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Abstract. For a wave equation in which the wave propagation velocity c contains

a small rapidly oscillating perturbation (with amplitude of the order of δ), we consider

the Cauchy problem with rapidly varying initial conditions whose characteristic spatial

scale µ is greater than the characteristic spatial scale ε of oscillations of the perturbation.

We discuss the relation of this problem to the class of problems in which one can use the

adiabatic approximation, the Peierls substitution, the theory of functions of noncommuting

operators, the theory of equations with an operator-valued symbol, etc. Averageability

conditions on the velocity c under which the original problem admits reduction to the

Cauchy problem for an equation with coefficients uniformly smooth in x are stated and

discussed. The asymptotic solution of the latter gives the asymptotic solution of the

original problem and can be constructed by methods based on a modified Maslov canonical

operator. The reduced equation is a generalized wave equation, to which, depending on

the relationship between the small parameters δ, µ, and ε, additional dispersion terms

(i.e., terms containing derivatives of order > 2 in the spatial variables x) can be added.
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1. Introduction

The aim of the present paper is to develop the approach announced in [1] to con-
structing asymptotic solutions of the Cauchy problem with rapidly varying initial
data for a multidimensional wave equation with rapidly varying spatial velocity,

∂2u

∂t2
− 〈∇, c2(x)∇〉u = 0, x ∈ R

n, t ∈ [0, T ],(1.1)

u
∣∣
t=0

= u0(x), ut

∣∣
t=0

= u1(x).(1.2)

Here x is an n-dimensional column vector with components x1, . . . , xn, and 〈·, ·〉 is
the real inner product. The words “rapidly varying velocity” c and “rapidly varying
initial conditions u0(x) and u1(x)” mean that the problem contains small positive
parameters ε and µ characterizing the variation of these functions:

|(ε∇)α(c2(x))| = O(1), ‖(µ∇)αum(x)‖L2(Rn) = O(µn−m), |α| = 0, 1, 2, . . .

The following examples define functions satisfying these conditions:

(1.3) c2 = F

(
x

ε
, x

)
, u0(x) = V 0

(
x

µ

)
, u1(x) =

1

µ
V 1

(
x

µ

)
;

here F (y, x) is a strictly positive smooth function 2π-periodic in each of the argu-
ments y1, . . . , yn, and the V j(y) are smooth functions rapidly decaying as |y| → ∞.
We will consider the parameters ε and µ as related by µ = εκ, 1 > κ ≥ 0, which
means that µ ≫ ε, and we do not exclude the case of µ = 1. Our goal is to construct
asymptotic solutions as µ → 0 if µ ≪ 1 and as ε → 0 if µ = 1.

If F = F (y) depends only on the “fast” variable y and µ = 1, then prob-
lem (1.1), (1.2) is a classical problem of homogenization theory, which has been con-
sidered in many publications, a substantial contribution being due to V. V. Zhikov,
his colleagues, and students. We only mention some fundamental monographs [2–5]
and relatively recent publications dealing with various homogenization equations
and operators, including those found in quantum mechanics, continuum mechanics
and electromagnetism [6–11]. In the general case, we use semiclassical asymptotic
methods [12] and functions of noncommuting operators [13,14]. It is here where the
research topics pursued by Sternin (e.g., see [15]) meet the realm of homogenization
theory.

Recall that for F = F (y) homogenization theory leads to the Cauchy problem
for the reduced (homogenized) equation for the leading term U of the asymptotics,

∂2U

∂t2
− 〈∇, A∇〉U = 0, x ∈ R

n, t ∈ [0, T ],(1.4)

U
∣∣
t=0

= u0(x), Ut

∣∣
t=0

= u1(x),(1.5)

where the real positive matrix A is determined by the solution of the so-called
cell problem—the inversion problem for the Laplace–Beltrami operator on the n-
dimensional torus T =

∏n
j=1{yj ∈ [0, 2π]}. Problem (1.4), (1.5) must be solved

exactly.
However, in many problems the function f can also depend on the slow variable x,

and the parameter µ in the initial conditions can be small as well. For example,
this situation arises in the theory of water waves: here c2 =

√
gD(x), where D(x) is

the variable basin depth, g is the acceleration due to gravity, and the parameters µ
and ε characterize the ratios of the initial source size and of the typical horizontal
size of rapid bottom oscillations, respectively, to the horizontal size of the basin
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Figure 1. The figure illustrates the statement of the problem for
the wave equation with rapid depth oscillations against a slowly
varying background (bottom) and with localized initial distur-
bances of the free water surface (top).

itself. The dependence of F on x means that the rapid oscillations of the depth
function are superimposed on a slowly varying background (see Fig. 1).

It is natural to ask how to include the slow dependence on x in the homogenized
equation and whether the homogenized equation will work as the parameter µ
decreases. The intuitive answer to these questions is clear: Eq. (1.4) will work if
one includes the slow dependence on x in A and assumes that µ ≥ ε. The inclusion
of the variable x in A(x) means that one needs to solve the cell problem for each x,
which is practically a very time-consuming task.

Moreover, the regular dependence of c2 on the fast variables y = x/ε hardly
takes place in real-world problems for water waves, because the distribution of
bottom inhomogeneities is in a sense random, and the question arises as to how
to proceed in this case. On top of that, if we decrease the parameter µ, then
even the modified equation (1.4) stops working, and for µ = O(ε2/3) the reduced
equation should be supplemented with a term with fourth derivatives with respect
to the variables xj and variable coefficients. As a result, we obtain an equation
resembling the linearized Boussinesq equation with variable coefficients, which takes
into account dispersion effects known in the theory of waves (e.g., see [16]). The
derivation of this equation in the case of regular dependence of c2 on the fast
variables is given in [17] and is based on the observation that equations with rapidly
oscillating coefficients can be studied with the use of the adiabatic approximation
and that their regularization [18–21], similar to the application of the Kuzmak–
Whitham ansatz known in nonlinear theory [22, 23], reduces such equations to
equations with operator-valued symbol [12]. The subsequent reasoning is based on
the argument [19, 24] that it is convenient to use operator methods (the theory of
functions of noncommuting operators) [13–15] (see also [25–27]) in linear adiabatic
problems. Accurate reasoning generalizing the Peierls substitution [28], well-known
in solid-state physics, permits deriving the corresponding reduced equations like the
linearized Boussinesq equation, which was done in [17, 29]. The coefficients of the
corresponding fourth-order operator depend on x and must again be found from
cell problems, so that this operator can hardly be used in practical computations.
On the other hand, the rapidly varying part of c2 often turns out to be small
compared with the smooth background, namely, c2 = f0(x)+δf1(x, ε), where δ is yet
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another small parameter. The presence of this parameter permits not only obtaining
substantially more efficient formulas for calculating the coefficients of the reduced
equation (in particular, the entries of the matrix A(x)) but also, under certain
assumptions, dropping the assumption on the regular dependence of c2 on the fast
variables y = x/ε. The main ideas and formulas of this important generalization
are given in [1], and the approach was applied in [30] to some specific problems in
the theory of water waves.

