for a = 0 we obtain the Csiszar’s ¢ divergence.
The measures described above play a significant role in statistical in-
ference and have several applications. The aim of this paper is to present
some recent developments on measures of divergences. In particular, in
Sec. 2 we propose some test statistics for goodness of fit tests for multi-

variate populations while in Sec. 3 simulation results are presented.

2. GOODNESS OF FIT TESTS

The statistical analysis and in particular the testing of models for dis-
crete multivariate data has been given considerable attention during the
last 30 years. The books of Cox (1970), Agresti (1984), and Cressie and
Read (1988) are focusing on various aspects of model development. The
usual assumption is that the adequacy of a model can be tested by one
of the traditional goodness-of-fit tests, namely the Pearson’s X2 or the
loglikelihood ratio test. Note that both of these tests are special cases of
the Cressie and Read measure of divergence introduced in (5). Indeed in
a discrete setting and for A = 1 the Cressie and Read measure reduces

42
to >, % which multiplied by 2n is the Pearson’s X? test where
p; plays the role of the observed frequency and ¢; the role of the ex-
pected one. Furthermore, the loglikelihood ratio test statistic (also known

as Kullback-Leibler measure) 2n ) ", p; log (f}’—) can be deduced from

the Cressie and Read measure for A — 0.

In this section, we focus on a discrete setting and provide some distribu-
tional properties of the estimator of the general BHHJ family of measures
which is shown to be weakly consistent. These results are then used for
establishing a goodness of fit test for multinomial distributions based on
the general BHHJ family of divergence measures.

Definition 2.3. Let f be a function with continuous derivatives of second
order defined on the set S, = {(s1,82) : 0 < s; < 00, ¢ =1,2}. Then the
f-dissimilarity is defined to be

da = df (QaP) = Zf(pjaq])a

Jj=1
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where p;, qj, j = 1,...,m are the parameters from the multinomial distri-

butions M (Np, P), P = (p1,p2, ..., pm) and M (Ny, @), @ = (¢1,42, -, qm)
and f is a continuous convex, homogeneous function.

For different functions f we have specific dissimilarity measures. For
example for f(p,q) = qe(p/q) we have the Csiszar’s measure and for
f(p,q) = ¢*T*®(p/q) we have the general BHHJ family of measures while
for ® as in (4) we have the discrete BHHJ measure. Observe that the
estimator of d, is

For the general BHHJ family of measures the estimator of the f-
dissimilarity is given by

~ & D
do =) qT"® <TJ> (8)

where p; = K,—;, 4 = %—Z,j =1,..,m, and X = (z1,....,2p),Y =
(y1,-.-,Ym) are random observations from M (Np, P) and M (N,, Q).
Observe that in case one of the two distributions is known then the

~

obvious notation applies, namely, d, = d; (Q, ]3) = > f(pj,q)if Q is
j=1

~ —~ m
known and d, = d; (Q,P) = f (p;,q;) if P is known.
f s 7> 4j
]:

Goodness of fit tests using measures of divergence such as Csiszar’s
have been extensively investigated [Zografos et al., 1990; Morales et al.,
1997; Pardo, 1999, etc.].

If we have to examine whether the data (ni,ns,...,n,,) come from a
multinomial distribution M (N, Fy), where Py = (p10,D20;---s Pmo) and

m
N = > n;, a well known test statistic is the chi-square goodness of fit
i=1
test statistic. We define now for any function ® such that ®'(1) = 0 and
®”(1) # 0, a new statistic for the above goodness of fit test:

2N (4, -2 3 1)
& (1)

X2

Il
—

Ne)
~
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which for ® (u) as in (4) constitutes the test statistic associated with the
BHHJ divergence. Observe that for the purpose of goodness of fit tests

we use
m

&= at+ee (2) (19)
; qi
with q; = Pio-

In what follows we establish the asymptotic distributions of the esti-
mator d, (Corollary 2.1 and the test statistic (9) under appropriate null
and alternative hypotheses (Theorem 2.3 and Corollary 2.2).

