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Abstract. We consider the following two problems. We are

given the values of several initial derivatives of the Riemann zeta func-

tion calculated at some (unknown to us) point a.

� How could we calculate an approximate value of the function

itself at the same point a without prior �nding this number?

� How could we �nd an approximate value of a itself?

We suggest several algorithms for answering these questions and

demonstrate their accuracy on a few numerical examples. The al-

gorithms reveal some new properties of the zeta function.
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1 Our main problem

The Riemann zeta function can be de�ned for Re(s) > 1 by Dirichlet series

ζ(s) = 1−s + 2−s + . . .+ n−s + . . . (1)

and analytically extended to the whole complex plane except for the point s = 1,
which is a pole of the function.

Let us assume that numbers

d1, d2, . . . , (2)

are the values of the derivatives of the Riemann zeta function taken at some
(unknown to us) point s = a,

dk =
dk

dsk
ζ(s)

∣∣∣∣
s=a

, k = 1, 2, . . . (3)

For the given numbers (2) such an a is unique, hence the knowledge of the deriva-
tives of the zeta function is su�cient for determining its value,

d0 = ζ(a). (4)

Question 1. How can we calculate ζ(a) from numbers (2)?

2 First Method

In this section we demonstrate (by numerical examples only) a non-evident
way to answer our Question 1 without prior calculation of the number a itself.

A �nite calculation can involve only �nitely many numbers from the in�nite
list (2), say N − 1 initial numbers. Let us consider a �nite Dirichlet series with
N summands

DN(s) =
N∑

n=1

cnn
−s. (5)

We want DN(0) to be close to ζ(a), and to this end we demand that the �rst N−1
derivatives of DN(s) taken at point s = 0 should be equal to the corresponding
derivatives of the zeta function taken at point s = a:

dk

dsk
DN(s)

∣∣∣∣
s=0

= dk, k = 1, . . . , N − 1. (6)
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Clearly, this condition can be written as a system of linear equations,

N∑
n=2

(
− ln(n)k

)
cn = dk, k = 1, . . . , N − 1, (7)

with unknowns
c2, . . . , cN . (8)

The matrix of this system is essentially of Vandermond type, so the system has
a solution.

Equations (7) do not involve c1, and the crucial point is the selection of the
value of this coe�cient. Surprisingly, this choice can be done independently of
the values of numbers (3). Namely, we put

c1 = 1. (9)

This choice justi�es itself: we shall see on numerical examples how small (in
absolute value) can the di�erence DN(0)− ζ(a) be, provided that a is su�ciently
far from the zeta function pole at s = 1.

Table 1 presents the values of the coe�cients of DN(s) for N = 20 and
a = −1 + 17i. Futher calculations give:

DN(0) = 4.2514 30819 75980...+ 3.9105 73040 34974...i, (10)

ζ(a) = 4.2514 30819 79612...+ 3.9105 73040 36079...i. (11)

We observe that the real and imaginary parts of DN(0) and ζ(a) have 11 common
initial decimal digits.

Table 2 shows the relative error of the approximation of ζ(a) by DN(0) when
a is �away� from the zeros of the zeta function and its pole. On the contrary,
in Table 3 the zeta zeros were taken for the values of a and respectively DN(0)
almost vanishes.

Remark. From Table 1 we can also observe that

c2 = 2−a − 0.0000 00068 17796...− 0.00000 00313 13323...i, (12)

c3 = 3−a + 0.0000 12435 91128...+ 0.00000 78012 25876...i, (13)

c4 = 4−a − 0.0006 75348 95498...− 0.00056 08292 92317...i. (14)

Also by our choice (9)
c1 = 1−a. (15)

In other words a few initial summands of the �nite series (5) at s = 0 are ap-
proximately equal to the corresponding summands of the in�nite (and divergent
in our example) series (1) at s = a.
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n cn

