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1 Introduction

In this paper, for an arbitrary irreducible complex representation ) of the symmetric group &,
we construct an arrangement of hyperplanes in the space of w). This arrangement, which we
have called “intrinsic,” is defined canonically in representation-theoretic terms. In the case of
the natural representation of &,,, it coincides with the so-called braid arrangement, studied,
in particular, by Arnold [1] in connection with the cohomology of the group of colored braids.
An attempt to generalize Arnold’s construction to other irreducible representations of sym-
metric groups has led us to quite dissimilar arrangements, whose complements, in particular,
are not K (m,1) spaces.

Let us recall the main result of [1]. Consider the natural representation of the symmetric
group &,, by permutations of coordinates in C". For any distinct i,j € {1,...,n}, let H;; =
{#z € V : z; = z;} be the set of fixed points of the transposition (ij) € &,; obviously, H;; is
a hyperplane in V' and (ij) acts as the reflection with respect to this hyperplane (“mirror”).
The collection of the (g) mirrors H;; is called the braid arrangement Br,, of hyperplanes. Let
M Dbe the complement to all these mirrors. Arnold [1] proved that M is a K(m,1) space with
7 being the group of colored braids, whence the cohomology ring H*(M) of M is isomorphic
to the cohomology ring of the group of colored braids. He also proved that the Poincaré
polynomial of M is equal to Poin(M,t) = (1 +¢)(1 +2t)...(1+ (n — 1)t).

Arnold’s results aroused much interest and were generalized in several directions. For in-
stance, Brieskorn [3] proved that the ring H*(M) for an arbitrary arrangement of hyperplanes
is isomorphic to the ring generated by all the logarithmic differential forms %O‘ where o = 0 is
the equation of a hyperplane. Then Orlik and Solomon [8] showed that this ring is determined
just by the intersection lattice of the arrangement (see [9]). There are also results for the case
where the permutation group &,, acts on M, and hence on H*(M). It was proved in [5] that
for the braid arrangement in C" and the natural action of &,,, the module M is isomorphic
to 2Indg;‘ ido, where ids is the identity representation of &s. It is important to note that
the braid arrangement and its direct generalizations to other series of Coxeter groups have
another description: their hyperplanes are the mirrors (sets of fixed points) of elements of
some finite reflection groups. The arrangements introduced in this paper do not, in general,
have this property.

We suggest a development of the described framework in quite another direction, replacing
the simplest natural representation of the symmetric group by other irreducible representa-
tions. Here, the naive approach, obviously, fails, since the set of fixed points of a transposition
for a general irreducible representation is no longer a hyperplane. However, an analysis from
the point of view of the representation theory of &,, suggests the correct approach.

The main result of the paper says that for every irreducible complex representation wy of
the symmetric group S,, there exists a canonical “intrinsic” hyperplane arrangement Ay in
the space Vy of this representation. This arrangement is a direct generalization of the braid
arrangement, has a natural description in terms of invariant subspaces of Young subgroups,
and enjoys a number of remarkable properties.

There are several constructions of this intrinsic arrangement. For instance, one can con-
sider the space of the representation of G,, induced from some “generalized Young subgroup”
(a product of wreath products of symmetric groups associated in a natural way with \) con-
taining 7). Then A is the intersection of the coordinate (Boolean) arrangement in the space
of this induced representation with the subspace corresponding to 7 (see Theorem 1).



An important property of the intrinsic arrangement Ay is that the collection of unit normal
vectors to its hyperplanes is an orbit of an action of the symmetric group; the convex hull of
this orbit is an important polytope.

The general theory of hyperplane arrangements is the subject of much research (see [9]).
From the point of view of this theory and the theory of lattices, our examples are, as far as
we know, new.! Their main feature and the key point of our approach is that we consider
arrangements and lattices invariant under an action of &, and use this invariance and the
representation theory of &,, to analyze them. Although there are some papers related to group
actions on hyperplane arrangements and lattices, they deal with quite different questions and
within a quite different approach. Chapter 6 of [9] is devoted to arrangements consisting
of the fixed hyperplanes of reflections of finite reflection groups; while our arrangements are
not generated by finite reflection groups, i.e., the groups generated by the reflections at the
hyperplanes are infinite (at least for nontrivial hook diagrams, see Sec. 4). This poses an
independent problem of studying such groups.

