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ESTIMATION OF RELIABILITY USING
FAILURE-DEGRADATION DATA
WITH EXPLANATORY VARIABLES

ABSTRACT. Semiparametric estimation of degradation and failure pro-
cess characteristics using degradation and multi-mode failure time data
with covariates is considered supposing that the component of hazard rate
related with observable degradation is unknown function of degradation
and may depend on covariates.

1. INTRODUCTION

An important part of modern reliability theory and survival analysis is
modelling and statistical analysis of ageing, wearing, damage accumula-
tion, degradation processes of technical units or systems, living organisms
(see overview in Meeker and Escobar (1998), Bagdonavicius and Nikulin
(1995, 2002), Kalbfleisch and Prentice (2002)).

Lately, methods for simultaneous degradation-failure time data analysis
are being developed.

Tsiatis, DeGruttola and Wulfsohn (1995), Wulfson and Tsiatis (1997),
Henderson, Diggle and Dobson (2000), Wang and Taylor (2001), Law, Tay-
lor and Sandler (2002) (see an overview in Tsiatis and Davidian (2004))
model the intensity of failure time using generalizations of the Cox model
(Cox (1975)), including degradation as an additional covariate and apply
semiparametric estimation methods of survival data taken from biomedi-
cal experiments.

Bagdonavic¢ius and Nikulin (2001) consider parametric estimation
methods when degradation is modelled by gamma process for analysis
of reliability data, Lehmann (2004) considers parametric estimation for
the case of degradation processes defined by Wiener diffusion, Bagdon-
avicius et al (2007) consider analysis of degradation-failure time-renewal
data without covariates.

We consider parametric estimation of degradation and failure process
characteristics using degradation and multi-mode failure time data with
covariates supposing differently as in the generalizations of the Cox model
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that the component of hazard rate related with observable degradation is
unknown function of degradation and may depend on covariates. Semi-
parametric estimation procedure for model parameters is given. Estima-
tors of various reliability characteristics are proposed.

2. MODELING SIMULTANEOUS TRAUMATIC EVENTS
AND DEGRADATION DATA UNDER COVARIATES

Suppose that the following data are available for reliability character-
istics estimation: failure times (possibly censored), explanatory variables
(covariates, stresses) and the values of some observable quantity charac-
terizing the degradation of units. The failure rate of units may depend
on covariates, degradation level and time. For example, many covariates
influence the wear rate of tires: state and type of road covering, weight
of the load, weather conditions (temperature, humidity), pressure inside
tires, type of a vehicle, steep turns, etc. Via the wear and directly the
covariates may influence the intensity of traumatic failures.

We call a failure non-traumatic when the degradation attains a critical
level. Other failures are called traumatic. Traumatic failures may be of
different modes: related with production defects, caused by mechanical
damages or by fatigue of components.

In this paper methods of estimation and prediction of reliability char-
acteristics (related with the degradation and the intensity of traumatic
events) of units functioning under various possibly time-dependent co-
variates are given.

Suppose that under fixed constant covariate the degradation is stochas-
tic process Z(t), t > 0.

Suppose that the degradation process Z(t) is modelled by the linear
path model

Z(t) = t/4; (1)
here A is a positive random variable with the cumulative distribution
function F'. This model fit well as the tire wear model (see Meeker and
Escobar (1998)).

More general models can be reduced to this model by known degrada-
tion transformations. For example, if

Z(t) =e Y4, then —InZ(t)) = t/A.

Denote by T the moment of the traumatic failure of the kth mode,
k=1,---s.
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We suppose that the random variables T ...  T() are conditionally
independent given the degradation Z.

Denote by A*)(¢t|2) = AX¥)(t|Z(s),0 < s < t) the conditional failure
rate of the traumatic failure of the kth mode given the degradation.

Suppose that this conditional failure rate has two additive components:
one related to observed degradation values, other - to non-observable
degradation (aging) and to possible shocks causing sudden traumatic fail-
ures. For example, observable degradation of tires is the wear of the pro-
tector. The failure rate of tire explosion depends on thickness of the pro-
tector, on non-measured degradation level of other tire components and
on intensity of possible shocks (hitting a kerb, nail, etc.). So

MO (#2) = B (Z(#)) + u™ (). 2)

The function A*)(2) characterizes the dependence of the rate of traumatic
failures of the kth mode on degradation.

Suppose that covariates influence degradation rate and traumatic event
intensity. In such a case the degradation is not longer linear and the models
(1) and (2) need to be modified.

