HPEITPUHTBI IIOMU PAH

I'JTABHBIN PEJIAKTOP

C.B. Kucnsaxos

PEAKOJUIEI'NA

B.M.ba6wuu, H.A.BaBunos, A.M.Bepmuk, M.A.Bcemupnos, A.W.I'enepanos, U.A.MGparumos,
JLYO.Konotununa, b.b.JIypse, F0.B.Marusicesny, H.}O.Heueraes, C.U.Penun, I'.A.Ceperun

Yupenutens: OenepanbHOe rOCYyJapCTBEHHOE OIOKETHOE YUPEIKICHUE HAYKU
Cankr-IlerepOyprckoe oTaeneHne MareMaTH4eCKOro HHCTUTYTA
uM. B. A. Creknoa Poccuiickoil akageMun HayK

CBHIETENBCTBO O pErucTpanuu cpeactsa maccoBoit nHpopmaruu: IJI NedC 77-33560 ot 16
okTs10ps 2008 r. Bergano ®enepanbHoil ciyk00i 1o Haa30py B cpepe CBA3H U MACCOBBIX
KOMMYHUKaIUN

Konraktueie qannsie: 191023, r. Cankr-IletepOypr, Ha6. peku PoHTaHKH, T0M 27
tenedonsr:(812)312-40-58; (812) 571-57-54

e-mail: admin@pdmi.ras.ru

http://www. pdmi.ras.ru /preprint/

3aBeayromnas HHPOPMAITMOHHO-U3AaTeNbCKUM cekTopoM Cumonosa B.H


mailto:admin@pdmi.ras.ru

PDMI PREPRINT 08,2020

Minimal ideal triangulations of hyperbolic 3-manifolds

with geodesic boundary via Z,;-homology

Evgeny Fominykh!?, Danil Nigomedyanov', Ekaterina Shumakova'-

!Department of Mathematics and Computer Science,
Saint Petersburg University, Saint Petersburg, Russia
2Saint Petersburg Department
of V. A. Steklov Institute of Mathematics
of Russian Academy of Sciences, Saint Petersburg, Russia
3Department of Mathematics,

Chelyabinsk State University, Chelyabinsk, Russia

efominykh@gmail.com, danil.nig@gmail.com, shumakova_kate@mail.ru

ABSTRACT
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1 Introduction

In this paper we will restrict our attention to connected compact 3-manifolds
M with non-empty boundary. The triangulation complexity ca(M) of M is
the minimal number of tetrahedra in any ideal triangulation of M. There are
remarkably few examples of exact computations of triangulation complexity of
manifolds with non-empty boundary. The lower bound

ca(M) = Bo(OM; Za) — x(M), (1)

on complexity is known through work of Frigerio, Martelli and Petronio [1],
where it is shown that the bound is attained by infinite families of manifolds
M, with a totally geodesic boundary component of genus g > 2 and k cusps.
In particular, each minimal ideal triangulation of M, [2] has only a single
edge. An equivalent approach to complexity is via Matveev’s theory of special
spines. From this point of view, it is proved [3] that any ideal triangulation
T with exactly two edges such that no 3-2 Pachner moves can be applied to
7 is minimal. Infinite families of such manifolds were described in [4, 5, 6].
Moreover, a census of connected compact 3-manifolds with non-empty boundary
decomposed into at most 4 ideal tetrahedra was given in [7, 8.

In this paper we present a new lower bound for the triangulation complexity
of connected compact 3-manifolds M with non-empty boundary via Zs-
homology (Theorem 3.1). It is shown (Theorem 3.3) that this bound is stronger
than that given by (1). We use Zs-homology to study the anatomy of minimal
triangulations of M for which our lower bound is achieved (Theorem 4.1,
Lemma 4.3). The class of such manifolds is denoted Mj,.

Our next task is to study manifolds in Mj. We characterise edges and
tetrahedra of minimal triangulations (Lemma 4.3), which yields a natural
partition of the set of minimal triangulations into four classes. A natural question
to ask does a manifold in M}, admit minimal triangulations of different classes.
We prove (Theorem 5.1) that the answer is negative.