To describe the intersection lattice of Ay for an arbitrary irreducible representation
of G, is a quite difficult problem. We consider in detail the simplest nontrivial case, corre-
sponding to hook diagrams of the form A\ = (n—k, 1¥). Here we can already observe important
differences with the Arnold case k = 1. In particular, the complement to A in the case k > 1
is no longer K (m,1), and its fundamental group is Abelian (see Theorem 3).

For a background on hyperplane arrangements and related objects, we refer the reader
to [9], for that on the classical representation theory of symmetric groups, to [4], and for that
on symmetric functions, to [6].

The paper is organized as follows. In Sec. 2, we present our main construction of a hy-
perplane arrangement A, canonically associated with an irreducible representation 7y of &,,.
Section 3 describes an alternative construction of this arrangement as the intersection of the
coordinate arrangement in a larger space with the subspace corresponding to my. In Sec. 4,
we study in detail the hyperplane arrangements corresponding to hook diagrams. Finally, in
Sec. b we study a natural join homomorphism from the partition lattice II,, to the lattice of
invariant subspaces of Young subgroups, which, in particular, provides a natural characteri-
zation of the intrinsic arrangement Aj.

2 The intrinsic hyperplane arrangement associated with an ir-
reducible representation of the symmetric group

First, we introduce necessary notation.

For n € N, let Y,, be the set of partitions of n (or, which is the same, the set of Young
diagrams with n cells) and P, be the set of partitions of the set [n] = {1,...,n}. For p € Yy,
we say that a partition o € P, is of type pu if the sizes of the blocks of a form the partition p
of n; we denote by P, (u) the set of all partitions a € P, of type p.

For A € Y,,, let ) be the irreducible representation of &,, with diagram A and V) be the
space of this representation.

"When this article was under preparation, we have come upon the paper [11] in which closely related
objects are considered. However, the approach in [11] is completely different, in that, first, no hyperplane
arrangements are considered, and, second, the definitions are given just in a purely combinatorial form, while
our constructions are systematically defined in invariant representation-theoretic terms.



For a set A, denote by G[A] the group of permutations of its elements. Given a partition
a € P, with blocks A, ..., Ag, let S, = G[A;] X ... x G[Ak] be the corresponding Young
subgroup in &,. If « is of type u, we say that &, is of type pu.

Given a set T' of transpositions in &,,, consider the graph I'(7") on the set of vertices [n] in
which vertices i and j are connected by an edge if and only if the transposition (ij) lies in 7.
The partition of I'(T") into connected components determines a partition ap € P, which in
turn determines a Young subgroup &7 := G,,;..

For an arbitrary element o € &,, or a subgroup G C &,,, we denote

VY ={v e V) :m(o)v =}, V& ={v e Vy:m(g)v=wv forall g € G}.
The following observation is easy to prove.
Lemma 1. Given a collection T of transpositions in &, let VAT =NrerVy. Then VAT = V/\GT.

Lemma 2. Let S, be a Young subgroup in &, of type . Then
1 604 —
dim Vo = Ky,
where K, is the Kostka number.

Proof. The dimension dim V/\G“ is the multiplicity of the identity representation idg, in the
restriction of my to &,:

dim V7 = (Resg” my, idg, ) = (m, Indg" idg, ),

where the last equality is Frobenius reciprocity. Now, using the theory of symmetric func-
tions and observing that the Frobenius map sends Indg’; idg, to the complete symmetric
function h,, we obtain

dim V2 = (s5, h,) = Ky,

(where s) is a Schur symmetric function). O]

Note that in the case of the standard representation, i.e., A = (n — 1,1), for a single
transposition 7 € &,, we have dim Vy = n — 2 = dim V), — 1, that is, the invariant subspace
of 7 is a hyperplane, the collection of all such hyperplanes being exactly the braid arrangement
Br,,. The correct way of extending this construction to an arbitrary irreducible representation
is suggested by the following lemma.

Using the notation and terminology of the theory of lattices, for subspaces Vi and V5 of V)
we denote by V7 V V5 and V4 A V5 their join and meet in the sense of the lattice of subspaces,
ie., V1 + Vo and Vi N Va, respectively.