2 1.417786386498559... +1.410631589250944...i
3 2.955154840132295... +0.516857267487458...i
4 0.019561513173469... +3.999387979056508...i
5 -3.037128837211730... -3.941624128897215...i
6 3.253894203754391... +4.594841969201085...i
7 0.861951474783640... -3.753251948643660...i
8 -12.006629512292581... -16.341356533510580...i
9 20.926227144580919... +106.181184994072795...i

10 15.170115497499071... -348.870638305533251...i
11 -168.168120200587817... +798.007204791309054...i
12 467.990056861655709... -1365.913771566818394...i
13 -812.125851047954882... +1792.560833222644864...i
14 995.566624737176037... -1814.013879181722684...i
15 -891.778500043800322... +1407.070268334236594...i
16 584.114689453315294... -822.257728793268618...i
17 -273.514447113214965... +350.547171775067432...i
18 86.942550916705601... -102.943059194003426...i
19 -16.838044407943776... +18.621875181574025...i
20 1.501538953490888... -1.564374411153188...i

Table 1: Solution of system (7) for N = 20 when the right-hand sides are de�ned
by (2) with a = −1 + 17i.

3 Calculations in the neighborhood of a

Knowing numbers d0, . . . , dN (de�ned by (4) and (2)), we can use the initial
fragment of Taylor series,

T (s) =
N∑
k=0

dk
k!

(s− a)k, (16)

to calculate (approximate) value of ζ(s) for s in the vicinity of a,

ζ(s) ≈ T (s). (17)

According to (6) the Taylor series for DN(s) at s = 0 has the same initial
coe�cients as (16) except for the �rst one (for k = 0). Hence if DN(0) is indeed
close to ζ(a), then it is quite natural to expect that

ζ(s) ≈ DN(s− a) (18)
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|DN(0)/ζ(a)− 1|
a N = 16 N = 30 N = 50

−2 + 14i 2.0895 . . . · 10−8 2.3596 . . . · 10−12 1.3112 . . . · 10−14

14i 4.9989 . . . · 10−9 2.8947 . . . · 10−13 1.0194 . . . · 10−15

0.5 + 14i 8.2510 . . . · 10−9 3.8749 . . . · 10−13 1.1465 . . . · 10−15

1 + 14i 8.8751 . . . · 10−10 3.3214 . . . · 10−14 8.0544 . . . · 10−17

2 + 14i 4.6624 . . . · 10−11 1.0511 . . . · 10−15 1.5884 . . . · 10−18

−2 + 30i 1.1240 . . . · 10−11 1.1109 . . . · 10−20 6.5682 . . . · 10−30

30i 3.4877 . . . · 10−12 1.6334 . . . · 10−21 5.0058 . . . · 10−31

0.5 + 30i 2.5063 . . . · 10−12 9.6335 . . . · 10−22 2.4698 . . . · 10−31

1 + 30i 7.0833 . . . · 10−13 2.2247 . . . · 10−22 4.7448 . . . · 10−32

2 + 30i 4.7578 . . . · 10−14 9.8496 . . . · 10−24 1.4292 . . . · 10−33

−2 + 100i 2.7242 . . . · 10−8 3.5610 . . . · 10−24 6.3506 . . . · 10−45

100i 1.3724 . . . · 10−8 9.6736 . . . · 10−25 9.6584 . . . · 10−46

0.5 + 100i 7.7589 . . . · 10−9 4.6759 . . . · 10−25 4.0308 . . . · 10−46

1 + 100i 2.9857 . . . · 10−9 1.5370 . . . · 10−25 1.1431 . . . · 10−46

2 + 100i 2.2346 . . . · 10−10 8.3714 . . . · 10−27 4.6239 . . . · 10−48

−2 + 200i 2.3721 . . . · 10−3 2.5974 . . . · 10−16 6.2881 . . . · 10−41

200i 9.8287 . . . · 10−4 8.7790 . . . · 10−17 1.3128 . . . · 10−41

0.5 + 200i 4.9123 . . . · 10−4 4.1704 . . . · 10−17 5.5235 . . . · 10−42

1 + 200i 1.7331 . . . · 10−4 1.3986 . . . · 10−17 1.6399 . . . · 10−42

2 + 200i 1.0311 . . . · 10−5 7.5195 . . . · 10−19 6.9029 . . . · 10−44

Table 2: Series (5) well approximate ζ(a) when their coe�cients are de�ned by
(3), (7), and (9).

