
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 363, 2009 Ç.Y. A. KutoyantsON PROPERTIES OF ESTIMATORS IN NONREGULARSITUATIONS FOR POISSON PROCESSESAbstrat. We onsider the problem of parameter estimation by obser-vations of inhomogeneous Poisson proess. It is well-known that if the reg-ularity onditions are ful�lled then the maximum likelihood and bayesianestimators are onsistent, asymptotially normal, and asymptotially eÆ-ient. These regularity onditions an be roughly presented as follows: a)the intensity funtion of observed proess belongs to known parametrifamily of funtions, b) the model is identi�able, ) the Fisher informationis positive ontinuous funtion, d) the intensity funtion is suÆientlysmooth with respet to the unknown parameter, e) this parameter is aninterior point of the interval. We are interested in the properties of esti-mators when these regularity onditions are not ful�lled. More preisely,we preset a review of the results whih orrespond to the rejetion of theseonditions one by one and we show how the properties of the MLE andBayesian estimators hange. The proofs of these results are essentiallybased on some general results by Ibragimov and Khasminskii.1. Introdution7 We start with the lassial model of i.i.d. observations. LetX1; · · · ; Xn be independent and identially distributed random variableswith the density funtion f∗ (x). We suppose that f∗ (x) = f(#; x),where f (·; ·) is a known funtion depending on the unknown parameter# ∈ � = (�; �). We have to estimate # and to desribe the properties ofestimators in the asymptoti of large samples (n → ∞). We disuss belowtwo estimators: maximum likelihood and bayesian. Let us introdue thelikelihood funtion Ln (#;Xn) =∏nj=1 f (#;Xj). Then the maximum like-lihood estimator (MLE) #̂n and bayesian estimator (BE) ~#n (for quadratiloss funtion and density a priori p (·)) are de�ned by the equationsLn (#̂n; Xn) = sup#∈�Ln (#;Xn) ; ~#n = �
∫� �p (�)Ln (#;Xn) d ��
∫� p (�)Ln (#;Xn) d � : (1)26



ON PROPERTIES OF ESTIMATORS 27It is well-known that if the onditions of regularity are ful�lled thenthese estimators are onsistent, asymptotially normal
√n(#̂n − #) =⇒ N

(0; I (#)−1) ; √n(~#n − #) =⇒ N
(0; I (#)−1) ;and asymptotially eÆient. The density f (#; x) has to take plae inFisher information as I (#) = ∫ _f (#; x)2 d� (x)is the Fisher information. The proofs you an �nd in any book on asymp-totial statistis, e.g., Ibragimov and Khasminski (1981).These regularity onditions an be roughly desribed as follows

• The density f∗ (x) of the observed r.v.'s belongs to the parametrifamily, i.e., there exists a value #0 ∈ � = (�; �) suh that f∗ (x) =f (#0; x).
• The funtion f (#; x) is one or more times di�erentiable w.r.t. # withertain majoration of the derivatives.
• The Fisher information I (#) is positive funtion.
• The Fisher information I (#) is ontinuous funtion.
• The model is identi�able: if #1 6= #2 then f (#1; x) 6= f (#2; x).
• The true value #0 is an interior point of the set �, i.e., #0 6= � and#0 6= �.
• We an observe all values of the random variables Xj .
• The statistial model is �xed and an not be hosen in some optimalway.Of ourse, this list is not exhaustive and the other onditions an be men-tioned too. We are interested by the properties of estimators, when thesimilar regularity onditions are not ful�lled for some models of ontinuoustime stohasti proesses. More preisely, we replae these regularity on-ditions by other onditions and study the properties of estimators underthese new onditions. This approah allows to understand better the roleof eah regularity ondition in the properties of estimators. As the modelof observations in this work we take inhomogeneous Poisson proess. Thesimilar work onerning parameter estimation for ergodi di�usion pro-esses was already published (see [7℄), but it seems that the more detailedexposition of the proofs will be useful and it is given here.



