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t. In this paper, we dis
uss measures of divergen
e and fo
uson a re
ently introdu
ed measure of divergen
e, the so 
alled BHHJ mea-sure (Basu et. al, 1998). A general 
lass of su
h measures is introdu
edand goodness of �t tests for multinomial populations are presented. Sim-ulations are performed to 
he
k the appropriateness of the proposed teststatisti
s. 1. Introdu
tionA measure of divergen
e is used as a way to evaluate the distan
e ordivergen
e between any two populations or fun
tions. Let f1 and f2 be twoprobability density fun
tions whi
h may depend or not on an unknownparameter of �xed �nite dimension. The most well known measure of(dire
ted) divergen
e is the Kullba
k{Leibler divergen
e whi
h is givenby IKLX (f1; f2) = ∫ f1 log(f1=f2)d� = Ef1 [log(f1f2)] ;for a measure � whi
h, for the 
ontinuous 
ase, is the Lebesgue measure,and a random variable X with absolutely 
ontinuous distribution. Thisnotation 
overs not only the 
ontinuous 
ase but also a dis
rete settingwhere the measure � is a 
ounting measure. Indeed, for the dis
rete 
ase,the divergen
e is meaningful for the probability mass fun
tions f1 and f2whose support is a subset of the support S�, �nite or 
ountable, of the
ounting measure � that satis�es �(x) = 1 for x ∈ S�, and 0 otherwise.So, for the above divergen
e and for the subsequent ones 
onsider that,if k is a measurable fun
tion, the expe
tation of k(X) is given by:Ef [k (X)℄ =  ∫ k (x) f (x) dx if � is the Lebesgue measure;
∑x∈S� k (x) f (x) if � is the 
ounting measure:48



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 49As generalizations of the Kullba
k{Leibler measure, the additive andnonadditive dire
ted divergen
es of order a were introdu
ed by R�enyi(1961) and Csisz�ar (1963). An extension of these divergen
es was givenby Liese and Vajda (1987), for all a 6= 0; 1:IRlv;�X (f1; f2) = 1�(�− 1) log ∫ f�1 f1−�2 d�= 1�(�− 1) logEf1 [(f1 (X)f2 (X))�−1] ; � 6= 0; 1:Furthermore, the Matusita measure (see [Matusita, (1967)℄) given byIMX (f1; f2) = ∫ (√f1 −√f2)2d�is the square of the well known Hellinger distan
e.Another measure of divergen
e is the measure of Kagan (1963) whi
his known as Pearson's X2 and is given byIKaX (f1; f2) = 12 ∫ (1− f1=f2)2f2d�:Csisz�ar's measure of information (see [Csisz�ar (1963), Ali, and Silvey,(1966)℄ is a general divergen
e-type measure, known also as '-divergen
ebased on a 
onvex fun
tion ' and de�ned byIC;'X (f1; f2) = ∫ '(f1=f2)f2d� = Ef2 [(f1f2)] ; ' ∈ �∗where �∗ is the 
lass of all 
onvex fun
tions ' on [0;∞) su
h that '(1) = 0,0'(0=0) = 0, and 0' (u=0) = limu→∞
' (u) =u, for u > 0.Observe that Csisz�ar's measure redu
es to Kullba
k{Leibler divergen
eif '(u) = u logu or '(u) = u logu − u + 1. If '(u) = (1=2)(1 − u)2 or'(u) = (1 − √u)2 Csisz�ar's measure yields the Kagan and the Matusitadivergen
e, respe
tively. More examples of '-fun
tions and the measureswe obtain based on these fun
tions are given in Pardo (2006).A well known generalization of measures of divergen
e is the family ofpower divergen
es introdu
ed independently by Cressie and Read (1984)and Liese and Vajda (1987) whi
h is given byICRX (f1; f2) = 1� (�+ 1) ∫ f1 (z)[(f1 (z)f2 (z))� − 1] dz; � ∈ R;