Lemma 3. Let A\ € Y,, and N be the Young diagram conjugate to \. Given a partition
a € Py (X)), consider an arbitrary collection T of transpositions in &,, generating the Young
subgroup &. Let Hp = \/ VY. Then Hr depends only on «, and codim Hy = 1.

Proof. We have HE = A (V). Now, (Vy)! is the eigenspace of the action of 7 in V)
TeT
with eigenvalue —1, hence A (VY )t is the subspace of the sign representation of the Young
T7eT
group 61 = &, generated by T. Therefore, the codimension in question is equal to the



multiplicity of the sign representation sgng,. of &1 in the restriction of m\ to &r. Thus,
similarly to the proof of Lemma 2, we have

codim Hyr = <Resg’Tl X, SgNg,.) = <7T)\,Indg; sghg,.)

= <S>\76M> = <S)\’7hu> = K)\/,/u

where 11 is the type of T'. By assumption, p = X', and Ky » = 1 by the well-known property
of Kostka numbers, so the lemma follows. O

Thus, we arrive at the following construction/definition.

Definition 1. Let A € Y,,. For every partition o € P,,(\’), consider a collection of transpo-
sitions T}, generating the Young subgroup &, and let

Hy:=\/ V{.
TET

By Lemma 3, the subspace H, does not depend on the choice of Tj, and is a hyperplane in V).
Thus, the set Ay := {Ha}aep,(v) is a hyperplane arrangement in V), which will be called
the intrinsic arrangement associated with the irreducible representation mwy of the symmetric
group S,,.

There is a natural transitive action of the symmetric group &,, on the set P, (\'). For
a € P,(N), denote by n, a unit normal vector to the hyperplane H, (defined up to a multi-
plicative constant). Clearly, one can choose the multiplicative constants in such a way that
No(a) = 0(na) for every a € P, (\') and every o € &,,. Thus, the set of normals {na}acp, (v)
to the hyperplanes of Ay is an orbit of &,.

The convex hull of the set of normals {n4}aep, (v 13 an important polytope (in another
form it appeared in [11| under the name of “Specht polytope”). For instance, in the case
A= (n—1,1) of the braid arrangement, it is the root polytope of type A,.

Among the normals n, there is a distinguished one in the following sense. Consider the
Gelfand—Tsetlin basis {e;} in V), indexed by the standard Young tableaux ¢ of shape A (see,
e.g., [7]). Then there is a unique normal n, that coincides (up to a multiplicative constant)
with an element of the Gelfand—Tsetlin basis. Namely, let N = (I1,1s,...,l;), and let

g = {{1,...,[1},{l1+1,...,l1—|—l2},...,{ll+...—|—lk_1—|—1,...,n}} GPH()\,)
Also, consider the “minimal” Young tableau T)r\ni“ of shape A obtained by successively inserting
the numbers 1,2,...,n into the first column of A from top to bottom, then into the second
column of A from top to bottom, etc. Then n,, coincides with € rmin (up to a multiplicative
constant), and all the other normals are the elements of the orbit of € rmin under the action

of &,,. The tableau T)r\“in and all the related objects (the partition «ag, the normal n,,, the
hyperplane H,,, the Young subgroup &,,) will be called distinguished.

The hyperplanes of our arrangement can also be described as follows. For the symmetric
group G[A] on a set A of cardinality N, denote by Q4 the corresponding antisymmetrizer:

Qu = % Y (1) 70 € C[S,).

" oe6A]



Proposition 1. For a partition o € P,()\'), denote by R, the reflection with respect to the
hyperplane Hy. Then

R, = 7T)\(1—2QA1...QA,€) G(C[Gn] (1)
where Ay, ..., A are the blocks of a and 1 is the identity element of &,,.
Proof. Consider the distinguished hyperplane H,,. Denoting by F,, the orthogonal projection

to the corresponding normal n,,, we obviously have R,, = 1 — 2P,,. But n,, coincides
with €pmin, and it is not difficult to show that the orthogonal projection to € min is exactly

TANQ1,. 1} Qe 41, i1} - Qi+t o1 41,m) )

so (1) is proved for H,,. Now, since any other hyperplane of A, is obtained from H,, by
the action of an element g € &,,, the corresponding reflection is obtained from R,, by the
conjugation by my(g), and the proposition follows. O

