
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 363, 2009 Ç.K. Mattheou, A. KaragrigoriouON NEW DEVELOPMENTS INDIVERGENCE STATISTICSAbstrat. In this paper, we disuss measures of divergene and fouson a reently introdued measure of divergene, the so alled BHHJ mea-sure (Basu et. al, 1998). A general lass of suh measures is introduedand goodness of �t tests for multinomial populations are presented. Sim-ulations are performed to hek the appropriateness of the proposed teststatistis. 1. IntrodutionA measure of divergene is used as a way to evaluate the distane ordivergene between any two populations or funtions. Let f1 and f2 be twoprobability density funtions whih may depend or not on an unknownparameter of �xed �nite dimension. The most well known measure of(direted) divergene is the Kullbak{Leibler divergene whih is givenby IKLX (f1; f2) = ∫ f1 log(f1=f2)d� = Ef1 [log(f1f2)] ;for a measure � whih, for the ontinuous ase, is the Lebesgue measure,and a random variable X with absolutely ontinuous distribution. Thisnotation overs not only the ontinuous ase but also a disrete settingwhere the measure � is a ounting measure. Indeed, for the disrete ase,the divergene is meaningful for the probability mass funtions f1 and f2whose support is a subset of the support S�, �nite or ountable, of theounting measure � that satis�es �(x) = 1 for x ∈ S�, and 0 otherwise.So, for the above divergene and for the subsequent ones onsider that,if k is a measurable funtion, the expetation of k(X) is given by:Ef [k (X)℄ =  ∫ k (x) f (x) dx if � is the Lebesgue measure;
∑x∈S� k (x) f (x) if � is the ounting measure:48



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 49As generalizations of the Kullbak{Leibler measure, the additive andnonadditive direted divergenes of order a were introdued by R�enyi(1961) and Csisz�ar (1963). An extension of these divergenes was givenby Liese and Vajda (1987), for all a 6= 0; 1:IRlv;�X (f1; f2) = 1�(�− 1) log ∫ f�1 f1−�2 d�= 1�(�− 1) logEf1 [(f1 (X)f2 (X))�−1] ; � 6= 0; 1:Furthermore, the Matusita measure (see [Matusita, (1967)℄) given byIMX (f1; f2) = ∫ (√f1 −√f2)2d�is the square of the well known Hellinger distane.Another measure of divergene is the measure of Kagan (1963) whihis known as Pearson's X2 and is given byIKaX (f1; f2) = 12 ∫ (1− f1=f2)2f2d�:Csisz�ar's measure of information (see [Csisz�ar (1963), Ali, and Silvey,(1966)℄ is a general divergene-type measure, known also as '-divergenebased on a onvex funtion ' and de�ned byIC;'X (f1; f2) = ∫ '(f1=f2)f2d� = Ef2 [(f1f2)] ; ' ∈ �∗where �∗ is the lass of all onvex funtions ' on [0;∞) suh that '(1) = 0,0'(0=0) = 0, and 0' (u=0) = limu→∞
' (u) =u, for u > 0.Observe that Csisz�ar's measure redues to Kullbak{Leibler divergeneif '(u) = u logu or '(u) = u logu − u + 1. If '(u) = (1=2)(1 − u)2 or'(u) = (1 − √u)2 Csisz�ar's measure yields the Kagan and the Matusitadivergene, respetively. More examples of '-funtions and the measureswe obtain based on these funtions are given in Pardo (2006).A well known generalization of measures of divergene is the family ofpower divergenes introdued independently by Cressie and Read (1984)and Liese and Vajda (1987) whih is given byICRX (f1; f2) = 1� (�+ 1) ∫ f1 (z)[(f1 (z)f2 (z))� − 1] dz; � ∈ R;