We are now left with two tasks. We must provide examples of manifolds in
M, and we can prove that each M in My, with a few exceptions, is a hyperbolic
manifold with totally geodesic boundary components and some cusps.

2 Duality between ideal triangulations and
special spines

In this paper, we will translate freely back and forth between an ideal
triangulation and its dual special spine. We begin by recalling some definitions.

2.1 Ideal triangulations

Let 7 be a cell complex made out of a pairwise disjoint collection of 3-simplices
by gluing all of their 2-dimensional faces in pairs via simplicial maps, and |7 its



underlying space. The simplices prior to identification, and their vertices, edges,
and so on, are called model cells. We will denote the union of the vertices of T
by 7).

Note that |7T] may actually not be a 3-manifold, because the link of a
vertex could be any surface, and the link of the midpoint of an edge could
be a projective plane. If M is a compact 3-manifold with boundary, and if
|71\ |T©)] is homeomorphic to the interior of M, then we say that 7 is an ideal
triangulation of M. In this case the vertices of T are called ideal vertices.

2.2 Special spines

A spine of a compact 3-manifold M with boundary is a compact polyhedron
P C M such that M \ P is homeomorphic to M x [0,1). A spine P carries
much information about M. In particular, P is homotopy equivalent to M and
hence determines the homotopy type of M.

We will restrict our class of spines to those called special (or, standard)
spines. A compact two-dimensional polyhedron P is said to be simple if the
link of every point z in P is homeomorphic either to a circle (such a point x is
called nonsingular), to a graph consisting of two vertices and three edges joining
them (such a point « is called a triple point), or to the complete graph K4 with
four vertices (such a point z is called a true vertex). Connected components of
the set of all nonsingular points are called 2-components of P, while connected
components of the set of all triple points are called triple lines of P. The set of
singular points of P (that is, the union of all triple lines and all true vertices) is
called a singular graph of P. A simple polyhedron is special if each of its triple
line is an open 1-cell, and each of its 2-component is an open 2-cell. A singular
graph of a special polyhedron has at least one true vertex and is a 4-regular
graph. Therefore, it is natural to call the triple lines of a special polyhedron
edges.

An ideal triangulation 7 of a compact 3-manifold M with boundary defines
in a natural way a dual special polyhedron, which is in fact a spine of M. For
each model tetrahedron A; of T, let R; denote the union of the links of all
four vertices of A; in the first barycentric subdivision. Since the face-pairings
are simplicial, gluing A;’s induces gluing the corresponding R;’s together. We
get a special spine P of M. In fact, the assignment 7 — P induces a bijection
between ideal triangulations (considered up to equivalence) and special spines
(considered up to homeomorphisms) [9].

For each 2-component £ of a special polyhedron P, there is a characteristic
map f : D? — P, which carries the interior of the disc D? onto &
homeomorphically and which restricts to a local embedding on S' = 9D?. We
will call the curve f|ppz : 9D? — P (and its image f|spz(0D?)) the boundary
curve O of &.



3 Lower bounds for complexity of manifolds with
boundary

3.1 Lower bounds via Z,-homology

Theorem 3.1. Let M be a connected compact 3-manifold with boundary. Then
ca(M) > p1(M, Zy).

By d(P) and v(P) denote the number of 2-components and the number of
true vertices of a special polyhedron P, respectively.

Lemma 3.2. Let P be a special spine of a connected compact 3-manifold M
with boundary. Then we have:

1. A(P) = (B2(M, Z2) + 1) = v(P) — 1(M, Z2);
2. d(P) > Bo(M, Zs) + 1.

Proof. Since the singular graph of a special spine is 4-regular, x(P) = d(P) —
v(P). Since M is connected, we have Sy(M,Zs) = 1 and x(M) = 1— 51 (M, Z2)+
B2(M, Zs3). The homotopy equivalence of P and M implies that x(M) = x(P).
Thus 1 holds.

In order to prove 2 we consider a part of the chain complex of P with Zo-

coefficients: 5
02 — Cl .

