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Abstract. A class of continuous graded graphs of Gelfand–Tsetlin schemes type is
defined, and the set of all ergodic central measures of discrete type on the path spaces of
such graphs is described. The main observation is that the central ergodic measure on a
subgraph of “Bernoulli” graph is often obtained as the restriction of the standard Bernoulli
measure to the path space of the subgraph. It dramatically changes the approach to finding
central measures also on discrete graphs, like the famous Young graph.

The simplest example of this type is given by the theorem on the weak limit of nor-
malized Lebesgue measures on simplices — the so called Cesaro measures, which are con-
centrated on the sequences with prescribed Cesaro limits (this limit parametrizes the
measures).

More complicated examples are the graphs of continuous Young tableaux with fixed
number of rows, and the graphs of spectra of infinite Hermitian matrices of finite rank.
We prove existence and uniqueness theorems for ergodic central measures and describe
their structure. In particular these results:

1) give a new spectral description of the so called infinite-dimensional Wishart measures
[9] — ergodic unitary invariant measures of discrete type on the set of infinite Hermitian
matrices;

2) describe the structure of continuous analogues of measures on discrete graded graphs.

New problems and connections which appear are to be considered in new publications.
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1. Introduction

Locally finite N-graded graphs, often called Bratteli diagrams, proved to be
a useful instrument both for algebraic and stochastic problems. It is important
to stress that the geometry of such graphs is related to the theory of discrete
topological Markov chains, although the usual questions about Markov chains differ
from the Bratteli diagrams theory questions. Uniting these two theories may yield
interesting results. In Markov chains theory it is a well known and fruitful to
consider not finitely or countably many states, but continuously many states. This
is well developed in probability theory, although some generalizations of notions
and results are non-trivial. But in the theory of graded graphs such a change is not
developed yet. In this work we want to start the first examples of results concerning
the so called continuous graded graphs. We recall that the theory of continuous
graphs is a new and active branch [12], but the topic of graded graphs has its own
problems which are somehow different from the usual graph theory problems.

The basic notion for a graph is the path space, possibly structured. For a graded
graph, we consider the “graded” paths started in the first level and going down. In
this paper the levels correspond to convex cones in Euclidean spaces, and so are
the edge sets between consecutive levels. Such graphs are called to be of Gelfand –

Tsetlin type.
The easiest such graph has a semiline R+ as a vertex set at each level, and

the edges from x to y go iff x 6 y. This makes possible to identify the path in
such graph and a series with non-negative terms. Call it Cesáro graph. We are
especially interested in the following two generalizations of Cesáro graph. At first,
this is the continuous Gelfand–Tsetlin graph: at level n, the vertices are increasing
sequences x1 6 x2 6 . . . 6 xn of real numbers, and the edges between two sequences
x1 6 x2 6 . . . 6 xn and y1 6 y2 6 . . . 6 yn+1 at level n+1 correspond to interlacing

y1 6 x1 6 y2 6 x2 6 . . . 6 xn 6 yn+1

of these sequences. It has a subgraph of non-negative sequences (“positive Gelfand–
Tsetlin graph”). An important intimately related graph is the so called rank d
Gelfand–Tsetlin graph, in which the vertices at each level n are the increasing
sequences x1 6 x2 6 . . . 6 xd of d non-negative numbers, and the edges correspond
to interlacing

x1 6 y1 6 x2 6 y2 6 . . . 6 xd 6 yd.

This may be considered as a subgraph of the positive Gelfand–Tsetlin graph, if you
consider the levels starting from the d-th and sequences of form (0, 0, . . . , 0, x1, . . . , xd)
(with n−d initial zeros). These graphs correspond to the spectra of corners of Her-
mitian matrices (arbitrary, or non-negative definite, or non-negative definite of rank
at most d.)