50 K. MATTHEOU, A. KARAGRIGORIOUwhere for � = 0;−1 is de�ned by ontinuity and redues to Kullbak{Leibler divergene. Note also that this divergene is a member of theCsisz�ar's family of measures.1.1. The BHHJ Measure of DivergeneOne of the most reently proposed measures of divergene is the BHHJpower divergene between f and g (Basu et al., 1998) whih is denotedby BHHJ, indexed by a positive parameter a, and de�ned as:IaX(g; f) = ∫ {f1+a(z)− (1 + 1a)g (z) fa (z) + 1a g1+a (z)}dz; a > 0: (1)This family of measures was proposed by Basu et al. (1988) for thedevelopment of a minimum divergene estimating method for robust pa-rameter estimation. The index a ontrols the trade-o� between robustnessand asymptoti eÆieny of the parameter estimators whih are the quan-tities that minimize (1). It should be also noted that the BHHJ familyredues to the Kullbak{Leibler divergene for a tending to 0 and as itan be easily seen, to the square of the standard L2 distane betweenf and g for a = 1. As a result, for a = 0 the family, as an estimatingmethod, redues to the traditional maximum likelihood estimation whilefor a = 1 beomes the mean squared error estimation. In the former asethe resulting estimator is eÆient but not robust while in the latter themethod results in a robust but ineÆient estimator. The authors observedthat for values of a lose to 0 the resulting estimators have strong robustfeatures without a big loss in eÆieny relative to the maximum likeli-hood estimating method. As a result one is interesting in small values ofa > 0, say between zero and one, although values larger than one arealso allowed. One should be aware though of the fat that the estimatingmethod beomes less and less eÆient as the index a inreases.It is interesting to note that the BHHJ measure an be onsidered as aspeial ase of the Bregman divergene (Jones and Byrne, 1990; Csisz�ar,1991) whih has the general form
∫ [H{g(z)} −H{f(z)} − {g(z)− f(z)}H ′{f(z)}]dz;where H is a onvex funtion. Observe that a Taylor series expansionof the integrand of the Bregman divergene when f is lose to g gives12 (f − g)2H ′′(f). If ones wants the Bregman divergene to redue to thesquare of the L2 distane for a = 1 (and onsequently to the mean squared



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 51error estimating method) then H ′′(f) ∝ fa−1 for some a > 0 so thatH(f) ∝ fa+1 in whih ase the Bregman divergene redues to (1).Some motivation for the form of the BHHJ divergene an be obtainedby looking at the loation model, where ∫ f1+a� (z)dz is independent of anyparameter. In this ase, the proposed estimators maximize ∑ni=1 fa� (Xi),with the orresponding estimating equations having the formn∑i=1 u� (Xi) fa� (Xi) = 0; (2)where u� (z) = � log f� (z) =�� is the maximum likelihood sore funtion.This an be viewed as a weighted version of the eÆient maximum like-lihood sore equation. When a > 0, (2) provides a relative-to-the-modeldownweighting for outlying observations; observations that are wildly dis-repant with respet to the model will get nearly zero weights. In thefully eÆient ase a = 0, all observations, inluding very severe outliers,get weights equal to one.We generalize now the family (1) to a more general family of the fol-lowing form that involves a general funtion �(·).De�nition 1.1. For a general funtion � ∈ G and for a > 0, we de�nethe divergene between two funtions f and g byIaX (g; f) = Eg(ga(X)�(f(X)g(X))) = ∫ g1+a (z)�(f(z)g(z))d�; (3)where � represents the Lebesgue measure and G is the lass of all onvexfuntions � on [0;∞) suh that �(1) = 0, �′(1) = 0 and �′′ (1) 6= 0. Inthe expression of IaX (g; f), we assume the onventions0� (0=0) = 0 and 0� (u=0) = limu→∞
� (u) =u for u > 0:The BHHJ measure of Basu et. al (1998) an be obtained from theabove general BHHJ family if the funtion � takes the speial form� (u) = u1+a − (1 + 1a)ua + 1a · (4)Expression (3) overs not only the ontinuous ase presented in (1) butalso a disrete setting where the measure � is a ounting measure. Indeed,