Recall that By = 9C5 is the group of 1-dimensional boundaries. Notice, that

INag + ... +agpy—1) =Y + ...+ Yov(p)—1, (2)

where g, . .., ag(py—1 are the 2-components and o, . . . , y2y(p)—1 are the edges of
P. Hence dim B; > 1. Since P is 2-dimensional polyhedron, we obtain d(P) =
dim Cy and dim(Kerd) = B3(P,Z2). Again, from homotopy equivalence of P
and M we have 85(P,Zs) = B2(M,Zs). The following computation provides 2:

d(P) = dim Cy = dim(Ker 9)+dim(Im ) = Bo(P, Z2)+dim By > S2(M,Z2)+1.

(3)
O

Proof of Theorem 8.1. Let T be a minimal ideal triangulation of M. Consider
the special polyhedron P that is dual to 7. It is clear that the number of
tetrahedra in 7 is equal to v(P) due to the duality of P and T. Hence ca (M) =
v(P). Applying Lemma 3.2 to P we obtain v(P) > 81(M,Z2). Hence ca (M)
B1(M, Zs).

Ow |



3.2 Comparing two lower bounds

Now we prove that the lower bound for ¢a (M) in Theorem 3.1 is stronger than
the Frigerio-Martelli-Petronio one (1).

Theorem 3.3. Let M be a connected compact 3-manifold with boundary. Then
B1(M,Z2) = Bo(OM;Zs) — x(M).
The desired inequality is derived from the following lemma.

Lemma 3.4. Let M be a connected compact 3-manifold with boundary. Then
B2(M;Zz2) +1 > Bo(OM; Zs).

Proof. Consider a part of the long exact sequence for the pair (M,0M) with
Zo-coefficients:

Hi(M,0M;Zs) £ Ho(0M; Zo) > Ho(M; Z).
Since Ker ¢ = Im ¢ and M is connected, we have

Bo(OM;Zs) = dim(Im ¢) 4+ dim(Im ) <
< diIn(Ho(M; Zg)) + dlm(Hl(M, c'?M, Zg)) =
Lefschetz duality gives a natural isomorphism H;(M,0M;Zy) = H?(M;Zs).
Since the homology group Hs(M;Zs) is finitely generated, then the vector
spaces Ho(M;Zo) and H?(M;Zs) are finite-dimensional and mutually

dual. In particular, they have the same dimension. Hence, Bo(M;Zs) =
B1(M,0M;Zs). O

Proof of Theorem 3.3. Applying Lemma 3.4 we have:
B1(M, Zs) = Bo(M;Z2) +1 — x(M) = Bo(OM; Z2) — x(M)

O

4 Class Mj; of 3-manifolds for which the lower
bound in Theorem 3.1 is achieved: minimal
triangulations

Let My, denote the set of connected compact 3-manifolds M with boundary
having an ideal triangulation 7 with 81 (M, Zs) ideal tetrahedra. By theorem 3.1,
T is a minimal ideal triangulation of M. In this section we study the anatomy

of T.



4.1 Minimal triangulations

We introduce two infinite sets 7, and .7, of ideal triangulations. Let 7 be an
ideal triangulation and e be its edge. We say that e is even (resp., odd) if each
model face contains even (resp., odd) number of pre-images of e. The set 7,
consists of all the ideal triangulations with at least two edges, one of which is
odd, and the others are even. The set .7, consists of all the ideal triangulations
with odd edges only. By definition, .7, N 7, = ().

Theorem 4.1. Let T be an ideal triangulation of a connected compact 3-
manifold M with boundary. Then the following are equivalent:

e T belongs to the union J,U J,.
o M belongs to My, and T is minimal.

Let us study in more detail ideal triangulations that have only odd and even
edges.

Lemma 4.2. Let T be an ideal triangulation having only odd and even edges.
Then T is connected and belongs to the union T, U J,. Moreover, if T belongs
to 7, then it has either one or three edges.

Proof. Since each model face contains exactly three model edges, T has at least
one odd edge. By definition, an odd edge is incident to every tetrahedron of 7.
Thus 7 is connected. Further arguments are obvious. O

Let 7 be an ideal triangulation of a connected compact 3-manifold M with
boundary belonging to 7, U 7. It follows that a given tetrahedron A in 7 falls
into one of the following categories that are determined by an edge identification
scheme of the corresponding model tetrahedron A.