Theorem 2.1. Let g : R¥ — R a function of the form
g(x17x27"'7 qu*f’a@ 932/%

with ® (u) any function such that ®'(1) = 0 and ®”(1) # 0 and ¢; known.
Then

\/N[g (]/)\17 J/j\m) - g (p17 7pm)] i) N (070121)

Al G e ()

andp; = 3,0 =1,.

where

Proof. Slnce X = (331, %2, .-, Ty ) 18 @ random observation from the multi-
nomial distribution M (N, P), P = (p1,p2,...,pm) and p; = Z£,i =1,..,m
it follows that (see, e.g., Serfling, 1980, p. 108-109),
_ ~ ~ L
\/N(pl —P1yP2 — P2y P — pm) — N (07 E) )
where the variance-covariance matrix is given by ¥ = [o;] .
Oij = ..
—DPiPj i F ]
The theorem is derived by applying the well known Delta method to
the case under investigation (for a similar result see Rao, 1973, p. 387)

with
:i . 09 09
: g Op; apj

i=1 j=1
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where % =qi® (pr/ar), k=1,2,... ,m. Indeed, in this case we have
= Sont -l ()] - S, e ()] 9/(2)]
Salav @] - Snlev )]
-X 5 e (G)] o (32)]

and the result is immediate. O

Corollary 2.1. Let d, as in (6), d, as in (10), and any function ® such
that ®'(1) = 0 and ®”(1) # 0 with ¢; = pio, i = 1,... ,m. Then

VN {Ja fda] LN (0,02,

where
m D 2 m D 2
= (e ()] - [ (2]
1 p]O 1 P;o
j= i=
Proof. It follows immediately from the previous theorem. O

Consider the hypothesis
Hy : pi =pio vs. Hy :pi =pip, 1 =1,...,m.

Suppose that the null hypothesis indicates that p; = pjp, i =1,2,... ,m
when in fact it is p; = pip, Vi. As it is well known if p;g and p;; are fixed
then as n tends to infinity then the power of the test tends to 1. In order
to examine the situation when the power is not close to 1, we must make
it continually harder for the test as n increases. This can be done by
allowing the alternative hypothesis steadily closer to the null hypothesis.
As a result we define a sequence of alternative hypotheses as follows

which is known as Pitman transition alternative or Pitman (local) alter-
native or local contiguous alternative to the null hypothesis Hy : p; = pio-
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In vector notation the null hypothesis and the local contiguous alternative
hypotheses take the form

Ho:p:po V.S. HLn:p:anPO"'d/\/ﬁ’

where b= (p17 s 7pm)lu Pn = (p1n7p2n7 s 7pmn)la and d = (dla s 7dm)l
is a fixed vector such that >_'~  d; = 0. Observe that as n tends to infinity
the local contiguous alternative converges to the null hypothesis at the
rate O(n~'/2).

In order to derive the asymptotic distribution of the test statistic (9)
under the local contiguous alternatives H; ., we first obtain the asymp-
totic distribution of p; the maximum likelihood estimator of p;.

Theorem 2.2. Under the local contiguous alternative hypotheses (11),
we have

Va(p—pn) - N(0,%) and v/n(p—po) — N(d,S),

where p = (p1,-..,Ppm)’ and ¥ as in the proof of Theorem 2.1.

Proof. Observe that when indeed p; = pin, Vi and p; the maximum
likelihood estimator of p; then

— (Pi—pin) L,

Observe also that

[Pin _ [i 4 Pin—Pio _ [y L d; ’
Pio Pio Vnpio

which converges to 1 as n — oo. In a similar fashion one can easily show

that
L=pin _ [} d;
L= pio V(1 = pio)

which converges also to 1 as n — oo. As a result,

i Bimpn) VP p) _ o (B pin) L, N(0,1).

