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Y. A. Kutoyants

ON PROPERTIES OF ESTIMATORS IN NONREGULAR
SITUATIONS FOR POISSON PROCESSES

ABSTRACT. We consider the problem of parameter estimation by obser-
vations of inhomogeneous Poisson process. It is well-known that if the reg-
ularity conditions are fulfilled then the maximum likelihood and bayesian
estimators are consistent, asymptotically normal, and asymptotically effi-
cient. These regularity conditions can be roughly presented as follows: a)
the intensity function of observed process belongs to known parametric
family of functions, b) the model is identifiable, ¢) the Fisher information
is positive continuous function, d) the intensity function is sufficiently
smooth with respect to the unknown parameter, e) this parameter is an
interior point of the interval. We are interested in the properties of esti-
mators when these regularity conditions are not fulfilled. More precisely,
we preset a review of the results which correspond to the rejection of these
conditions one by one and we show how the properties of the MLE and
Bayesian estimators change. The proofs of these results are essentially
based on some general results by Ibragimov and Khasminskii.

1. INTRODUCTION

7 We start with the classical model of ii.d. observations. Let
X4, , X, be independent and identically distributed random variables
with the density function f, (z). We suppose that f.(z) = f(9,z),
where f (-,-) is a known function depending on the unknown parameter
¥ € © = (a, ). We have to estimate ¢ and to describe the properties of
estimators in the asymptotic of large samples (n — 0o0). We discuss below
two estimators: maximum likelihood and bayesian. Let us introduce the
likelihood function L, (¢, X™) = H;‘l:1 f (¥, X;). Then the maximum like-

lihood estimator (MLE) 9,, and bayesian estimator (BE) 9, (for quadratic
loss function and density a priori p(-)) are defined by the equations

B
[6p(8) L, (0, X")d0
Ln (ﬁn,X") = sup L (9, X"), 0 = % G
(IS
Sp®) Ly (9,X")d8

26
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It is well-known that if the conditions of reqularity are fulfilled then
these estimators are consistent, asymptotically normal

NG (1% - 19) — N (0,1 (19)*1) . Vi (ﬁn - 19) :>/\/(0,1 (19)*1) :

and asymptotically efficient. The density f (¢,x) has to take place in
Fisher information as
f,z 2
1) = [ 124,

is the Fisher information. The proofs you can find in any book on asymp-
totical statistics, e.g., Ibragimov and Khasminski (1981).
These regularity conditions can be roughly described as follows

o The density f.(x) of the observed r.v.’s belongs to the parametric
family, i.e., there exists a value ¥y € © = (a, ) such that f.(x) =
f (Do, 2).

o The function f (9, x) is one or more times differentiable w.r.t. 9 with
certain majoration of the derivatives.

e The Fisher information 1 (9) is positive function.

e The Fisher information 1(9) is continuous function.

e The model is identifiable: if U1 # Y2 then f (91,2) # f(Jq, ).

o The true value ¥y is an interior point of the set O, i.e., ¥y # a and
o # B.

o We can observe all values of the random variables X;.

e The statistical model is fixed and can not be chosen in some optimal
way.

Of course, this list is not exhaustive and the other conditions can be men-
tioned too. We are interested by the properties of estimators, when the
similar regularity conditions are not fulfilled for some models of continuous
time stochastic processes. More precisely, we replace these regularity con-
ditions by other conditions and study the properties of estimators under
these new conditions. This approach allows to understand better the role
of each regularity condition in the properties of estimators. As the model
of observations in this work we take inhomogeneous Poisson process. The
similar work concerning parameter estimation for ergodic diffusion pro-
cesses was already published (see [7]), but it seems that the more detailed
exposition of the proofs will be useful and it is given here.
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2. REGULAR CASE

We observe n independent trajectories X" = (Xi,...,X,), where
X,; ={X;(t),0<¢ <7}, of a Poisson process X™ = {X(¢), 0 <t < 1} of
intensity function A, = {A.(t), 0 <t < 7}, i.e., X (0) = 0, the increments
on disjoint intervals are independent and

. t
P{X(@t)=k}= A®) exp{—-A®)}, A@®)= /)\* (s) ds.
0

k!