The number #.A) of hyperplanes in the arrangement Ay is equal to the number #P, (\)
of different partitions of [n] of type X. Since &,, acts transitively on P, (\'), this number is
equal to #S+!b(a) where Stab(«) is the cardinality of the stabilizer of an arbitrary partition

a € Py(N). Let N = (1™2m2 . .n™n). It is easy to see that this stabilizer is isomorphic to
the following subgroup of &,:

Wy = (6116,,) X (6216,,,) X ... X (6, 16,,,), (2)

where  stands for wreath product. Then

n! n!
N #W)\/ N Hk(k")mkmk'

#A\

Example 1. The standard representation (braid arrangement). Let A = (n — 1,1).
Then N = (21"72), so a collection of transpositions of type X is just a transposition 7, the
corresponding Young group & is the group (isomorphic to &3) generated by this transposi-
tion, and the corresponding hyperplane H,, which is the orthogonal complement to the sign
representation of &,, is just the invariant subspace H, = {v : 7v = v} of 7. Thus, we obtain
the braid arrangement. More exactly, the classical braid arrangement Br, is defined by the
same construction in the space Vyat = C™ of the natural representation 7y = T(n—1,1) T T(n)
of &, where the one-dimensional subspace corresponding to the identity representation )
belongs to all hyperplanes. Thus, Br, = 1/3\}” x ®1 where ®; is the empty l-arrangement and
Br;, is an irreducible arrangement which exactly coincides with A(,_1 1.

Example 2. Let A = (2,1"72). Denote by Y, the characteristic polynomial? of the arrange-
ment Ay = A n-2) (that is, the characteristic polynomial of the intersection lattice of Aj).
In this case, we can calculate x,, explicitly.

Proposition 2. The characteristic polynomial of Ay is given by the formula

o) = (= 1) = (= D)2 (—1) (- 1) = %((t 1y (—nh,

2Recall that the characteristic polynomial x(t) of a hyperplane arrangement and its Poincaré polyno-
mial Poin(t) are related by the formula x(t) = t¢ Poin(—t~!) where £ is the dimension of the ambient space.




Proof. Since N = (n — 1,1), the hyperplanes of A, are indexed by (n — 1)-subsets of [n], or,
passing to complements, by j € [n]. Observe that 75 1n—2y|s,_, = T(1n-1) + T2 1n-3), S0 the
hyperplane Hj is exactly the space of the representation m 1n-3y of the Young subgroup 63,
where we denote j = [n] \ {j}. It follows that for any A C [n] with |A] =k < n — 2, the
intersection NjeaH; is the (n — k — 1)-dimensional space of the representation T(g,n—k-2) Of
the Young subgroup &, 4.

Consider the distinguished hyperplane H,. Let A" = A\ {H,} and A" = Af" be the
restriction of A to Hy,. Then it is not difficult to see from above that A" = Ay 1n-3), while
A’ is the Boolean arrangement in the (n — 1)-dimensional space. Since the characteristic
polynomial y 4/ of the Boolean arrangement is equal to (t—1)"!, from the deletion-restriction
theorem x4(t) = xa(t) — xa~(t) (see |9, Corollary 2.57]) we obtain a recurrence relation
Xn(t) = (t — 1)" — xp—1(t) for x,. Since, obviously, x2(t) = ¢ — 1, the desired formula
follows. H

Example 3. The table below shows the basic characteristics of the intrinsic arrangements A»
for all diagrams A with 5 cells (except the trivial cases of the identity and sign representations,
where V), is one-dimensional): the dimension dim V) of the ambient space, the number #.4,
of hyperplanes, and the characteristic polynomial x 4, (t).

A dim V), | #Ax XA, (1) ‘
(41) 4 10 t—4)(t—3)(t—2)(t—1)
(32) 5 15 t5 — 15¢4 + 903 — 260t + 350t — 166
(312) 6 10 | 6 — 105 + 45¢* — 115¢3 + 1752 — 147t + 51
(21%) 4 5 t* — 53 4+ 10t — 10t + 4

3 The “coordinate” model of the intrinsic arrangement

The intrinsic arrangement A) is defined for the irreducible representation 7y of &,,. However,
this representation has different realizations. By a slight abuse of language, we will denote
by the symbol Ay the corresponding arrangement in whatever space the representation my is
realized; this should not cause any ambiguity.