28 Y. A. KUTOYANTS2. Regular aseWe observe n independent trajetories Xn = (X1; : : : ; Xn), whereXj = {Xj (t), 0 ≤ t ≤ �}, of a Poisson proess X� = {X(t); 0 ≤ t ≤ �} ofintensity funtion �∗ = {�∗(t); 0 ≤ t ≤ �}, i.e., X (0) = 0, the inrementson disjoint intervals are independent andP {X (t) = k} = �(t)kk! exp {−� (t)} ; � (t) = t
∫0 �∗ (s) d s:The Poisson proess sometimes is de�ned as a series of events 0 < t1 <t2 < : : : < tM < T and X (t), 0 ≤ t ≤ � is the orresponding ountingproess, i.e., X (t) is equal to the number of events observed up to timet. The proess X� is �adl�ag (right ontinuous with left limits at everypoint t).The same model of observation we obtain in the ase of � -periodiPoisson proess XTn = {X(s); 0 ≤ s ≤ Tn}, if the intensity funtion�∗ (s) is � -periodi and Tn = �n. Then we an ut the trajetory XTnon n piees Xj (t) = X (t+ (j − 1) �) − X ((j − 1) �), 0 ≤ t ≤ � withj = 1; : : : ; n. We suppose that the period � is known (does not depend on#). As the inrements of the Poisson proess are independent, this modeloinides with the mentioned above one.The statistiian an suppose that this intensity funtion belongs tosome parametri lass of funtions, i.e., �∗ = �#, where �# = {� (#; t) ;0 ≤ t ≤ �} with # ∈ � = (�; �). Therefore he (or she) obtains the problemof estimation of the parameter # by the observations Xn of the Poissonproess of intensity funtion �#, # ∈ �.We suppose that the intensity is bounded positive funtion and henethe likelihood ratio funtion for this parametri family isL (#;Xn) = exp



n
∑j=1 �

∫0 ln� (#; t) dXj (t)− n �
∫0 [� (#; t)− 1℄ d t



(2)and the MLE #̂n and BE ~#n for quadrati loss funtion and prior densityp (�) ; � ∈ � (positive, ontinuous on �) are de�ned by the same equa-tions (1).Regularity Conditions:1. There exists #0 ∈ � suh that �∗ (t) = � (#0; t) ; 0 ≤ t ≤ � .



ON PROPERTIES OF ESTIMATORS 292. The funtion √� (#; t); 0 ≤ t ≤ � has two ontinuous boundedderivatives with respet to #.3. The Fisher information0 < I (#) = �
∫0 _� (#; t)2� (#; t) d t < ∞:4. The Fisher information I (#) is ontinuous funtion.5. The ondition of identi�ability is ful�lled: for any � > 0inf

|�−#0|>� �
∫0 [√� (#; t)−√� (#0; t) ]2 d t > 0:6. The parameter #0 is an interior point of the set � = (�; �).7. The proess Xj (t) is observed on the whole interval [0; � ℄.8. The model of observed proess is �xed, i.e., in the statement of theproblem the intensity funtion �# is given (an not be hosen by thestatistiian).Of ourse, Condition 2 implies 4, but we present both of them, beausewe onsider below the ase, when 4 is not ful�lled. The properties ofestimators are desribed in the following theorem.Theorem 1. Let the onditions of regularity be ful�lled, then the MLE#̂n and the BE ~#n are onsistent, asymptotially normal

√n(#̂n − #0) =⇒ N
(0; 1I (#0)) ; √n(~#n − #0) =⇒ N

(0; 1I (#0))asymptotially eÆient and the moments of these estimators onverge too.The proof an be found in [6℄, Theorems 2.4 and 2.5.This proof is essentialy based on the general results obtained by Ibrag-imov and Khasminskii [5℄, whih we present below in a bit more generalsituation, than we need for this theorem. Let us denote by Zn (u) thenormalized likelihood ratio proessZn (u) = L (#0 + 'nu;Xn)L (#0; Xn) ; u ∈ Un = ( (�− #0)'n ; (� − #0)'n ) ;



30 Y. A. KUTOYANTSwhere 'n → 0 and the rate of this onvergene is suh that Zn (u) hassome non degenerate limit (in distribution) Z (u). Below we suppose thatin the bayesian ase (# is a random variable) the loss funtion is quadratiand the density a priory p (#), # ∈ (�; �) is ontinuous positive funtion.Let us de�ne the random variables û and ~u by the relationsZ (û) = supu∈R
Z (u) ; ~u = ∫

R
uZ (u) du
∫

R
Z (u) du : (3)The study of the likelihood ratio Zn (·) allows to desribe the propertiesof estimators (maximum likelihood and bayesian) and this is illustratedby the following theorem.Theorem 2 (Ibragimov, Khasminskii). Suppose that the following on-ditions are ful�lled1. There exist onstants a > 1 and B > 0 suh that for all u ∈ UnE# ∣∣∣Z1=2n (u2)− Z1=2n (u1)∣∣∣2 ≤ B |u2 − u1|a : (4)2. There exist onstants � > 0 and  > 0 suh that for all u ∈ UnE#Z1=2n (u) ≤ e−�|u| : (5)3. The marginal distributions(Zn (u1) ; : : : ; Zn (uk)) =⇒ (Z (u1) ; : : : ; Z (uk))and Z (·) attains with probability 1 its maximal value at a uniquepoint û.Then, the MLE #̂n and BE ~#n are onsistent,'−1n (#̂n − #) =⇒ û; '−1n (~#n − #) =⇒ ~u;and for any p > 0,E# ∣∣∣∣