VPin(L = pin)  /Pio(1 — pio) Pio(1 — pio)
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It is easily seen that
Vi(Bi = pio) = Vn(bi — pin) + V1(Din — pio) = V1 (Di — pin) + d;.
Hence,
Vi(Bi — pio) = N(di, pio(1 — pio))-

The conclusion for the m-dimensional vector parameter is straight forward
if we take into consideration Serfling (1980, pp. 108-109). O

Note that under the null hypothesis Hy : p; = pio we have

I L
Vn(Di — pio) — N(0,pio(1 — pio))-
We define now the noncentral chi-square distribution.

Definition 2.4. If X;,...,X,, are independent random variables with
m
X; ~ N(&,1), the distribution of Y, X? is noncentral chi-square with

i=1
m
m degrees of freedom and noncentrality parameter 6 = Y £?. In matrix
i=1
notation we say that if X ~ N(&,I) then X'X ~ X7, 5, with § = £'¢ where
X=0X,..., Xn), E= (&, ... ,&m)" and I the mam identity matrix.

The following lemma from Hunter (2002, p. 72) which will be used later
is presented below without proof. The lemma, provides conditions for the
noncentral chi-square distribution but applies also to the chi-square dis-

m
tribution when £ is taken to be 0. In what follows W = ) N (nﬁ - p¢0)2.
i=1

pio

Lemma 2.1. Suppose that X ~ N(§,Q) where @ is a projection matrix

of rank r < m and Q¢ = £. Then, X'X ~ XTQ,E/E'

Theorem 2.3. Let (ny,...,0m) ~ M (N, P) with P = (p1, ..., pm) and p;,
t = 1,...,m unknown parameters. Under the local contiguous alternative
hypotheses H; , : p; = Din, © = 1,...,m we have:

moa 2
o (min pf ) W =g > =20 (% —pio) <s¢ (max pfy ) W;
3 = pio i

NS (ng 2 p
ng—ZITi)&(%—I%O) — 0 and
i=

e the distribution of (9) is estimated to be approximately Can_L&,
with ¢ = 0.5(min p¢ + maxp? ),
K3 K3
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where X2, 5 is the noncentral chi-square distribution with m —1 degrees

2
;liio and <g the symbol

m
of freedom and noncentrality parameter 6 =

i=1
for stochastic ordering.

Proof. The Taylor expansion of ® in an open ball .(p;/pio) of radius
around the point p;/pi, i = 1,2,...,m, is given by:

(B 2
Dio Dio Dio  Pio Dio
1/ N\ 2 ) — ) 2
e () 2)
2 \pio Pio Pio Pio  Pio

14+a

Multiplying both sides of the above relation by Np,;”, and taking the

sum of both sides for i = 1,2,...,m we get

ZNp1+a@ < ) ZNp1+a(§ ( )
Z Pio Dio sz Pio
2
i (- 2e) o+ (o)
2 Z Do Pio Dio
b 2
Eoil(E-2)
Pio  Pio

which for p; = p;o becomes:

m . 2
Nd, - N® (1 Zplﬂu L );%(%pio)

it
= szzo ( sz) (I) + Npg (pl sz)) . (12)
i=1 Y
where p = (nl/N,... ,m/N) and po = (P10, ... ,Pmo) . But

Z szo —pi))? < max {on } Z No((pi — pio))?

Dio i—1

=max{%}-w-o<||ﬁ—po||>2 — op(1) (13)

¢ Dio
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since VN (P — po) N N(d,%) where ¥ as in the proof of Theorem 2.1
(see Serfling, 1980, pp. 108-109). From (12) and (13), we conclude that

2N (Eaé(l)gp}J“) mNpE g 2 b
= _ o (i _ P,
& (1) 2 (¥ o) =0

i=1

Observe that

m
Npo
(miinpgo) W < Z Z'QZO
i—1 Pio

2

n; a
(N —102'0) st (mldePio) w.