Let z(t) = (z1(t),... ,a:m(t))T be a vector of s possibly time depen-
dent one-dimensional covariates. We assume in what follows that z; are
deterministic or a realizations of bounded right continuous with finite left
hand limits stochastic processes.

Denote informally by Z,.(t) the degradation level at the moment ¢ for
units functioning under the covariate z.

We suppose that the covariates influence locally the scales of the
traumatic failure time distribution component related to non-observable
degradation (aging) and to possible shocks, i.e. the accelerated failure time
(AFT) model is true for this component.

Let us explain it in detail. Denote by

t t
SH(12) = exp { - / A Z()]du b, S (f) = exp { / 1 () du
0 0

the survival functions corresponding to the failure rates A*)(Z(u)) and
p®) (u). The first survival function is conditional given the degradation.
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The AFT model defines the following relation of the second survival
function and the covariates:

t
st = 5§ ( [ 0 as | ®)
0

the parameters 35 have the same dimension as z. In particular case of
constant in time covariates

SS9 (t)z) = SEM (eFF ).

The covariate  may be replaced by some specified function p(x). If p(z) =
x, we have the loglinear regression model. Sometimes the knowledge of the
physical processes suggest other forms of the function (. For example, if

m = 1, this function may have the forms: p(z1) = lnz; (power rule
model), ¢(z1) = 1/x1 (Arrhenius model).
Set
¢
flto,) = [0 du, )
0

and denote by g(t,z, ) the inverse of f(t,x,5) with respect to the first
argument. If x =const then

ftz,8) =" "t, g(t,z,B) =c7?" "t

The function f(¢,x, ) is time transformation in dependence on z. For
units functioning under different covariates () and z(®) two moments t;
and to, respectively, are equivalent in the sense of degradation if they verify
the equality f(t1,2™"),8) = f(t2,2?,B), i.e. we consider the following
model for degradation process under covariates:

Zo(t) = Z(f(t,z,8)) = [(t,, B)/A. (5)

The covariates have double influence on the distribution of the first trau-
matic failure component: via degradation and directly. So we combine the
AFT and the proportial hazards models:

t
S (t|z, Z,) = exp _/65’?2(“)>\(k)(f(“amaﬂ)/A)d“
0
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Denote by

SE) (tz, A) = P(TM > t|z(u), Zo(u),0 < u < t),

AR) (t|x,A):f% In S (t|z, Z,) (6)

the conditional distribution function and the failure rate of the traumatic
failure of the kth mode given the covariates and the degradation. So we
consider the following model.

The model:

P(TW > ¢, T® > tla(u), Zo(u),0 <u < t) = [ SW(tlz, A),
k=1

t
S® (¢|z, A) = exp {— / P NK) (f(u, z, B)/A) du
0

t
-/ eﬁfw<u>u<k><f<u,x,ﬂk>>du} =
0

F(t.a.5)/A
expd —A / e(Br=B)Tala(Az2.8) g (B) ()

—H®(f(t,z, 5k))} ; (7)

here
AR (z) = / A®) (gydy, H® (1) = / 1 (u)du. ®)

Note that
AB) (t]z, A) = PLEOND (f(t, 2, 8)/A) + 7O u® (£ (1,2, 51)).

A failure is called non-traumatic if the degradation attains the level zp.
Denote by T(®) the moment of the non-traumatic failure.
Let
SOtz) = P{TO > t | 2(u),0 <u <t}
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=P{Z,(t) <z |2(u),0 <u<t} (9)

be the survival function of the random variable T(® under the covariate
x, and
T =min(T®, 7MW ... T®) (10)

— the time of the unit failure. It may be traumatic or non-traumatic.
Set
V=k if T=T®, k=0,...,s. (11)

The random variable V is the indicator of the failure mode. The failure
mode 0 is non-traumatic. Others are traumatic.

The hypothesis about (conditional) independence of potential fail-
ure time moments is unverifiable if only the minimal failure time 7' =
min (70, 7M ..., T®)) and the failure mode indicator V are observed
(see Crowder (2001)). However, we are interested in various reliability
characteristic that can be expressed in terms of the distribution of (7', V);
for example, mean life time e = E(T') of a unit (we call such character-
istics identifiable). Although the random variables T ..., T® are not
independent, there always exists another set TW ..., T® of independent
random variables such that the pair (T, f/) is distributed identically with
(T,V) (here T = min (T, 7M. T®))). Hence e = E(T).