∣

#̂n − #'n ∣

∣

∣

∣

∣

p
−→ E# |û|p ; E# ∣∣∣∣

∣

~#n − #'n ∣

∣

∣

∣

∣

p
−→ E# |~u|p :



ON PROPERTIES OF ESTIMATORS 31For the proof (essentially more general results) see [5, Theorems 3.1.1and 3.2.1℄. Note that in the ase of bayesian estimators it is suÆient thatthe parameter a > 0.In the regular ase of the Theorem 1, the sequene 'n = n−1=2 and thelimit proess isZ (u) = exp{u � (#0)− u22 I (#0)} ; u ∈ R;where � (#0) ∼ N (0; I (#0)). Heneû = � (#0)I (#0) ∼ N
(0; I (#0)−1) :To hek the onditions (4) and (5) in the ase of inhomogeneous Pois-son proesses we use the following estimates (below #0 is the true valueand #i = #0 + ui√n )E#0 ∣∣∣Z1=2n (u2)− Z1=2n (u1)∣∣∣2 = 2− 2E#0 [Zn (u2)Zn (u1)℄1=2= 2− 2E#1 [Zn (u2)Zn (u1)]1=2= 2− 2 exp{− n2 �

∫0 [√� (#2; t)−√� (#1; t)]2 d t}
≤ n �

∫0 [√� (#2; t)−√� (#1; t)]2 d t (6)and (#u = #0 + u√n)E#0Z1=2n (u)= (E#0 exp{12 �
∫0 ln � (#u; t)� (#0; t) dX (t)− 12 �

∫0 [� (#u; t)− � (#0; t)℄ d t})n= exp{− n2 �
∫0 [

√� (#u; t)−√� (#0; t)]2 d t}: (7)



32 Y. A. KUTOYANTSThe regularity onditions allow to obtain the low and upper estimates |#2 − #1|2 ≤
�
∫0 [√� (#2; t)−√� (#1; t)]2 d t ≤ C |#2 − #1|2 (8)whih provide immediately (4) and (5). Using the diret expansion of thefuntions �(#0 + u√n; t) = � (#0; t) + u√n _� (#0; t) + o( u√n)and ln�(#0 + u√n ; t) we obtain the following representation of the likeli-hood ratio Zn (u) = exp{u�n (#0; Xn)− u22 I (#0) + rn} ;where�n (#0; Xn) = 1√n n
∑j=1 �

∫0 _� (#0; t)� (#0; t) [dXj (t)− � (#0; t) d t℄ =⇒ � (#0)and rn → 0. This representation provides the onvergene of the marginaldistributions of the proess Zn (·) to the marginal distributions of theproess Z (·). Therefore all onditions of the Theorem 2 are ful�lled andthe MLE and BE are onsistent, asymptotially normal. Let us remindhow the weak onvergene of the likelihood ratio proess provides theseproperties of estimators.Suppose that we already have the weak onvergene of the stohastiproesses Zn (·) =⇒ Z (·) (9)in the spae of ontinuous on R funtions vanishing in in�nity. Thenaording to [5℄ the asymptoti normality of the MLE an be obtained by



ON PROPERTIES OF ESTIMATORS 33the following way.P{√n(#̂n − #0) < x}=P{ sup√n(�−#0)<xL (#;Xn) > sup√n(�−#0)≥xL (#;Xn)}=P{ sup√n(�−#0)<x L (#;Xn)L (#0; Xn) > sup√n(�−#0)≥x L (#;Xn)L (#0; Xn)} (10)=P{supu<xZn (u) > supu≥xZn (u)} −→ P{supu<xZ (u) > supu≥xZ (u)}=P( � (#0)I (#0) < x) ; i.e. √n(#̂n − #0) =⇒ N
(0; 1I (#0)) :where we put # = #0 + u=√n.For the BE we hange the variable � = #0 + u=√n ≡ #u~#n = �

∫� �p (�)L (�;Xn) d ��
∫� p (�)L (�;Xn) d � = #0 + 1√n ∫Un up (#u)L (#u; Xn) du

∫

Un p (#u)L (#u; Xn) du ;Then using the onvergene p (#u) → p (#0) (aording to [5℄) we anwrite P#0 {√n(~#n − #0) < x} = P




∫

Un u p (#u)Zn (u) du
∫

Un p (#u)Zn (u) du < x




−→ P




∫R u Z (u) du
∫R Z (u) du < x





= P( � (#0)I (#0) < x) (11)beause the elementary alulus yield the equality
∫R u Z (u) du = ∫R u eu�(#0)−u22 I (#0) du = � (#0)I (#0) ∫R Z (u) du:



34 Y. A. KUTOYANTSHene
√n(~#n − #0) =⇒ N

(0; 1I (#0)) :Moreover, by Theorem 2,(nI (#0)) p2 E#0 ∣∣∣#̂n − #0∣∣∣p −→ E |�|p ;(nI (#0)) p2 E#0 ∣∣∣~#n − #0∣∣∣p −→ E |�|p ;where � ∼ N (0; 1). 3. Misspeified modelSuppose now that the parametri family {�#; # ∈ �} does not or-respond to the observed proess Xn, i.e., the value #0 ∈ � suh that�∗ = �#0 does not exist, but the statistiian nevertheless uses this modelto estimate the parameter # (no true model ase), i.e., he (or she) alu-lates the likelihood ratio funtion by (5), where Xn are observations ofthe Poisson proess of intensity funtion �∗ (·). It an be shown that theMLE and BE onverge to the value#∗ = arg inf�∈� �
∫0 [� (#; t)�∗ (t) − 1− ln � (#; t)�∗ (t) ]�∗ (t) d t; (12)whih minimizes the Kullbak{Liebler distane between the measure P∗,whih orresponds to the observed proess with intensity �∗ and the para-metri family {P#; # ∈ �}. Note that if �∗ (t) = � (#0; t), 0 ≤ t ≤ � , then#∗ = #0, i.e., the both estimators are onsistent.Moreover if #∗ is an interior point of the set �, then these estimatorsare asymptotially normal:

√n(#̂n − #∗
) =⇒ N

(0; D2
∗
) ; √n(~#n − #∗

) =⇒ N
(0; D2

∗
) :Here D2

∗ = d2∗ I−2
∗ withd2∗ = �

∫0 _� (#∗; t)2� (#∗; t)2�∗ (t) d t; I∗ = d2∗ + �
∫0 �� (#∗; t) [1− �∗ (t)� (#∗; t)] d t:



ON PROPERTIES OF ESTIMATORS 35Note that in this ase the pseudo-LR funtion Zn (u) onstruted on thebase of the wrong parametri model has a di�erent limitZn (u) = L (#∗ + u=√n;XT )L (#∗; XT ) =⇒ Z (u) = exp{u �∗ − u22 I∗}where �∗ ∼ N
(0; d2∗). The details of this proof an be found in [6℄. See aswell Yoshida and Hayashi [9℄.We are interested here by a di�erent problem. The intensity of observedproess �∗ (t) an be written as ontaminated version of the parametrimodel �∗ (t) = � (#0; t) + h (t), 0 ≤ t ≤ T; where h (·) (ontamination) isunknown funtion. Hene #∗ = #∗ (h) is the point of the minimum of theKullbak{Leibler distane (12). We an put the following question:when #∗ = #0?i.e., when nevertheless the MLE and BE are onsistent?We onsider two situations. The �rst one (smooth), when the support

A ⊂ [0; � ℄ of the funtion h (·) is known and A = [0; � ℄ \ A 6= ∅. We anmodify the likelihood ratio and write it aslnL (#;Xn)= n
∑j=1 �

∫0 ln� (#; t) 1{t∈A}dXj (t)− n �
∫0 [� (#; t)− 1℄ 1{t∈A}d t;i.e., we exlude the observations on A and de�ne the MLE #̂n andBE ~#n with the help of this funtion (we all them pseudo-MLE andpseudo-BE). Then we have to hek if the set of intensity funtions

{� (#; t) ; t ∈ A; # ∈ �} satis�es the orrespondingly modi�ed regularityonditions. For example, the Fisher informationI∗ (#) = ∫
A _� (#; t)2� (#; t) d t > 0and the ondition of identi�ability: for any � > 0inf

|�−#0|>� ∫
A [√� (#; t)−√� (#0; t)]2 d t > 0:If these onditions are ful�lled, then the estimators #̂n and ~#n onvergeto the true value (are onsistent) and are asymptotially normal.



36 Y. A. KUTOYANTSDisontinuous intensity funtions. Suppose that intensity of the ob-served proess is�∗ (t) = [g1 (t) + h1 (t)℄ 1{t<#0} + [g2 (t) + h2 (t)℄ 1{t≥#0};where g1 (·) < g2 (·) are known positive funtions and the funtions h1 (·),h2 (·) are unknown. We have to estimate the time #0 of swithing of inten-sity funtion (hange point estimation problem). The MLE and BE areonstruted on the base of the model with� (#; t) = g1 (t) 1{t<#} + g2 (t) 1{t≥#}; 0 ≤ t ≤ �;with the likelihood ratio funtion (2), i.e. as if hi (t) ≡ 0, but the obser-vations Xn used in (2) ontain, of ourse, hi (·). The Kullbak{Leiblerdistane (12) for # < #0 isJKL (#) = #
∫0 [ g1 (t)g1 (t) + h1 (t) − 1− ln g1 (t)g1 (t) + h1 (t)] [g1 (t) + h1 (t)℄ d t+ #0
∫# [ g1 (t)g2 (t) + h1 (t) − 1− ln g2 (t)g1 (t) + h1 (t)] [g1 (t) + h1 (t)℄ d t+ �
∫#0 [ g2 (t)g2 (t) + h2 (t) − 1− ln g2 (t)g2 (t) + h2 (t)] [g2 (t) + h2 (t)℄ d tand the similar expression we have for # > #0. It is easy to see that if thefuntions hi (·) satisfy the following ondition0 < g1 (t) + h1 (t) < g2 (t)− g1 (t)ln g2(t)g1(t) < g2 (t) + h2 (t) ; (13)then d JKL (#)d# ∣