Finally, note that if the parameter µ is small, then one should naturally be inter-
ested in asymptotic solutions of the reduced equation as µ → +0. To find these, one
does not need to know all the coefficients of the reduced equation. Moreover, al-
though the Cauchy problem for the approximate equation resembling the linearized
Boussinesq equation turns out to be ill posed, its asymptotic solutions are still use-
ful from the viewpoint of the original problem. The calculation of coefficients of the
reduced equation is very laborious even for the simplest case of the wave equation,
and hence it is natural to calculate only the coefficients needed for the asymptotics;
the complete form of the reduced equation itself and its ill-posedness do not play
any role for the resulting asymptotic solutions. Here we do not discuss methods
for the construction of asymptotic solutions of the reduced equations. These meth-
ods, together with very efficient asymptotic formulas, can be found, in particular,
in [31–34]; references to some other publications can be found in the survey [35].

The article is organized as follows. Considerations concerning the derivation of
reduced equations in the regular case are given in Sec. 2 (one-dimensional case) and
Sec. 3 (multidimensional case) at a simple conceptual level and without detailed
proofs (which can be found in [17,29]). The irregular case is considered in Sec. 4. In
more detail, Sec. 4.1 provides a description of a class of rapidly varying functions,
a homogenization method for functions of this class is given in Sec. 4.2, and the
formulas for the coefficients of the reduced equation are presented in Sec. 4.3. The
assertions in Sec. 4 were partly announced in [1, 30]. Detailed proofs will be given
elsewhere.

2. 1D Wave Equation with Rapidly Oscillating Velocity

In this section, we consider the one-dimensional wave equation with rapidly
oscillating velocity depending only on the fast variables. Using this equation as an
example, we discuss the Kuzmak–Whitham ansatz, adiabatic approximation, and
homogenization.

2.1. Model One-Dimensional Wave Equation. As the simplest example, con-
sider the Cauchy problem for the one-dimensional wave equation with a “regular”
rapidly oscillating velocity c(x/ε),

(2.1)
∂2u

∂t2
− ∂

∂x

(
c2
(
x

ε

)
∂u

∂x

)
= 0,

and with rapidly oscillating initial condition

(2.2) u
∣∣
t=0

= a(x) cos

(
kx

µ

)
,

∂u

∂t

∣∣∣∣
t=0

= 0.

Here c2(y) > 0 is a smooth 2π-periodic function, ε is a small positive parameter, the
parameter µ is related to ε as µ = εβ , 0 ≤ β ≤ 1, k is a given number independent
of ε and µ, and the initial amplitude a(x) is a smooth compactly supported function.
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We intend to construct the asymptotics of the solution of problem (2.1), (2.2)
as µ → 0 if β > 0 and as ε → 0 if µ = 1.
Kuzmak–Whitham ansatz. First, we construct particular solutions of Eq. (2.1). The
coefficient in this equation irregularly depends on the small parameter ε. First,
we “regularize” this equation using the Kuzmak–Whitham ansatz proposed in the
theory of nonlinear equations (see [22, 23]) and also used in homogenization the-
ory [3, 18–21]) and represent u as

(2.3) u = Ψ

(
x

ε
, x, t, ε

)
,

where the function Ψ(y, x, t, ε) is smooth in (y, x, t, ε) and 2π-periodic in y. Sub-
stituting (2.3) into (2.1), we find that a function u of the form (2.3) satisfies (2.3)
if Ψ satisfies the equation

(2.4)
∂2Ψ

∂t2
+

(
−i

∂

∂y
− iε

∂

∂x

)(
c2(y)(−i

∂

∂y
− iε

∂

∂x
)Ψ

)
= 0.

2.2. Fourier Transform Solution. Let us make the Fourier transform with pa-
rameter ε with respect to the variable x,

(2.5) Ψ̃(y, p, t) =
1√
2πε

∫ ∞

−∞

e−i px
ε Ψ(y, x, t)dx.

Then for the function Ψ̃(y, p, t) we obtain the equation

(2.6) ε2
∂2Ψ

∂t2
+ (−i

∂

∂y
+ p)

(
c2(y)(−i

∂

∂y
+ p)Ψ

)
= 0.

Consider the following family with parameter p of operators on the unit circle
S = R mod 2π with the variable y:

(2.7) H(p) =

(
−i

∂

∂y
+ p

)(
c2(y)(−i

∂

∂y
+ p)

)
.

The spectrum of this (nonnegative) operator in L2(S) is discrete; we denote the
eigenfunctions and eigenvalues by χm(y, p) and ω2

m(p), respectively, m = 0, 1, . . ..
We assume that ω2

m(p) < ω2
m+1(p). (As a rule, this assumption is satisfied.) Ap-

proximate graphs of the functions ω2
m(p) are shown in Fig. 2 (top). We also assume

that the functions χm(y, p) are normalized to 1 in L2(S). It follows that any solu-
tion Ψ̃ of Eq. (2.6) can be represented in the form

(2.8) Ψ̃ =
∑

+,−

∞∑

m=0

χm(y, p)w̃±
m(p, t), w̃±

m(p, t) = g±m(p)e±
i
ε
tωm(p),

where the g±m are some functions, which are assumed to be smooth and sufficiently
rapidly decay at infinity and which can be reconstructed from the initial function
u|t=0 and its derivative ut|t=0 when studying the Cauchy problem.

2.3. Peierls Substitution. The functions w̃±
m and w̃m = w̃+

m + w̃−
m obviously

satisfy the equations

(2.9) iε
∂w̃±

m

∂t
= ±ω(p)w̃±

m, ε2
∂2w̃±

m

∂t2
+ ω2(p)w̃m = 0.



7

Let w±
m(x, t) and wm(x, t) be the inverse Fourier transforms of the functions w̃±

m

and w̃m,

(2.10) w±
m(x, t) =

1√
2πε

∫ ∞

−∞

ei
px
ε w̃±

mdp, wm(x, t) =
1√
2πε

∫ ∞

−∞

ei
px
ε w̃mdp.

By applying the inverse Fourier transform to Eqs. (2.9), for the functions w±
m(x, t)

and wm(x, t) we obtain the pseudodifferential equations

(2.11) iε
∂w±

m

∂t
= ±ω

(
−iε

∂

∂x

)
w±

m, ε2
∂2wm

∂t2
+ ω2

(
−iε

∂

∂x

)
wm = 0.

Here some solutions Ψm of the original equation can be reconstructed from the
functions wm(x, t) by the formula

Ψm =

[
χm

(
y,−iε

∂

∂x

)
wm(x, t)

]∣∣∣∣
y= x

ε

.

Using the Feynman–Maslov notation in the theory of functions of operators, the
last equality can be rewritten as

(2.12) Ψm = χm

( 2
x

ε
,−iε

1

∂

∂x

)
wm(x, t).

In theoretical physics (in solid state physics; in particular, see [28]), the equation
ω2 = ω2(p) is called a dispersion relation, and the transition from the dispersion
relation to the pseudodifferential equation (2.11) for the function wm(x, t) (“quanti-
zation” of the dispersion relation) is called the Peierls substitution (for the simplest
case in question). The functions Ψm are often called modes. The representation of
the solution Ψ in the form

(2.13) Ψ =

∞∑

m=0

Ψm

is called a mode expansion. The operators χm

(
y,−iε ∂

∂x

)
are essentially the projec-

tions onto the eigensubspaces in suitable spaces of functions f(y, x). (Such opera-
tors are also widely used in nonlinear problems; see [27].)