Let X = (1"™12™2 . n™) and let Wy, be the group given by (2). For each subgroup of the
form &1 &,,, , consider the representation sgny ¢id,,, obtained by taking the sign represen-
tation in each factor &y and the identity representation of &,,,. Consider the corresponding
induced representation of &,,:

Ex = Ind%’;, ((sgny tidpy, ) X (sgng 2idm,) X ... x (sgn, tidp,,))- (3)
Observe that dim &y = #.A,.

Lemma 4. The multiplicity of my in the decomposition of £y into irreducible representations
1s equal to 1.

Proof. Consider the Young subgroup &y, C &,, corresponding to the diagram X', and let ny =
Indgzl sgny, be the representation of &,, induced from the sign representation of Gy,. It is
well known from the classical representation theory of symmetric groups that the multiplicity
of 7y in ny is equal to 1.



Now, observe that we have a natural embedding &), C Wy, and denote =y, = Ind‘évjl' SgNy/.

By the transitivity of induction, we have ny = Indg};/ Zy. It is not difficult to see that

Ex = (Sgnl ZRegml) X (Sgn2 ¢ Regmg) XX (Sgnn ! Regmn)a

where Reg. is the regular representation of G;. Comparing with (3), it follows that &y C ny,
and hence the multiplicity of m) in the decomposition of &)/ is at most 1.

It remains to prove that 7 is indeed contained in &y,. To this end, recall that the repre-
sentation 7y can be realized in the space M*" spanned by the elements e; = > wer, Sgn(o)o(t)
where ¢ is a Young tableau of shape X and R, is the row stabilizer of ¢ (and we mean the
permutation action of &,, on Young tableaux). The subrepresentation 7 is spanned by the

elements of the form
> oler) (4)
geCt

where C} is the column stabilizer of t. Now, observe that the subspace of M* corresponding
to &y consists of the linear combinations of e; such that if tableaux ¢; and ¢y differ only by
the order of rows of equal length, then e; and ey have equal coefficients. But it is easy to see
that the elements (4) satisfy this property, hence m) C &y. O

Remark. If )\ has no rows of equal length greater than 1, then the group Wy coincides with
the Young subgroup &y, and the representation £y coincides with 7). In this case, Lemma 4
reduces to a key fact of the classical approach to the representation theory of symmetric group
(the Frobenius—Young correspondence).

Theorem 1. Let By be the Boolean (coordinate) arrangement of hyperplanes in the space MY
of Exr. Then the restriction of By to the subspace Vx C M* of the irreducible representation
my coincides with the intrinsic arrangement Ay.

Proof. By Lemma 4, there is a unique subspace Vi C M* such that the restriction of &y to
V) is isomorphic to my. Denote by P : M XN V) the orthogonal projection to V; it is an
operator commuting with the action of &,,. Now, consider the distinguished tableau 7'/’{“1“ and

max min

the conjugate tableau 737 = (7]™")" of shape X'. Let wy € M X be the tabloid corresponding
to /. Note that wg is a cyclic vector of M A and, consequently, Pwy is a cyclic vector of
Vi, so Pwg # 0. Further, wqg is the normal to one of the hyperplanes By of the coordinate
arrangement By. Hence Pwy is the normal to By N V). By construction, the distinguished
Young subgroup &,, acts on the vector Pwy as the sign representation. Since, by Lemma 3,
the multiplicity of the sign representation of &,, in my is equal to 1, it follows that Pwy
coincides (up to a multiplicative constant) with n,, and, therefore, By N V) = H,,, i.e.,
BonVy € Ay. The rest follows from the fact that all the other hyperplanes both from B) and
A, are obtained from By and H,,, respectively, by the action of &,, and the projection P
commutes with this action. O