50 K. MATTHEOU, A. KARAGRIGORIOUwhere for � = 0;−1 is de�ned by 
ontinuity and redu
es to Kullba
k{Leibler divergen
e. Note also that this divergen
e is a member of theCsisz�ar's family of measures.1.1. The BHHJ Measure of Divergen
eOne of the most re
ently proposed measures of divergen
e is the BHHJpower divergen
e between f and g (Basu et al., 1998) whi
h is denotedby BHHJ, indexed by a positive parameter a, and de�ned as:IaX(g; f) = ∫ {f1+a(z)− (1 + 1a)g (z) fa (z) + 1a g1+a (z)}dz; a > 0: (1)This family of measures was proposed by Basu et al. (1988) for thedevelopment of a minimum divergen
e estimating method for robust pa-rameter estimation. The index a 
ontrols the trade-o� between robustnessand asymptoti
 eÆ
ien
y of the parameter estimators whi
h are the quan-tities that minimize (1). It should be also noted that the BHHJ familyredu
es to the Kullba
k{Leibler divergen
e for a tending to 0 and as it
an be easily seen, to the square of the standard L2 distan
e betweenf and g for a = 1. As a result, for a = 0 the family, as an estimatingmethod, redu
es to the traditional maximum likelihood estimation whilefor a = 1 be
omes the mean squared error estimation. In the former 
asethe resulting estimator is eÆ
ient but not robust while in the latter themethod results in a robust but ineÆ
ient estimator. The authors observedthat for values of a 
lose to 0 the resulting estimators have strong robustfeatures without a big loss in eÆ
ien
y relative to the maximum likeli-hood estimating method. As a result one is interesting in small values ofa > 0, say between zero and one, although values larger than one arealso allowed. One should be aware though of the fa
t that the estimatingmethod be
omes less and less eÆ
ient as the index a in
reases.It is interesting to note that the BHHJ measure 
an be 
onsidered as aspe
ial 
ase of the Bregman divergen
e (Jones and Byrne, 1990; Csisz�ar,1991) whi
h has the general form
∫ [H{g(z)} −H{f(z)} − {g(z)− f(z)}H ′{f(z)}]dz;where H is a 
onvex fun
tion. Observe that a Taylor series expansionof the integrand of the Bregman divergen
e when f is 
lose to g gives12 (f − g)2H ′′(f). If ones wants the Bregman divergen
e to redu
e to thesquare of the L2 distan
e for a = 1 (and 
onsequently to the mean squared



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 51error estimating method) then H ′′(f) ∝ fa−1 for some a > 0 so thatH(f) ∝ fa+1 in whi
h 
ase the Bregman divergen
e redu
es to (1).Some motivation for the form of the BHHJ divergen
e 
an be obtainedby looking at the lo
ation model, where ∫ f1+a� (z)dz is independent of anyparameter. In this 
ase, the proposed estimators maximize ∑ni=1 fa� (Xi),with the 
orresponding estimating equations having the formn∑i=1 u� (Xi) fa� (Xi) = 0; (2)where u� (z) = � log f� (z) =�� is the maximum likelihood s
ore fun
tion.This 
an be viewed as a weighted version of the eÆ
ient maximum like-lihood s
ore equation. When a > 0, (2) provides a relative-to-the-modeldownweighting for outlying observations; observations that are wildly dis-
repant with respe
t to the model will get nearly zero weights. In thefully eÆ
ient 
ase a = 0, all observations, in
luding very severe outliers,get weights equal to one.We generalize now the family (1) to a more general family of the fol-lowing form that involves a general fun
tion �(·).De�nition 1.1. For a general fun
tion � ∈ G and for a > 0, we de�nethe divergen
e between two fun
tions f and g byIaX (g; f) = Eg(ga(X)�(f(X)g(X))) = ∫ g1+a (z)�(f(z)g(z))d�; (3)where � represents the Lebesgue measure and G is the 
lass of all 
onvexfun
tions � on [0;∞) su
h that �(1) = 0, �′(1) = 0 and �′′ (1) 6= 0. Inthe expression of IaX (g; f), we assume the 
onventions0� (0=0) = 0 and 0� (u=0) = limu→∞
� (u) =u for u > 0:The BHHJ measure of Basu et. al (1998) 
an be obtained from theabove general BHHJ family if the fun
tion � takes the spe
ial form� (u) = u1+a − (1 + 1a)ua + 1a · (4)Expression (3) 
overs not only the 
ontinuous 
ase presented in (1) butalso a dis
rete setting where the measure � is a 
ounting measure. Indeed,