Type 1: A has a single edge e, i.e. all the model edges of A are identified to form
e. In this case, the edge e must be odd in 7.

Type 2: A has two edges ey, eo such that there are three model edges of A with a
common vertex that are identified to form e;, and the other three model
edges of A are identified to form es. In this case, the edge e; must be even
in T, while the edge es must be odd.

Type 3: A has two edges ey, e2 such that there is a pair of opposite model edges of
A that are identified to form es, and the other four model edges of A are
identified to form e;. In this case, the edge e; must be even in 7T, while
the edge e; must be odd.

Type 4: A has three edges eq, es, e3 such that for each i € {1,2,3} there is pair
of opposite model edges of A that are identified to form e;. In this case,
each edge e; must be odd in T.



By Lemma 4.2, the set .7, can be divided into two pairwise disjoint subsets.
One of them consists of one-edged ideal triangulations and is denoted by 7!
The other consists of ideal triangulations with three edges and is denoted by

By definition, any ideal triangulation 7 belonging to 7. has at least one
even edge. It is convenient to divide even edges e of T into two types:

Type A: e is incident to tetrahedra of type 2 only.
Type B: e is incident to a tetrahedron of type 3.

There is a deep reason to divide the set 7, into two pairwise disjoint subsets
1 and Z2. Denote by w(T) the number of even edges of T that have type B.
Then 7 is in 7! if w(T) = 0. Otherwise T is in .72

So we have the partition of .7,U .7, into four subsets: 7}, 7.2, 7!, and 2.
The following lemma summarises the information about this partition.

Lemma 4.3. Let T be an ideal triangulation, then the following hold:
e T belongs to T} if and only if all the tetrahedra in T are of type 1.
o T belongs to Z? if and only if all the tetrahedra in T are of type 4.

o T belongs to T' if and only if all the tetrahedra in T are of types 1-2 and
at least one of them is of type 2.

o T belongs to 72 if and only if all the tetrahedra in T are of types 1-3 and
at least one of them is of type 3.

4.2 Proof of Theorem 4.1

Let P be a special spine of M that is dual to 7. Recall that d(P) and v(P) denote
the number of 2-components and the number of true vertices of P, respectively.
Let ao,...,aq(py—1 be the 2-components and 7o, ..., 7V2v(p)—1 be the edges of
P. Consider a part of the chain complex of P with Z,-coefficients:

o, -2 0.

Recall that By = 0Cj5 is the group of 1-dimensional boundaries. We claim that
the following are equivalent:

(a) T belongs to the union 7, U 7.
(b) T has only odd and even edges.
(

(d

)
)
c) a; =0 or oy =y + ... + Yay(p)—1 for every i € {0,...,d(P) — 1}.
)
(e) A(P) = B2(M,Zs) + 1.



(f) V(P) = ﬁl(M, Zg)
(g) T consists of 81(M,Zsy) tetrahedra.
(h) M belongs to M}, and 7T is minimal.

Indeed, the implication (b)=-(a) is the statement of Lemma 4.2. The reverse
implication (a)=(b) is clear by definition. The equivalences (b)<(c) and
(f)<(g) come from the duality between P and 7. The implication (¢)=-(d) is
evident, while the equality (2) implies the implication (d)=-(c). The equivalence
(d)<(e) is clear by (3), and (e)<(f) is a direct corollary of Lemma 3.2. And
the final equivalence (g)<(h) is obtained by Theorem 3.1 and by the definition
of My,. This completes the proof of the theorem.

5 Exact cover of M, with four subclasses

The partition of .7, U .7, induces a cover of M}, with four subsets M}, M2, M!
and M2. Where M} (resp., M2, ML, M?2) denote the set of connected compact
3-manifolds with boundary that posses an ideal triangulation from 7! (resp.,
T2, 71, 72). Now we show that this cover is exact.

Theorem 5.1. The sets ML, M2, M}, and M? are pairwise disjoint and cover

M.

Let M belong to Mj, and let 7 be a minimal ideal triangulation of M.
Denote by e(7) the number of edges of 7. Now we establish the number of
boundary components of M.