∣

∣

∣#<#0 < 0; and dJKL (#)d# ∣

∣

∣

∣#>#0 > 0:Hene the minimum of this funtion is reahed at the point #∗ = #0 andthis provides the onsisteny of the estimators #̂n and ~#n. If we denote



ON PROPERTIES OF ESTIMATORS 37x = g2 (t) =g1 (t), hi = hi (t) =g1 (t), then we obtain the following regionsof onsisteny for hih1 < x− 1lnx − 1; h2 > x− 1lnx − x:It is important to note that the values of hi an be suÆiently large.It an be shown that the rate of onvergene is essentially better thanin regular ase, and n(#̂n − #0) onverges in distribution to some randomvariable (see similar results in [3, 2℄).4. Nonidentifiable modelSuppose that we have the same model for the di�erent values of theparameter, i.e., � (#1; t) = � (#l; t), l = 2; : : : ; k, where #l 6= #i, l 6= iand #l; #i ∈ � (too many true models). It is well-known that the MLEonverges to the set {#1; : : : ; #k} of all true values.Let us introdue the Gaussian vetor � = (�1; : : : ; �k) with zero meanand ovariane matrix % = (%li)%li = E (�l�i) = (I (#l) I (#i))−1=2 �
∫0 _� (#l; t) _� (#i; t)� (#i; t) d twhere the Fisher informationsI (#l) = �

∫0 _� (#l; t)2� (#l; t) d t > 0; l = 1; 2; : : : ; k:De�ne two random variables: disrete and ontinuous #̂ = k
∑l=1#l 1{Hl} and~# =∑kl=1 #lQl, where (we suppose that P {|�l| = |�i|} = 0)

Hl = {! : |�l| > maxi6=l |�i|} ; Ql = p (#l) I (#l)−1=2 e�2l =2
∑ki=1 p (#i) I (#i)−1=2 e�2l =2 :It an be shown that the MLE and BE have the following limits:#̂n =⇒ #̂; ~#n =⇒ ~#:



38 Y. A. KUTOYANTSMoreover √n(#̂n − �̂n) =⇒ �̂; √n(~#n − ~�n) =⇒ ~�;where �̂n; ~�n are lose to #̂; ~# random variables and�̂ = k
∑l=1 �l I (#l)−1=2 1{Hl}:The proof is based on the weak onvergene of the vetor of proessesZn (u) = (Z(1)n (u1) ; : : : ; Z(k)n (uk)) ; Z(l)n (ul) = L(#l + ul√n ; XT)L (#l; XT )to the limit proess Z (u) = (Z(1) (u1) ; : : : ; Z(k) (uk)), whereZ(l) (ul) = exp{ul�l (#l)− u2l2 I (#l)} ; l = 1; : : : ; k(see details in [6, Setion 4.2℄).Example. Let # ∈ (0; 3) and the intensity funtion� (#; t) = (#3 − 3#2 + 2#) t+ (2#− 3) t2 + 1; 0 ≤ t ≤ 1then � (1; t) = t2 + 1 and � (2; t) = t2 + 1. Hene we have#̂n ⇒ #̂ = 1{|�1|>|�2|} + 2{|�1|≤|�2|}and so on. 5. Null Fisher informationSuppose that I (#0) = 0. This means that at one point #0 (true value)the funtion _� (#0; t) = 0 for all t ∈ [0; � ℄. Moreover, suppose that the fun-tion � (#; t) is 4 times ontinuously di�erentiable w.r.t. # with �� (#0; t) = 0and I 3 (#0) = �
∫0 ...� (#0; t)2(3!)2 � (#0; t) d t > 0:



ON PROPERTIES OF ESTIMATORS 39Introdue random variable � (#0) ∼ N (0; I3 (#0)). Then we have:n1=6 (#̂n − #0) =⇒ û = ( � (#0)I3 (#0))1=3 :The proof is based on the weak onvergeneZn (u) = L (#0 + un1=6 ; Xn)L (#0; Xn) =⇒ Z (u) = exp{u3� (#0)− u62 I3 (#0)} :We have to hek the onditions of the Theorem 2. Partiularly estimates(8) are replaed by the estimates |#2 − #1|6 ≤ �
∫0 [