52 K. MATTHEOU, A. KARAGRIGORIOUfor the dis
rete 
ase, the divergen
e in (3) is meaningful for probabilitymass fun
tions f and g whose support is a subset of the support S�, �niteor 
ountable, of the 
ounting measure � that satis�es �(x) = 1 for x ∈ S�and 0 otherwise.Consider now two multinomial distributions P = (p1; : : : ; pm) and Q =(q1; : : : ; qm) with sample spa
e 
 = {x : p(x) · q(x) > 0} where p(x) andq(x) are the probability mass fun
tions of the two distributions. Then thedis
rete version of the Cressie and Read measure is given byICRX (P;Q) = 1� (�+ 1) m∑i=1 pi[(piqi )� − 1]; � ∈ R; � 6= 0;−1: (5)The above measure was introdu
ed by Cressie and Read (1984) for good-ness of �t tests for multinomial distributions. Observe that the familyin
ludes important and well known test statisti
s like the Pearson's X2statisti
 (for � = 1), the loglikelihood ratio statisti
 (for � → 0) and theFreeman{Tukey statisti
 (for � = −1=2). Cressie and Read (1984) devotedtheir work to the analyti
 study of the asymptoti
 properties of the abovemeasure and found that the � = 2=3 
ase 
onstitutes an ex
ellent and
ompromising alternative between the traditional � → 0 (loglikelihoodratio test) and � = 1 (Pearson's X2 test) 
ases.The dis
rete version of Csisz�ar's measure is given in a similar fashion,by d
 = m∑i=1 qi' (pi=qi) :The dis
rete Csisz�ar's measure has been used by Zografos et al. (1990)for purposes analogous to the ones of the dis
rete Cressie and Read mea-sure, namely, for goodness of �t tests for multinomial distributions.In what follows we extend the 
lass of measures of divergen
e (3) toa dis
rete setting analogous to the above dis
rete versions of Csisz�ar's orCressie and Read's measures for multinomial distributions.De�nition 1.2. For two dis
rete distributions P = (p1; : : : ; pm) andQ = (q1; : : : ; qm) with sample spa
e 
 = {x : p(x) · q(x) > 0}, where p(x)and q(x) are the probability mass fun
tions of the two distributions, thedis
rete version of the general BHHJ family of divergen
e measures witha general fun
tion � as in De�nition 1:1 and a > 0 is given byda ≡ da (Q;P ) = Eq(qa(X)�(p(X)q(X))) ≡
m∑i=1 q1+ai �(piqi) (6)
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h for � as in (4) be
omes the dis
rete BHHJ measure given byda ≡ da (Q;P ) = m∑i=1 p1+ai −
(1 + 1a) m∑i=1 qipai + 1a m∑i=1 q1+ai : (7)For a → 0 the measure redu
es to the Kullba
k{Leibler divergen
ewhile for �(u) = '(u) and for a = 0 we obtain the Csisz�ar's ' divergen
e.The measures des
ribed above play a signi�
ant role in statisti
al in-feren
e and have several appli
ations. The aim of this paper is to presentsome re
ent developments on measures of divergen
es. In parti
ular, inSe
. 2 we propose some test statisti
s for goodness of �t tests for multi-variate populations while in Se
. 3 simulation results are presented.2. Goodness of Fit TestsThe statisti
al analysis and in parti
ular the testing of models for dis-
rete multivariate data has been given 
onsiderable attention during thelast 30 years. The books of Cox (1970), Agresti (1984), and Cressie andRead (1988) are fo
using on various aspe
ts of model development. Theusual assumption is that the adequa
y of a model 
an be tested by oneof the traditional goodness-of-�t tests, namely the Pearson's X2 or theloglikelihood ratio test. Note that both of these tests are spe
ial 
ases ofthe Cressie and Read measure of divergen
e introdu
ed in (5). Indeed ina dis
rete setting and for � = 1 the Cressie and Read measure redu
esto ∑mi=1 (pi−qi)2qi whi
h multiplied by 2n is the Pearson's X2 test wherepi plays the role of the observed frequen
y and qi the role of the ex-pe
ted one. Furthermore, the loglikelihood ratio test statisti
 (also knownas Kullba
k-Leibler measure) 2n∑mi=1 pi log( piqi ) 
an be dedu
ed fromthe Cressie and Read measure for � → 0.In this se
tion, we fo
us on a dis
rete setting and provide some distribu-tional properties of the estimator of the general BHHJ family of measureswhi
h is shown to be weakly 
onsistent. These results are then used forestablishing a goodness of �t test for multinomial distributions based onthe general BHHJ family of divergen
e measures.De�nition 2.3. Let f be a fun
tion with 
ontinuous derivatives of se
ondorder de�ned on the set Sk = {(s1; s2) : 0 < si <∞; i = 1; 2}. Then thef -dissimilarity is de�ned to beda = df (Q;P ) = m∑j=1 f (pj ; qj);