For an infinite non-negative definite Hermitian matrix A of rank at most d we
may define An, n > d, as the principal n × n minor, and let x1 6 . . . 6 xd be d
largest eigenvalues of An (other eigenvalues are equal to 0). So we get a path in
the Gelfand–Tsetlin graph of rank d. The pushforward of the measures on on non-
negative definite infinite Hermitian matrices of rank d are, therefore, measures on
the path space of the Gelfand–Tsetlin graph of rank d, and U(∞)-invariant measure
on matrices correspond to central measures on the path space. For matrices we get
the so called Wishart measures. The Wishart measure of rank d with frequencies
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λ1, . . . , λd is defined as follows: take d i.i.d. standard complex Gaussian vectors
ξ1, ξ2, . . . , ξd ∈ Cn and consider the matrix

∑

λiξi · ξ∗i .
Possibly the first paper in which the GUE is considered in the framework of

central measures on graded graphs is [5]. The whole list of invariant measures for
Hermitian infinite matrices (and other such series) is known for a while and was
obtained by different methods by Pickrel [13] and Olshansky and Vershik [4] (where
ergodic method was also used but very differently from what we mean here).

This problem was considered in the old paper of the first author [2] about ergodic
method, but Wishart list is missed there. Invariant measures on positive definite
Hermitian matrices are easier to find, this was addressed in [8, 7].

The Gaussian measures GUE,GOE on matrices are especially popular. But
we study these measures in terms of the graph of spectra of matrices rather than
the graph of matrices themselves (for the GUE measures this is done in [5]). The
spectral approach is important not only in itself, but also because it allows us to
discover more subtle properties of invariant measures. Note, moreover, that this
point of view is also possible for other fields (see, for example, [14]) — self-adjoint
and quaternionic matrices. See more on the relation between graphs of matrices
and spectra in [11].

Another important generalization is the graph of increasing sequences x1 6 . . . 6
xd of non-negative real numbers with edges corresponding to the inequalities xi 6 yi
for all i = 1, . . . , d. In other words, the vertices are continuous Young diagrams
with d rows, and an edge corresponds to one diagram being contained in another.

A probabilistic Markov chain is determined by transition probabilities, but in
the theory of Bratteli diagrams the basic notion if the cotransition probability, as
in other problems in mathematics and physics [3]. The cotransition, or cocycle,
is the main additional structure on the graded graph, and here we consider the
cotransition probability measures as normalized Lebesgue measures on the phase

spaces of cotransitions. These cotransitions arise in the theory of invariant measures
on Hermitian matrices [5]. Lebesgue cocycle is a continuous analogue of the uniform
cocycle for discrete graded graphs. A measure on the path space of a graded graph
with Lebesgue cocycle is called central measure.

Next, a remarkable problem on describing all central measures for a given graph
arises. We discuss it for the concrete cases. For many countable graphs (graphs of
Pascal, Young, Schur, dynamical graphs on groups and random walks) this problem
was considered in recent decades.

A natural method for solving this problem is the ergodic method [2, 3], see the
details further. Applying it for finding the central measures of continuous graphs
is especially spectacular because of geometric nature of the cocycle.

In many cases, as in our case, the list of ergodic central measures is conjecturally
specified (or even already found by other methods). For example, in our case, each
such measure is given by a set of finite or countable frequencies of natural ob-
jects. The problem is to explain why frequencies uniquely define an ergodic central
measure and why they are defined by it, and, most importantly, to explain how
the frequency description of the measure is related to the corresponding product
measure (in particular Bernoulli’s measure). Up to now there has been no such
description, not only for continuous graphs, but even for the Young graph. This
is what is done further for the chosen class of graded graphs and for some discrete
graphs.
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Here we outline the contents of the paper. We begin with the fundamental
example of the continuous Cesáro graph. A cocycle here is a set of normalzied
Lebesgue measures on simplexes {xi > 0,

∑

xi = S} of of growing dimension with
a sum S that grows linearly with dimension. It is easy to understand that a central
measure is a weak limit of Lebesgue measures on simplexes, but it is more difficult to
prove that there exists unique central measure for each growth factor, i.e. frequency.
The structure of the measure is clear — it is a measure on the Cesáro sequences,
which explains the name. Cesáro’s measures here play the same role as Bernoulli’s
measures for discrete graphs.

