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Crop circles
drawn by Riemann’s zeta function

and some other its nearby properties
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Abstract. Under nearby properties of the Riemann’s zeta function
we mean properties of approximations to this function, or, more gen-
erally, properties of functions which are similar to the zeta function in
a certain respect. Of these properties the most interesting are those
that cannot be formulated in terms of the zeta function alone.

In the paper we consider particular approximations to the al-
ternating zeta function n(s) = > oo ;(—1)""n~* by finite Dirichlet
series Ny (1, 8) = SN ann(T)n® with coefficients depending on a
real parameter 7 (these coefficients are defined via the values of the
Riemann—Siegel theta function and its derivatives at point 1/2 + ir).

The paper presents numerical evidence that the difference
nn (7, 8) —na (7, s) nearly (with high accuracy) satisfies the functional
equation for the alternating zeta function.

The paper also contains a large number of plots of the ratios
nn (7, 0+it) /na (T, o+it) as functions of ¢ for fixed M, N, and o. These
plots have very interesting structure: each consists of a tower of almost
circular arcs (“crop circles”) each containing one point corresponding
to the value of the ratio for ¢ equal to the imaginary part of a nontrivial
zeta zero.

Key words: Riemann zeta function, Hardy—Siegel theta function, functional
equation, the Sieve of Eratosthenes.
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1 Our approximations of the eta function by finite
Dirichlet series

All zeros of Riemann’s zeta function
Cs) =S n (1.1)
n=1

are also zeros of the alternating zeta function (known also as Dirichlet eta func-
tion):
n(s)=> (=1)""n7" = (1-2x27°)((s). (1.2)
1

n—=
We are to approximate 7(s) by finite Dirichlet series

N (T,8) =) ana(T)n (1.3)

with specific coefficients
(IN71(7—),'..,CLN7N(7-) (14)

depending on a real parameter 7 (its role will be explained later). These coeffi-
cients will be determined by the requirement that finite sums should behave
in a certain sense like the infinite Dirichlet series from (1.2)). Conditions of such
kind were named in [7] modes of similarity.

In this paper we shall work with the following mode of similarity introduced
in [7, Section 4]. It is based on the well-known representation

C(1/2 +it) = e 0O Z(t) (1.5)

for real t where continuous real valued functions 6(t) and Z(t) are known re-
spectively as the Riemann—Siegel theta function and the Hardy Z-function. The
former function can be defined as

0(t) = Im (Inl (1/4 +it/2)) — In(7)t/2,  6(0) =0, (1.6)

where InI" is the continuous version of the natural logarithm of the gamma func-
tion; respectively, the Hardy Z-function can be defined as

Z(t) = eD¢(1/2 +it). (1.7)



The functional equation for Riemann’s zeta function is equivalent to the state-
ment that Z(¢) is real for real t. In terms of the function 7(s) the latter fact can
be expressed as

Im (h(t)n(1/2 +1it)) =0, (1.8)
where 00
h(t) = TV (1.9)

In its turn condition ([1.8)) is equivalent to the infinite system of numerical equal-
ities

Im (%h(t)n(l/Q +it)

for an arbitrary fized real 7 and k =0,1,....
Having at our disposal N coefficients (|1.4), we impose N — 1 formal counter-

parts of ((1.10))

t:) —0 (1.10)

k
Im(%h(t)nN(T,l/Q—Ht) ):0, k=0,...,N—2, (1.11)
t=1

and the condition of normalization
anq(17) =1 (1.12)

(more explicit definition of coefficients are given in Appendix 1, and a direct
way of calculating ny (7, s) is given in Appendix 2).

Numerical calculations show that the so defined functions ny(7,s) can give
very good approximations to 7(s) when s is not too far from the point 1/2 +
iT; respectively, ny(7,s) vanishes near the initial zeta zeros. Table [l| exhibits
coefficients for N = 25 and 7 = 14; Table |2 presents comparison of the
values of ny(7,s) with n(s) for diverse values of N, 7, and s; Table shows
the distances between certain zeroes of ny (7, s) and ((s); the latter as usual are
denoted as 1/2 + iy, with

v = 141347 ..., 7o = 21.0220..., v = 25.0108, ... (1.13)

The data from Table [2] and other similar calculations suggest the following
surmise.