54 K. MATTHEOU, A. KARAGRIGORIOUwhere pj , qj , j = 1; :::;m are the parameters from the multinomial distri-butionsM (Np; P ), P = (p1; p2; :::; pm) andM (Nq; Q),Q = (q1; q2; :::; qm)and f is a 
ontinuous 
onvex, homogeneous fun
tion.For di�erent fun
tions f we have spe
i�
 dissimilarity measures. Forexample for f(p; q) = q'(p=q) we have the Csisz�ar's measure and forf(p; q) = q1+a�(p=q) we have the general BHHJ family of measures whilefor � as in (4) we have the dis
rete BHHJ measure. Observe that theestimator of da is d̂a = df (Q̂; P̂) = m∑j=1 f (p̂j ; q̂j):For the general BHHJ family of measures the estimator of the f -dissimilarity is given by d̂a = m∑j=1 q̂1+aj �( p̂ĵqj ): (8)where p̂j = xjNp , q̂j = yjNq ; j = 1;:::;m, and X = (x1; :::; xm) ; Y =(y1; :::; ym) are random observations from M (Np; P ) and M (Nq; Q).Observe that in 
ase one of the two distributions is known then theobvious notation applies, namely, d̂a = df (Q; P̂) = m∑j=1 f (p̂j ; qj) if Q isknown and d̂a = df (Q̂; P) = m∑j=1 f (pj ; q̂j) if P is known.Goodness of �t tests using measures of divergen
e su
h as Csisz�ar'shave been extensively investigated [Zografos et al., 1990; Morales et al.,1997; Pardo, 1999, et
.℄.If we have to examine whether the data (n1; n2; :::; nm) 
ome from amultinomial distribution M (N;P0), where P0 = (p10; p20; :::; pm0) andN = m∑i=1ni, a well known test statisti
 is the 
hi-square goodness of �ttest statisti
. We de�ne now for any fun
tion � su
h that �′(1) = 0 and�′′(1) 6= 0, a new statisti
 for the above goodness of �t test:X2a ≡
2N (d̂a − � (1) m∑i=1 p1+ai0 )�′′ (1) (9)
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h for � (u) as in (4) 
onstitutes the test statisti
 asso
iated with theBHHJ divergen
e. Observe that for the purpose of goodness of �t testswe use d̂a = m∑i=1 qi1+a�( p̂iqi) (19)with qi = pi0.In what follows we establish the asymptoti
 distributions of the esti-mator d̂a (Corollary 2.1 and the test statisti
 (9) under appropriate nulland alternative hypotheses (Theorem 2.3 and Corollary 2.2).Theorem 2.1. Let g : ℜk → ℜ a fun
tion of the formg (x1; x2; :::; xm) = m∑i=1 q1+ai � (xi=qi);with � (u) any fun
tion su
h that �′(1) = 0 and �′′(1) 6= 0 and qi known.Then √N [g (p̂1; :::; p̂m)− g (p1; :::; pm)℄ L−→ N (0; �2a)where �2a = { m∑j=1 pj[qaj�′

(pjqj )]2 − [ m∑j=1 pjqaj�′

(pjqj )]2}and p̂i = xiN ; i = 1; ::;m.Proof. Sin
eX = (x1; x2; :::; xm) is a random observation from the multi-nomial distributionM (N;P ) ; P = (p1; p2; :::; pm) and p̂i = xiN ; i = 1; ::;mit follows that (see, e.g., Ser
ing, 1980, p. 108{109),
√N (p̂1 − p1; p̂2 − p2; :::; p̂m − pm) L−→ N (0;�) ;where the varian
e-
ovarian
e matrix is given by � = [�ij ℄mxm,�ij = { pi (1− pi) ; i = j;

−pipj ; i 6= j:The theorem is derived by applying the well known Delta method tothe 
ase under investigation (for a similar result see Rao, 1973, p. 387)with �2a = m∑i=1 m∑j=1 �ij �g�pi �g�pj ;



56 K. MATTHEOU, A. KARAGRIGORIOUwhere �g�pk = qak�′ (pk=qk), k = 1; 2; : : : ;m. Indeed, in this 
ase we have�2a = m∑i=1 pi(1− pi)[qai �′
(piqi )]2 −∑∑i6=jpipj[qai �′