For the graphs more general than Cesáro, that is, finite rank Gelfand–Tsetlin
graph and the continuous Young tableaux graph, the central measures with unequal

frequencies are the restrictions of the direct product of Cesáro measures to the cor-

responding set of paths. In the case of equal frequencies some regularization of the
weak limits is needed. But quite unexpectedly it turns out that exactly the same
and even simpler answer is given to the problem of description of central measures
of discrete type for many countable graphs, for example for the Young graph.

Note that in [1] all central measures for the Young graph were realized by means
of the generalized RSK algorithm as homomorphic images of Bernoulli measures,
and in the following works [10] it was proved that this homomorphism is isomor-
phism. However, this approach, while important, does not prove the completeness
of the list of central measures. It turns out that the completeness of the list in this
and other cases follows from an entirely different relation between Bernoulli mea-
sures and central measures: the latter are not only factors of Bernoulli measures,

but also restrictions on their proper subsets. For some reason this fact has so far,
to the authors’ knowledge, been bypassed by mathematicians.

The class of continuous graphs under consideration is wide enough and it is
convenient to describe infinite paths in these graphs by vector positive series. Di-
mension of the vector being equal to 1 is a case of Cesáro graph.

We emphasize that the main conclusion from our considerations is that the er-
godic central measure for a rather wide class of continuous graphs are defined by
their frequencies, i.e. only the growth rates for specific coordinates. More precisely,
the central measure is a Markov measure on positive vector series and the behavior
of these random series reflects the asymptotic behavior of spectra.

It is important to emphasize that for the Gaussian ensemble GUE (for the
Plancherel measure in the Young graph case) the picture is quite different since
all the limiting frequencies are zero and GUE (the Plancherel measure) owes its
existence to a very non-trivial interaction between the positive and negative parts
of the spectra, each of which has sublinear (rather than linear) asymptotics.

A remarkable parallel between these examples will be discussed in another paper.
We are grateful to a referee who paid our attention to the interesting paper [15]
where the connection between these two measures is established via the values of
the moments. But we mean a different type of parallelism.

We emphasize that the calculations associated with the ergodic method are some-
times quite nontrivial. In this paper we note the very fact that the central measures
are defined by frequencies, but explicit calculations of central measures and their
definition of their properties can be found in few cases. Some of these calculations
will be published in a forthcoming publication.
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2. Setup

An N-graded graph has a vertex set

Γ = ⊔∞

n=0Γn

graduated by levels, every edge joins two vertices of consecutive levels. Here we
assume that

1. Euclideness. All levels Γn, n = 0, 1, 2 . . . are identified with closed finite
dimensional convex polyhedral cones Γn ⊂ Rdn with non-empty interior (but as
vertices of the graph, the levels are disjoint, so, rigorously speaking, we had to
write something like Γn ⊂ Rdn × {n}). Dimensions dn may depend on n or not.

2. Convex Incidence. Two vertices x ∈ Γn, y ∈ Γn+1 of consecutive levels are
joined by an edge iff the pair x, y belongs to a certain closed convex polyhedral
cone

Dn ⊂ Γn × Γn+1, n = 0, 1, . . . .

We require that the natural projections Dn → Γn and Dn → Γn+1 are surjective,
in other words, every vertex in Γ0 has a neighbor in Γ1, and every vertex in Γn, n > 0
has neighbors in both levels Γn−1 and Γn+1.

An infinite path is defined as the sequence of vertices (v0, v1, . . .), vi ∈ Vi, such
that (vi, vi+1) ∈ Di for all i = 0, 1, . . .. The path space is the set of all infinite paths
endowed with a natural (weak) topology.

3. Non-degeneracy. For all interior points x ∈ Γn, z ∈ Γn+1 the section D+
n (x) =

{y ∈ Γn+1 : (x, y) ∈ Dn} (the set of second endpoints of the edges from x to Γn+1)
is a non-degenerated convex polyhedral set not containing lines; and the section
D−

n (z) = {y ∈ Γn : (y, z) ∈ Dn} (the set of starting points of the edges from Γn

to z) is a non-degenerated convex polytope. (Non-degeneracy means the maximal
dimension). This property may be weakened, but it specifies an important special
class of continuous graphs.