The Poisson process sometimes is defined as a series of events 0 < ¢; <
to < ... <ty <T and X (t), 0 <t < 7 is the corresponding counting
process, i.e., X (¢) is equal to the number of events observed up to time
t. The process X7 is cadlag (right continuous with left limits at every
point t).

The same model of observation we obtain in the case of T-periodic
Poisson process X1 = {X(s),0 < s < T,}, if the intensity function
A« (8) is T-periodic and T}, = 7n. Then we can cut the trajectory X 7=
onn pieces X; (1) = X(t+(G-1)7r)—X((Hj—-1)7), 0 <t < 7 with
j=1,...,n. We suppose that the period 7 is known (does not depend on
9). As the increments of the Poisson process are independent, this model
coincides with the mentioned above one.

The statistician can suppose that this intensity function belongs to
some parametric class of functions, i.e., A, = Ay, where Ay = {A(%,¢),
0<t<7}withd € © = (a, ). Therefore he (or she) obtains the problem
of estimation of the parameter ¢ by the observations X™ of the Poisson
process of intensity function Ay, ¥ € ©.

We suppose that the intensity is bounded positive function and hence
the likelihood ratio function for this parametric family is

T

L(®,X") = exp zn:/ln/\(ﬂ,t) dX; (t)fn/[/\(ﬁ,t)fl] dts (2)
jzlo

0
and the MLE 9,, and BE 9, for quadratic loss function and prior density

p(9),6 € O (positive, continuous on O) are defined by the same equa-
tions (1).

Regularity Conditions:
1. There ezxists Vg € © such that A, (t) = A (Yo,1),0 <t < 7.
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2. The function \/A(9,1),0 < t < 7 has two continuous bounded
derivatives with respect to 0.

3. The Fisher information

0<I(19):/):\((1919’t3) dt < oo

0

4. The Fisher information 1 (9) is continuous function.
5. The condition of identifiability is fulfilled: for any v >0

T

\e—i&ﬁ»/ [\/A 0,5 = VA (190775)}2 d¢ > 0.
0

6. The parameter 9¢ is an interior point of the set © = (a, 3).
7. The process X; (t) is observed on the whole interval [0, 7].

8. The model of observed process is fized, i.e., in the statement of the
problem the intensity function Ay is given (can not be chosen by the
statistician).

Of course, Condition 2 implies 4, but we present both of them, because
we consider below the case, when 4 is not fulfilled. The properties of
estimators are described in the following theorem.

Theorem 1. Let the conditions of regularity be fulfilled, then the MLE
Y, and the BE #,, are consistent, asymptotically normal

), \/ﬁ(ﬁnwo) :>N<0,L>

i (3 =) = (0.1 T

(o)
asymptotically efficient and the moments of these estimators converge too.

The proof can be found in [6], Theorems 2.4 and 2.5.

This proof is essentialy based on the general results obtained by Ibrag-
imov and Khasminskii [5], which we present below in a bit more general
situation, than we need for this theorem. Let us denote by Z, (u) the
normalized likelihood ratio process

L (190 + Pnl, Xn)
Zp (1) =
(u) L (o, X")

weU, = ((04;:90)7 (ﬁ;,:%))’
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where ¢, — 0 and the rate of this convergence is such that Z, (u) has
some non degenerate limit (in distribution) Z (u). Below we suppose that
in the bayesian case (¢ is a random variable) the loss function is quadratic
and the density a priory p (9), ¥ € (a, 8) is continuous positive function.
Let us define the random variables @ and @ by the relations

J
Z(ﬂ):sggZ(u), ﬁ:%. (3)
R

The study of the likelihood ratio Z, (-) allows to describe the properties
of estimators (maximum likelihood and bayesian) and this is illustrated
by the following theorem.