4 Representations corresponding to hook diagrams

Let A = (n—k, 1%) be an arbitrary hook diagram. Then M*» = A¥+1(C") is the (k+1)th exte-
rior power of C™ (the space of totally antisymmetric tensors T" of valence k+1), the coordinate



arrangement By,,_j, 1) consists of the (,ﬁl) “coordinate” hyperplanes Hy := {T7 = 0}, where

by I ={i1,...,ix+1} we denote a (k + 1)-subset of [n], assuming that 1<i; <ia<...<ig41<n,
and the restriction of this arrangement to V(,,_ 1) is exactly the arrangement A, _j 15).
The representation of &,, in A¥T1(C") decomposes into the sum of two irreducible rep-
resentations isomorphic to m(,_j 1xy and m;,_j_q 1x+1y. Denote the corresponding subspaces
by Vk(kH) and V(k+1), respectively, so AFT1(C") = Vk(k—i_l) @ VD Then the equivari-

E+1 kt+1
ant embedding Vk(k) — Vk(kH) is given by the formula Vk(k) > a— da € Vk(kﬂ)

0 : AF(C™) — AF1(C") is the usual differential in the exterior algebra:

where

k+1 )
= (—1)j+1T =

i1 iy
1

+

(0T)

i1

.
Il

(as usual, a hat over an index means that the index is omitted). The following theorem shows
that the arrangement A, 1x) can be essentially given by the set of equations 91" = 0.

Theorem 2. Consider the hyperplane arrangement C(,,_j, 1y = {Hr} in AR (C™) where
Hy ={T € A*(C"): (0T); = 0}
and I ranges over all (k + 1)-subsets of [n]. Then
Cln—t,ak) = Amr,1k) X P

where @4 is the empty arrangement in the (-dimensional space with € = dimm, ;1 1k-1y =
-1

(k2

Proof. Follows from the above considerations and the identity 8> = 0. Namely, each hyper-

plane from C(,,_j, ;#y is the direct sum of a hyperplane from A, _; ;») and the space Vk(f)l O

This construction is a direct generalization of the case of the braid arrangement Br,
corresponding to the standard representation of &,,. Namely, let A = (n — 1,1), that is,
k = 1. Then A?(C") can be identified with the space MKV = {(aij); + aij = —aji} of

skew-symmetric n X n matrices. The subspace V1(2) of the representation 7(,_1 1 is given by

n
V1(2) = {(ay)i; : aij = a; — aj where (a;)7_; € C", Zaj = 0}.
j=1

% hyperplanes H;; :=

{M € Mgkew . a;j = 0} for 1 < i < j < n, and the restriction of this arrangement to V1(2) is

exactly the irreducible braid arrangement Br,. While the arrangement C(,,_; 1) in C" consists
of the hyperplanes of the form {o; — a; = 0}, which is the standard definition of the braid

The coordinate arrangement B,_1 1) in MKV consists of the

arrangement Bry,. Thus, C(,,_1,1) = Bry, and B(,_1 1) = Bry,.

Arnold’s result [1] that the complement of the braid arrangement is a K (7, 1) space ignited
attempts to generalize it to a wider class of reflection arrangements. This generalization was
proved in full by Bessis [2]. In the remaining part of this section, we will prove that the

10



complements of our arrangements corresponding to hook diagrams with & > 1 are never
K(m,1). In particular, in this case the group generated by all reflections at the hyperplanes
is infinite.

Suppose there exists a linear dependence between the left-hand sides of several hyperplane
equations, i.e., there exist nonzero ai,...,a, € C and (k + 1)-subsets I, ..., I, C [n] such
that " | a,(0T), = 0. Here the vanishing of the left-hand side means that the coefficients
of the elements with the same index sum to 0. Thus we can focus our attention on the indices
I, only, which brings an abstract simplicial complex into the picture.

The abstract complex we need is just the simplex S on the set of vertices [n] (i.e., each
subset of [n] is a simplex of S). Consider the chain complex C' = C(S) on S with coeffi-
cients from C and denote its boundary map by d. Then the above equality is equivalent to
S apdl, = d(3°" arly) = 0, where I, is viewed as a simplex in the abstract complex and
as a generator of the respective chain complex. Thus, z = Y ", a,I, is a cycle in the chain
complex. The following observation is obvious.

Lemma 5. If a chain in a simplicial complex is a cycle of dimension greater than one, then
it cannot be a linear combination of less than 4 natural generators (simplices).

Lemma 5 immediately implies the following.

Lemma 6. The intersection of any two hyperplanes in A(n,l,lk) for k> 1 is double (i.e.,
there is no other hyperplane containing this intersection).