A certain class of continuous graphs is defined already. We proceed to specify
the class of graphs under consideration by imposing new conditions on the graph
structure.

4. Homogeneity. The following condition concerns the case when all levels are
isomorphic. A graph is called homogeneous, if the incidence cone Dn is the same
for all n.

The graphs satisfying aforementioned properties 1-3 are called Gelfand–Tsetlin

type continuous graphs, and if all levels are the same and property 4) holds, we call
it homogeneous Gelfand–Tsetlin type continuous graphs.

3. Cocyles

We proceed with defining the cotransition probabilities and cocycle for graded
graphs. It is introduced in the same manner (even simpler) as for discrete graded
graphs.

For every interior vertex x ∈ Γn, n > 0, the paths from Γ0 to x form a compact
set P(x) of dimension d0 + d1 + . . .+ dn−1, which is naturally stratified onto sets
P(y) for y ∈ D−

n (x) ⊂ Γn−1. Assume that there is already fixed the probability
measure µy on each P(y), where y ∈ D−

n (x) ⊂ Γn−1. Then, if we fix a probability
measure on D−

n (x) (the so called cotransition probability measure), it defines the
probability measure µx on P(x). So, by obvious induction the system of cotran-
sition measures defines the measure on paths to x for every vertex x of Γ. More
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generally, it defines the probability measure on paths from y to x for every two
vertices x and y such that there exists a path from y to x. Hereafter we assume
that the measures are absolutely continuous with respect to Lebesgue measures in
corresponding Euclidean spaces. Then, for two tail-equivalent paths P1, P2 (that is,
infinite paths which coincide from certain place) we may define the cocycle c(P1, P2)
as follows: take large number n such that P1, P2 coincide after n-th level, and cut
the paths P1, P2 at this level. We get two paths P1(n), P2(n) belonging to the same
set P(x) for certain x ∈ Γn. The ratio of densities of µx at P2(n) and P1(n) is
denoted by c(P1, P2). It is straightforward that this number does not depend on
the choice of the level number n.

For the discrete case, it is natural to consider the uniform distributions on the
sets P(x), which corresponds to the the central cocycle c(P1, P2) ≡ 1 (instead of
densities, we may simply divide the probabilities). The Borel measures on infinite
paths with such cocycle are called central measures. They are Markov measures
(with time corresponding to the grading), as follows from the definition, but not
viceversa. The set of ergodic (indecomposable) central measures is called the ab-

solute of the graph. Finding the absolute is the most important problem of the
theory of graded graphs.

For the introduced class of continuous Gelfand–Tsetlin type graphs we introduce
the natural analogue of the central cocycle, which we call Lebesgue cocycle. It
corresponds to the normalized Lebesgue measure on each P(x), in other words,
again c ≡ 1. The measures with such cocycle are again called central measures,
and the main problem is again to describe all ergodic central measures, i.e., absolute

of Gelfand–Tsetlin type graphs.
More general cocycles are to be considered separately.

4. Ergodic method

To describe the central and invariant measures, the so called ergodic method
was proposed in [2]. It essentially follows from individual ergodic theorems or the
martingale convergence theorem. To formulate it, let us introduce the necessary
notion of weak convergence of measures on the path space. A sequence of measures
on a path space of a graph is weakly convergent if for any cylindrical set there is
convergence of values of measures of this set. In our situation the ergodic method
can be described as follows (cf. [2, 3]).

Theorem 1. For every ergodic central measure µ on the path space of Gelfand–

Tsetlin type graph Γ there exists a path, i.e. a sequence of vertices {xn}n, xn ∈
D−

n (xn+1)n = 1, 2, . . . , for which the sequence of Lebesgue measures on the sets

P(xn) weakly converges to µ.