The Peierls substitution, together with formula (2.12), serves as a basis for an ef-
ficient operator formalization of the adiabatic approximation (and of its special ver-
sion, the Born–Oppenheimer method), which is well known in theoretical physics
and mechanics of continuum as well.

2.4. Mode Truncation. One can obtain a solution of the Cauchy problem in
question by choosing the coefficients χm in the general solution (2.12), (2.13) of
the original wave equation in an appropriate form. We use the following technique.
The functions χm(y, p) form a basis in the space L2(S). Let qm(p) be the mean
values of χm(y, p),

(2.14) qm(p) =
1

2π

∫ 2π

0

χm(y, p)dy.

Then

1 =

∞∑

m=0

χm(y, p)qm(p).
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Figure 2. Top: Graphs of the functions ω2
m(p). Only the lower

curve plays a role in the asymptotics of the solutions under study;
the other curves are truncated. Moreover, only the part of the
curve ω2

0(p) between the two vertical curves in the figure in the
bottom is essential in constructing the asymptotics. The same fig-
ure shows the graphs of the second- and fourth-degree polynomials
approximating ω2

0(p). The second-degree polynomial is steeper and
naturally approximates ω2

0(p) worse.

Now let us choose the initial functions wm|t=0 and ∂wm

∂t

∣∣
t=0

in the form

(2.15) wm|t=0 = qm

(
−iε

∂

∂x

)
Ψ

∣∣∣∣
t=0

,
∂wm

∂t

∣∣∣∣
t=0

= 0.

Then, at least formally, one can readily verify that the function Ψ given by (2.12),
(2.13) is a solution of the original Cauchy problem if wm(x, t) satisfies the reduced
equations (2.11) with the initial conditions (2.15).

Now let us see how the functions qm(−iε ∂
∂x )(a(x)e

i kx
µ ) depend on the parame-

ters ε and µ According to the commutation formula for a pseudodifferential operator
and an exponential,

qm

(
−iε

∂

∂x

)(
a(x)ei

kx
µ

)
a(x) = ei

kx
µ qm

(
ε

µ
k − iε

∂

∂x

)
a(x)

= ei
kx
µ qm(0)a(x) +O

(
max

(
ε

µ
, ε

))
.

Let us return to the operators H(p). Note that the eigenvalue problem H(p)χm =
ω2
m(p)χm, χm(y+2π, p) = χm(y, p) (on the circle S) is reduced by the substitution
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ζm(y, p) = χm(y, p)e−ipy to the problem

H(0)ζm = ω2
m(p)ζm, ζm(y + 2π, p) = ζm(y, p)eipy

on the Bloch functions. Moreover, p is called the quasimomentum of the Bloch
function ζm(y, p). The properties of the functions χm(y, p), ζm(y, p), and ω2

m(p) are
well known. In particular, χm(y, p) and ω2

m(p) smoothly depend on their arguments,
and the functions ω2

m(p) are 1-periodic in p. Consider the equation

(2.16) H(0)χm(y, 0) = ω2
m(0)χm(y, 0).

It readily follows from this equation that

(2.17) χ0(y, 0) ≡ q0(0) = 1, ω2
0(0) = 0.

Further, since the operator H(p) is positive semidefinite, it follows that ω2
m(0) > 0,

and we readily obtain qm(0) = 0 by integrating Eq. (2.16) with respect to y over
[0, 2π].

It follows from this argument that the initial functions for the reduced equa-
tions (2.11) with numbers m ≥ 1 are O(max(ε/µ, ε)). Hence the solutions wm of
Eqs. (2.11) and the corresponding solutions Ψm of the oroginal wave equation are
O(max(ε/µ, ε)) as well on any finite intervals of time t. This line of argument leads
to the following asymptotic formula for the solution of the original problem:

(2.18) Ψ = χ0

(
y,−iε

∂

∂x

)
w0 +O

(
max

(
ε

µ
, ε

))
,

where w0 is the solution of the reduced equation corresponding to the zero mode,

ε2
∂2w0

∂t2
+ ω2

0

(
−iε

∂

∂x

)
w0 = 0,(2.19)

w0

∣∣
t=0

= q0

(
−iε

∂

∂x

)
Ψ

∣∣∣∣
t=0

= e
i
µ
kx

(
a(x) +O

(
max

(
ε

µ
, ε

)))
,

∂w0

∂t

∣∣∣∣
t=0

= 0.

(2.20)

Thus, of all the terms in the mode expansion, only the zero (ground) mode con-
tributes to the leading term of the solution. The remaining modes are truncated,
and the initial condition for the corresponding reduced equation can be replaced
by the initial function of the original problem.

2.5. Polynomial Approximation to the Dispersion Relation and Simpli-
fication of the Asymptotics. The reduced equation (2.19) can be simplified
further if we assume some relations between the parameters µ and ε. To simplify
the notation, we will omit the zero subscript on ω2

0(p) and write ω2(p) = ω2
0(p) in

what follows. Note [17, 29] that the function ω2(p) has the expansion

(2.21) ω2(p) = C2
avp

2 − qp4 +O(p5).

The coefficients Cav > 0 and q > 0 can be found from the cell problems (see
Sec. 3.3). For the one-dimensional case, these coefficients can be explicitly expressed
in integral form via c2(y); in particular,

(2.22) C2
av =

(
1

2π

∫ 2π

0

dy

c2(y)

)−1

.



10

The corresponding formula for Ω2
0 is well known in homogenization theory [2, 3, 5],

and the formula for q has a rather cumbersome form in [17,29]. The approximation
to the curve ω2

0(p) by its Taylor polynomials is shown in Fig. 2, bottom.
Formally, the solution of the reduced equation (2.19)–(2.20) is represented as

(2.23) w0 = cos

(
1

ε
tω

(
−iε

∂

∂x

))(
cos

(
kx

µ

)(
a(x) +O

(
max

(
ε

µ
, ε

))))
.

The operators

exp

(
± i

ε
tω

(
ε

µ
kx− iε

∂

∂x

))

are unitary, and therefore, the O(max(ε/µ, ε)) terms produce contributions of the
same order to w. Having this in mind and commuting the operator

cos

(
1

ε
tω

(
−iε

∂

∂x

))

with the exponentials exp(±ikx/µ), we obtain

(2.24) w0 =
1

2

∑

±

exp

(
± ikx

µ

)
cos

(
1

ε
tω

(
ε

µ
k − iε

∂

∂x

))
a(x) +O

(
max

(
ε

µ
, ε

))
.

Now the operator −iε∂/∂x acts on a smooth function; therefore,
(
−iε

∂

∂x

)n

a(x) = O(εn),

and we can use the Taylor expansion

ω

(
ε

µ
k − iε

∂

∂x

)
= ω

(
ε

µ
k

)
− iε

∂ω

∂p

(
ε

µ
k

)
∂

∂x
+O(ε2).