52 K. MATTHEOU, A. KARAGRIGORIOUfor the disrete ase, the divergene in (3) is meaningful for probabilitymass funtions f and g whose support is a subset of the support S�, �niteor ountable, of the ounting measure � that satis�es �(x) = 1 for x ∈ S�and 0 otherwise.Consider now two multinomial distributions P = (p1; : : : ; pm) and Q =(q1; : : : ; qm) with sample spae 
 = {x : p(x) · q(x) > 0} where p(x) andq(x) are the probability mass funtions of the two distributions. Then thedisrete version of the Cressie and Read measure is given byICRX (P;Q) = 1� (�+ 1) m∑i=1 pi[(piqi )� − 1]; � ∈ R; � 6= 0;−1: (5)The above measure was introdued by Cressie and Read (1984) for good-ness of �t tests for multinomial distributions. Observe that the familyinludes important and well known test statistis like the Pearson's X2statisti (for � = 1), the loglikelihood ratio statisti (for � → 0) and theFreeman{Tukey statisti (for � = −1=2). Cressie and Read (1984) devotedtheir work to the analyti study of the asymptoti properties of the abovemeasure and found that the � = 2=3 ase onstitutes an exellent andompromising alternative between the traditional � → 0 (loglikelihoodratio test) and � = 1 (Pearson's X2 test) ases.The disrete version of Csisz�ar's measure is given in a similar fashion,by d = m∑i=1 qi' (pi=qi) :The disrete Csisz�ar's measure has been used by Zografos et al. (1990)for purposes analogous to the ones of the disrete Cressie and Read mea-sure, namely, for goodness of �t tests for multinomial distributions.In what follows we extend the lass of measures of divergene (3) toa disrete setting analogous to the above disrete versions of Csisz�ar's orCressie and Read's measures for multinomial distributions.De�nition 1.2. For two disrete distributions P = (p1; : : : ; pm) andQ = (q1; : : : ; qm) with sample spae 
 = {x : p(x) · q(x) > 0}, where p(x)and q(x) are the probability mass funtions of the two distributions, thedisrete version of the general BHHJ family of divergene measures witha general funtion � as in De�nition 1:1 and a > 0 is given byda ≡ da (Q;P ) = Eq(qa(X)�(p(X)q(X))) ≡
m∑i=1 q1+ai �(piqi) (6)



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 53whih for � as in (4) beomes the disrete BHHJ measure given byda ≡ da (Q;P ) = m∑i=1 p1+ai −
(1 + 1a) m∑i=1 qipai + 1a m∑i=1 q1+ai : (7)For a → 0 the measure redues to the Kullbak{Leibler divergenewhile for �(u) = '(u) and for a = 0 we obtain the Csisz�ar's ' divergene.The measures desribed above play a signi�ant role in statistial in-ferene and have several appliations. The aim of this paper is to presentsome reent developments on measures of divergenes. In partiular, inSe. 2 we propose some test statistis for goodness of �t tests for multi-variate populations while in Se. 3 simulation results are presented.2. Goodness of Fit TestsThe statistial analysis and in partiular the testing of models for dis-rete multivariate data has been given onsiderable attention during thelast 30 years. The books of Cox (1970), Agresti (1984), and Cressie andRead (1988) are fousing on various aspets of model development. Theusual assumption is that the adequay of a model an be tested by oneof the traditional goodness-of-�t tests, namely the Pearson's X2 or theloglikelihood ratio test. Note that both of these tests are speial ases ofthe Cressie and Read measure of divergene introdued in (5). Indeed ina disrete setting and for � = 1 the Cressie and Read measure reduesto ∑mi=1 (pi−qi)2qi whih multiplied by 2n is the Pearson's X2 test wherepi plays the role of the observed frequeny and qi the role of the ex-peted one. Furthermore, the loglikelihood ratio test statisti (also knownas Kullbak-Leibler measure) 2n∑mi=1 pi log( piqi ) an be dedued fromthe Cressie and Read measure for � → 0.In this setion, we fous on a disrete setting and provide some distribu-tional properties of the estimator of the general BHHJ family of measureswhih is shown to be weakly onsistent. These results are then used forestablishing a goodness of �t test for multinomial distributions based onthe general BHHJ family of divergene measures.De�nition 2.3. Let f be a funtion with ontinuous derivatives of seondorder de�ned on the set Sk = {(s1; s2) : 0 < si <∞; i = 1; 2}. Then thef -dissimilarity is de�ned to beda = df (Q;P ) = m∑j=1 f (pj ; qj);