when s is close enough to a. The following observation is remarkable: approxima-
tion (18) can be much more accurate than (17). Here is an example: for N = 50,
a = 1 + 30i, and s = 4 + 40i

|T (s)/ζ(s)− 1| = 0.0112..., (19)

|DN(s)/ζ(s)− 1| = 5.6644...× 10−27. (20)

Moreover, outside the circle of convergency of the Taylor series its �nite frag-
ment (16) can give absolutely unrealistic approximations to ζ(s) while approx-
imations by DN(s) can be quite reasonable: for N = 50, a = 1 + 30i, and
s = 4 + 61i

|T (s)/ζ(s)| = 1.3432...× 1022, (21)

|DN(s)/ζ(s)− 1| = 8.7339...× 10−6. (22)
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|DN(0)|
m Im(ρm) N = 16 N = 30 N = 50

1 14.13472 . . . 7.7808 . . . · 10−10 3.1660 . . . · 10−14 7.6774 . . . · 10−17

2 21.02203 . . . 1.3440 . . . · 10−11 1.3062 . . . · 10−18 7.4006 . . . · 10−25

3 25.01085 . . . 3.7407 . . . · 10−12 2.4584 . . . · 10−20 3.3201 . . . · 10−28

4 30.42487 . . . 1.4197 . . . · 10−12 4.3805 . . . · 10−22 8.2480 . . . · 10−32

5 32.93506 . . . 1.1301 . . . · 10−12 1.0109 . . . · 10−22 3.3226 . . . · 10−33

6 37.58617 . . . 9.7731 . . . · 10−13 1.1201 . . . · 10−23 1.9702 . . . · 10−35

7 40.91871 . . . 1.0518 . . . · 10−12 3.2535 . . . · 10−24 8.6142 . . . · 10−37

8 43.32707 . . . 1.1952 . . . · 10−12 1.5431 . . . · 10−24 1.1376 . . . · 10−37

9 48.00515 . . . 1.7737 . . . · 10−12 4.8920 . . . · 10−25 3.6259 . . . · 10−39

10 49.77383 . . . 2.1488 . . . · 10−12 3.4683 . . . · 10−25 1.1418 . . . · 10−39

11 52.97032 . . . 3.1928 . . . · 10−12 2.0785 . . . · 10−25 1.6942 . . . · 10−40

12 56.44624 . . . 5.2226 . . . · 10−12 1.3743 . . . · 10−25 2.6964 . . . · 10−41

13 59.34704 . . . 8.2027 . . . · 10−12 1.0761 . . . · 10−25 6.8837 . . . · 10−42

14 60.83177 . . . 1.0462 . . . · 10−11 9.8054 . . . · 10−26 3.6127 . . . · 10−42

15 65.11254 . . . 2.1943 . . . · 10−11 8.3664 . . . · 10−26 6.7868 . . . · 10−43

16 67.07981 . . . 3.1350 . . . · 10−11 8.1754 . . . · 10−26 3.4290 . . . · 10−43

17 69.54640 . . . 4.9622 . . . · 10−11 8.2669 . . . · 10−26 1.5621 . . . · 10−43

18 72.06715 . . . 8.0253 . . . · 10−11 8.7256 . . . · 10−26 7.5390 . . . · 10−44

19 75.70469 . . . 1.6317 . . . · 10−10 1.0107 . . . · 10−25 2.9794 . . . · 10−44

20 77.14484 . . . 2.1698 . . . · 10−10 1.0937 . . . · 10−25 2.1417 . . . · 10−44

Table 3: Series (5) almost vanish at s = 0 when their coe�cients are de�ned by
(3), (7), and (9) with a = ρm, the mth non-trivial zero of the zeta function.

4 Calculation of a

We saw in Section 2 that it is possible to approximately calculate ζ(a) from
several initial numbers from (2) (de�ned by (3)). Now we use this knowledge to
answer

Question 2. How can we calculate a from numbers (2)?