In view of the relation (property of the shift operator)

e±z ∂
∂x f(x) = f(x± z),

we find that

w0 =
1

2

∑

±

cos

(
1

ε
tω

(
ε

µ
k

)
± kx

µ

)
a

(
x± tωp

(
ε

µ
k

))
+O

(
max

(
ε

µ
, ε

))
.

Since

(2.25) ω = ω3 +O(p4), ω3 = Cavp−
q

2Cav
p3,

we can replace ωp in this formula by Cav for finite t keeping the same accuracy and
write

(2.26) w0 =
1

2

∑

±

cos

(
1

ε
tω

(
ε

µ
k

)
± kx

µ

)
a(x± tCav) +O

(
max

(
ε

µ
, ε

))
.

Let us substitute the function w0 represented in this way into Eq. (2.18). Taking
into account the fact that the operator χ

(
y,−iε ∂

∂x

)
is a projection, the commutation

with exponential formula

χ0

(
y,−iε

∂

∂x

)
(e±

i
µ
kxA(x)) = e±

i
µ
kxχ0

(
y,±k

ε

µ
− iε

∂

∂x

)
A(x),
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the smallness of ε/µ, and the relation χ(y, 0) = 1, we obtain

Ψ = w0 +O

(
max

(
ε

µ
, ε

))
.

We point out that the explicit calculation of the function ω(p) even in the one-
dimensional case is possible in exceptional cases, and one has to resort to one of
the following alternatives:

(i) Numerical calculation of ω(p).
(ii) Calculation of higher-order coefficients of the Taylor expansion of ω(p) in

the variable p in a neighborhood of p = 0 according to perturbation theory.
(iii) Using additional parameters in the velocity function c(x/ε).

Note straight away that the perturbation theory formulas for the coefficients of
powers higher than p3 become very cumbersome, and (ii) does not seem efficient.
We will return to method (iii) below.

2.6. Transition from Pseudodifferential Equations to the Limit Wave
Equation and Other Reduced Equations. From the viewpoint of Eq. (2.19),
expansion (2.25) means an approximate transition from a pseudodifferential equa-
tion to a differential one. Now let us study Eq. (2.26) in various cases. If ε2/µ3 ≪ 1,
which is the case, say, for µ = 1, then
(2.27)

w0 = was +O

(
max

(
ε

µ
, ε,

ε2

µ3

))
, was

0 =
1

2

∑

±

cos

(
k

µ
(x± t)

)
a(x± tCav).

It is easily seen that the function was
0 is a solution of the wave equation homogenized

in the right way,

(2.28)
∂2u

∂t2
− C2

av

∂2u

∂x2
= 0, u

∣∣
t=0

= a(x) cos
kx

µ
, ut

∣∣
t=0

= 0.

It is also clear that the functions

was
± =

1

2
cos

(
k

µ
(x± t)

)
a(x± tCav)

are solutions of the simple wave equations

(2.29)
∂u

∂t
± C2

av

∂u

∂x
= 0, u

∣∣
t=0

=
a(x)

2
cos

kx

µ
.

Now consider the case in which ε3/µ4 ≪ 1 but ε2/µ3 can be O(1). Then

w0 = was +O

(
max

(
ε

µ
, ε,

ε3

µ4

))
, was =

∑

±

was
± ,

was
± =

1

2
cos

(
1

ε
tω3

(
ε

µ
k

)
± kx

µ

)
a(x± tCav),

(2.30)

where ω3(p) has the form (2.25). The functions was
± will approximately satisfy the

linearized Korteweg–de Vries equations

(2.31) vt ∓ Cavux ∓ ε2
q

2Cav
vxxx = O

(
ε2

µ2

)
, v

∣∣
t=0

=
a(x)

2
cos

kx

µ
,
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and the function was will satisfy the linearized Boussinesq equation
(2.32)

vtt−C2
avuxx−ε2qvxxxx = O

(
max

(
ε2

µ3
,
ε4

µ6

))
, v

∣∣
t=0

= a(x) cos
kx

µ
, vt

∣∣
t=0

= 0.

We point out that although the linearized Boussinesq equation

(2.33) wtt − C2
avwxx − ε2qwxxxx = 0

indeed approximately describes the asymptotic solutions constructed above, the
Cauchy problem for it is ill posed, as readily becomes clear when studying its other
solutions. Indeed, the substitution of the plane wave

(2.34) w = A cos
Ω(p)t+ px

ε
, A = const, p = const,

leads to the dispersion relation

(2.35) Ω2 = p2(C2
av − qp2).

Thus, the frequencies ±Ω become pure imaginary for p2 > C2
av/q, which means the

ill-posedness. That is why Eq. (2.33) (more precisely, its nonlinear generalization)
is often called the “bad Boussinesq equation” [16]. We point out that, in fact, it is
not relation (2.35) itself but the first nonzero terms in its expansion in the variable k
that are important for constructing the asymptotics of the solution. Therefore, one
can use, say, the sixth-order Taylor polynomial of the function ω2(p), instead of
the function (2.35), but this would lead to the replacement of the equation with
four derivatives by equations with six derivatives, which is very inconvenient, for
example, in numerical analysis. Another way is to use the simplest Padé approxi-
mation instead of the Taylor expansion of the function ω2(p) and replace (2.35) by
the formula

Ω2 =
p2C2

av

1 + qp2/C2
av

.

The analog of Eq. (2.33) corresponding to this dispersion relation is the pseudodif-
ferential equation

(2.36) wtt −
(
1− ε2q

C2
av

∂2

∂x2

)−1

C2
avwxx = 0,

or the equivalent one-dimensional Carrier differential equation [36], or the linearized
“good” Boussinesq equation

(2.37)

(
1− ε2q

C2
av

∂2

∂x2

)
wtt − C2

avwxx = 0.

3. Generalizations: Inclusion of the Slow Dependence on x in the

Velocity c and the Multidimensional Case

Let us briefly describe generalizations of the reasoning and equations presented
above.
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3.1. Slow Dependence on x and Distorted Fast Dependence. In this case,
the velocity c2 is represented as

(3.1) c2 = c2
(
θ(x)

ε
, x

)
,

where c2(x, y) and θ(x) are smooth functions such that c2(y+2π, x) = c2(y, x) and
∂θ(x)
∂x (x) 6= 0. Using the theory of functions of noncommuting operators [13, 14, 19,

24], one modifies the scheme for the derivation of the reduced equations as follows.
The ansatz (2.12) and the reduced equation are replaced by
(3.2)

Ψm = χm

(
θ(

2
x)

ε
,
2
x,−iε

1

∂

∂x
, ε

)
wm(x, t), ε2

∂2wm

∂t2
+ L

(
1
x,−iε

2

∂

∂x
, ε

)
wm = 0,

and the symbols χm(y, x, p, ε) and L(x, p, ε) are represented as at least asymptotic
expansions in the parameter ε,

χm(y, x, p, ε) = χ0
m(y, x, p) + εχ1

m(y, x, p) + . . . ,(3.3)

L(x, p, ε) = L0(x, p) + εL1(x, p) + ε2L2(x, p) + . . .(3.4)

The use of operator methods leads, depending on the relation between the pa-
rameters h and µ, to reduced equations like (2.2), (2.33), and (2.37) with variable
coefficients [17, 24]. The following remarks are important.