Although formally the continuous setting is different from what was considered
earlier, the usual proof holds verbatim.

This theorem reduces the problem of describing the absolute to concrete cal-
culations, which may be laborious in practice. But on the other hand, the weak
convergence conditions in concrete cases may be already restrictive enough and
allow to describe the absolute explicitly.

The ergodic method was used in [1] for describing the characters of S∞, in [4]
for describing the invariant measures on infinite Hermitian matrices and in many
other problems on invariant or central measures.
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5. Frequencies

Here we reformulate the main problem of describing the absolute of Gelfand–
Tsetlin type graph in concrete coordinate terms.

Let each level have dimension d, and each level be the cone

C := {(x1, . . . , xd) ∈ R
d : 0 6 x1 6 x2 6 . . . 6 xd}.

A convex cone Dn (it is also the same for all n) is defined by several linear
inequalities enjoyed by two vertices x = (x1, . . . , xn) ∈ Γn and y = (y1, . . . , yn) ∈
Γn+1.

Two main examples for us are the following:
(i) Gelfand–Tsetlin rank d graph is defined by the interlacing inequalities

Dn = DGT := {x, y : 0 6 x1 6 y1 6 x2 6 y2 6 . . . 6 xd 6 yd}.

This graph arises in the random matrix theory. Namely, consider the n × n
Hermitian matrix with eigenvalues 0 (of multiplicity n − d), y1, . . . , yd, where
0 6 y1 6 . . . 6 yd. Its principal minor of order n − 1 has eigenvalues 0 (of multi-
plicity n − d − 1) and x1, . . . , xd, where 0 6 x1 6 y1 6 x2 6 y2 6 . . . 6 xd 6 yd.
Moreover, the unitary invariant (in natural sense) measure on the orbit of matrices
with fixed eigenvalues and fixed eigenvalues of a minor of order k, d 6 k 6 n, is
Lebesgue measure on the corresponding polytope. This is proved by Baryshnikov
[5] in greater generality.

So, along with the Gelfand–Tsetlin graph, we may consider a “covering” graph
of matrices: on k-th level the vertices are the Hermitian matrices of rank at most d
and size k×k, and we join by an edge a k×k matrix and its principal (k−1)×(k−1)
minor.

A usual Gelfand–Tsetlin graph is defined similarly, but without the rank restric-
tion.

Note that the definition of our graphs is via inequalities between elements only,
and thus it may be automatically considered over arbitrary linearly ordered set (for
example, a segment, not a semiline) and even poset.

In the discrete case of the linearly ordered set Z it is related to the representation
theory of unitary groups, see, for example, [6].

(ii) Young jumps graph. Here Dn is the following cone:

DY := {x, y ∈ C : x1 6 y1, x2 6 y2, . . . , xd 6 yd}.

If we identify a point (x1, . . . , xd) and the Young diagrams with d rows of (not
necessarily integer) lengths x1, . . . , xd, (x, y) ∈ DY means that one diagram is
contained in another. In the usual discrete Young graph, an edge corresponds to
a relation “one diagram is contained in another and differs from it by removing
exactly one box”. Here we may remove (or add, if we consider moving along a
forward path) arbitrarily many “boxes”.

Let x(n) = (x1(n), x2(n), . . . , xd(n)) ∈ Γn, n = 1, 2, . . . be a path defining a
central probability measure µ on the homogeneous Gelfand–Tsetlin type graph Γ in
view of Theorem 1. If limxi(n)/n = λi ∈ [0,∞], we say that λi’s are frequencies of
the corresponding measure. We always may pass to a subsequence of the sequence
x(n) for which the frequencies exist. The importance of this notion is explained
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by the fact that in many cases (and we conjecture that for homogeneous Gelfand–
Tsetlin type graph always) the frequencies uniquely determine the ergodic central
measure.

6. Restrictions and restorations

Let Γ be a graded graph with levels Γn, and D̃n ⊂ Dn be (measurable) subsets
of edge sets. Denote by Γ̃ the subgraph induced on these subsets.