Lemma 5.2. Let T be an ideal triangulation of a connected compact 3-manifold
M with boundary. Then the following holds:

1. If T belongs to F,, then OM is connected.
2. If T belongs to 7., then OM has erxactly e(T) — w(T) connected

components.

Proof. Note that there is a one-to-one correspondence between the connected
components of M and the vertices of 7. Suppose that under the assumptions
of the lemma, 7 belongs to the union 7, U 7.

To establish the conclusion we first prove three claims, each showing that,
under certain conditions, some model vertices of a model tetrahedron are
identified to the same vertex of T.

Claim 1 If the three model edges incident to a model face o are identified to
form the same edge of T, then the three model vertices incident to o
are identified to form the same vertex of T .

Claim 2 If each pair of opposite model edges of a model tetrahedron § are identified
to form the same edge of T, then all the model vertices of A are identified
to form the same vertex of 7.



Claim 3 Each tetrahedron of type 1, 3 or 4 has exactly one vertex.

Indeed, let the three model edges incident to a model face o be identified
to form an edge e of 7. Suppose that e has distinct endpoints that are denoted
by u and v. It follows that each model edge incident to o has endpoints on the
pre-images of v and v, a contradiction. This proves Claim 1.

Let us prove Claim 2. Denote by A the tetrahedron in 7" that corresponds
to A. On the contrary, suppose that there is an edge e in A that has distinct
endpoints, say u and v. By hypothesis, there is a pair of opposite model edges
in A that are identified to form e. It follows that A has exactly two vertices.
This contradicts our hypothesis and completes the proof of Claim 2.

Finally, Claim 3 follows directly from Claim 1 and Claim 2.

Now we return to the proof of Lemma 5.2. The statement 1 follows from
Lemma 4.3 and Claim 3.

Now let 7 belongs to 7.. By definition, 7 has at least two edges, one of
which, say eg, is odd, and the others are even. By Lemma 4.3, all the tetrahedra
in T are of types 1-3 and at least one of them is of type 2 or 3. Since all
tetrahedra of types 1-3 are incident of eg, applying Claim 1 (to a tetrahedron
of type 2) or Claim 3 (to a tetrahedron of type 1 or 3) we obtain that the ends
of ey coincide (denote this vertex by vg. Recall that every even edge of type B
is incident to a tetrahedron of type 3. Hence, by Claim 3, its ends coincide with
vg too. Finally, one endpoint of an even edge of type A is vy, while the other
is a degree one vertex. It implies that 7 has exactly e(7) — w(7) vertices. This
completes the proof. O

Proof of Theorem 5.1. Let T}, T2, T}, and 72 be ideal triangulations belonging
to 7, 72, 7}, and 72, respectively. We need to prove that the corresponding
manifolds M}, M2, M}, and M? are pairwise non-homeomorphic. Since these
ideal triangulations are minimal (Theorem 4.1), we may assume they consist
of the same number, say n, of tetrahedra; otherwise the manifolds are non-
homeomorphic.

Recall if we are given an ideal triangulation 7 of a connected compact 3-
manifold M with boundary, we obtain the dual special spine P of M. As we
noticed above in the proof of Lemma 3.2, x(M) = x(P) = d(P) — v(P). Since
true vertices, edges and 2-components of P correspond to tetrahedra, faces and
edges of T, we have x(M) = e(T) — t(7). Then we apply the formula to show
that M} is different from M2, M}, and M?2. In fact, x(M}) = 1 — n, while
W(M2) = 3 —n, x(M}) = o(T}) — n, and x(M2) = e(T2) — n, where by
definition e(7}) > 2 and e(7.2) > 2. Hence, M} N M2 =0, M} N M} =, and
Mln M3 =0.

Now there are three cases to consider, depending on the equality between
the Euler characteristic.

First, if x(M2) = x(M}), then e(T!) = 3. By Lemma 5.2, M} has three
boundary components, while M2 has only one. Hence, M2 N M} = (.

Second, if x(M2) = x(M?2), then e(7}) = e(7.2). By Lemma 5.2, M} has
more boundary components than OM2. Hence, M! N M2 = (.