(1) The zeroth term L0 of the expansion is uniquely determined, but the full
functions L and χm are in general determined ambiguously. Part of the
ambiguity can be removed based on the following. The operator on the
right-hand side in the original wave equation (2.1) is self-adjoint in a suit-
able space; therefore, the reduced equations must also be self-adjoint, which
leads to additional conditions on the functions χm(y, x, p, ε) and L(x, p, ε)
and removes some ambiguity.

(2) Despite the existence of a general scheme for calculating the expansion
coefficients Lm(p) and χm(p), one can only speak of efficient formulas for L0,
L1, L2|p=0, and χ0. Moreover, it is only possible to obtain explicit expres-
sions for several first coefficients in the expansions of these functions in the
variable p.

(3) Since we deal with asymptotic solutions from the very beginning, and since
it is important in applications to have the leading term of the asymptotics, it
is expedient to understand exactly which of the coefficients L0, L1, L2|p=0,
and χ0 we need to calculate efficiently. In the case of the Cauchy problem
with an additional parameter µ, it is reasonable to speak of the asymp-
totics in the parameter µ = εα if 1 > α > 0 and in the parameter ε if
µ = 1. Moreover, to construct asymptotic solutions with respect to the
parameter µ, it suffices to know finitely many p-derivatives of L0, via which
the required expansion coefficients in L1 and L2|p=0 can be reconstructed
(see [17,24]). The function χ0 can be replaced by χ0|p=0 = 1. We point out
that the explicit form of the remaining terms in the corresponding expan-
sions for determining the leading term of asymptotic solutions, as well as
the complete explicit form of the limit equations, is not needed; it suffices
to know that they exist in a suitable function class.
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The calculation of the required coefficients of L0 is carried out in almost the
same way as in the case of the wave equation with c2(x/ε). Finding L0(x, p) is
reduced to calculating the smallest eigenvalue of the operators

H(x, p) =

(
−iθx

∂

∂y
+ p

)
c2(y, x)

(
−iθx

∂

∂y
+ p

)

= θ2x

(
−i

∂

∂y
+ P

)
c2(y, x)

(
−i

∂

∂y
+ P

)
, P =

p

θx
,

(3.5)

on the circle. It is clear that the eigenvalues of the operator H(x, p) are related to
the eigenvalues ω2(p) of the operator (2.7) by the formula L0 = θ2xω

2(p/θx). Hence
we find

(3.6) L0 = p2
(
C2

av(x) − q(x)
p2

θ2x

)
+O(p6),

where C2
av(x) and q(x) are found by the same formulas as in the case where c2

depends only on x/ε with x in these formulas being treated as a fixed parameter.
When considering the Cauchy problem

(3.7) u
∣∣
t=0

= a(x) cos
kx

µ
, ut

∣∣
t=0

= 0

for ε3/4 ≪ µ ≤ 1, these arguments lead to the following reduced equations: the
“bad” (ill-posed) linearized Boussinesq equation

(3.8)
∂2w

∂t2
− ∂

∂x

(
C2

av(x)
∂w

∂x

)
− ε2

∂2

∂x2

(
Q(x)

∂2w

∂x2

)
= 0, Q(x) = θ2(x)q(x),

or the pseudodifferential equation

(3.9) wtt −
(
1− ε2

∂

∂x

(
Q(x)

C2
av(x)

∂

∂x

))−1
∂

∂x

(
C2

av(x)
∂u

∂x

)
= 0,

or the equivalent linearized Carrier differential equation (the “good” Boussinesq
equation)

(3.10)

(
1− ε2

∂

∂x

(
Q(x)

C2
av(x)

∂

∂x

))
wtt −

∂

∂x

(
C2

av(x)
∂w

∂x

)
= 0.

If 0 ≤ µ ≪ ε2/3, then the fourth derivatives can be discarded, and to find the
leading term of the asymptotic solution, it suffices to use the wave equation

(3.11)
∂2u

∂t2
− ∂

∂x

(
C2

av(x)
∂u

∂x

)
= 0.

3.2. Extension of the Class of Rapidly Varying Initial Conditions. The
rapidly oscillating initial conditions (3.12) are generalized to rapidly oscillating
conditions in the form of WKB functions

(3.12) u
∣∣
t=0

= Re
[
a1(x)e

i
µ
S0(x)

]
, µ

∂u

∂t

∣∣∣∣
t=0

= Re
[
a2(x)e

i
µ
S0(x)

]
,

where S0(x) is a smooth function, ∂S0(x)
∂x 6= 0, and a1(x) and a2(x) are smooth

compactly supported functions, or to rapidly varying functions of the form

(3.13) u
∣∣
t=0

= V1

(
x− ξ

µ

)
, µ

∂u

∂t

∣∣∣∣
t=0

= V2

(
x− ξ

µ

)
,
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where V1(z) and V2(z) are smooth rapidly decaying functions and ξ is some constant.
For µ = 1, we speak of exact solutions of problems (3.11), (3.12), and (3.13).
For µ ≪ 1, it is natural to use asymptotic methods (including Eqs. (2.33)–(3.10);
see [31–33]).

3.3. Generalization to the Multidimensional Wave Equation. In the n-
dimensional case, consider the equation

∂2u

∂t2
=

〈
∇, c2

(
x,

θ(x)

µ

)
∇
〉
u, x ∈ R

n
x(3.14)

where c2(x, y), (x, y) ∈ R
2n
x,y, is a smooth function 2π-periodic in each of the argu-

ments yj, θ(x) is a smooth n-dimensional vector function with components θj(x),
j = 1, . . . , n, and the vectors ∇θj(x) are assumed to be linearly independent for
all x.

Reasoning similar to the preceding and based on (2.3), (3.2), and (3.4) leads to re-
duced equations generalizing (2.29)–(2.33). The equations can be found in [17, 29].
Here we only write the reduced wave equation generalizing (3.4). Let Θx(x) be the
n × n matrix with columns ∇θj(x), and introduce the operators ∇θ

y = Θx(x)∇y

and △θ
y = 〈∇θ

y, c
2(y, x)∇θ

y〉. We define the operator (△Θ
y )

−1 on smooth functions
with zero mean on the n-dimensional torus T with angular coordinates yj ∈ [0, 2π]
and construct a function depending on n-dimensional vector variables ζ1, x, and ζ2
(a bilinear form in ζ1 and ζ2) by setting
(3.15)

L(ζ1, x, ζ2) =
1

(2π)n

∫

T

(
〈ζ1, ζ2〉c2(y, x) + 〈ζ2,∇θ

yc
2(x, y)〉 1

△θ
y

〈∇θ
yc

2(y, x), ζ1〉
)
dy.