Theorem 2 (Ibragimov, Khasminskii). Suppose that the following con-
ditions are fulfilled

1. There exist constants a > 1 and B > 0 such that for all u € U,,
2
Ey |Z}/? (ug) — Z? ()| < B lug —up|*. (4)

2. There exist constants k > 0 and v > 0 such that for all u € U,
EyZM? (u) < e ®II, (5)
3. The marginal distributions
(Zn(u1),. .. Zn(ug)) = (Z(u1),...,Z (ux))
and Z (-) attains with probability 1 its maximal value at a unique

point 1.
Then, the MLE U,, and BE 9, are consistent,

ot (1% - 19) —a, o (ﬁn - 19) —
and for any p > 0,

p

O — 0
— Eyla’, Ey

Pn

Ey
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For the proof (essentially more general results) see [5, Theorems 3.1.1
and 3.2.1]. Note that in the case of bayesian estimators it is sufficient that
the parameter a > 0.

In the regular case of the Theorem 1, the sequence ¢, = n~'/2 and the
limit process is

Z<u>:exp{u<<ﬂo>—%21<ﬁo>}, weR,

where ¢ (dg) ~ N (0,I ()). Hence

a=00 N(O,I(ﬁo)_l).

To check the conditions (4) and (5) in the case of inhomogeneous Pois-
son processes we use the following estimates (below ¥ is the true value
and ¢; = Yo + f)

‘2 =2—2Ey, [Zn (u2) Z» (Ul)]1/2

Ev, |2,/ (u2) = Z,/? (u1)

Zn (Uz)r/g

:226xp{ - g/ \//\(ﬂz,t)f W(ﬁl,t)rdt}

< n/ [VA@aD) - \/)\(ﬁl,t)rdt (6)

and (m — 9y + %)

Eﬂozl/z( )

B 1 [ A(Wut) 1 n

= (Ego exp{2 /ln N (o) - 2/ (G, t) — ﬁg,t)]dt})
0

:exp{_ﬁj{\/A(ﬁu,t)—\/)\(ﬁo,t)rdt}. (7)
0

[\
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The regularity conditions allow to obtain the low and upper estimates

c|1927191|2§/[\//\(192,t)7\//\(191,t)rdt§0|1927191|2 (8)

0

which provide immediately (4) and (5). Using the direct expansion of the
functions

and In A (190 + %, t) we obtain the following representation of the likeli-

hood ratio
u?
Z (u) = exp {uAn (99, X™) — ?I (¥o) + Tn} ,

where

>/

vn
J=19

An (J9,X7) = — 2/A X (8) = X (9o, 8) dt] = ¢ (90)

and r, — 0. This representation provides the convergence of the marginal
distributions of the process Z, (-) to the marginal distributions of the
process Z (). Therefore all conditions of the Theorem 2 are fulfilled and
the MLE and BE are consistent, asymptotically normal. Let us remind
how the weak convergence of the likelihood ratio process provides these
properties of estimators.

Suppose that we already have the weak convergence of the stochastic
processes

Zn ()= Z() 9)

in the space of continuous on R functions vanishing in infinity. Then
according to [5] the asymptotic normality of the MLE can be obtained by
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the following way.
P (Vi (9. 00) <)

:P{ sup L@, X")> sup L&, X" }
Vn(0—9o)<z Vn(0—190)>x
L9, X™) L9, X™)
=P sup —_— > sup —_—
{ Vato—vo)<z L0 X™) T mo—vo)ze L (D0, X™)

=P {sup Zp (u) > sup Z, (u)} —P {supZ (u) > sup Z (u)}

o (500 ) e v (5, 00) = (0.

where we put ¢ = Jy + u/y/n.
For the BE we change the variable 8 = 9y + u/\/n =9,

B

- Jep(®)L(6,X™)de , Uf up (92) L (90, X") du
Un =% =+ —=— . :
fp(G)L(e,Xn)de \/EUnP(ﬁu)L(ﬂu,X ydu

(e

Then using the convergence p (¥,) — p(¥9) (according to [5]) we can
write

Jup@y)Zy(uw) du
U,

Po, { Vi (90— i) <of =P T @) Zn(w) du ="
Un
JuZ(u) du
¢ (o
—P ’Wmc :P(Igﬁog<x> (11)

because the elementary calculus yield the equality

/uZ(u) du:/ueuc(ﬁo)*%l(%) du = %090) /Z(u) du.
R

R R
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Hence .
Moreover, by Theorem 2,
4 ~ p p
(nL (90)) Bo, [ — 0| — EICP",
P ~ p
(n (90))% B, [d — 00| — E ¢,

where ¢ ~ N (0,1).