54 K. MATTHEOU, A. KARAGRIGORIOUwhere pj , qj , j = 1; :::;m are the parameters from the multinomial distri-butionsM (Np; P ), P = (p1; p2; :::; pm) andM (Nq; Q),Q = (q1; q2; :::; qm)and f is a ontinuous onvex, homogeneous funtion.For di�erent funtions f we have spei� dissimilarity measures. Forexample for f(p; q) = q'(p=q) we have the Csisz�ar's measure and forf(p; q) = q1+a�(p=q) we have the general BHHJ family of measures whilefor � as in (4) we have the disrete BHHJ measure. Observe that theestimator of da is d̂a = df (Q̂; P̂) = m∑j=1 f (p̂j ; q̂j):For the general BHHJ family of measures the estimator of the f -dissimilarity is given by d̂a = m∑j=1 q̂1+aj �( p̂ĵqj ): (8)where p̂j = xjNp , q̂j = yjNq ; j = 1;:::;m, and X = (x1; :::; xm) ; Y =(y1; :::; ym) are random observations from M (Np; P ) and M (Nq; Q).Observe that in ase one of the two distributions is known then theobvious notation applies, namely, d̂a = df (Q; P̂) = m∑j=1 f (p̂j ; qj) if Q isknown and d̂a = df (Q̂; P) = m∑j=1 f (pj ; q̂j) if P is known.Goodness of �t tests using measures of divergene suh as Csisz�ar'shave been extensively investigated [Zografos et al., 1990; Morales et al.,1997; Pardo, 1999, et.℄.If we have to examine whether the data (n1; n2; :::; nm) ome from amultinomial distribution M (N;P0), where P0 = (p10; p20; :::; pm0) andN = m∑i=1ni, a well known test statisti is the hi-square goodness of �ttest statisti. We de�ne now for any funtion � suh that �′(1) = 0 and�′′(1) 6= 0, a new statisti for the above goodness of �t test:X2a ≡
2N (d̂a − � (1) m∑i=1 p1+ai0 )�′′ (1) (9)



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 55whih for � (u) as in (4) onstitutes the test statisti assoiated with theBHHJ divergene. Observe that for the purpose of goodness of �t testswe use d̂a = m∑i=1 qi1+a�( p̂iqi) (19)with qi = pi0.In what follows we establish the asymptoti distributions of the esti-mator d̂a (Corollary 2.1 and the test statisti (9) under appropriate nulland alternative hypotheses (Theorem 2.3 and Corollary 2.2).Theorem 2.1. Let g : ℜk → ℜ a funtion of the formg (x1; x2; :::; xm) = m∑i=1 q1+ai � (xi=qi);with � (u) any funtion suh that �′(1) = 0 and �′′(1) 6= 0 and qi known.Then √N [g (p̂1; :::; p̂m)− g (p1; :::; pm)℄ L−→ N (0; �2a)where �2a = { m∑j=1 pj[qaj�′

(pjqj )]2 − [ m∑j=1 pjqaj�′

(pjqj )]2}and p̂i = xiN ; i = 1; ::;m.Proof. SineX = (x1; x2; :::; xm) is a random observation from the multi-nomial distributionM (N;P ) ; P = (p1; p2; :::; pm) and p̂i = xiN ; i = 1; ::;mit follows that (see, e.g., Sering, 1980, p. 108{109),
√N (p̂1 − p1; p̂2 − p2; :::; p̂m − pm) L−→ N (0;�) ;where the variane-ovariane matrix is given by � = [�ij ℄mxm,�ij = { pi (1− pi) ; i = j;

−pipj ; i 6= j:The theorem is derived by applying the well known Delta method tothe ase under investigation (for a similar result see Rao, 1973, p. 387)with �2a = m∑i=1 m∑j=1 �ij �g�pi �g�pj ;



56 K. MATTHEOU, A. KARAGRIGORIOUwhere �g�pk = qak�′ (pk=qk), k = 1; 2; : : : ;m. Indeed, in this ase we have�2a = m∑i=1 pi(1− pi)[qai �′
(piqi )]2 −∑∑i6=jpipj[qai �′