According to the Remark in Section 2,

c2 ≈ 2−a (23)
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when c2 is de�ned by system (7). Respectively,

Re(a) ≈ σ, (24)

where
σ = −Re(log2(c2)). (25)

As for the imaginary part of a, it is de�ned by (23) up to an integer multiple
of 2π/ ln(2) only:

Im(a) ≈ −Im(log2(c2)) +
2πi

ln(2)
m (26)

for some integer m. Thus we need to use a more involved technique for deterin-
ing Im(a).

We shall use a slightly modi�ed method from [1]. It is based on the well-
known functional equation satis�ed by the zeta function. This identity can be
written in many equivalent forms, we start from the following one:

π(−3 + 2it)Γ
(
3
4

+ it
2

)
ζ
(
− 1

2
+ it

)
= πit(1− 2it)Γ

(
7
4
− it

2

)
ζ
(
3
2
− it

)
. (27)

We can eliminate the gamma function thanks to its functional equation; for our
purpose this identity can be written as

(3 + 2ti)Γ
(
3
4

+ it
2

)
= 4Γ

(
7
4

+ it
2

)
. (28)

Now, we replace t by −t in (27) and in (28), multiply the resulting and the original
identities side-by-side, and get the identities

π2(9 + 4t2)Γ
(
3
4
− it

2

)
Γ
(
3
4

+ it
2

)
ζ
(
− 1

2
− it

)
ζ
(
− 1

2
+ it

)
=

(1 + 4t2)Γ
(
7
4
− it

2

)
Γ
(
7
4

+ it
2

)
ζ
(
3
2
− it

)
ζ
(
3
2

+ it
)

(29)

and
(9 + 4t2)Γ

(
3
4
− it

2

)
Γ
(
3
4

+ it
2

)
= 16Γ

(
7
4
− it

2

)
Γ
(
7
4

+ it
2

)
. (30)

Next, we divide (29) side-by-side by (30), and get the desired identity not con-
taining the gamma function,

π2ζ
(
− 1

2
− it

)
ζ
(
− 1

2
+ it

)
= (1 + 4t2)ζ

(
3
2
− it

)
ζ
(
3
2

+ it
)
/16. (31)

Unless both sides in (31) vanish, this identity can be rewritten as

t2 = T2
(
ζ
(
− 1

2
+ it

)
, ζ
(
3
2

+ it
)
, ζ
(
− 1

2
− it

)
, ζ
(
3
2
− it

))
, (32)

where

T2(x1, y1, x2, y2) =
4π2x1x2
y1y2

− 1

4
. (33)
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Thus we can determine the value of t from the values of the zeta function calcu-
lated at four points, but up to a factor ±1 only.

In order to resolve this ambiguity we can replace t by t+ u and get that

t2 + 2tu+ u2 =

T2
(
ζ
(
− 1

2
+ iu+ it

)
, ζ
(
3
2

+ iu+ it
)
, ζ
(
− 1

2
− iu− it

)
, ζ
(
3
2
− iu− it

))
. (34)

Now from (32) and (34) we get that for a non-zero u

t = T1
(
u, ζ
(
− 1

2
+ iu+ it

)
, ζ
(
3
2

+ iu+ it
)
, ζ
(
− 1

2
+ it

)
, ζ
(
3
2

+ it
)
,

ζ
(
− 1

2
− iu− it

)
, ζ
(
3
2
− iu− it

)
ζ
(
− 1

2
− it

)
, ζ
(
3
2
− it

))
, (35)

where

T1(u, v1, w1, x1, y1, v2, w2, x2, y2) =

T2(v1, w1, v2, w2)− T2(x1, x1, x2, y2)− u2

2u
. (36)