3. MISSPECIFIED MODEL

Suppose now that the parametric family {\y,¢ € @} does not cor-
respond to the observed process X™, i.e., the value ¥ € O such that
A« = Ay, does not exist, but the statistician nevertheless uses this model
to estimate the parameter ¥ (no true model case), i.e., he (or she) calcu-
lates the likelihood ratio function by (5), where X™ are observations of
the Poisson process of intensity function A, (). It can be shown that the
MLE and BE converge to the value

T A (9, 1)
he = argelg(f;)/ [ WO 1—1In WD) A (t) dit, (12)

which minimizes the Kullback—Liebler distance between the measure P,
which corresponds to the observed process with intensity A, and the para-
metric family {Py, 9 € 0}. Note that if A, (t) = A (99,1), 0 <t < 7, then
¥, = g, i.e., the both estimators are consistent.

Moreover if 9, is an interior point of the set O, then these estimators
are asymptotically normal:

Vi (9 = 0.) = N (0,02), Vi (n—0.) = N (0,D2).

Here D? = d2 12 with

) [ A0 o [ N0
d*—o/)\(ﬁ*yt)Q)\* (1) dt, I*_d*+/)\(19*,t) [1 /\w*’t)]dt.
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Note that in this case the pseudo-LR function Z, (u) constructed on the
base of the wrong parametric model has a different limit

w//n, XT w2
Zn(u):L(ﬁ*—'_ [V, X ) ﬁZ(u):eXp{uC*—?I*}

L(0.,X7)

where ¢, ~ N (0,d?). The details of this proof can be found in [6]. See as
well Yoshida and Hayashi [9].

We are interested here by a different problem. The intensity of observed
process A, (t) can be written as contaminated version of the parametric
model A, (t) = A(0o,t) + h(t), 0 <t < T, where h(-) (contamination) is
unknown function. Hence ¢, = ¥. (h) is the point of the minimum of the
Kullback-Leibler distance (12). We can put the following question:

when 9, =997

i.e., when nevertheless the MLE and BE are consistent?

We consider two situations. The first one (smooth), when the support
A C [0, 7] of the function A (-) is known and A¢ = [0,7] \ A # 0. We can
modify the likelihood ratio and write it as

InL (9, X™)

M:

/ln/\ 1975 1{tEAC}dX TL/ 1975 71]1{teAf}dt
0

1 0

<.
Il

i.e., we exclude the observations on A and define the MLE 9, and
BE ¢, with the help of this function (we call them pseudo-MLE and
pseudo-BE). Then we have to check if the set of intensity functions
{A(¥9,t),t € A°, ¥ € O} satisfies the correspondingly modified regularity
conditions. For example, the Fisher information

C[AW,)?
I*(ﬂ)_/ NCR) dt >0

Ae

and the condition of identifiability: for any v > 0

inf /[\/A 0.1) \/A(ﬁo,t)r dt > 0.

|6—0o|>v

If these conditions are fulfilled, then the estimators 1§n and 9, converge
to the true value (are consistent) and are asymptotically normal.
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Discontinuous intensity functions. Suppose that intensity of the ob-
served process is

A (B) = [g1 (1) + b1 (D)] Lie<ooy + (92 (8) + ha (D)] 100}

where g1 () < g2 (-) are known positive functions and the functions hy (-),
hs (+) are unknown. We have to estimate the time ¥y of switching of inten-
sity function (change point estimation problem). The MLE and BE are
constructed on the base of the model with