(piqi )][qaj�′
(pjqj )]= m∑i=1 pi[qai �′

(piqi )]2 − m∑i=1 p2i [qai �′
(piqi )]2

−
∑∑i6=jpipj[qai �′

(piqi )][qaj�′
(pjqj )]and the result is immediate. �Corollary 2.1. Let da as in (6), d̂a as in (10), and any funtion � suhthat �′(1) = 0 and �′′(1) 6= 0 with qi ≡ pi0, i = 1; : : : ;m. Then

√N [d̂a − da] L−→ N (0; �2a) ;where �2a = { m∑j=1 pj[paj0�′

( pjpj0)]2 − [ m∑j=1 pjpaj0�′

( pjpj0)]2}:Proof. It follows immediately from the previous theorem. �Consider the hypothesisH0 : pi = pi0 vs: H1 : pi = pib; i = 1; : : : ;m:Suppose that the null hypothesis indiates that pi = pi0, i = 1; 2; : : : ;mwhen in fat it is pi = pib, ∀i. As it is well known if pi0 and pib are �xedthen as n tends to in�nity then the power of the test tends to 1. In orderto examine the situation when the power is not lose to 1, we must makeit ontinually harder for the test as n inreases. This an be done byallowing the alternative hypothesis steadily loser to the null hypothesis.As a result we de�ne a sequene of alternative hypotheses as followsH1;n : pi = pin = pi0 + di=√n; ∀i (11)whih is known as Pitman transition alternative or Pitman (loal) alter-native or loal ontiguous alternative to the null hypothesis H0 : pi = pi0.



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 57In vetor notation the null hypothesis and the loal ontiguous alternativehypotheses take the formH0 : p = p0 v:s: H1;n : p = pn = p0 + d=√n;where p = (p1; : : : ; pm)′, pn = (p1n; p2n; : : : ; pmn)′, and d = (d1; : : : ; dm)′is a �xed vetor suh that∑mi=1 di = 0. Observe that as n tends to in�nitythe loal ontiguous alternative onverges to the null hypothesis at therate O(n−1=2).In order to derive the asymptoti distribution of the test statisti (9)under the loal ontiguous alternatives Hi;n, we �rst obtain the asymp-toti distribution of p̂i the maximum likelihood estimator of pi.Theorem 2.2. Under the loal ontiguous alternative hypotheses (11),we have
√n(p̂− pn) L−→ N(0;�) and √n(p̂− p0) L−→ N(d;�);where p̂ = (p̂1; : : : ; p̂m)′ and � as in the proof of Theorem 2:1.Proof. Observe that when indeed pi = pin, ∀i and p̂i the maximumlikelihood estimator of pi then

√n (p̂i − pin)√pin(1− pin) L−→ N(0; 1):Observe also that
√pinpi0 =√1 + pin − pi0pi0 =√1 + di√npi0 ;whih onverges to 1 as n → ∞. In a similar fashion one an easily showthat √1− pin1− pi0 =√1− di√n(1− pi0)whih onverges also to 1 as n → ∞. As a result,

√n (p̂i − pin)√pin(1− pin) · √pin(1− pin)√pi0(1− pi0) = √n (p̂i − pin)√pi0(1− pi0) L−→ N(0; 1):



58 K. MATTHEOU, A. KARAGRIGORIOUIt is easily seen that
√n(p̂i − pi0) = √n(p̂i − pin) +√n(p̂in − pi0) = √n(p̂i − pin) + di:Hene, √n(p̂i − pi0) L−→ N(di; pi0(1− pi0)):The onlusion for them-dimensional vetor parameter is straight forwardif we take into onsideration Sering (1980, pp. 108{109). �Note that under the null hypothesis H0 : pi = pi0 we have