(piqi )][qaj�′
(pjqj )]= m∑i=1 pi[qai �′

(piqi )]2 − m∑i=1 p2i [qai �′
(piqi )]2

−
∑∑i6=jpipj[qai �′

(piqi )][qaj�′
(pjqj )]and the result is immediate. �Corollary 2.1. Let da as in (6), d̂a as in (10), and any fun
tion � su
hthat �′(1) = 0 and �′′(1) 6= 0 with qi ≡ pi0, i = 1; : : : ;m. Then

√N [d̂a − da] L−→ N (0; �2a) ;where �2a = { m∑j=1 pj[paj0�′

( pjpj0)]2 − [ m∑j=1 pjpaj0�′

( pjpj0)]2}:Proof. It follows immediately from the previous theorem. �Consider the hypothesisH0 : pi = pi0 vs: H1 : pi = pib; i = 1; : : : ;m:Suppose that the null hypothesis indi
ates that pi = pi0, i = 1; 2; : : : ;mwhen in fa
t it is pi = pib, ∀i. As it is well known if pi0 and pib are �xedthen as n tends to in�nity then the power of the test tends to 1. In orderto examine the situation when the power is not 
lose to 1, we must makeit 
ontinually harder for the test as n in
reases. This 
an be done byallowing the alternative hypothesis steadily 
loser to the null hypothesis.As a result we de�ne a sequen
e of alternative hypotheses as followsH1;n : pi = pin = pi0 + di=√n; ∀i (11)whi
h is known as Pitman transition alternative or Pitman (lo
al) alter-native or lo
al 
ontiguous alternative to the null hypothesis H0 : pi = pi0.
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tor notation the null hypothesis and the lo
al 
ontiguous alternativehypotheses take the formH0 : p = p0 v:s: H1;n : p = pn = p0 + d=√n;where p = (p1; : : : ; pm)′, pn = (p1n; p2n; : : : ; pmn)′, and d = (d1; : : : ; dm)′is a �xed ve
tor su
h that∑mi=1 di = 0. Observe that as n tends to in�nitythe lo
al 
ontiguous alternative 
onverges to the null hypothesis at therate O(n−1=2).In order to derive the asymptoti
 distribution of the test statisti
 (9)under the lo
al 
ontiguous alternatives Hi;n, we �rst obtain the asymp-toti
 distribution of p̂i the maximum likelihood estimator of pi.Theorem 2.2. Under the lo
al 
ontiguous alternative hypotheses (11),we have
√n(p̂− pn) L−→ N(0;�) and √n(p̂− p0) L−→ N(d;�);where p̂ = (p̂1; : : : ; p̂m)′ and � as in the proof of Theorem 2:1.Proof. Observe that when indeed pi = pin, ∀i and p̂i the maximumlikelihood estimator of pi then

√n (p̂i − pin)√pin(1− pin) L−→ N(0; 1):Observe also that
√pinpi0 =√1 + pin − pi0pi0 =√1 + di√npi0 ;whi
h 
onverges to 1 as n → ∞. In a similar fashion one 
an easily showthat √1− pin1− pi0 =√1− di√n(1− pi0)whi
h 
onverges also to 1 as n → ∞. As a result,

√n (p̂i − pin)√pin(1− pin) · √pin(1− pin)√pi0(1− pi0) = √n (p̂i − pin)√pi0(1− pi0) L−→ N(0; 1):



58 K. MATTHEOU, A. KARAGRIGORIOUIt is easily seen that
√n(p̂i − pi0) = √n(p̂i − pin) +√n(p̂in − pi0) = √n(p̂i − pin) + di:Hen
e, √n(p̂i − pi0) L−→ N(di; pi0(1− pi0)):The 
on
lusion for them-dimensional ve
tor parameter is straight forwardif we take into 
onsideration Ser
ing (1980, pp. 108{109). �Note that under the null hypothesis H0 : pi = pi0 we have