√� (#2; t)−√� (#1; t)]2 d t ≤ C |#2 − #1|6 :The limit expression for the bayesian estimator is more ompliated.Example. Let� (#; t) = # sin2 (#t) + 2; 0 ≤ t ≤ 1; # ∈ (−1; 1)then Il (0) = 0; l = 1; 2 and I3 (0) = 110 . Henen1=6 (#̂n − 0) =⇒ (10)1=6 �1=3; � ∼ N (0; 1) :6. Disontinuous Fisher informationSuppose that the funtion � (#; t) has at the point #0 two di�erentderivatives from the left _� (#−0 ; t) and from the right _� (#+0 ; t) suh thatI (#−0 ) 6= I (#+0 ) and all the other onditions of regularity are ful�lled.Then the MLE is onsistent, but it is no more asymptotially normal.Let us introdue a Gaussian vetor � = (�−; �+) with mean zero, E�2− =E�2+ = 1 and the ovarianeE (�−�+) = (I (#−0 ) I (#+0 ))−1=2 �
∫0 _� (#−0 ; t) _� (#+0 ; t)� (#0; t) d t:



40 Y. A. KUTOYANTSThen with the help of Theorem 2 it an be shown that the MLE isonsistent, and √n(#̂n − #0)⇒ �̂ but its limit distribution is a mixtureof three random variables:�̂ = 


















�
−I (#−0 )1=2 if �

−
< 0; �+ < 0 or �

−
< 0; �+ > 0 and |�

−
| > |�+|0 if �

−
> 0; �+ < 0;�+I (#+0 )1=2 if �

−
> 0; �+ > 0 or �

−
< 0; �+ > 0 and |�

−
| < |�+|These properties follow from the form of the limit likelihood ratio pro-ess Z (u) = 



exp{u �−I (#−0 )1=2 − u22 I (#−0 )} ; u ≤ 0exp{u �+I (#+0 )1=2 − u22 I (#+0 )} ; u > 0:We see that there is an atom at the point 0. This form of the limit like-lihood ratio Z (·) provides as well the limit distribution of the bayesianestimates
√n(~#n − #0) =⇒ ~u = ∫

R
uZ (u) du
∫

R
Z (u) du :Example. Suppose that # ∈ (0; 2) and� (#; t) = (#− 1) [3t 1{#<1} + 5t2 1{#≥1}]+ 15; 0 ≤ t ≤ 1;then I (1−) = 15 and I (1+) = 13 and the MLE has the mentioned abovelimit distribution.7. Border of the parameter setIf the true value #0 is on the border of the parameter set � = [�; �℄,say, #0 = �, then the MLE is onsistent, but

√n(#̂n − �) =⇒ � (�)I (�) 1{�≥0}; � (�) ∼ N (0; I (�)) :



ON PROPERTIES OF ESTIMATORS 41Of ourse, here I (�) = I (�+). The estimator is asymptotially half-normal with an atom at 0, i.e., with probability 0,5 it takes the value 0.This follows from the form of the limit likelihood ratio:Z (u) = exp{u � (�)− u22 I (�)} ; u ≥ 0:For the BE we have the limit
√n(~#n − �) =⇒ ~u = ∞

∫0 uZ (u) du
∞
∫0 Z (u) du= 1
√I (�)(�∗ +( ∞

∫

−�∗ e− 12 (u2−�2∗) du)−1);where �∗ ∼ N (0; 1).To prove these results we have to hek the onditions of the Theorem 2for the likelihood ratio proessZn (u) = L( u√n ; Xn)L (0; Xn) ; u ∈ Un = [0; �√n]with the orresponding limit proess.8. Cusp type singularityLet us suppose that the observed proess has intensity funtion� (#; t) = a |t− #|� + �0; 0 ≤ t ≤ Twhere � ∈
(0; 12). Then this funtion is not di�erentiable at one pointt = # and the Fisher information I (#) = ∞. To desribe the propertiesof the MLE and BE we introdue the normalized likelihood ratio proessZn (u) = L (#+ un1=2H ; Xn)L (#;Xn) ;u ∈ Un = (n1=2H (�− #0) ; n1=2H (� − #0))