AW, 1) = g1 (t) Lppcoy + 92 (1) 1ysgy, 0<t <7,
with the likelihood ratio function (2), i.e. as if h; (¢) = 0, but the obser-

vations X™ used in (2) contain, of course, h; (-). The Kullback—Leibler
distance (12) for 9 < ¥y is

?
_fle® o a®)
JKL(ﬂ)_O/[gl(t)—i-hl(t) 1 1gl(t)—i-hl(t)][gl(t)+h1(t)]dt
o
_a® e
+79/ g2 (t) + hy (t) 1 1gl(t)+h1(t)][gl(t)+h1(t)]dt
[_ee L ee ]
+J g2 (t) + ha (t) 1 1gz(t)+h2(t)][gz(t)+h2(t)]dt

and the similar expression we have for @ > . It is easy to see that if the
functions h; (+) satisfy the following condition

g2 (t) — g1 (1)

0<gi(t)+hi(t) < 0] < g2 (t) +ha(t), (13)
g1(t)
then
dJkz (9) <0, ana Mxr() 0.
dd  Jyoy, dd {ysy,

Hence the minimum of this function is reached at the point ¢, = 9 and
this provides the consistency of the estimators 1,, and ¥,,. If we denote
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x = g2 (t) /g1 (t), hy = h; (t) /g1 (t), then we obtain the following regions
of consistency for h;

-1 -1
z 71, h2>—x — .
Inz Inz

h <

It is important to note that the values of h; can be sufficiently large.
It can be shown that the rate of convergence is essentially better than

in regular case, and n (19n — 190) converges in distribution to some random

variable (see similar results in [3, 2]).

4. NONIDENTIFIABLE MODEL

Suppose that we have the same model for the different values of the
parameter, i.e., A(V1,t) = X(0;,t), 1 = 2,... ,k, where & # 9, | # i
and 9;,9; € © (too many true models). It is well-known that the MLE
converges to the set {1,...,9;} of all true values.

Let us introduce the Gaussian vector { = ((1,... , (k) with zero mean
and covariance matrix ¢ = (oy;)

ai = E(GG) = T 01 (9;) "/ / Wdt

where the Fisher informations

AW, 1)°
I(%) = ——=dt l=1,2,... k.
( l) / )\(ﬁl,t) >07 » 4y )

.k
Define two random variables: discrete and continuous ¥ =} ¥ 1,; and
=1

9 = Zle ¥ @1, where (we suppose that P {|§| = ||} = 0)

p ()T (9) /2 e/
Zf:l pWi)1 (191')_1/2 St/

= {161 > maxlol ). Q-

It can be shown that the MLE and BE have the following limits:

O, =0, U, =9.
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Moreover

Vi (0n=00) =& v (In—00) =4,

where én, 6,, are close to 19, ¥ random variables and

(= Zéﬂﬁl /1{H,

The proof is based on the weak convergence of the vector of processes

9 + X XT)
=(zW (k) o ( Vi

Zo () = (20 (), 20 ()] 20 () = — 75

to the limit process Z (u) = (ZW (u1),...,Z® (uy)), where

2
70 () = exp {ulm ) - "1 (m)}, (=1, .k
(see details in [6, Section 4.2]).
Example. Let ¢ € (0,3) and the intensity function
A0, )= (9 =30 +20) t+ (20-3) *+1, 0<t<1
then A (1,¢) =t + 1 and A (2,t) = t* + 1. Hence we have

Un =0 = 1651601 T 2(a1<61)
and so on.

5. NULL FISHER INFORMATION

Suppose that I (Jo) = 0. This means that at one point Jo (true value)
the function A (¥9,t) = 0 for all ¢ € [0, 7]. Moreover, suppose that the func-
tion A (¢4, t) is 4 times continuously differentiable w.r.t. ¢ with A (¥9,¢) =0

and
[ R ()
3 (190) = 0/ (3!)2 )\(1907t) dt > 0.
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Introduce random variable ¢ (¥9) ~ N (0,13 (Jo)). Then we have:

/6 (1% - 190) = (ICB((%;)))I/S,

The proof is based on the weak convergence

L (9o + %5, X")

Zn (u) = I (190,X”)

= Z (u) = exp {USC (Do) — %613 (190)} .