Suppose further, we consider some estimate é for e, based on the in-
dependent sample (T;,V;), ¢ = 1,...,n, from the distribution of (7', V).
Then the distribution of é will be the same in both models, with and with-
out independency assumption. The conclusion is the following: as far as
only identifiable characteristics are considered, without loss of generality
we may assume that T}, ... T(®) are conditionally independent.

3. SEMIPARAMETRIC ESTIMATION PROCEDURE

Suppose that the cumulative intensities A*) are completely unknown
whereas the functions p(®) are from some parametric classes p(¥) (-, vz)
with unknown parameters 7. For example, power function (u® (¢, ;) =
(t/v11)7?* could be model.

Suppose that n units are on test. The ith unit is tested under explana-
tory variable z(¥, and the failure moments Tj, failure modes V; and the
degradation values

Zi = A7 (T2, ) (12)
at the failure moments T; are observed. So the data has the form

(Tl,Vl,Zl,x(l)),--- 7(TannaZnax(n))' (13)
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The covariates (! are observed until the moment T;. For k = 1,---,s
and 0 < z < zg set

N® () =3"NP (), NP (@) =1z - (14)

The counting process N*)(2),0 < z < z, counts the number of units
having failure of the kth mode until the moment when the degradation
attains the level z.

Suppose pro tempore that the parameters 3,y are known.

If 5 is known then the equality (12) implies that the data (13) is equiv-
alent to the data

The data (15) is equivalent to the data
(A, NP (2),20, k=1,...,8 0 < 2 < z). (16)

Indeed, the random variables Z; and V; define the stochastic processes
Ni(k) (2), 0 < z < z. Vice versa, if Ni(k) (z) =0 for all 0 < z < 2z and
k=1,...,s, then V; = 0 and Z; = 2. If there exist k£ # 0 and z; such
that Ni(k) (z—) =0, Ni(k) (z;) =1, then V; = k and Z; = z;.

Let F, be the o-algebra generated by the random variables A;,--- , A,
and NY(y), ..., N @), 0<y<zi=1,...n

(3

Proposition. The counting process N¥)(z) can be written as the sum

N () = / Y (5, 8, 5AS (9) + Q. B, B ) dy + MP (), (17)
0

where

2 - B3, — 2@ NG
Y(Zuﬂuﬂk) = ZAil{ZiZz}e(Bk BT (9(Aiz, 75))’

i=1

Q(z, 8, Br, ) = ZAil{Zizz}u(k) (AZ.Z;%)e(ﬁk—ﬁ)mn(g(Aiz,m(i),5)).
i=1

(18)
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M®)(2),0 < z < 2, is a martingale with respect to the filtration F,,0 <
z < 2y, and the predictable covariation of the processes M*) and M is
given by

< M® 0 / . 8, B)AB () + Q(u, B, B )] dy, (19)
0

where 63 = 14— is the Kronecker symbol.

Proof. Let 0 <y < z < 2. It is sufficient to prove that (we drop v in
the notation p(¥) (t; 7))

E{N"(z) - NP (y) | F,}

— B4, / A () + 1B Ay, 1)1 (2, 5yt | Fy ).

Y

If Ay = a and Z; < y then Nl(k) (z) = Nl(k) (y). f Ay =aand Z; >y
then the random variable Nl(k) (z) takes two values, 0 and 1, and (we drop
x and 3 in the notation g(t,x, 5))

PN () - NP (y)=1] 21 >y, A =a}

=P{NP() - NFy) =114 =a,T1 > g(ay)} =
= P{glay) <TH < g(az), T =T | 41 = a, Ty > g(ay)}
g(az)
1

== P2 ONE) (f(t, 2, 8) /)
115" (9ay) | ),y

=1

8§

_’_eﬁgm(t)u(k) (f(tu , Bk)a 'Vk)] H S(l) (t | (l) dt =

=1

___a / (BB 2 (g(a0)) ) (8) (1)
11 51" (9(ay) | a) y

=1
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S
T
+e(Be =B e 0len) 8 (ap ) T SO (9(ay) | a) dy,
=1

So
A
B{NY () = MY W) [ B} = Lz 5
1151 (s(Aw) | )

/ (B =B)Ta(a(A10)) \(F) (1
Yy

S

+eBe=B8) (A1) [ (K) (4,4 ), ] T15% (9(Ary) | Ar) dy
=1

If Ay =aand Z; <ythen 17z 5.3 =0.If Ay =a, Z; >y then for v >y
E{l{lev} | fy} = 1{Z1>y}P{Z1 >v | A = a,Zy > y} =

1{Z1>y}P{T1 > g(av) | A = a}/P{Zl >glay) | A1 = a}.