Let µ be a central probability measure on the path space of Γ. Assume that with
positive µ-probability a random path is a path in Γ̃, that is, it goes only along the
edges in ⊔D̃n.

Our crucial observation is the following almost obvious

Theorem 2. The restriction of µ to the path space of Γ̃ is also a central measure.

Proof. Fix a level n0. As every central measure, µ enjoys the Markov property: that
is, it is characterized by the distribution on the n0-th level Γn0

and the conditional
measures on the tails after this level. The initial segments before Γn0

are distributed
Lebesgue-uniformly on the corresponding polytopes P(x), x ∈ Γn0

and do not
depend on the tails. This all is preserved after restriction, since the restriction of
Lebesgue measure is again Lebesgue measure. �

Note that Theorem does not give a receipt how to get specific formulae for the
restricted measure, and this may be quite non-trivial. For example, consider the
usual (discrete) Young graph of Young diagrams with at most k rows. It may be
viewed as a subgraph of decreasing integer sequences n1 > n2 > . . . > nk > 0 of
the Pascal graph Zk

>0. The Bernoulli measure with frequencies p1 > p2 > . . . > pk
on Zk

>0 (that means that on each step we increase the i-th coordinate by 1 with
probability pi, and do not change other coordinates) restricted to Young graph
gives a Thoma measure with parameters p1, . . . , pk: the probability of the diagram
with rows lengths n1 > n2 > . . . > nk > 0 is the value of the corresponding Schur
function at the point (p1, . . . , pk).

A counterpart of Theorem 2 is that a finite measure ν on the path space of the
subgraph Γ̃ may be extended to a measure µ on the path space of the whole graph
Γ such that the restriction of µ on the path space of Γ̃ coincides with ν (but this µ
is not always finite, this is a delicate question).

Indeed, the centrality property allows to define µ on the images of the path
space of Γ̃ under transforms which preserve central measures. For example, we
may consider the transforms which fix the tail after n0-th level and change the
initial segments accordingly (in the Lebesgue-preserving manner). This defines µ

on the set of paths which are eventually in Γ̃. It is not hard to see that this is
consistent, and we get a measure on the path space of Γ, supported on the paths
which eventually are in Γ̃.

If the obtained measure is finite, then the initial measure on the path space of Γ̃
is obtained by restriction (and normalization). For homogeneous Gelfand–Tsetlin
type graphs, aswell as for discrete Young graph, this corresponds to the case of
unequal frequencies.
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7. One-dimensional case: Cesáro measure

Here we deal with the d = 1 case of Gelfand–Tsetlin graph (Young jumps graph
is the same as Gelfand–Tsetlin for d = 1) and compute the central measures of this
graph.

The path in our graph is simply a sequence 0 6 x0 6 x1 6 . . . of non-negative
numbers, and for the vertex a ∈ Γn = [0,∞) the path space P(a) is the n-
dimensional simplex ∆n(a) := {0 6 x0 6 x1 6 . . . 6 xn = a}. We should study
the distribution of finitely many coordinates x0, . . . , xk−1 (k is fixed and n is large)
with respect to the normalized Lebesgue measure µa on this simplex.

Consider an ergodic central measure on the 1-dimensional Gelfand–Tsetlin graph.
By Theorem 1, it corresponds to a certain sequence of vertices (even to a path, but
it is more convenient to consider a sequence: the difference is that in the sequence
some levels may be skipped). Passing to a subsequence, we may suppose that the
vertices ai ∈ R+ at levels ni satisfy lim ai/ni = λ, where λ ∈ [0,∞].

Thus the following theorem yields that every ergodic central measure on the 1-
dimensional Gelfand–Tsetlin graph is an exponential random walk by the levels of
the graph, as is seen from the following theorem.

Theorem 3. Assume that λ > 0 is constant and Γn ∋ a = λn+ o(n) is a vertex of

n-th level of the 1-dimensional Gelfand–Tsetlin graph. Then for each fixed positive

integer k the measure induced by µa on the sequences x0 < x1 < . . . < xk−1

converges to the exponential random walk with mean λ: x0, x1−x0, . . . , xk−1−xk−2

are Exp(λ) i.i.d.