We have to check the conditions of the Theorem 2. Particularly estimates
(8) are replaced by the estimates

T

2
clﬁz—mﬁg/[Jsz,t)—wwl,w} dt <Oy — 1.

0

The limit expression for the bayesian estimator is more complicated.

Example. Let
AW, t) =9sin® (9t)+2, 0<t<1, 0e(-1,1)

then I; (0) =0,/ = 1,2 and I5 (0) = . Hence
/o (én - o) — (1003, C~N(0,1).

6. DISCONTINUOUS FISHER INFORMATION

Suppose that the function A (9,t) has at the point g two different
derivatives from the left A (Vg ,t) and from the right A (¥ ,t) such that
I (95) #1(9¢) and all the other conditions of regularity are fulfilled.
Then the MLE is consistent, but it is no more asymptotically normal.
Let us introduce a Gaussian vector ( = ({_,(;) with mean zero, E¢2 =
E¢? =1 and the covariance

172 1A (- \ (9F
B¢ =(109)1 (%)) / /A (%A’g:, g% ) 44
0
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Then with the help of Theorem 2 it can be shown that the MLE is
consistent, and /n (ﬁn — 190) = é but its limit distribution is a mixture
of three random variables:

§7—1/2 if (—<0, ¢(+<0 or ¢—<0, ¢(+>0 and [{—| > |C+]
(%)

c={o if (>0, ¢+ <0,
<7+1/2 if¢— >0, ¢+>0 or (— <0, ¢+>0 and |{—|<|¢+]
1(o%)

These properties follow from the form of the limit likelihood ratio pro-
cess
exp{uC_I (196)1/2—’%721 (196)}, u<0
/2 2
exp {u 1 (9)" = L1}, w>o.
We see that there is an atom at the point 0. This form of the limit like-

lihood ratio Z () provides as well the limit distribution of the bayesian
estimates

Z (u) =

Example. Suppose that 9 € (0,2) and
A0,t) = (0 —1) [Btlygary + 57 1ys1y] +15, 0<t <1,

then I (1-) = 1 and I (14) = § and the MLE has the mentioned above

limit distribution.

7. BORDER OF THE PARAMETER SET

If the true value ¥y is on the border of the parameter set @ = [a, ],
say, Y9 = a, then the MLE is consistent, but

Vit (i - a) = H3 sar C(a) A 0.1 @),
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Of course, here I (a) = I (at). The estimator is asymptotically half-
normal with an atom at 0, i.e., with probability 0,5 it takes the value 0.
This follows from the form of the limit likelihood ratio:

Z(u):exp{u((a)lgl (a)}, u > 0.
For the BE we have the limit
TuZ (u)du
7OZ (u)du
0

! [ty
H@(Q+</ d ,

—Cs

where (. ~ N (0,1).
To prove these results we have to check the conditions of the Theorem 2
for the likelihood ratio process

L (e X)
Zyn (u) = L0, X ue U, = [0,5vn]
with the corresponding limit process.

8. CUSP TYPE SINGULARITY

Let us suppose that the observed process has intensity function

A, t)=alt—9]"+ X, 0<t<T

where x € (0,%). Then this function is not differentiable at one point

t = 9 and the Fisher information I (¢) = oo. To describe the properties
of the MLE and BE we introduce the normalized likelihood ratio process

B L9+ s, X")
=TT e

u €U, = (nl/QH (v — 9p) ,n1/2H 8- 190))
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and the limit process

Ui

Z(u):exp{FgWH(u) 5 ng}, u € R.

Here W# () is double sided fractional Brownian motion, H = k+3% (Hurst
parameter) and

4a? sin® (276) B (1 + &, 1 + &)

r3 =
Ao €08 (7K)

)

where B (1 + k,1 + &) is beta function.
We can check the conditions of the Theorem 2 and to show that the
MLE and BE are consistent, have the following limits

nam (ﬁnfﬂ) = i, nam (ﬁnfﬁ) = u,

where the random variables are defined by the same equations (3) and we
have the corresponding convergence of moments. (For the proof see [4]).