Hence,
z

E{d, / 102,50y B8 20010 \(4) ()
y
el ) (40,3 | ) =
All{Z1>y} /[Q(Bk*B)Tz(g(Al’v))A(k)(U)
Yy
P{T, > g(av) | A, = a}
P{Zl > glay) | A1 = a}

+eBr=B T2 (9(A1) [, (B) (4, 7))

=EB{N"(z) - NP (y) | F,}.

The equality (19) follows from the continuity of the compensators of the
counting processes N () (z).
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Remark 1. If 3.3, 3 and v would be known then the lemma would
imply the following estimators of the cumulative intensities

i FAN® () —
0

Y(y, B, Bk)

Suppose now that the parameter 5 is unknown. Note that this pa-
rameter characterizes the influence of covariates on degradation and is
not related with traumatic failures. Taking into account that the random
variables

lnAz:f( ir L 76) anZ

are independent identically distributed with the mean, say m, which does
not depend on (3, the parameter § is estimated by the method of least
squares, minimizing the sum

n

> (n f(Ti, 2", 8) —In Z; — m)?,

i=1

which gives the system of equations

o 2@ eB™ =W quin £(T;, 2@, 8) - In Z]
nz f(Tzaxl)aﬁ) B

(W dy 2 '
Zfo TZ :L'(’) 5) =3 (15,20, 8) ~mz;) =0, (21)

=1

If (%) are constant then this systems is linear:

nZaz BT )+ R; — ZBT ])—I—R)] 0;

j=1

here R; = In(T3/Z;).

Suppose now that the parameters 5y, Bk and 7, are unknown (we still
consider the case of known (). The parameters (i characterize the in-
fluence of covariates on the component of the failure rate which are not
explained by degradation, 7 are the parameters of the parametric family
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of this failure rate component. Bk explains direct influence on the compo-
nent of the failure rate explained by degradation.

Assume pro tempore that the cumulative intensities A*)(z) are known.
In such a case the data (13) is equivalent to the data (15).

fVi=k(k=1,...,s) then T; = Ti(k) and A; are observed and and it
is known that 7" > T/® | # k. The term of likelihood function corre-
sponding to the ¢th unit and the kth failure mode is

AT | 20 A) T ST | 29, As) pa(As),

=1

where p4(a) is the density function of A. The last term in the product
does not depend on 8, 8y, B, vi, A®¥) and can be dropped.

If V; = 0 then A; are observed and it is known that Ti(k) > Ti(o) = zp4A;,
k # 0. The term of likelihood function corresponding to the ith unit and
the kth failure mode is

[1sY@) |29, 4;) pa(As).
=1

Set,
1L, ifVi=kk=1,...,s,

.
0, ifV;=0.
The likelihood function corresponding to the kth failure mode is
n N 8
L0 = [T @0, a9y [T sW 1 |29, 40, (22)
i=1 k=1
We write B® = 1 even when B is not defined. Note that

V(T2 | 4;) = Zj\(k) (T5|z, 4;) 1(vizk),
k=1

A (T3 e, A;) = Be= TONB) (£(T5, 2, 8)/A;)

T (8 i
+e OB (T2, B, ),
SENTy | 2 4;) =
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f(Tiam(i)7B)/Ai
exp d —A; / ¢ B=B) T oAz D 8) g () )
0

So in the case of known A®) the logarithm of the likelihood function is

Zz{ln (Tl )] Lgvimpy —
i=1 k=1

f(Tiam(i)aB)/Ai
A, / (BT (g A02.0 50 g A () ()

Suppose finally that all parameters 8, Bk, Vi, 3, A®) are unknown. Set
AN® (1) = N (1) — NK) ().
The loglikelihood function (23) is modified replacing

ATz, 4;), AW(Z), A,

by
Bk z(T)4 + eﬁk m(Tz)u(k) (f(jjiyJ;(’)yﬁk)’r)/k)7
(Zlaﬁ Bk)
A(k)(Zi7/67ﬁk76k77k)7 ‘42 = Z;lf(T“m(l)’B)’
respectively:

) (Br ) {Infef =(T) =20
o ;kzl (Zuﬁyﬁk)

+e T B (£(Ty, 2D ), )] vy —

f(Tiam(i)aB)/Ai
Ai e(Bk*B)TI( )( (A;z, 20 ) dA k)( )
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The obtained modified loglikelihood function depends on parameters [y,
Br and . Denote by S, 8; and 4 the maximizers of this function.
The estimators of the cumulative hazards A*) are

The estimator of the c.d.f. F'is

1< 1S
Fa) == 1m0 py<azy = = 2 Ldi<ay (26)
i—=1 i=1

Remark 2. If failure times of the units are right-censored by some random
variables C;, estimation procedure is the same interpreting censoring as
additional competing failure mode.