The form L(ζ1, x, ζ2) defines a second-order elliptic (at least symmetric) operator

L(
3

∇,
2
x,

1

∇) and the reduced wave equation

∂2w

∂t2
= L(

3

∇,
2
x,

1

∇)w, x ∈ R
n
x ,(3.16)

corresponding to (3.14). The solutions of the Cauchy problem (3.12), (3.13) for this
equation give the asymptotic behavior of the solution of the Cauchy problem for the
original equation (3.14) under the assumption that µ3/2 ≪ ε. The corresponding
generalizations of the Boussinesq equation (2.33) can be found in [17, 29].

3.4. Disadvantages of the Model Equation (3.16) and a Way around Diffi-
culties in Its Practical Use. To find the coefficients of the equation, one needs
to invert the family of operators △Θ

y with parameter x on the torus Tn. In the lan-
guage of homogenization theory, this means that one needs to solve many periodic
cell problems, i.e., calculate solutions of equations such as the Poisson equation
with variable coefficients on the torus T in the class of functions with zero mean,

(3.17) △Θ
y W (y, x) = F (y, x), 〈W 〉T = 0, 〈F 〉T = 0.

We point out that the dependence on x turns out to be very significant in many
problems of mathematical physics. For example, c2 = gD in problems about long
water waves, where g is the acceleration due to gravity and D is the variable basin
depth. The inversion of the operator △Θ

y is a very complicated and time-consuming
task, and the formulas given above can hardly be used in specific problems. These
problems with coefficients of the form c2(θ(x)/ε, x) are very different from problems
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with a “regular” coefficient c2(x/ε): in the latter case, the cell problem needs to
be solved only once, and even if the model is not quite adequate to the physical
phenomenon, the corresponding coefficients can be determined from experiments
where necessary.

Another important disadvantage of Eq. (3.16) is that in real-world situations it
is hardly possible to find the “phases” θj(x); thus, formulas (3.15) are abstract and
useless for practical applications.

Now note that the oscillating component of c2(θ(x)/ε, x) often turns out not to
be very large, and c2 can be represented as

(3.18) c2
(
θ(x)

ε
, x

)
= f0(x) + δf1

(
θ(x)

ε
, x

)
,

where δ is yet another small parameter and

f0(x) =
1

(2π)n

∫

T

c2(y, x) dy

is the mean of the function c2(y, x) on the torus T. Then we can write

L(ζ1, x, ζ2) = f0(x)

+
δ2

(2π)n

∫

T

(
〈ζ2,∇θ

yf1(y, x)〉
1

〈Θx(x)∇y ,Θx(x)∇y〉
〈∇θ

yf1(x, y), ζ1〉
)
dy +O(δ3).

Using perturbation theory, we can also write the subsequent terms of the expansion
of the function L(ζ1, x, ζ2) in the parameter δ; see [17, 29].

Let l̂imε→+0v be the weak limit of an oscillating function v(x, ε). Note that for
any smooth function g(y, x) 2π-periodic in the variables y we can write

l̂im
ε→+0

g

(
θ(x), x

ε

)
= g0(x) ≡

1

(2π)n

∫

T

g(x, y)dy(3.19)

f0(x) = l̂im
ε→+0

c2,(3.20)

L(ζ1, x, ζ2) = f0(x)〈ζ1, ζ2〉+
1

f0(x)
l̂im

ε→+0

(
〈ζ2,∇f1〉

1

∆
〈∇f1, ζ1〉

)
+O(δ3),(3.21)

where the arguments of the functions c and f1 are (θ(x)/ε, x) and △ is the usual
n-dimensional Laplace operator. These formulas define a reduced homogenized
wave equation. Similar formulas can be written for functions that determine the
fourth derivatives in equations such as the linearized Boussinesq equation and the
Carrier equation.

In fact, formulas (3.20) and (3.21) contain only c2, do not actually rely on the
phase structure, and can be generalized to a wider class of functions c2. Moreover,
the special dependence of c2 on the parameter ε is not needed. Now the questions
are as follows: (i) how to practically calculate the weak limits in (3.20) and (3.21) in
practice; and (ii) under what conditions on c2 the reduced equations thus obtained
actually determine the asymptotics of the original problem. Some answers to these
questions and the corresponding formulas were announced in the papers [1,30]. We
will discuss these formulas below. In this case, one can even forget the preceding
reasoning, although it still plays a very important role as a motivation.
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4. General Case: No Regular Dependence on the Fast Variables

4.1. General Asymptotic Cauchy Problem for the Wave Equation. Let us
state a problem generalizing (3.14), (3.13), and (3.18). Consider the wave equa-
tion (1.1). Let the squared velocity depend on the small parameters ε and δ,

(4.1) c2(x) ≡ c2(x, ε, δ) = f0(x, ε) + δf1(x, ε),

where f0(x, ε) ≥ C > 0 is uniformly smooth and f1(x, ε) is an ε-rapidly oscillating
function in the sense of the following definition.

Definition 1. A function f(x, ε) of the variables x ∈ R
n and a small parameter

ε ∈ (0, 1] such that1 f( · , ε) ∈ C∞(Rn) for each ε is said to be uniformly smooth if
it is bounded in R

n together with all of its x-derivatives uniformly with respect to
the parameter ε and ε-rapidly oscillating if

∣∣∣∣
∂αf

∂xα
(x, ε)

∣∣∣∣ ≤ Cαε
−|α|, x ∈ R

n, ε ∈ (0, 1], |α| = 0, 1, 2, . . . ,

with some constants Cα independent of x and ε.

We supplement Eq. (1.1) with the initial conditions (1.2) depending on one more
small parameter µ > 0 and satisfying the estimates2

(4.2) ‖u(α)
0 ‖ ≤ Cαµ

1−|α|, ‖u(α)
1 ‖ ≤ Cαµ

−|α|, |α| = 0, 1, 2, . . . .

For example, one can take

(4.3) u0(x, µ) ≡ µ1−n/2V0

(
x

µ

)
, u1(x, µ) ≡ µ−n/2V1

(
x

µ

)
,

where V1(y) and V2(y) are smooth functions rapidly decaying at infinity, or

(4.4) u0(x, µ) ≡ µe
i
µS(x)

ϕ0(x), u1(x, µ) ≡ e
i
µS(x)

ϕ1(x),

where S(x) is a smooth real function and ϕ0(x) and ϕ1(x) are smooth compactly
supported functions.

The Cauchy problem (1.1), (1.2) has three small parameters ε, δ, and µ, which
characterize the rate of oscillations of the coefficient c2(x, ε, δ), their amplitude, and
the rate of oscillation of the initial conditions, respectively. Assuming that they are
related by

(4.5) δ ≍ εκ1 , µ ≍ εκ2 as ε → 0, κ1 > 0, κ2 ∈ (0, 1),

we study the asymptotics as ε → 0 of the solution of problem (1.1), (1.2) in the
norm

(4.6) ‖|u|‖ = ‖u‖1 + ‖ut‖0,

where ‖ · ‖s is the norm on the Sobolev space W s
2 (R

n).