9. DISCONTINUOUS INTENSITY FUNCTION

Let us suppose that the observed process X™ = (X1 (),..., X, (1)),
where X; () = {X;(t),0 <t < T} has the intensity function A (¢ + ¢),
0 <t < T and the function A (y) is positive and continuously differentiable
everywhere except at the point 7, that is A (7.) — A (7—) = r # 0. The set
© = (o, 8) C (r — T, 7). The likelihood ratio process (2) has discontinuous
realizations and the MLE 9, is defined now by the following relation

max {L (ﬁrﬁ-,X”) , L (ﬁnf,X”)} = StelgL (9, X™).

The BE is defined as before.
The limit process Z (u) for the normalized likelihood ratio

Zn (u) = L(Lﬁ(;—é(ngn)’ Up = (n(a— ) ,n (8 — 1))
7 () = exp {ln f{g?’; 7y (u) — [A(13) — A (72)] u} , u>0

exp {m Nedm_ (—u) — A () = A (1) u} . w<o,
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where 71 () and 7_ (-) are independent Poisson processes of the intensity
functions A (7_) and A (74), respectively. Let us denote by 4 and @ the
random variables defined by the equations

JuZ(u)ydu
max [Z (4+), Z (4—)] = SE%Z(”)’ "= RfZ(U) du
R

Then the MLE and BE are consistent, have the following limits
n(ﬁnfﬂ) = i, n(ﬁnfﬁ) = u,

and the convergence of all moments take place. It is shown that for all
estimators we have a lower bound on the risks and the bayesian estimators
are asymptotically efficient. For the proof see [6, Section 5.1].

10. WINDOWS

Optimal windows. Suppose that we can have observations on some
set B C [0, 7] of Lebesgue measure p(B) < p, < 7 only. The family of
such sets we denote as F,,. Our goal is to find the best window B* and
estimator ¢}, = ¥ (B*) constructed by the observations X™ on this set
B*, ie., X; = {Xj (t),t € B*}. The best is understood as the minimizing
the mean square error asymptotically

e 3 2 *mEy q\2
Lt 0By (7, () )" ~ By (9} (8) )"

If we fix the set B, then we know that the MLE is asymptotically normal

A(9,1)?
A (9, 1)

Vi (9, (B) = 9) = N (0.5(9)7") . 15 (9) :/ dt.
B

Therefore if we use the MLE then the best B* = B* (J) corresponds to

the solution of the following equation

I[B* (19) = BZI;-P I]B (19) .
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To solve this equation we introduce the level sets C(y,) and function
w(9,r) as

A(9,1)°
Cory = {ti NG > T}, 1 (0,7) = (Crp ) -

Then we define r, = r, (9) as solution of the equation y (9,7) = p+. Now
we put B* = C(y,,)- Of course, we are not obliged to use the MLE and
moreover, this set B* can not be used for construction of estimator because
it depends on . Nevertheless it allows to introduce the lower bound on
the risks of all couples (set, estimator): for any ¥ € ©

lim lim  inf  sup nEy (0, (B) —9) > () .

§—0 n—oo BEF,,,9n [9—d0| <8
To construct the asymptotically efficient in this sense couple we first some
B € F,, and by observations Xvr = {Xj B),j=1,... ,X[ﬂ]} we
(consistently) estimate ¥ using some estimator ¥ vn- Then we introduce
the observation window

2

N
By =qt: 7(19_\/5’0
A (0 t)

Now we construct the MLE ﬁn_ /n and show that

> (0 s ) }

lim lim sup nEy (9, (B}
§—0 n—oo [9—0o| <8

) —9)° =Tp. (W) "
For the conditions and proofs see Kutoyants and Spokoiny [8] or [6,

Section 4.3].

Example. Let A (0,%) = [b+ Usin (wt)]®, 0 < t < 7, where 7 = 27 /w.
Then the Fisher information is

Ig (9) = 4 / [sin (wt)]” d .