If a = o(n), the corresponding distribution weakly converges to a stationary dis-

tribution at 0; if a/n → ∞, the corresponding measures weakly converge to zero.

Because of importance of this Theorem and its relation to generalizations, we
give three proofs. We concentrate on the case 0 < λ < ∞, the proofs for λ = 0 and
λ = ∞ are similar and only simpler.

1. Denote y0 = x0, yi = xi − xi−1 for i = 1, . . . , n− 1. Then our simplex is defined
as {yi > 0,

∑

yi 6 a}. Its volume equals an/n!. If we restrict the distribution to
the first k coordinates (y0, . . . , yk−1), then the density at the above point would
be proportional to the volume of the corresponding section {yk + . . . + yn−1 6

a− (y0+ . . .+ yk−1)}. Denoting s = y0+ . . .+ yk−1, we get that this volume equals
(a− s)n−k/(n− k)!. Thus the density equals

(a− s)n−k

xn−k · ak · n!(n− k)! = (1 − s/a)n−k · n(n− 1) . . . (n− k + 1)

ak

∼ e−s/λλ−k =

k
∏

i=1

λ−1e−yi/λ

that proves the claim. �

2. It is more convenient to study the distribution of a − xn−1, xn−1 − xn−2, . . .,
xn−k+1−xn−k. Of course it has the same distribution as x0, x1−x0, . . . , xk−1−xk−2,
as the measure-preserving automorphism (x0, . . . , xn−1) → (a − xn−1, . . . , a − x0)
of ∆n(a) shows.
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Consider the following map from ∆n(a) to the unit cube [0, 1]n, which maps the
normalized Lebesgue measure on the simplex to the Lebesgue measure on the cube

Φn : (x0, x1, . . . , xn−1) →
(

x0

x1
,
x2
1

x2
2

, . . . ,
xn−1
n−2

xn−1
n−1

,
xn
n−1

an

)

=: (t0, . . . , tn−1).

The Jacobi matrix of Φn is triangular, that immediately yields that Jacobian equals
n!. Thus Φ indeed maps the uniform distribution on ∆n(x) to the uniform distri-
bution on [0, 1]n. Thus

a− xn−1 = a
(

1− t
1/n
n−1

)

∼ − a

n
log tn−1

xn−1 − xn−2 = xn−1

(

1− t
1/(n−1)
n−2

)

= x · t1/nn−1 ·
(

1− t
1/(n−1)
n−2

)

∼ −x

n
log tn−2

xn−2 − xn−3 = xn−2

(

1− t
1/(n−3)
n−3

)

∼ − a

n
log tn−3

. . . . . . . . .

that yields the result, as a/n goes to λ and −λ logT ∈ Exp(λ) when T ∈ Unif(0, 1).
�

3. This proof, based on Law of Large Numbers, is ideologically close to the proof of
Maxwell–Poincaré lemma stating that the distribution of coordinates of a Lebesgue-
random point on the n-dimensional sphere of radius

√
n is asymptotically standard

normal.
We start with the distribution ηn of vector x ∈ (0,∞)n which is the product of

Exp(λ) distributions over all n coordinates, and prove that the distribution of the
first k coordinates of this vector is close to that of a random point in our simplex
∆n(a). That is, the density at a point y = (y1, . . . , yn) equals

p(y) =

d
∏

i=1

λ−1e−yi/λ = λ−ne−(y1+...+yn)/λ.