42 Y. A. KUTOYANTSand the limit proessZ (u) = exp{�#WH (u)− |u|2H2 �2#} ; u ∈ R:HereWH (·) is double sided frational Brownian motion,H = �+ 12 (Hurstparameter) and �2# = 4a2 sin2 (2��) B (1 + �; 1 + �)�0 os (��) ;where B (1 + �; 1 + �) is beta funtion.We an hek the onditions of the Theorem 2 and to show that theMLE and BE are onsistent, have the following limitsn 12H (#̂n − #) =⇒ û; n 12H (~#n − #) =⇒ ~u;where the random variables are de�ned by the same equations (3) and wehave the orresponding onvergene of moments. (For the proof see [4℄).9. Disontinuous intensity funtionLet us suppose that the observed proess Xn = (X1 (·) ; : : : ; Xn (·)),where Xj (·) = {Xj (t) ; 0 ≤ t ≤ T} has the intensity funtion � (t+ #),0 ≤ t ≤ T and the funtion � (y) is positive and ontinuously di�erentiableeverywhere exept at the point � , that is � (�+)− � (�−) = r 6= 0. The set� = (�; �) ⊂ (� − T; �). The likelihood ratio proess (2) has disontinuousrealizations and the MLE #̂n is de�ned now by the following relationmax [L(#̂n+; Xn) ; L(#̂n−; Xn)] = sup#∈�L (#;Xn) :The BE is de�ned as before.The limit proess Z (u) for the normalized likelihood ratioZn (u) = L (#+ un ; Xn)L (#;Xn) ; Un = (n (�− #0) ; n (� − #0))is Z (u) = 


exp{ln �(�+)�(�−) �+ (u)− [� (�+)− � (�−)℄ u} ; u ≥ 0exp{ln �(�−)�(�+) �− (−u)− [� (�+)− � (�−)℄ u} ; u ≤ 0;



ON PROPERTIES OF ESTIMATORS 43where �+ (·) and �− (·) are independent Poisson proesses of the intensityfuntions � (�−) and � (�+), respetively. Let us denote by û and ~u therandom variables de�ned by the equationsmax [Z (û+) ; Z (û−)℄ = supu∈R
Z (u) ; ~u = ∫

R
uZ (u) du
∫

R
Z (u) du :Then the MLE and BE are onsistent, have the following limitsn(#̂n − #) =⇒ û; n(~#n − #) =⇒ ~u;and the onvergene of all moments take plae. It is shown that for allestimators we have a lower bound on the risks and the bayesian estimatorsare asymptotially eÆient. For the proof see [6, Setion 5.1℄.10. WindowsOptimal windows. Suppose that we an have observations on someset B ⊂ [0; � ℄ of Lebesgue measure � (B) ≤ �∗ < � only. The family ofsuh sets we denote as F�∗

. Our goal is to �nd the best window B∗ andestimator #∗n = #∗n (B∗) onstruted by the observations Xn on this set
B∗, i.e., Xj = {Xj (t) ; t ∈ B∗}. The best is understood as the minimizingthe mean square error asymptotiallyinf

B∈F�∗

inf�#n E# (�#n (B)− #)2 ∼ E# (#∗n (B∗)− #)2 :If we �x the set B, then we know that the MLE is asymptotially normal
√n(#̂n (B)− #) =⇒ N

(0; IB (#)−1) ; IB (#) = ∫
B

_� (#; t)2� (#; t) d t:Therefore if we use the MLE then the best B∗ = B∗ (#) orresponds tothe solution of the following equationIB∗ (#) = sup
B∈F�∗

IB (#) :



44 Y. A. KUTOYANTSTo solve this equation we introdue the level sets C(#;r) and funtion� (#; r) as
C(#;r) = {t : _� (#; t)2� (#; t) ≥ r}; � (#; r) = � (C(#;r)) :Then we de�ne r∗ = r∗ (#) as solution of the equation � (#; r) = �∗. Nowwe put B∗ = C(#;r∗). Of ourse, we are not obliged to use the MLE andmoreover, this set B∗ an not be used for onstrution of estimator beauseit depends on #. Nevertheless it allows to introdue the lower bound onthe risks of all ouples (set, estimator): for any #0 ∈ �limÆ→0 limn→∞

inf
B∈F�∗ ;�#n sup

|#−#0|<Æ nE# (�#n (B)− #)2 ≥ IB∗ (#0)−1 :To onstrut the asymptotially eÆient in this sense ouple we �rst some
B ∈ F�∗

and by observations X√n = {Xj (B) ; j = 1; : : : ; X[√n℄} we(onsistently) estimate # using some estimator �#√n. Then we introduethe observation window
B
∗n = {t : _� (�#√n; t)2� (�#√n; t) ≥ r (�#√n; �∗

)

}:Now we onstrut the MLE #̂n−√n and show thatlimÆ→0 limn→∞
sup

|#−#0|<Æ nE# (�#n (B∗n)− #)2 = IB∗ (#0)−1 :For the onditions and proofs see Kutoyants and Spokoiny [8℄ or [6,Setion 4.3℄.Example. Let � (#; t) = [b+ # sin (!t)℄2, 0 ≤ t ≤ � , where � = 2�=!.Then the Fisher information isIB (#) = 4 ∫
B

[sin (!t)℄2 d t:Introdue
Cr = {t : 4 sin (!t)2 ≥ r} ; r (#; �∗) = r∗ = 4 sin2 (2� − �∗!4 );