Theorem 3. Let A = (n—Fk, 1%) with k > 1. Then the fundamental group 7 of the complement
to the arrangement Ay is free Abelian of rank equal to the size of the arrangement. Besides,
the complement is not K(m,1).

Proof. By factoring out we can reduce the problem to an essential arrangement.

Recall from [9] that the generators of 71 are one for each hyperplane, and relations corre-
spond to every intersection of hyperplanes of codimension 2. More precisely, assume that m
hyperplanes have a common subspace J of codimension 2 and there are no other hyperplanes
containing J. Denote the generators corresponding to these m hyperplanes by a1, as, ..., apm.
Then the relations corresponding to J are

a1ag - - Qm = 0203 Ama1 = " = Qmpa1 " Am—1-

As Lemma 6 implies, in our case for each codimension 2 subspace J we have m < 2, and
m = 2 only for J that lies in two hyperplanes. Thus, we have the relations ab = ba for any
two generators a and b. The group given by these generators and relations is the free Abelian
group of rank equal to the number of hyperplanes.

Now, if the complement were K (7, 1), then it would have been of homotopy type of a torus
of dimension N = (kil) In particular, the homology of the complement must be nonzero in
dimension N. On the other hand, N > n, therefore, the rank of the intersection lattice is less
than N. Thus the homology of the complement is 0 in dimension N, whence its homotopy
type is not that of a torus. O

Example. Let n =5, k = 2, and A = (3,12). There are 10 = (g) hyperplanes, given in the
space A?(C) of dimension 10 with coordinates ¢;; by the following equations: for each triple
s =1ijk (i < j < k), the equation E(s) is

tij — tik + 1t = 0.
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All the hyperplanes have the common subspace V), of dimension 4 where p = (2, 13). Factoring
out the common subspace, we get an essential arrangement in V) of dimension 6. The left-
hand sides of the 10 equations above have 5 linear dependencies corresponding to the standard
basis Tjjp (i < j < k < 1) of A*(C?). For instance, the relation corresponding to the basic
element T934 is F(123) — E(124) + E(134) — E(234) = 0.

5 Representations of the partition lattice

Let II,, = (P, <) be the partition lattice, i.e., the set of partitions of the set [n] ordered
by refinement. It is easy to see that the set YS,, of all Young subgroups in &,, ordered by
inclusion is a lattice, and the map

v 1, = YS,, Y(a) = B,

is a lattice isomorphism between YS,, and the partition lattice II,,.

It is well known that the set of all subspaces of a vector space ordered by inclusion is
also a lattice, where the greatest lower bound and the least upper bound are given by the
intersection and the sum of subspaces, respectively. Now, for a fixed Young diagram A of
size n, denote by S(V)) the lattice of subspaces of V. We have a map i) that associates with
a subgroup G C &,, its invariant subspace VAG in V). Considering the composite ¢ = i) o,
we obtain a map

oy 1, — S(V/\)

that sends a partition a of [n] to the invariant subspace V)\G".
Given « € II,, denote by a € Y,, the partition of the integer n determined by the sizes of
blocks of «.

Proposition 3. Fiz A € Y,, and denote ¢ := ¢). Then

(i) ¢(aVp) = ( ) Ap(B);
(i) ¢(anpB) D gla)V¢(B);
(i) dim ¢(a) = Km,
(iv) ¢(a) =0 unless A > @& (where &> stands for the dominance order on partitions).
Proof. (i) Denote V = V). We have ¢(a) A ¢(8) = ¢(a) N ¢(B) = VO N VS5 = V(6a:Gp) —

V¥eVB) — p(a v B), where by (G, Sg3) we denote the subgroup in &,, generated by &, and
S, which is exactly the Young subgroup corresponding to oV 3.

(ii) We have ¢(a) V ¢(B) = VOa + VOs € Va5 = VCars = p(a A B).

(iii) Follows from Lemma 2.

(iv) Follows from (iii) and the upper triangularity of Kostka numbers (see, e.g., [6, Sec-
tion 1.6]). O

Remark. As one can easily see, the equality in (ii) does not hold in general.