Thus we can determine t from the values of the zeta function calculated at
eight points. When t is real, the number of arguments of T2 and hence of T1 as
well can be reduced:

t2 = T2
(
ζ
(
− 1

2
+ it

)
, ζ
(
3
2

+ it
))
, (37)

where

T2(x, y) =
4π2|x|2

|y|2
− 1

4
, (38)

and respectively

t = T1
(
u, ζ
(
− 1

2
+ iu+ it

)
, ζ
(
3
2

+ iu+ it
)
, ζ
(
− 1

2
+ it

)
, ζ
(
3
2

+ it
))
, (39)

where

T1(u, v, w, x, y) =
T2(v, w)− T2(x, y)− u2

2u
. (40)

If a is not far from the critical line Re(s) = 1/2, then we can put t = Im(a) and
approximate (according to (18)) the zeta function by the corresponding values of
DN(s). In this way we get the following counterparts of (37) and (39):

Im(a)2 ≈ T2
(
DN

(
− 1

2
− σ

)
, DN

(
3
2
− σ

))
, (41)

Im(a) ≈
T1
(
u,DN

(
− 1

2
+ iu− σ

)
, DN

(
3
2

+ iu− σ
)
, DN

(
− 1

2
− σ

)
, DN

(
3
2
− σ

))
, (42)
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where T1(u, v, w, x, y) and T2(x, y) are de�ned by (40) and (38), DN(s) is de�ned
by (5), (9), (7), and (3), and σ is de�ned by (25).

Here is a numerical example. If N = 50, a = 0.2 + 14i, and u = 1, then we
get from (24)�(25)and (42) the following values:

Re(a) ≈ 0.2− 3.237...× 10−10, (43)

Im(a) ≈ 14 + 3.872...× 10−8. (44)

5 Improving the accuracy

In fact, we can calculate the value of a with higher accuracy than it was done
in the previous Sections using the same initial data (3).

At �rst, we improve the value of Im(a). Continuing our previous example for
N = 50 and a = 0.2 + 14i, we substitute the already found value (44) and the
value

Im(log2(c2)) = −4.3294 40566 85430 74390 28357 72999... (45)

into (26) and �nd that

m ≈ 2.0000 00004 22171... (46)

Since m should be an integer, we use the exact value m = 2 in (26) and get an
improved approximation

Im(a) ≈ 14 + 4.544...× 10−10. (47)

In order to improve Re(a) we use the functional equation again. From two
copies of (39), for u = u1 and u = u2, we get yet another identity satis�ed by the
zeta function:

T1
(
u1, ζ

(
− 1

2
+ iu1 + it

)
, ζ
(
3
2

+ iu1 + it
)
, ζ
(
− 1

2
+ it

)
, ζ
(
3
2

+ it
))
−

T1
(
u2, ζ

(
− 1

2
+ iu2 + it

)
, ζ
(
3
2

+ iu2 + it
)
, ζ
(
− 1

2
+ it

)
, ζ
(
3
2

+ it
))

= 0. (48)

Note that in this identity, t occurs only in the arguments of the zeta function.
Respectively, according to (18) the di�erence

T1
(
u1, DN

(
− 1

2
+ iu1 − σ

)
, DN

(
3
2

+ iu1 − σ
)
, DN

(
− 1

2
− σ

)
, DN

(
3
2
− σ

))
−

T1
(
u2, DN

(
− 1

2
+ iu2 − σ

)
, DN

(
3
2

+ iu2 − σ
)
, DN

(
− 1

2
− σ

)
, DN

(
3
2
− σ

))
(49)

should be small. Indeed, for N = 50 and a = 1 + 14i, u1 = 1, and u2 = −1 the
di�erence (49) is equal to 1.175...× 10−7. Now we try to make it even smaller (in
absolute value) via adjusting the value of σ by a tiny number ε.
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Namely, we replace the numerical value (25) by series

σ = −Re(log2(c2)) + ε+O(ε2). (50)

Under this replacement the di�erence (49) is equal to

1.1752 10464 95536 62742...× 10−7 − 363.03 04836 50806 01535...ε (51)

up to terms of order O(ε2). The di�erence (51) vanishes when

ε = 3.2372 22541 58079 16360...× 10−10, (52)

so, instead of (25), we rede�ne

σ = −Re(log2(c2)) + ε = 0.2− 1.765...× 10−17. (53)

Using this adjusted value of σ in (24) we get much better approximation to
Re(a) than (43). Similar, now (42) with u = 1 gives

Im(a) ≈ 14 + 1.270...× 10−16 (54)

which is much better approximation to the imaginary part of a than (44) and (47).