10



Consider the last case assuming x(M2) = x(M2). It follows that e(7.2) = 3.
Now we switch from the ideal triangulations 7.2 and 72 to its dual special spines,
denoted P and @, respectively.

To prove that the manifolds M2, M? are non-homeomorphic, we use the
e-invariant of Matveev — Ovchinnikov — Sokolov (see ?777), which is the
homologically trivial part of the order 5 Turaev—Viro invariant. We give the
definition of the e-invariant following [9]. Let R be a special spine of a connected
compact 3-manifold M with boundary. Denote by F(R) the set of all simple
subpolyhedra of R including R and the empty set. Set ¢ = (14++/5)/2, a solution
of the equation 2 = ¢ + 1. With each K € F(R) we associate its e-weight by

the formula
we (K) = (_1)V(K)€x(K)—v(K)7

where v(K) is the number of true vertices of K and x(K) is its Euler

characteristic. Set
tM)= > w(K).
KeF(R)

As shown in [9], ¢(M) is an invariant of M.

To complete the proof of the Theorem we show that t(M2) # t(M?). Let
us calculate t(M?2) by its special spine P. By the compactness of a simple
subpolyhedron if it contains a point of a 2-component, then it contains the
whole of it. Thus, to describe a simple subpolyhedron of P it is enough to
indicate which 2-components of P it includes (its triple points and true vertices
then will be determined uniquely). Since 7,2 has exactly three edges, and each
of these edges is odd, P has exactly three 2-components, denoted &7, &, &3,
and each boundary curve 9¢; passes exactly once along each edge of P. Hence,
F(P) = {0, P, Py, Py, Ps}, where P, = P\ §;. It is easy to see that v(P) = n,
xX(P) =3—=mn,v(P) =0, and x(P) = 2—mn, 1 <4 < 3. Summing up the
e-weights w.(0) = 1, w.(P) = (—1)"e>7?", and w.(P;) = 27", we get

H(M2) =1+ (—1)"e3=2 4 32,

Now we calculate t(M?2) by the special spine Q. Since T2 has exactly one
odd edge and two even edges, () has exactly three 2-components, denoted &g, &1,
and &;. Let & corresponds to the odd edge, while & and &5 correspond to the
even ones. We claim @ has exactly three proper simple subpolyhedra. Indeed,
two of these polyhedra are connected closed surfaces, denoted Q1, @2, such that
each Q;, 1 = 1 or 2, contains §; and do not contain the other 2-components of
Q. Therefore, Q1 N Q2 = (). The third polyhedron, denoted @3, is the union
Q1 U Q2 (i-e. a closed surface t00).

So we have F(Q) = {@, Q7 Qla QQa Q3}7 V(Q) =n, X(Q) = 3-71, and V(QZ) =
0, 1 <1¢ < 3. Summing up the e-weights we get

3
HMZ) =1+ (—1)"e® 2 4 ) " eX(@),

i=1

11



For each i, 1 <4 < 3, we claim x(Q;) > 2 — n. Indeed, let v}, ¢, and d;f
denote the number of true vertices, edges, and 2-components of P, respectively,
belonging to Q;. By construction, di = dj = 1 and d;“ = 2. We set v; =

v(Q) —vj” and e; = e(Q) — e . Since e(Q) = 2v(Q), we have
X(Q:) =vf —ef +df =(2—v)+(ef —v;)+ (df —2).

The inequality e; —v; > 1 can be easily proved by induction on v, by using
the fact that the surface @Q; does not contain all the edges of the special spine
Q. Tt follows that x(Q;) > 2 — n. Hence, 327" < Z?:l ex(@i)and we have
t(M?2) # t(M?). This then completes the proof. O

6 Hyperbolicity of manifolds in M,

We say that a compact 3-manifolds is hyperbolic if, after removing the boundary
tori and Klein bottles, we get a complete riemannian manifold of constant
sectional curvature K, = —1 with finite volume and totally geodesic boundary.

Theorem 6.1. Each M in My, with a few exceptions, is a hyperbolic manifold
with totally geodesic boundary components and some cusps.
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