Corollary 1. The Kostka numbers satisfy the following inequality: for every A € Y, and any
a? 5 e Hn?
KAav5+KAaAB K)‘O‘+K>\B

12



Proof. By Proposition 3, the right-hand side is equal to
dim ¢(e) + dim ¢(8) = dim(¢(a) A ¢(8)) + dim(¢(a) V (5)).
But dim(¢(a) A ¢(8)) = dim (o V §) = K, 75, while
dim(¢(e) V ¢(8)) < dim ¢(ar A B) = K, 755-
0

Thus, in the lattice S(V3) of all subspaces of Vi we have the subset SY (V) = ¢(Il,,) of
subspaces invariant with respect to Young subgroups of G,,. It follows from Proposition 3
that the intersection V3 A V4 of two subspaces Vi, Vo € SY(V)) also lies in SY(Vy). However,

their sum V; V Va does not necessarily lie in SY (V). Nevertheless, the following statement
holds.

Lemma 7. The set SY(Vy) of subspaces in Vy invariant with respect to Young subgroups
of &, ordered by inclusion is a coatomistic lattice.

Proof. As we have observed, the intersection of two subspaces from SY (Vy) belongs to SY (V}),
which implies that SY(V)) is a meet-semilattice. Besides, it contains the greatest element
1 = Vi = é(e) where ¢ is the partition into separate points: € = {{1},{2},...,{n}}. But it
is well known (see, e.g., [10, Proposition 3.3.1]) that a meet-semilattice with 1 is a lattice.
Obviously, for every a € II, with & = (2,1"2), the corresponding subspace V)\G’a is a
coatom of SY(Vy). The fact that every element Vf of SY(V}) is the greatest lower bound of
atoms follows from the considerations of Section 2: it suffices to take a collection of trans-
positions that generate Gg; each transposition (ij) gives rise to a partition a;; € I, with
@ij = (2,1"72?) where «;; consists of the 2-block {ij} and n — 2 singletons, and Vf is the
greatest lower bound of the corresponding coatoms of SY (Vy). O

We emphasize that the meet of two elements in SY (V) coincides with their meet in S(V}),
but for the join this is, in general, not the case. So, SY(V}) is not a sublattice of S(V}).
Also, observe that, as we have mentioned in the proof of Lemma 7, the greatest element
of SY(Vy) is 1 = Vi, while the smallest element 0 is the zero subspace {0} for all A # (n).
Summarizing, we obtain the following.

Theorem 4. Denote by SY(V)\)* the order dual of SY(V)\) (which is an atomistic lattice).
Then the map ¢ : 11, — SY(Vy)* is a join homomorphism of lattices.

If That = T(n_1,1)+7(n) 1S the natural representation of &, in C", then SY (Viat)* is exactly
the intersection lattice of the braid arrangement Br,,, which is well known to be isomorphic
to the partition lattice II,, (see, e.g, [9]); thus, in this case ¢ = ¢pat is in fact an isomorphism
of lattices.

Theorem 5. The lattice SY (Vi\)* is embedded into the intersection lattice L(Ay) of the hyper-
plane arrangement Ay, which is a minimal hyperplane arrangement satisfying this property.

Proof. Recall that SY(V))* is an atomistic lattice, the atoms being the subspaces VY for all
transpositions o € &,,. Thus, to show that SY(V))* C L(Ay), it suffices to prove that every
such atom can be obtained as the intersection of a collection of hyperplanes H,. For i,j € [n]
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and « € P,(\), we write i ~, j if i and j lie in the same block of «. Let us show that for
every transposition o = (ij),
Ve = N H,. (5)
a€Pp(N): irvaj
Obviously (since everything is invariant under &,,), it suffices to prove this for o = (12).
Let ag be the distinguished partition (see Sec. 2). Any other partition « of type X such
that 1 ~4 2 is obtained from ag by conjugation by some element g € &3 ), and then
H, = gH,,. It follows that the orthogonal complement to the right-hand side of (5) is the
subspace spanned by &3 ,1na,. But this is exactly the subspace in V) spanned by the
Gelfand—Tsetlin vectors e; indexed by Young tableaux ¢ such that 2 lies in the first column
of ¢, while VY is the subspace in V) spanned by the vectors e; indexed by Young tableaux ¢
such that 2 lies in the first row of t. Thus, these are the orthogonal complements to each
other, and the first assertion of the theorem follows.
On the other hand, each hyperplane H, of A, is, by construction, obtained as the join of
elements of SY (V))*, which implies the minimality. O
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