Let P a diagonal matrix with diagonal elements the inverses of the
elements of the vector py. Then, we have

W= NG-m)PO-m) = (VN(P20-m) ) (VF (P25 m)))

so that
VN (Pl/z(ﬁfpo)) L. N(PY2d, PY2EPY?),

Lemma 2.1 can now be applied provided that the matrix P'/2XP1/?2 ig
of rank m — 1 and that (P'/2XP'/?). (P'/2d) = P'/?d.
For the first condition we have

PY2yp2 = PURIPTY — popg|PY2 = 1 — PY2popP? =T — /po\/Po’

which clearly is symmetric with trace equal to m — 1. The sum of its
eigenvalues is also equal to m — 1 since for symmetric matrices the trace
and the sum of the eigenvalues coincide. Furthermore, since \/p_ol\/p_ =1
we have that

(I = vpo vPo)I = v/Po 1)
=1 —2\/po /Py +Po V/PovV/Po Py =1 — /Po /Py
and hence, the matrix P'/2XP'/2 is a projection matrix with implies

that its eigenvalues are all equal to 0 or 1. As a result, there are m — 1
eigenvalues equal to 1.
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The second condition is easily established since
P'\25.Pd = PY2[P~' — popj|Pd = PY/?[d — po(1)'d),

where the second term vanishes since (1)'d = Y1~ d; = 0,% = P~ —pop|,
the covariance matrix appearing in the proof of Theorem 2.1 and (1) an
m-~dimensional vector with elements equal to 1.

As a result, under the local contiguous alternative hypotheses H; ,, and
as N — oo we observe the noncentral distribution, namely,

—~ N /n; L
Z_<ﬁ*pi0) 7 tm-16

=y Pio

where the noncentrality parameter § is given by § = (PY/2d)'P'/?d =
d' Pd. Hence, the asymptotic distribution of the test statistic (9) under the
contiguous alternatives H; , is cX}, | 5 where ¢=1/2(min; pjy+max; p).
(I

The following corollary follows as a natural consequence of the above
Theorem and is furnished without a proof. It provides the asymptotic
distribution of the test statistic under the null hypothesis Hy : p; = pjo.

Corollary 2.2. Let (nq,...,nm) ~ M (N,P) with P = (p1,...,pm) and
pi, © = 1,...,m unknown parameters. Under the null hypothesis Hy : p; =
Pio, t = 1,...,m we have:

moa 2

. Npe )

° (miln p?o) W <t Z:l fﬁl (% —Pio) st (m?x p?o) W;
i=

moa 2
2 Np; i P
L R
e the distribution of (9) is estimated to be approximately cX?2,_,, with
¢ = 0.5(min p? + max p?)
2 2

where X2, _, is the chi-square distribution with m — 1 degrees of freedom
and <4 the symbol for stochastic ordering.

Observe that in the theorem above we assume that ®'(1) = 0. This
assumption is necessary if the test statistic used is the one given by (9).
It is easy to see and it will be evident immediately after the Theorem 2.4
that this assumption is satisfied not only for the discrete BHHJ measure
but also for all measures covered by the Csiszar’s family of measures. If
though one selects a function ® which does not satisfy this assumption
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then the appropriate test statistic has to be defined. It is not difficult
to see that in such a case (12) is the main expression affected since the
first term on the right-hand side of the expression does not vanish. The
resulting test statistic will be given by

2N (Ja - ®(1) i”: Pt =320 o (% — pio) (I)/(l)>
‘I’i = = P (1) ' (14)

It should be noted though that for values of a close to zero the last term
in the numerator of (14) vanishes since >, | p (% — pio) =~ 0.

Due to the above theorems the power of the test under the fixed al-
ternative hypothesis Hy : p; = ps and the local contiguous alternative
hypotheses (11) can be easily obtained. For the case of the local contigu-
ous alternative hypotheses, the power is given by

Tn = P(X2 > Xranl,oz|pi = Pin,t =1, 7m) = P(Xrifl,ﬁ > Xr‘ifl,a)'

For the fixed alternative hypothesis the power is given in the theorem
below:

Theorem 2.4. The power of the test Hy : p; = pio vs Hgy : p; = pip,
i =1,...,m using the test statistic (9) is approximately equal to:

d" (1) cX2

m—1,«a

+2N® (1) Y plte — 2Nd,
i=1
2v/No, ’

Yoa=P|Z2= (15)

where Z a standard Normal random variable, X,,_; o the a-percentile of
the X2 _, distribution, and o2 as in Corollary 2.1 with p; = pip.