√n(p̂i − pi0) L−→ N(0; pi0(1− pi0)):We de�ne now the nonentral hi-square distribution.De�nition 2.4. If X1; : : : ; Xm are independent random variables withXi ∼ N(�i; 1), the distribution of m∑i=1X2i is nonentral hi-square withm degrees of freedom and nonentrality parameter Æ = m∑i=1 �2i . In matrixnotation we say that if X ∼ N(�; I) then X ′X ∼ X 2m;Æ , with Æ = �′� whereX = (X1; : : : ; Xm)′, � = (�1; : : : ; �m)′ and I the mxm identity matrix.The following lemma from Hunter (2002, p. 72) whih will be used lateris presented below without proof. The lemma provides onditions for thenonentral hi-square distribution but applies also to the hi-square dis-tribution when � is taken to be 0. In what followsW = m∑i=1 Npi0 (niN − pi0)2.Lemma 2.1. Suppose that X ∼ N(�;Q) where Q is a projetion matrixof rank r 6 m and Q� = �. Then, X ′X ∼ X 2r;�′�.Theorem 2.3. Let (n1; :::; nm) ∼M (N;P ) with P = (p1; :::; pm) and pi,i = 1; :::;m unknown parameters. Under the loal ontiguous alternativehypotheses Hi;n : pi = pin, i = 1; :::;m we have:
•
(mini pai0)W ≺st m∑i=1 Npai0pi0 (niN − pi0)2 ≺st (maxi pai0)W ;

• X2a −
m∑i=1 Npai0pi0 (niN − pi0)2 P−→ 0 and

• the distribution of (9) is estimated to be approximately X 2m−1;Æ ,with  = 0:5(mini pai0 +maxi pai0),



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 59where X 2m−1;Æ is the nonentral hi-square distribution with m−1 degreesof freedom and nonentrality parameter Æ = m∑i=1 d2ipi0 and ≺st the symbolfor stohasti ordering.Proof. The Taylor expansion of � in an open ball "(pi=pi0) of radius "around the point pi=pi0, i = 1; 2; :::;m, is given by:�( p̂ipi0) = �( pipi0)+( p̂ipi0 − pipi0)�′

( pipi0)+ 12 ( p̂ipi0 − pipi0)2 �′′

( pipi0)+ o(( p̂ipi0 − pipi0))2 :Multiplying both sides of the above relation by Np1+ai0 , and taking thesum of both sides for i = 1; 2; :::;m we getm∑i=1 Np1+ai0 �( p̂ipi0) = m∑i=1Np1+ai0 �( pipi0)+ m∑i=1Np1+ai0 ( p̂ipi0 − pipi0)�′

( pipi0)+ 12 m∑i=1 Np1+ai0 ( p̂ipi0 − pipi0)2 �′′

( pipi0)+ m∑i=1Np1+ai0 o(( p̂ipi0 − pipi0))2 :whih for pi = pi0 beomes:Nd̂a −N� (1) m∑i=1 p1+ai0 − 12�′′ (1) m∑i=1 Npai0pi0 (niN − pi0)2= N m∑i=1 pai0 (niN − pi0)�′(1) + m∑i=1N pai0pi0 o((p̂i − pi0))2: (12)where p̂ = (n1=N; : : : ; nm=N)′ and p0 = (p10; : : : ; pm0)′. Butm∑i=1 N pai0pi0 o((p̂i − pi0))2 ≤ maxi {pai0pi0} m∑i=1 No((p̂i − pi0))2= maxi {pai0pi0} ·N · o(||p̂− p0||)2 = oP (1) (13)



60 K. MATTHEOU, A. KARAGRIGORIOUsine √N(p̂ − p0) L−→ N(d;�) where � as in the proof of Theorem 2.1(see Sering, 1980, pp. 108-109). From (12) and (13), we onlude that2N (d̂a − � (1) m∑i=1 p1+ai0 )�′′ (1) −
m∑i=1 Npai0pi0 (niN − pi0)2 P−→ 0:Observe that

(mini pai0)W ≺st m∑i=1 Npai0pi0 (niN − pi0)2 ≺st (maxi pai0)W:Let P a diagonal matrix with diagonal elements the inverses of theelements of the vetor p0. Then, we haveW = N(p̂− p0)′P (p̂− p0) = (√N(P 1=2(p̂− p0))′)(√N(P 1=2(p̂− p0)))so that √N (P 1=2(p̂− p0)) L−→ N(P 1=2d; P 1=2�P 1=2):Lemma 2.1 an now be applied provided that the matrix P 1=2�P 1=2 isof rank m− 1 and that (P 1=2�P 1=2) · (P 1=2d) = P 1=2d.For the �rst ondition we haveP 1=2�P 1=2 = P 1=2[P−1 − p0p′0℄P 1=2 = I − P 1=2p0p′0P 1=2 = I −√p0√p0′whih learly is symmetri with trae equal to m − 1. The sum of itseigenvalues is also equal to m− 1 sine for symmetri matries the traeand the sum of the eigenvalues oinide. Furthermore, sine √p0′√p0 = 1we have that(I −√p0√p′0)(I −√p0√p′0)= I − 2√p0√p′0 +√p0√p′0√p0√p′0 = I −√p0√p′0and hene, the matrix P 1=2�P 1=2 is a projetion matrix with impliesthat its eigenvalues are all equal to 0 or 1. As a result, there are m − 1eigenvalues equal to 1.