1Generally, the dependence of f on ε is not assumed to be differentiable or even continuous.
2This normalization of the initial conditions is natural, because in this case the energy integral

J2(t) = ‖c(x)∇u‖2 + ‖ut‖2, where ‖ · ‖ is the norm on L2(Rn), is of the order of unity.
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4.2. Local Average. To construct the asymptotics, we reduce Eq. (1.1) to an equa-
tion with uniformly smooth coefficients using the version of the homogenization
method developed in [1]. To this end, we need to impose some homogenization
conditions on the coefficient c2(x). This subsection introduces the concepts needed
to describe these conditions.

It follows from Definition 1 that the set RV(Rn) of ε-rapidly oscillating functions
is an algebra and the set C∞

b (Rn) ⊂ RV(Rn) of uniformly smooth functions is
a subalgebra. We write f = Ô(εs) if ε−sf ∈ RV(Rn), f = O(εs) if ε−sf ∈ C∞

b (Rn),
and f = O(ε∞) if f = O(εs) for any s ∈ R (or, equivalently, f = Ô(εs) for any
s ∈ R). Throughout the following, we use the notation p̂ = −iε∇.
Locally averageable functions and their simplest properties. A special averaging

kernel is an arbitrary function g(x) in the Schwartz space S(Rn) independent of
the parameter ε and satisfying

(4.7)
∫

Rn

g(x) dx = 1,

∫

Rn

xαg(x) dx = 0, |α| = 1, 2, . . .

One easily sees that formulas (4.7) are equivalent to the conditions g̃(0) = (2π)n/2

and g̃(α)(0) = 0, |α| = 1, 2, . . . , for the Fourier transform g̃ ∈ S(Rn) of g.

Definition 2. A function f ∈ RV(Rn) is said to be locally averageable if the
function ∫

Rn

ϕ(ξ)f(x − εγξ, ε) dξ

is uniformly smooth for any γ ∈ (0, 1) and any function ϕ ∈ S(Rn) indepen-
dent of the parameter ε. The set of locally averageable functions will be de-
noted by LA(Rn). The local average of a function f ∈ LA(Rn) is the function
E [f ] ∈ C∞

b (Rn) given by the formula

E [f ](x, ε) =
∫

Rn

g(ξ)f(x− εγξ, ε) dξ,

where γ ∈ (0, 1) and the special averaging kernel g are chosen arbitrarily.

Theorem 1. (i) If f ∈ LA(Rn), then E [f ] is well defined up to O(ε∞).
(ii) If f ∈ C∞

b (Rn), then f ∈ LA(Rn) and E [f ] = f +O(ε∞).
(iii) The set LA(Rn) is invariant under ε-differential operators with uniformly

smooth coefficients in R
n: if f ∈ LA(Rn) and

(4.8) Ĥ =

N∑

|α|=0

aα(x, ε)p̂
α, aα ∈ C∞

b (Rn),

then Ĥf ∈ LA(Rn) and E [Ĥf ] = ĤE [f ] +O(h∞).

It can also be shown that local averageability is invariant under smooth regular
changes of variables independent of ε, that is, changes of variables all of whose
derivatives (together with the derivatives of the inverse change of variables) are
bounded at infinity.
Regular algebras of averageable functions. The homogenization procedure for a dif-
ferential equation with rapidly varying coefficients includes various operations with
the coefficients, in particular, averaging, taking derivatives, solving some equations
known as cell equations, averaging products of the resulting functions, etc. Not
all of the above operations, when applied to locally averageable functions, yield
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locally averageable functions again. In particular, the product of two functions
in LA(Rn) need not lie in LA(Rn). Therefore, for the homogenization procedure
to apply to a differential equation, the coefficients of the equation must lie in a sub-
set of LA(Rn) such that the application of the indicated operations to its elements
again gives the elements of the same subset. We refer to such subsets as regular
algebras of averageable functions. Let us give the simplest version of their definition
specifically adapted for the analysis of the wave equation (1.1).

Definition 3. A subalgebra A of RV(Rn) contained in LA(Rn) is called a regular

algebra of averageable functions if it is invariant under ε-differential operators (4.8)
with uniformly smooth coefficients in R

n and if, moreover, for any function f ∈ A
such that E [f ] = O(ε∞) the equation

(4.9) p̂ 2u ≡ −ε2∆u = f +O(ε∞)

has a unique, up to O(ε∞), solution u ∈ A such that E [u] = O(ε∞).

This solution of Eq. (4.9) will be denoted by p̂−2f , or
1

p̂ 2
f .

There are many examples of regular algebras of averaging functions. In particu-
lar, any of the algebras AΓ constructed below, as well as any algebra obtained from
it by a regular change of variables in R

n, is an example of such an algebra. Let
Γ ⊂ R

n be a countable additive subgroup equipped with a norm, that is, a function
ν : Γ → R+ such that

ν(g) > 0 for g 6= 0, ν(g + h) ≤ ν(g) + ν(h), ν(mg) = |m|ν(g), m ∈ Z.

Assume that the following conditions are satisfied:

(a) The number of elements in Γ with norm ≤ R is finite and grows no faster
than some power of R; i.e., there exist numbers C0,m0 > 0 such that

ρ(R) := #{g ∈ Γ: ν(g) ≤ R} ≤ C0(1 +R)m0 .

(b) The norm ν(g) and the standard Euclidean norm ‖g‖ on R
n are related by

the inequalities

‖g‖ ≥ C1ν(g)
−m1 , g ∈ Γ \ {0} (the Diophantine condition),(4.10)

‖g‖ ≤ C2ν(g), g ∈ Γ,(4.11)

with some constants C1, C2,m1 > 0.

Let AΓ be the set of functions of the form

(4.12) f(x, ε) = F

(
x, ε,

x

ε

)
,

where the function F (x, ε, y) is an almost periodic function of the variables y with
frequency module Γ, given by the Fourier series

(4.13) F (x, ε, y) =
∑

g∈Γ

Fg(x, ε)e
i〈g,y〉,

whose coefficients Fg(x, ε, y) are uniformly smooth functions satisfying the estimates
(4.14)∣∣∣∣
∂αFg

∂xα
(x, ε)

∣∣∣∣ ≤ CNαε
−|α|(1 + ν(g))−N , x ∈ R

n, ε ∈ (0, 1] |α|, N = 0, 1, 2, . . . ,

with some constants CNα independent of x and ε.
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Theorem 2. The series (4.13) converges absolutely and uniformly in (x, y) ∈ R
2n,

and it can be differentiated term-by-term with respect to x and y as many times as

desired. The function (4.12) belongs to LA(Rn), and its local average is

(4.15) E [f ] = F0 +O(ε∞).

The set AΓ is an algebra (with respect to pointwise multiplication of functions) and

is invariant under ε-differential operators in R
n with uniformly smooth coefficients.

To prove that AΓ is a regular algebra of averageable functions, it remains to verify
the solvability of the cell equations. It is established by the following theorem.

Theorem 3. Let f ∈ AΓ and E [f ] = O(ε∞). Then there exists a unique, up

to O(e∞), function u ∈ AΓ satisfying Eq. (4.9) with discrepancy O(ε∞) on the

right-hand side and such that E [u] = O(ε∞).

Let us now give examples of groups Γ.