Indeed, we can set T; = min (T3, C;), Vi=V,ifT, =T; and V; = —1
otherwise.

Assume that censoring times C; are mutually independent, identically
continuously distributed and conditionally (given A; = a) independent of
(T3, Vi).

Then the data (13) is replaced by the data

(Tluvlazlax(l))a e 7(Tn7‘~/n7 Znax(n))

C; can be interpreted as additional competing failure mode and the form
of the estimators A¥) does not change.

4. ESTIMATION OF RELIABILITY CHARACTERISTICS

Let us consider reliability characteristics which are interesting for ap-
plications. These are:
1) The survival function of the failure time 7' = min(7(®, 7MW ... T()
under the covariate x:

S(t|x) :/P(T >t |,x,a)dF(a) = / [1 5%t 2,a)dF(a).
0 F(ta,8)/z0 F=1

(27)
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2) The probability of non-traumatic failure under the covariate z in
the interval [0, ¢]:

f&,z,8)/z0 R
PO (1)) = / I 5® (9(az0,2,8) | ,0)dF (). (28)

k=1

(=}

In particular, the probability of non-traumatic failure under the covariate
x in the interval [0, c0) is obtained.

3) The probability of traumatic failure under the covariate x in the
interval [0, ¢] is

P (t]z) = / [T 5%t A glazo, ,8) | x,a)dF(a). (29)
k=1

4) The probability of traumatic failure of the kth mode, k = 1,...,s,
under the covariate z in the interval [0, ¢]:

0o tAg(azo,z,B)
P (t|z) = / dF (a) 15| z,0) P (@] 2,a0)dv =
0 0 l#k

zona”tf(te,8) |

/dF(a) / H S (9(au,z,B) | x,a)[adA(k) (u)

=1

(=]

+u®) (au, i) du ). (30)

Suppose that the cause of some traumatic failure modes are eliminated.
Note that elimination of a failure mode may increase the number of failures
of other modes. Indeed, a failure of the Ith mode is not observed if it is
preceded by a failure of the kth mode but this failure might be observed
if the kth failure mode would be eliminated.

If 41th, ..., igth (1 < i3 < -+ < iy < s) traumatic failure modes
are eliminated then the survival function S(¢|z) and the probabilities
PO(t|z), P*)(t|z), and P®) (t|z), (k = 0,1,...,s) are modified tak-

S
ing  [] instead of ] in the formulas (27)-(30). So an experiment
101, iq =1
using units with eliminated failure modes is not needed and reliability
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characteristics of such units can be estimated using the data (13). The es-
timators of survival characteristics of units with eliminated failure modes
is useful for planning possible ways of reliability improvement.

Formulas (27)—(30) imply the following estimators of the main reliabil-
ity characteristics:

1)
N 1 S .
S(tla) = ~ 3 | EGERD) (31)
i:A;lf(t,w,ﬁ)gzo k=1
Ftw.B8)/A
SW(t |, Ar) = expd —A / (B =8) a9 Az, 5) gA () )
0
~HM(F(t,2,8),50) } -
2)
. 1
PO (t|z) = = > H SW(g(Aizo, 2, B) | 2, A)).  (32)
i:A; <r(t, x,ﬁ)/
3)
n 20N Lf(t,z,B) .
PW (te) = = SO(g(Aju,z, B) | @, A))[AidA™ (u)
i=1 0 =1
+u®) (Agu, A1) du] (33)
4)

P (t|z) = ZHsUf (t Ag(Aizo, 2, B) | m, Ay). (34)

zlkl

The estimators of survival characteristics of UIslitS with eliminated failure
modes are obtained taking [] instead of [] in the formulas (31)—(34)
11,41 =1
Suppose that at the moment ¢ the degradation level is measured to be
z. Using estimators of the cumulative intensities, obtained from the above
considered experiment the following residual reliability characteristics can
be estimated:
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the conditional probability to fail in the interval (¢, ¢+ A] under z given
that at the moment ¢ a unit is functioning and it’s degradation value is
z:if A > g(22f(t,z,),2,8) —t then