√n(p̂i − pi0) L−→ N(0; pi0(1− pi0)):We de�ne now the non
entral 
hi-square distribution.De�nition 2.4. If X1; : : : ; Xm are independent random variables withXi ∼ N(�i; 1), the distribution of m∑i=1X2i is non
entral 
hi-square withm degrees of freedom and non
entrality parameter Æ = m∑i=1 �2i . In matrixnotation we say that if X ∼ N(�; I) then X ′X ∼ X 2m;Æ , with Æ = �′� whereX = (X1; : : : ; Xm)′, � = (�1; : : : ; �m)′ and I the mxm identity matrix.The following lemma from Hunter (2002, p. 72) whi
h will be used lateris presented below without proof. The lemma provides 
onditions for thenon
entral 
hi-square distribution but applies also to the 
hi-square dis-tribution when � is taken to be 0. In what followsW = m∑i=1 Npi0 (niN − pi0)2.Lemma 2.1. Suppose that X ∼ N(�;Q) where Q is a proje
tion matrixof rank r 6 m and Q� = �. Then, X ′X ∼ X 2r;�′�.Theorem 2.3. Let (n1; :::; nm) ∼M (N;P ) with P = (p1; :::; pm) and pi,i = 1; :::;m unknown parameters. Under the lo
al 
ontiguous alternativehypotheses Hi;n : pi = pin, i = 1; :::;m we have:
•
(mini pai0)W ≺st m∑i=1 Npai0pi0 (niN − pi0)2 ≺st (maxi pai0)W ;

• X2a −
m∑i=1 Npai0pi0 (niN − pi0)2 P−→ 0 and

• the distribution of (9) is estimated to be approximately 
X 2m−1;Æ ,with 
 = 0:5(mini pai0 +maxi pai0),



ON NEW DEVELOPMENTS IN DIVERGENCE STATISTICS 59where X 2m−1;Æ is the non
entral 
hi-square distribution with m−1 degreesof freedom and non
entrality parameter Æ = m∑i=1 d2ipi0 and ≺st the symbolfor sto
hasti
 ordering.Proof. The Taylor expansion of � in an open ball "(pi=pi0) of radius "around the point pi=pi0, i = 1; 2; :::;m, is given by:�( p̂ipi0) = �( pipi0)+( p̂ipi0 − pipi0)�′

( pipi0)+ 12 ( p̂ipi0 − pipi0)2 �′′

( pipi0)+ o(( p̂ipi0 − pipi0))2 :Multiplying both sides of the above relation by Np1+ai0 , and taking thesum of both sides for i = 1; 2; :::;m we getm∑i=1 Np1+ai0 �( p̂ipi0) = m∑i=1Np1+ai0 �( pipi0)+ m∑i=1Np1+ai0 ( p̂ipi0 − pipi0)�′

( pipi0)+ 12 m∑i=1 Np1+ai0 ( p̂ipi0 − pipi0)2 �′′

( pipi0)+ m∑i=1Np1+ai0 o(( p̂ipi0 − pipi0))2 :whi
h for pi = pi0 be
omes:Nd̂a −N� (1) m∑i=1 p1+ai0 − 12�′′ (1) m∑i=1 Npai0pi0 (niN − pi0)2= N m∑i=1 pai0 (niN − pi0)�′(1) + m∑i=1N pai0pi0 o((p̂i − pi0))2: (12)where p̂ = (n1=N; : : : ; nm=N)′ and p0 = (p10; : : : ; pm0)′. Butm∑i=1 N pai0pi0 o((p̂i − pi0))2 ≤ maxi {pai0pi0} m∑i=1 No((p̂i − pi0))2= maxi {pai0pi0} ·N · o(||p̂− p0||)2 = oP (1) (13)
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e √N(p̂ − p0) L−→ N(d;�) where � as in the proof of Theorem 2.1(see Ser
ing, 1980, pp. 108-109). From (12) and (13), we 
on
lude that2N (d̂a − � (1) m∑i=1 p1+ai0 )�′′ (1) −
m∑i=1 Npai0pi0 (niN − pi0)2 P−→ 0:Observe that