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 61The seond ondition is easily established sineP 1=2�Pd = P 1=2[P−1 − p0p′0℄Pd = P 1=2[d− p0(1)′d℄;where the seond term vanishes sine (1)′d =∑mi=1 di = 0, � = P−1−p0p′0the ovariane matrix appearing in the proof of Theorem 2.1 and (1) anm-dimensional vetor with elements equal to 1.As a result, under the loal ontiguous alternative hypotheses Hi;n andas N → ∞ we observe the nonentral distribution, namely,m∑i=1 Npi0 (niN − pi0)2 L−→ X 2m−1;Æ;where the nonentrality parameter Æ is given by Æ = (P 1=2d)′P 1=2d =d′Pd. Hene, the asymptoti distribution of the test statisti (9) under theontiguous alternativesHi;n is X 2m−1;Æ where =1=2(mini pai0+maxi pai0).
� The following orollary follows as a natural onsequene of the aboveTheorem and is furnished without a proof. It provides the asymptotidistribution of the test statisti under the null hypothesis H0 : pi = pi0.Corollary 2.2. Let (n1; :::; nm) ∼ M (N;P ) with P = (p1; :::; pm) andpi; i = 1; :::;m unknown parameters. Under the null hypothesis H0 : pi =pi0, i = 1; :::;m we have:

•
(mini pai0)W ≺st m∑i=1 Npai0pi0 (niN − pi0)2 ≺st (maxi pai0)W ;

• X2a −
m∑i=1 Npai0pi0 (niN − pi0)2 P−→ 0 and

• the distribution of (9) is estimated to be approximately X 2m−1, with = 0:5(mini pai0 +maxi pai0)where X 2m−1 is the hi-square distribution with m− 1 degrees of freedomand ≺st the symbol for stohasti ordering.Observe that in the theorem above we assume that �′(1) = 0. Thisassumption is neessary if the test statisti used is the one given by (9).It is easy to see and it will be evident immediately after the Theorem 2.4that this assumption is satis�ed not only for the disrete BHHJ measurebut also for all measures overed by the Csisz�ar's family of measures. Ifthough one selets a funtion � whih does not satisfy this assumption



62 K. MATTHEOU, A. KARAGRIGORIOUthen the appropriate test statisti has to be de�ned. It is not diÆultto see that in suh a ase (12) is the main expression a�eted sine the�rst term on the right-hand side of the expression does not vanish. Theresulting test statisti will be given by	2a ≡
2N (d̂a − � (1) m∑i=1 p1+ai0 −∑mi=1 pai0 (niN − pi0)�′(1))�′′ (1) : (14)It should be noted though that for values of a lose to zero the last termin the numerator of (14) vanishes sine ∑mi=1 pai0 (niN − pi0) ≈ 0:Due to the above theorems the power of the test under the �xed al-ternative hypothesis H1 : pi = pib and the loal ontiguous alternativehypotheses (11) an be easily obtained. For the ase of the loal ontigu-ous alternative hypotheses, the power is given byn = P (X2 > X 2m−1;�|pi = pin; i = 1; :::;m) = P (X 2m−1;Æ > X 2m−1;�):For the �xed alternative hypothesis the power is given in the theorembelow:Theorem 2.4. The power of the test H0 : pi = pi0 vs Ha : pi = pib,i = 1; :::;m using the test statisti (9) is approximately equal to:a = P Z >