ON PROPERTIES OF ESTIMATORS 45where (�∗ < �). Then ' = arsin(√r∗2 )
B
∗ = ['! ; �2 − '! ] ∪

[�2 + '! ; � − '! ]= [� − �∗4 ; � + �∗4 ]

∪
[3� − �∗4 ; 3� + �∗4 ]:Therefore the observations in the optimal window areXn = (X1 (B∗) ; : : : ; X1 (B∗)) with Xj (B∗) = {Xj (t) ; t ∈ B

∗}and the asymptotially eÆient estimator is the MLE #̂n (B∗).SuÆient windows. The analysis of the proofs of the onsisteny ofthe MLE and BE in the disontinuous ase (see, e.g., [6, Chapter 5℄)shows that the main ontribution to the likelihood ratio proess is madeby the observations near the jumps. Suppose that the intensity funtionis � (#; t) = � (t− #), where # ∈ (�; �) and 0 < � < � < � . Supposeas well that the funtion � (s), s ∈ (−�; � − �) is disontinuous at somepoint �∗ and ontinuous on [−�; �∗) ∪ (�∗; � − �℄. Then it is suÆient tokeep the observations on the interval B = [�+ �∗; � + �∗℄ only, i.e., to useXj (B) = {Xj (t) ; �+ �∗ ≤ t ≤ � + �∗}, j = 1; : : : ; n and the propertiesof the MLE and BE (onsisteny, limit distributions and onvergene ofmoments) will be the same as in the ase of omplete observations on[0; � ℄.Moreover, if we have a onsistent and asymptotially normal estimator�#n of # (say, an estimator of the method of moments), then we an use the�rst [√n℄ observations for preliminary estimation by �#√n of the window as
Bn = [�#√n − n−1=8; �#√n + n−1=8], and then to onstrut the MLE #̂n−√nand bayesian estimator ~#n−√n. Note that n1=4 (�#√n − #) ⇒ N

(0; �2).HeneP# {∣∣�#√n − #∣∣ > n−1=8} = P# {n1=4 ∣∣�#√n − #∣∣ > n1=8} −→ 0:Therefore we an have onsistent and asymptotially eÆient estimatorsonstruted by observations in the window of vanishing size. In regularase suh e�et is diÆult to wait.Example. Let # ∈ (�; �) ⊂ (0; �) and� (#; t) = 2at+ b 1{t>#}; 0 ≤ t ≤ �:



46 Y. A. KUTOYANTSThen �#√n = � − 1b [�̂√n (�) − a�2]is onsistent and asymptotially normal estimator of #. Then we maximizethe funtionL(#;Xn) = exp{ n
∑j=[√n℄+1 �#√n+n−1=8

∫�#√n−n−1=8 ln� (#; t) dXj (t)
−
(n−

[√n]) �#√n+n−1=8
∫�#√n−n−1=8 [� (#; t)− 1℄ d t}and onstrut the MLE. Note that the random variable �#√n is indepen-dent on Xj ; j = [√n℄ + 1; : : : ; n.11. Rates of onvergeneIt is interesting to note that if we observe a periodi Poisson proessXn = {X (t) ; 0 ≤ t ≤ n} with the intensity funtions � (#+ t) or � (#t),where � (·) is periodi smooth funtion (phase and frequeny modulationsin the optial teleommuniation theory), then we have (n → ∞)E# (#̂n − #)2 ∼ Cn ; E# (#̂n − #)2 ∼ Cn3 ;respetively. If � (t) is disontinuous funtion then for the mentioned twoases of modulations we have the di�erent ratesE# (#̂n − #)2 ∼ Cn2 ; E# (#̂n − #)2 ∼ Cn4 :For the proofs, see [6℄.Therefore it is natural to put the following question: what is the maxi-mal possible rate of onvergene of the mean square error to zero? Supposethat we an hoose any funtion � (#; t) ; # ∈ [0; 1℄ ; t ≥ 0 satisfying theonly ondition 0 ≤ � (#; t) ≤ L∗;



ON PROPERTIES OF ESTIMATORS 47where L∗ > 0 is some given onstant. We denote the lass of suh funtionsas F (L∗). It an be shown thatinf�(·)∈F(L∗) inf�#n sup#∈[0;1℄E#;� ∣∣�#n − #∣∣2 = e−nL∗6 (1+o(1));i.e., the best rate is exponential. To prove this equality we need to provetwo results. The �rst one is the lower bound for all � (·) ∈ F (L∗) and allestimators �#n sup#∈[0;1℄E#;� ∣∣�#n − #∣∣2 ≥ e−nL∗6 (1+o(1));and the seond is to onstrut an intensity funtion �∗ (·) ∈ F (L∗) andan estimator #∗n suh thatsup#∈[0;1℄E#;�∗
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