QA t,z,2z) =1; (35)
if A < g(2f(t,2,8),2,8) —t then
[T St +A |22 11,2, 8))

Q(Ast,z,2) =1 =1 ; (36)
1 SW(t |z, 21 f(t,z,B))
k=1

the conditional probability to have a non-traumatic failure under z in the
interval (¢,t + A] given that at the moment ¢ an unit is functioning and
it’s degradation value is z: if A < g(2 f(t,z,3),x,5) — t then

QO (At z,2) = 0; (37)
it A >g(2f(t,z,B),2,8) —t then
[T S® (g(2f(t,z, 8),2,8) | .2~ f(t,, )

QO (A t,x,2) = =L . ;o (38)
[T S®(t| 2,271 f(t,z,B))

k=1

the conditional probability to have a traumatic failure under z in the
interval (¢,t + A] given that at the moment ¢ an unit is functioning and
it’s degradation value is z:

QU (Ast,x,2)

IT S ((t+ A) A g(2f(t,x,B),2,B) | .2 f(t,, B))

:17]6:1

5 ;o (39)
[T S®(t |z, 27 f(t,2,B))
k=1

the conditional probability to have a traumatic failure of the kth mode

(k =1,---,s) in the interval (¢,t + A] under = given that and at the
moment ¢ an unit is functioning and it’s degradation value is z:

QM (A t,2,2)
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(b+ NG (2 f(5,2,6),2,8)

[1 SO | 2,27 f(t,2,B)AB) (v | 2,27 L f(t, 2, 8))dv
t 1

=1
[T S®)(t| 2,2~ f(t,, )
k=1

f+a,x,8)

RO G N:)

e [ SO 8).w.8) |2 e B)AAY) (u)

] =1 Z

(E+2INg (2 f(B,2.8),2,8)

+ / 11 SO | 2,5~ Lf(t, 2, 8))e?% 2@ u®) (f(u, 2, B, )du}/

II 8™t |22 f(t,2,8)). (40)
k=1

The estimators of the residual reliability characteristics (35)-(40) are
obtained replacing the parameters S 3,3k, v by their estimators
S®) B By, 4, given in Section 3.

5. THE CASE OF PARAMETRIC A(¥) AND NONPARAMETRIC F

The graphs of the estimators A®*)(z) give an idea of the form of the
cumulative intensity functions A*)(z). So the functions A(*)(2) may be
chosen from specified classes. Then semiparametric or parametric estima-
tion of the reliability characteristics can be done. Semiparametric estima-
tion is used when the distribution of the random variable A is completely
unknown. Parametric estimation is used when the distribution of A is
taken from a specified family of distributions, (see, for example, Bagdon-
avicius and Nikulin (1995, 2002), Greenwood and Nikulin (1996), Voinov
and Nikulin (1993)).

Suppose that the function A(¥)(z) is from a class of functions

AW (2) = AB) (2, ),

where 7y, is a possibly multi-dimensional parameter. For example, analysis
of tire failure time and wear data by non-parametric methods shows that
the intensities A(¥)(z) typically have the form (z/nz)"=*.

The logarithm of modified likelihood function is is obtained by replacing
in (23)
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by
P IIND (Zi, i) + PO (F(T3, 2D, 1), ),

A(k)(Zzank)a Az :Zzilf(Tux(Z)uB)a
respectively:

S

i(k)(ﬁkwgkafykank) = Z {ln[eBT‘t(Tl))\(k) (Zunk)

=1 k=1

T (T; i
+65k I(Tl).u’(k) (f(Tlax( )7516)77/6)] 1{‘/1':]6}7
Z;
Ai/e(érm%m<g<Aiz,z“>,B>>dA(k>(Z,,,k)
0

—H®(F(T3, 29, 81), )}

here 3 is the estimator verifying the system of equations (21).

Estimators of various reliability characteristics are obtained replacing
in the formulas (27)—(30), (35)-(40) the parameters 3, Bk, Vi, Nk by their
estimators, taking into account that the functions A*) (z), A (2), u(¥ (2),
and H® (z) are replaced by

A (2) = AP (z,m), A (2) = AW (2, 1),

and the distribution function F(a) by it’s estimator F,,(a).
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