(mini pai0)W ≺st m∑i=1 Npai0pi0 (niN − pi0)2 ≺st (maxi pai0)W:Let P a diagonal matrix with diagonal elements the inverses of theelements of the ve
tor p0. Then, we haveW = N(p̂− p0)′P (p̂− p0) = (√N(P 1=2(p̂− p0))′)(√N(P 1=2(p̂− p0)))so that √N (P 1=2(p̂− p0)) L−→ N(P 1=2d; P 1=2�P 1=2):Lemma 2.1 
an now be applied provided that the matrix P 1=2�P 1=2 isof rank m− 1 and that (P 1=2�P 1=2) · (P 1=2d) = P 1=2d.For the �rst 
ondition we haveP 1=2�P 1=2 = P 1=2[P−1 − p0p′0℄P 1=2 = I − P 1=2p0p′0P 1=2 = I −√p0√p0′whi
h 
learly is symmetri
 with tra
e equal to m − 1. The sum of itseigenvalues is also equal to m− 1 sin
e for symmetri
 matri
es the tra
eand the sum of the eigenvalues 
oin
ide. Furthermore, sin
e √p0′√p0 = 1we have that(I −√p0√p′0)(I −√p0√p′0)= I − 2√p0√p′0 +√p0√p′0√p0√p′0 = I −√p0√p′0and hen
e, the matrix P 1=2�P 1=2 is a proje
tion matrix with impliesthat its eigenvalues are all equal to 0 or 1. As a result, there are m − 1eigenvalues equal to 1.
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ond 
ondition is easily established sin
eP 1=2�Pd = P 1=2[P−1 − p0p′0℄Pd = P 1=2[d− p0(1)′d℄;where the se
ond term vanishes sin
e (1)′d =∑mi=1 di = 0, � = P−1−p0p′0the 
ovarian
e matrix appearing in the proof of Theorem 2.1 and (1) anm-dimensional ve
tor with elements equal to 1.As a result, under the lo
al 
ontiguous alternative hypotheses Hi;n andas N → ∞ we observe the non
entral distribution, namely,m∑i=1 Npi0 (niN − pi0)2 L−→ X 2m−1;Æ;where the non
entrality parameter Æ is given by Æ = (P 1=2d)′P 1=2d =d′Pd. Hen
e, the asymptoti
 distribution of the test statisti
 (9) under the
ontiguous alternativesHi;n is 
X 2m−1;Æ where 
=1=2(mini pai0+maxi pai0).
� The following 
orollary follows as a natural 
onsequen
e of the aboveTheorem and is furnished without a proof. It provides the asymptoti
distribution of the test statisti
 under the null hypothesis H0 : pi = pi0.Corollary 2.2. Let (n1; :::; nm) ∼ M (N;P ) with P = (p1; :::; pm) andpi; i = 1; :::;m unknown parameters. Under the null hypothesis H0 : pi =pi0, i = 1; :::;m we have:

•
(mini pai0)W ≺st m∑i=1 Npai0pi0 (niN − pi0)2 ≺st (maxi pai0)W ;

• X2a −
m∑i=1 Npai0pi0 (niN − pi0)2 P−→ 0 and

• the distribution of (9) is estimated to be approximately 
X 2m−1, with
 = 0:5(mini pai0 +maxi pai0)where X 2m−1 is the 
hi-square distribution with m− 1 degrees of freedomand ≺st the symbol for sto
hasti
 ordering.Observe that in the theorem above we assume that �′(1) = 0. Thisassumption is ne
essary if the test statisti
 used is the one given by (9).It is easy to see and it will be evident immediately after the Theorem 2.4that this assumption is satis�ed not only for the dis
rete BHHJ measurebut also for all measures 
overed by the Csisz�ar's family of measures. Ifthough one sele
ts a fun
tion � whi
h does not satisfy this assumption
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 has to be de�ned. It is not diÆ
ultto see that in su
h a 
ase (12) is the main expression a�e
ted sin
e the�rst term on the right-hand side of the expression does not vanish. Theresulting test statisti
 will be given by	2a ≡
2N (d̂a − � (1) m∑i=1 p1+ai0 −∑mi=1 pai0 (niN − pi0)�′(1))�′′ (1) : (14)It should be noted though that for values of a 
lose to zero the last termin the numerator of (14) vanishes sin
e ∑mi=1 pai0 (niN − pi0) ≈ 0:Due to the above theorems the power of the test under the �xed al-ternative hypothesis H1 : pi = pib and the lo
al 
ontiguous alternativehypotheses (11) 
an be easily obtained. For the 
ase of the lo
al 
ontigu-ous alternative hypotheses, the power is given by
n = P (X2 > X 2m−1;�|pi = pin; i = 1; :::;m) = P (X 2m−1;Æ > X 2m−1;�):For the �xed alternative hypothesis the power is given in the theorembelow:Theorem 2.4. The power of the test H0 : pi = pi0 vs Ha : pi = pib,i = 1; :::;m using the test statisti
 (9) is approximately equal to:
a = P Z >