Proof. By definition, the power is given by

m—1,«a

Yo =P (Xg > X2

Di :pilhi = 17"'7m)

m
=P <Ja > (2N) ' (1) ey, ,+® (1) ph™
=1

pi = pibai = 17 7m) .
From Corollary 2.1 with p; = pj», j = 1,...,m, we have

VNo; ! [Ja - da} LN (0,1).
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The result is immediate. O

Note that for the BHHJ test corresponding to the measure given in (6)
and (4) we have ®” (1) = 1+ a and ®(1) = &' (1) = 0 so that the BHHJ
statistic corresponding to the goodness of fit test of Theorem 2.3 is given
by

2Nd,
X2 = Tt s (16)
while its power is given by
1+ a)cX? 2Nd
e =P (Z S a)CQ\’;_lUO‘ ”) . (17)
a

Note also that the Csiszar’s statistic corresponding to the goodness of
fit test of Theorem 2.3 is given by

X2 = W (18)

while its power is given by

§ —p<z>“" (1) X5 1&+2Nso(1)—2Ndc>
c = ’

2N (19)

where d. = Zplogo (pi/pio) and dC = Zplogo (pi/pio)- For the usual

Kullback— Lelbler Kagan and Cressie and Read measures we can easily
see that (1) = 0 and ¢” (1) = 1 so that the power is simplified into the

form
X2 2Nd.
Ye=P <Z m 21\;_70 ) (20)

where 5

=S [o ()] - | S (22)

and ¢'(z) = log z (Kullback—Leibler), ¢ (x) =x—1 (Kagan), and ¢'(z) =
+(z* — 1) (Cressie and Read). For the Matusita measure it is not difficult
to provide the appropriate expressions for the test statistic and the power

since we can easily see that (1) =0, ¢’(z) =1 -2~ %2 and ¢"(1) = 1/2.
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3. SIMULATIONS

For checking the accuracy of the proposed BHH.J test simulated results
using trinomial distributions are presented in the present section. In order
to understand the behavior of the BHHJ test we compare it with four other
tests, namely the goodness of fit tests based on the Kullback measure
(KL), the Kagan measure, the Matusita measure (Mat), and the Cressie
and Read measure with A = 2/3 (CR).

Our analysis is based on the equiprobable null hypothesis Hy : p; = 1/k,
i =1,...,k which is extensively used in the literature, primarily in small-
sample studies. For this hypothesis, we consider the set of alternatives
given by

{1—n/(k—1}/k, i=1,.,k—1,
H1 D = { .
(14 n)/k, i=k,

where —1 < n < k — 1. Note that for 7 > 0 a bump alternative and for
1 < 0 a dip alternative is obtained. Based on 10000 simulations for k = 3,
Table 1 provides the powers for the KL, CR (A = 2/3), Matusita, Kagan
and BHHJ (a = 0.01) test statistics for small (n = 25) and moderate
(n = 150) sample sizes and for dip (n = —0.7 and —0.6) and bump
(n = +0.4 and +.06) alternatives. Our results show that the BHHJ test
statistic is superior since it performs as well as the other tests for bump
alternatives and is the most powerful among all competing tests for dip
alternatives.

Table 1. Power calculations for the
equiprobable null hypothesis (k = 3 & a = 0.05)

n=-0.7 n=—-0.6 n=-+04 n = +0.6
Test [ n =25 150 |n=25 150 |n =25 150 |n=25 150
KL |.181 .682 | .296 927 | .240 857 | 454 .997
Kagan | .137 .661 | .227 916 | .218 .862 | .439 .997
Mat | .180 .682 | .296 927 | 241 857 | .455 .996
CR | .138 671 | .228 920 | .218 .856 | .440 .997
BHHJ | .181 .692 | .296 931 | .241 .853 | .455 .997
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