B

Introduce

C, = {t: 4 sin (wt)2 > r}, (9, 1) = 17 = 4 sin® (%7%)7
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where (u. < 7). Then ¢ = arcsin (‘QF)

B*:[f, Z,f} [Z+f’ T,f]

w 2 w 2w w
_|:7—7,U/* 7—+,U/*i|U|:37—7,U/* 37+H*:|
- 4 4 4 ’ 4 )

Therefore the observations in the optimal window are
X"=(X1(B"),..., X1 (B")) with X;B*)={X;(t),tecB"}

and the asymptotically efficient estimator is the MLE 9,, (B*).

Sufficient windows. The analysis of the proofs of the consistency of
the MLE and BE in the discontinuous case (see, e.g., [6, Chapter 5])
shows that the main contribution to the likelihood ratio process is made
by the observations near the jumps. Suppose that the intensity function
is A(0,t) = A(t =), where ¢ € (,8) and 0 < o < 8 < 7. Suppose
as well that the function A(s), s € (—=8,7 — «) is discontinuous at some
point 7, and continuous on [—f3,7.) U («x, 7 — a]. Then it is sufficient to
keep the observations on the interval B = [a + 7., 8 + 7] only, i.e., to use
X;B) ={X;®),a+mn<t<p+mn}, j=1,...,n and the properties
of the MLE and BE (consistency, limit distributions and convergence of
moments) will be the same as in the case of complete observations on
[0, 7].

Moreover, if we have a consistent and asymptotically normal estimator
J,, of ¥ (say, an estimator of the method of moments), then we can use the
first [\/n] observations for preliminary estimation by 1 v of the window as

B, = [Jm —n~ /8,9 5 +n~'/%], and then to construct the MLE ﬁnf\/ﬁ
and bayesian estimator ¥, 5. Note that n'/* (J 5 —9) = N (0,0?).
Hence

Py { |95~ ] >n 5 =Py {010 5 - 9] > nt/*} — 0.

Therefore we can have consistent and asymptotically efficient estimators
constructed by observations in the window of vanishing size. In regular
case such effect is difficult to wait.

Example. Let ¢ € (a, 8) C (0,7) and

/\(19,t):2at+b1{t>19}, 0<t<r.
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Then
19\/527—%[/A\ﬁ(7)—a72}

is consistent and asymptotically normal estimator of 1. Then we maximize
the function

. F mtn /8
L, X™) :exp{ InX(@,t)dX; (¢)
i=[valtig o n-1rs
3 mtn /8
S YRR
3 m-n-1/s

and construct the MLE. Note that the random variable ¢ /n 18 indepen-
dent on X;,j =[y/n]+1,... ,n.

11. RATES OF CONVERGENCE

It is interesting to note that if we observe a periodic Poisson process
X" ={X(t),0 <t <n} with the intensity functions A (J +t) or A (9t),
where A (+) is periodic smooth function (phase and frequency modulations
in the optical telecommunication theory), then we have (n — 00)

Bo(i.-0)'~ . B(iu-0)'~ &

respectively. If A (¢) is discontinuous function then for the mentioned two
cases of modulations we have the different rates
2 2
Ey (0, —9) ~ C ® (90 -v) ~ <
n n
For the proofs, see [6].

Therefore it is natural to put the following question: what is the maxi-
mal possible rate of convergence of the mean square error to zero? Suppose
that we can choose any function A (9,¢),9 € [0,1],t > 0 satisfying the
only condition

0<A(,t) <Ly,
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where L, > 0 is some given constant. We denote the class of such functions
as F (L,). It can be shown that

*"%(Ho(l))’

2
"=

inf inf sup Egx Wn -9
AC)EF(Ls) In wel0,1)
i.e., the best rate is exponential. To prove this equality we need to prove
two results. The first one is the lower bound for all A (-) € F (L) and all
estimators 9,

sup By [0, —0]° > e 5" (o)
¥€[0,1]

and the second is to construct an intensity function A, (-) € F (L) and
an estimator ¥} such that

sup Eyg, |95 —0° = o 5= (L+o(1))

9€[0,1]

For the proof, see [1].
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