6 The case of the alternating zeta function

All numerical examples presented above dealt with the Riemann zeta function.
In fact, the same technique works for some other functions de�ned by Dirichlet
series. In this section we consider the same questions but for the alternating
zeta function

η(s) =
∞∑
n=1

(−1)n+1n−s = (1− 2× 2−s)ζ(s); (55)

in this case an additional trick can by applied for increasing the accuracy of η(a).
To save notation, in this section numbers (2) have (instead of (3)) the following

values:

dk =
dk

dsk
η(s)

∣∣∣∣
s=a

, k = 1, 2, . . . (56)

Respectively, the coe�cients of the �nite series (5) are de�ned as the solution of
system (7) with the new meaning of the right-hand sides.

Previously, we choose the value of c1 independently of our initial data (3).
Now we use our knowledge of some zeros zm of η(s), namely, those that are due
to the factor (1− 2× 2−s) in the de�nition (55): η(s) vanishes when

s = zm = 1 +
2πi

ln(2)
m, m = ±1,±2, . . . (57)
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According to the de�nition (56),

η(s) = DN(s− a) + δ +O(s− a)N+1 (58)

for a certain constant δ. To make this constant small (in absolute value), we
choose such a c1 that

DN(zm − a) = 0 (59)

holds for some m. Formally, we de�ne

c1 = −
N∑

n=2

cnn
−zm (60)

for an m such that zm is close (ideally, the closest) to a among all numbers (57).
Thanks to m being an integer, for determining its value it is su�cient to have

a rather rough approximation to a which we can �nd by the technique described
in Section 4.

Here is a numerical example. Let N = 25 and a = 0.8 + 10i. We temporally
put c1 = 1 and calculate that

DN(0) = 0.20071 87631 27891 86587 07496 58506...+

0.99357 65348 46494 27220 22984 35417...i, (61)

Im(a) = 10− 1.862...× 10−25 (62)

(the latter by (42) with u = 1). Respectively, we select m = 1 and calculate c1
according to (60):

c1 = 1 +3.2375 46899 02577 79956 81132...× 10−21

−3.2788 82128 48951 81087 06971...× 10−21i. (63)

Further, with this value of c1 we calculate that

DN(0) = 0.20071 87631 27891 86587 39872 05405 48743 51847...+

0.99357 65348 46494 27219 90195 53288 88745 51656...i. (64)

Comparing with the true value

η(a) = 0.20071 87631 27891 86587 39872 05405 48743 52143...+

0.99357 65348 46494 27219 90195 53288 88745 50995...i. (65)

we see that (64) has 36 correct decimal digits while (61) had only 20.
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7 A generalization

There is no need to use consecutive initial derivatives of the zeta function in
order to calculate its value and the value of the argument. Numbers (8) could be
de�ned by the linear equations from (7) for any set of N −1 values of k; however,
this would result in lower accuracy in the further calculations.

Here is a numerical example. Let N = 20 and a = −1 + 17i (as in the
example in Section 2), and let numbers (8) be de�ned by the equations from (7)
for k running now from 2 to N . In this case

DN(0) = 4.2514 30818 87779...+ 3.9105 73040 40740...i. (66)

Comparing it with the exact value (11) we see that the replacement of the 1st
derivative by the 20th derivative resulted in lower accuracy of 9 correct decimal
digits compared to 11 correct digits in (10).

The missing �rst derivative can be easily calculated as well:

d

ds
DN(s)

∣∣∣∣
s=0

= −2.5966 08922 91986...− 4.0149 56947 25371...i (67)

while

d

ds
ζ(s)

∣∣∣∣
s=a

= −2.5966 08923 00960...− 4.0149 56947 24784...i. (68)
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