�′′ (1) 
X 2m−1;� + 2N� (1) m∑i=1 p1+ai0 − 2Nda2√N�a 
 ; (15)where Z a standard Normal random variable, Xm−1;� the �-per
entile ofthe X 2m−1 distribution, and �2a as in Corollary 2:1 with pi = pib.Proof. By de�nition, the power is given by
a = P (X2a > 
X 2m−1;�∣∣∣pi = pib; i = 1; :::;m)= P(d̂a > (2N)−1�′′ (1) 
X 2m−1;�+�(1) m∑i=1 p1+ai0 ∣∣∣pi = pib; i = 1; :::;m):From Corollary 2.1 with pj = pjb, j = 1; :::;m, we have

√N�−1a [d̂a − da] L−→ N (0; 1) :
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orresponding to the measure given in (6)and (4) we have �′′ (1) = 1 + a and �(1) = �′ (1) = 0 so that the BHHJstatisti
 
orresponding to the goodness of �t test of Theorem 2.3 is givenby X2a ≡ 2Nd̂a1 + a (16)while its power is given by
a = P (Z >
(1 + a)
X 2m−1;� − 2Nda2√N�a ) : (17)Note also that the Csisz�ar's statisti
 
orresponding to the goodness of�t test of Theorem 2.3 is given byX2
 ≡
2N (d̂
 − ' (1))'′′ (1) (18)while its power is given by

 = P (Z >

'′′ (1)X 2m−1;� + 2N' (1)− 2Nd
2√N�a ) ; (19)where d
 = m∑i=1 pi0' (pi=pi0) and d̂
 = m∑i=1 pi0' (p̂i=pi0). For the usualKullba
k{Leibler, Kagan and Cressie and Read measures we 
an easilysee that '(1) = 0 and '′′ (1) = 1 so that the power is simpli�ed into theform 

 = P (Z >
X 2m−1;� − 2Nd
2√N�a ) (20)where �2a = m∑i=1 pib ['′

(pibpi0)]2 −  m∑j=1 pib'′

(pibpi0)2and '′(x) = logx (Kullba
k{Leibler), '′(x) = x−1 (Kagan), and '′(x) =1� (x�− 1) (Cressie and Read). For the Matusita measure it is not diÆ
ultto provide the appropriate expressions for the test statisti
 and the powersin
e we 
an easily see that '(1) = 0; '′(x) = 1−x−1=2 and '′′(1) = 1=2.
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he
king the a

ura
y of the proposed BHHJ test simulated resultsusing trinomial distributions are presented in the present se
tion. In orderto understand the behavior of the BHHJ test we 
ompare it with four othertests, namely the goodness of �t tests based on the Kullba
k measure(KL), the Kagan measure, the Matusita measure (Mat), and the Cressieand Read measure with � = 2=3 (CR).Our analysis is based on the equiprobable null hypothesisH0 : pi = 1=k;i = 1; : : : ; k whi
h is extensively used in the literature, primarily in small-sample studies. For this hypothesis, we 
onsider the set of alternativesgiven by H1 : pi = { {1− �=(k − 1)}=k; i = 1; :::; k − 1;(1 + �)=k; i = k;where −1 < � < k − 1. Note that for � > 0 a bump alternative and for� < 0 a dip alternative is obtained. Based on 10000 simulations for k = 3,Table 1 provides the powers for the KL, CR (� = 2=3), Matusita, Kaganand BHHJ (� = 0:01) test statisti
s for small (n = 25) and moderate(n = 150) sample sizes and for dip (� = −0:7 and −0:6) and bump(� = +0:4 and +:06) alternatives. Our results show that the BHHJ teststatisti
 is superior sin
e it performs as well as the other tests for bumpalternatives and is the most powerful among all 
ompeting tests for dipalternatives. Table 1. Power 
al
ulations for theequiprobable null hypothesis (k = 3 & a = 0:05)� = −0:7 � = −0:6 � = +0:4 � = +0:6Test n = 25 150 n = 25 150 n = 25 150 n = 25 150KL :181 :682 :296 :927 :240 :857 :454 :997Kagan :137 :661 :227 :916 :218 :862 :439 :997Mat :180 :682 :296 :927 :241 :857 :455 :996CR :138 :671 :228 :920 :218 :856 :440 :997BHHJ :181 :692 :296 :931 :241 :853 :455 :997
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