�′′ (1) X 2m−1;� + 2N� (1) m∑i=1 p1+ai0 − 2Nda2√N�a 
 ; (15)where Z a standard Normal random variable, Xm−1;� the �-perentile ofthe X 2m−1 distribution, and �2a as in Corollary 2:1 with pi = pib.Proof. By de�nition, the power is given bya = P (X2a > X 2m−1;�∣∣∣pi = pib; i = 1; :::;m)= P(d̂a > (2N)−1�′′ (1) X 2m−1;�+�(1) m∑i=1 p1+ai0 ∣∣∣pi = pib; i = 1; :::;m):From Corollary 2.1 with pj = pjb, j = 1; :::;m, we have

√N�−1a [d̂a − da] L−→ N (0; 1) :



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 63The result is immediate. �Note that for the BHHJ test orresponding to the measure given in (6)and (4) we have �′′ (1) = 1 + a and �(1) = �′ (1) = 0 so that the BHHJstatisti orresponding to the goodness of �t test of Theorem 2.3 is givenby X2a ≡ 2Nd̂a1 + a (16)while its power is given bya = P (Z >
(1 + a)X 2m−1;� − 2Nda2√N�a ) : (17)Note also that the Csisz�ar's statisti orresponding to the goodness of�t test of Theorem 2.3 is given byX2 ≡
2N (d̂ − ' (1))'′′ (1) (18)while its power is given by = P (Z >

'′′ (1)X 2m−1;� + 2N' (1)− 2Nd2√N�a ) ; (19)where d = m∑i=1 pi0' (pi=pi0) and d̂ = m∑i=1 pi0' (p̂i=pi0). For the usualKullbak{Leibler, Kagan and Cressie and Read measures we an easilysee that '(1) = 0 and '′′ (1) = 1 so that the power is simpli�ed into theform  = P (Z >
X 2m−1;� − 2Nd2√N�a ) (20)where �2a = m∑i=1 pib ['′

(pibpi0)]2 −  m∑j=1 pib'′

(pibpi0)2and '′(x) = logx (Kullbak{Leibler), '′(x) = x−1 (Kagan), and '′(x) =1� (x�− 1) (Cressie and Read). For the Matusita measure it is not diÆultto provide the appropriate expressions for the test statisti and the powersine we an easily see that '(1) = 0; '′(x) = 1−x−1=2 and '′′(1) = 1=2.



64 K. MATTHEOU, A. KARAGRIGORIOU3. SimulationsFor heking the auray of the proposed BHHJ test simulated resultsusing trinomial distributions are presented in the present setion. In orderto understand the behavior of the BHHJ test we ompare it with four othertests, namely the goodness of �t tests based on the Kullbak measure(KL), the Kagan measure, the Matusita measure (Mat), and the Cressieand Read measure with � = 2=3 (CR).Our analysis is based on the equiprobable null hypothesisH0 : pi = 1=k;i = 1; : : : ; k whih is extensively used in the literature, primarily in small-sample studies. For this hypothesis, we onsider the set of alternativesgiven by H1 : pi = { {1− �=(k − 1)}=k; i = 1; :::; k − 1;(1 + �)=k; i = k;where −1 < � < k − 1. Note that for � > 0 a bump alternative and for� < 0 a dip alternative is obtained. Based on 10000 simulations for k = 3,Table 1 provides the powers for the KL, CR (� = 2=3), Matusita, Kaganand BHHJ (� = 0:01) test statistis for small (n = 25) and moderate(n = 150) sample sizes and for dip (� = −0:7 and −0:6) and bump(� = +0:4 and +:06) alternatives. Our results show that the BHHJ teststatisti is superior sine it performs as well as the other tests for bumpalternatives and is the most powerful among all ompeting tests for dipalternatives. Table 1. Power alulations for theequiprobable null hypothesis (k = 3 & a = 0:05)� = −0:7 � = −0:6 � = +0:4 � = +0:6Test n = 25 150 n = 25 150 n = 25 150 n = 25 150KL :181 :682 :296 :927 :240 :857 :454 :997Kagan :137 :661 :227 :916 :218 :862 :439 :997Mat :180 :682 :296 :927 :241 :857 :455 :996CR :138 :671 :228 :920 :218 :856 :440 :997BHHJ :181 :692 :296 :931 :241 :853 :455 :997
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