Thus, we see that p(y) depends only on the sum y1 + . . . + yn of coordinates. In
other words, the random point y may be obtained by choosing at random (according
to a certain distribution, which is a Gamma distribution but we do not use this)
the value of x = y1 + . . .+ yn and then choosing uniformly a random point in the
simplex Sx := {yi > 0,

∑

yi = x}. Now fix a set Ω ⊂ Rk which is a product of
intervals. The probability that (y1, . . . , yk) ∈ Ω is equal to the expectation against
x of the probability that (y1, . . . , yk) ∈ Ω for a random (y1, . . . , yn) ∈ Sx. Note that
(y1, . . . , yk) ∈ Ω if and only if λn

x (y1, . . . , yk) ∈ λn
x Ω. And the point λn

x (y1, . . . , yn)
is uniformly distributed in Sλn. Now note that by law of Large numbers, for any
specific ε > 0 the probability that λn

x /∈ [1−ε, 1+ε] tends to 0. When τ ∈ [1−ε, 1+ε],
the sets τΩ slightly vary. In particular, their intersection contains a set Ω−(ε) and
their union is contained in Ω+(ε) such that the ηk-measures of both are close to
each other. This yields the required weak convergence. �

Thus, any ergodic measure on one-dimensional Gelfand–Tsetlin graph is concen-
trated on the series x0 +(x1 − x0) + (x2 − x1) + . . . which converge in Cesáro sense
to a certain number λ > 0. That’s why we suggest to call it Cesáro measure.
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8. Multi-dimensional case

Here we explain how combining the one-dimensional Cesáro case and Theorem
2 to handle the case of finite rank Gelfand–Tsetlin graph and Young jumps graph.

Now we may note that the rank d Gelfand–Tsetlin graph is a subgraph of Ces
d,

where Ces is a Cesáro graph. On Ces
d there exists a Bernoulli measure which

is a product of Cesáro measures with frequencies p1 < p2 < . . . < pd. With
positive probability, any vertex (x1, . . . , xd) forms an increasing sequence, and any
two consecutive vertices (x1, . . . , xd) and (y1, . . . , yd) interlace (with probability 1
this happens eventually by Law of Large Numbers, it easily yields that with positive
probability this “eventually” is from the very beginning.) Thus by our restoration
procedure we get a unique ergodic central measure on the path space of Gelfand–
Tsetlin graph with given distinct frequencies.

A measure with equal frequencies may be obtained as a weak limit of measures
with distinct frequencies, but we skip the details here. All the same holds for Young
jumps graph: the ergodic central measures are in one-to-one correspondence with
arrays of frequencies, and for distinct frequencies the corresponding measures are
obtained by restriction of the Cesáro–Bernoulli measures.

To summarize, we provided a new way to study the central measures, which
is based not on computations and estimates but on intrinsic properties of these
measures. Of course it may be applied to discrete graphs also, but quite surprisingly
it was realized for the continuous graphs. Applications to discrete graphs are to be
considered in a separate paper. The calculations of transition probabilities also get
a new interpretation.

For a Gelfand–Tsetlin graph of growing rank (graph of interlacing sequences),
we have countably many frequencies with finite sum of absolute values, and if they
all are distinct, the same restriction argument works.

This method reduces explicit evaluation of the central measures with given fre-
quencies to a probabilistic problem of finding the “Cesáro–Bernoulli” measures of
corresponding cones (in order to compute its restriction). Alternative, more stan-
dard way is applying a continuous version of Lindstrom–Gessel–Viennot lemma.

Concerning the general Gelfand–Tsetlin type graphs, we also conjecture that the
central measures are also uniquely determined by the limit frequencies.

We are grateful to the referees for numerous useful suggestions.
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J. Math. Sci. (N.Y.) 261 (2022), no. 5, pp. 601–607.

[12] L. Lovász. Large networks and graph limits. American Mathematical Society Colloquium
Publications, 60. American Mathematical Society, Providence, RI, 2012. xiv+475 pp.

[13] D. Pickrell. Mackey analysis of infinite classical motion groups. Pacific J. Math. 150 (1991),
no. 1, pp. 139–166.

[14] M. Mehta. Random matrices. Third edition. Pure and Applied Mathematics (Amsterdam),
142. Elsevier/Academic Press, Amsterdam, 2004. xviii+688 pp.

[15] A. I. Bufetov. A Central Limit Theorem for Extremal Characters of the Infinite Symmetric
Group., Funct. Anal. Appl., 46 (2012), no.2, pp. 83–93.