Example 1. Let Γ be a lattice in R
n; after an arbitrary regular change of variables,

we arrive at the example considered in Sec. 3.1:

f(x, ε) = F

(
Θ(x)

ε
, x

)

is locally averageable, and its local average is given by the formula

E [f ] =
( 1

2π

)m
∫

Tm

F (y, x) dy1 · · · dym +O(ε∞).

Example 2. Let b1, . . . , bm ∈ R
n be vectors satisfying the following Diophantine

condition: there exist constants C, s > 0 such that
∣∣∣∣

m∑

j=1

njbj

∣∣∣∣ ≥ C‖n‖−s, n = (n1, . . . , nm) ∈ Z
m \ {0}.

(This condition is satisfied for almost all sets of vectors (b1, . . . , bm) in the sense of
the Lebesgue measure on R

mn.) Set

Γ =

{ m∑

j=1

njbj : (n1, . . . , nm) ∈ Z
m

}
, ν

( m∑

j=1

njbj

)
= ‖n‖.

Then Γ satisfies all necessary conditions, and the functions (4.13) are quasiperiodic
functions of the variables y with frequency module Γ.

4.3. Homogenization Theorem in Cauchy Problem for the Wave Equa-
tion. Now let us show, using the example of the Cauchy problem (1.1), (1.2), how
the homogenization method [1, 30] works based on the local averaging procedure
in Sec. 4.2. To this end, assume that the function f1(x, ε) in (4.1) lies in some
regular algebra A of averageable functions. Without loss of generality, we assume
that E [f1] = O(ε∞).3

Let us introduce notation necessary for the statement of the theorem. Let A

be the algebra of functions f(x, p, ε, δ) in the variables x = (x1, . . . xn), p =
(p1, . . . , pn), ε, and δ representable as a finite sum

(4.16) f(x, p, ε, δ) =
∑

α,j,k

fαjk(x, ε)p
αεjδk, fαjk ∈ A,

3Otherwise, one can replace f1 by f1 − E[f1] and f0 by f0 + δE[f1]. Although the new f0
depends on δ, this dependence is regular and will not affect further reasoning in any way.
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where j, k, and the components of the multi-index α run through nonnegative
integer values4, and let Areg ⊂ A be the subset of functions representable in the
form (4.16) with coefficients fαjk ∈ C∞

b (Rn). The elements f ∈ A will be called
symbols, and we consider the corresponding ε-differential operators

(4.17) f̂ := f(
2
x,

1

p̂, ε, δ) =
∑

α,j,k

fαjk(x, ε)p̂
αεjδk.

By Is ⊂ A, s ≥ 0, we denote the subset of functions admitting the representa-
tion (4.16) with fαjk = 0 for |α|+ j + k < s. Finally, by Js ⊂ A, s ≥ 0, we denote
the subset of elements (4.16) such that fαjk = 0 for |α| + j < s (i.e., unlike the
subsets Is, the powers of the variable δ are not counted).

The operator of the spatial part of Eq. (1.1) multiplied by ε2 can be written as

〈p̂, c2(x)p̂〉 = Ĥ = Ĥ0 + δĤ1,

where the operators Ĥ0 = 〈p̂, f0p̂〉 and Ĥ1 = 〈p̂, f1p̂〉 have the symbols

H0(x, p, ε, δ) = f0p
2− iε〈∇f0, p〉 ∈ J2∩Areg, H1(x, p, ε, δ) = f1p

2+〈p̂f1, p〉 ∈ J1.

Let us now describe a homogenization transformation that, with some accuracy,
reduces the spatial part of the wave equation (1.1) to an operator with nonoscillating
coefficients.

Theorem 4. For each N ≥ 0 there exist symbols χ ∈ J1 and L ∈ J2 ∩Areg such

that

(4.18) Ĥ ◦ (1 + δχ̂)− (1 + δχ̂) ◦ L̂ = δQ̂, where Q ∈ IN .

In addition, for sufficiently large N one has the expansion

(4.19)

L(x, p, ε, δ) = f0p
2− δ2

f0
E
[
f1

〈p, p̂〉2
p̂2

f1−
1

p̂2

(
p2− 2〈p, p̂〉2

p̂2

)
f1 ·

(
p2− 2〈p, p̂〉2

p̂2

)
f1

]
+R,

where R = εR1 + δ4R2 + δ2p6R3 and Rj ∈ Areg, j = 1, 2, 3.

Now let us find the asymptotics of the solution of problem (1.1), (1.2). Consider
the homogenized problem

(4.20) ε2
∂2v

∂t2
+ L̂v = 0, (x, t) ∈ R

n× [0, T ], v
∣∣
t=0

= u0(x), vt
∣∣
t=0

= u1(x).

Since L(x, p, ε, δ) ∈ J2, it follows that L(x, p, ε, δ) =
∑m

j=2 Lj(x, p, ε, δ), where
m is the degree of L and the polynomial Lj is homogeneous of degree j in the
variables (p, ε). Multiplying the equation in (4.20) by h2/ε2, we can rewrite it as
an h-differential equation (since ε ≪ h, we have ε/h ≪ 1)
(4.21)

h2 ∂
2v

∂t2
+ L

(
2
x,−i

1

h
∂

∂x
, h, δ,

ε

h

)
v = 0, L(x, p, h, δ, ρ) =

m−2∑

j=0

ρjLj+2(x, p, h, δ).

Asymptotic solutions of the Cauchy problem (4.20) can be sought with the use
of the standard Maslov canonical operator if the initial data are of the form (4.3)
or (4.4).

4The representation (4.16) is not unique; for example, some of the factors ε can be transferred
to the coefficients.
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Theorem 5. Let u be the (exact) solution of the Cauchy problem (1.1), (1.2), and

let v be the asymptotic solution of the homogenized Cauchy problem (4.20) modulo

O(hN ) as h → 0; that is,

h2 ∂
2v

∂t2
+ L

(
2
x,−i

1

h
∂

∂x
, h, δ,

ε

h

)
= S, v

∣∣
t=0

= u0(x), vt
∣∣
t=0

= u1(x),

where ‖(−ih∇)βS‖0 = O(hN ) and ‖(−ih∇)βv‖0 = O(1), |β| = 0, 1, 2, . . . Then the

difference R = u− (1 + δχ̂)v satisfies the estimates

‖R‖1 + ‖Rt‖0 ≤ C

{
δ +

1

ε2

[
hN + εN + δN +

( ε

h

)N
]}

,

where the constant is independent of ε, δ, and h, uniformly on [0, T ].

By condition (4.5), we see that for sufficiently large N the function (1 + δχ̂)v
defines the leading term of the asymptotics of the solution of problem (1.1), (1.2)
in the norm (4.6).

Remark 1. In practical application of the homogenization method, it suffices to use
a kernel that satisfies conditions (4.7) for |α| ≤ 3 rather than for all α. Such a kernel
can readily be defined by an analytical formula using the Gaussian exponential and
Hermite polynomials; for example, for n = 1 (i.e., in the one-dimensional case) one
can take

g(ξ) =
1√
π
e−4ξ2(3 − 8ξ2).

This kernel was used in [30] when carrying out test calculations according to the
homogenization method outlined above for a one-dimensional wave equation using
the real bathymetry of the world ocean.
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