Conjecture A. For every real T and every complex s

n(s) = lim ny(T,s) (1.14)

N—o0
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where ny (T, s) is the finite Dirichlet series (1.3) satisfying conditions (L.11)) and
1.12)) (more explicit definition of ny (7, s) is given by (5.12)), (7.15)), (7.17), (7.18),

7.16), (7.14), and (5.8).

2 Crop circles

We are to look at objects which seem not to be very popular among re-
searchers, namely, at the ratio of two approximations to the value of a function
having different number of summands. More precisely, we are to investigate the
behavior of the ratio

nn (7,0 + it)

Ny (T, 0 + it)
as a function of ¢ for fixed M, N, 7, and . According to Conjecture A for large
values of M and N both the numerator and the denominator in (2.1 are very
close to n(o +it), and respectively the ratio is very close to 1. By this reason the
actual quantity of our study is

(2.1)

Yoy wlrot) = nn (T, 0+ 1t) i nn (T, 0 +1it) — nM.(T,O' + it). (2.2)
’ Ny (T, 0 + it) Ny (T, 0 + it)
Figure |1| exhibits the set of complex values assumed by for M = 350,
N =349, 7 = 30, 0 = 1/3, and ¢ ranging from t§ = 6.5347... to t¥ = 16.3530....
Astoundingly, this “trajectory” looks as if it was drawn by a compass.
In order to numerically estimate its “roundness” we can consider the osculating
circle at the point

T350,310(30,1/3,71) = —1.3766... x 107**2 + 3.0854... x 107!, (2.3)
This osculating circle has its center at the point
C; = —1.3805... x 107" +1.5337... x 107" (2.4)
and the radius of the circle is equal to
R; = 1.5517... x 1072, (2.5)

When ¢ runs from t} = 13.9674... to t{ = 14.3020..., the argument of the differ-
ence Y350349(30,1/3,¢) — C; changes from (near) 0 to (near) 7 (this part of the
trajectory is depicted on Figure 1| in bold). At the same time the absolute value
of this difference stays very close to R;: for this range of ¢

0.99974 R, < |T350734g(30, 1/3,t> — 01’ < 1.00026 R;. (26)
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Figure [2| demonstrates the trajectory of for t taking values in a larger
range, namely, from t5 to t§ = 22.4466.... This extended range of ¢ now in-
cludes 75, the imaginary part of the second nontrivial zeta zero. The part of the
trajectory from t5 to tP is exhibited in red (as on Figure [l) but the new part,
from tP to t2, is exhibited in green. The scale of Figure [2| differs from that of
Figure [l and by this reason the red arc on the former picture looks much smaller
than the same arc on the latter picture.

When ¢ runs from t2 to t2, Y350 319(30, 1/3,¢) again rotates counter-clockwise
along a remarkably almost circular trajectory. This part of the trajectory goes
very close to the osculating circle at the point

T350.319(30, 1/3,72) = 2.0864... x 10724 — 2.8104... x 10~ %1, (2.7)
The radius of this osculating circle is equal to
Ry = 1.4249... x 10724 (2.8)
and its center lies at the point
Cy = 2.0997... x 1072 — 1.3854... x 107 %] (2.9)

When ¢ runs from t5 = 20.8539... to tJ = 21.1904..., the argument of the differ-
ence Y350.340(30,1/3,¢) — Cy changes from (near) —7 to (near) 0. The distortion
of the spanned semicircle (shown in bold green on Figure [2)) is a bit worse than
in (2.6):

0.99907 Ry < |Y350,.349(30,1/3, %) — Ca| < 1.00096 Ro. (2.10)

We continue to extend the range of ¢, now till t¥ = 26.7351...; this extended
range includes 73, the imaginary part of the third nontrivial zeta zero. Figure [3]
demonstrates the corresponding trajectory in three colors: red for ¢ from t§ to t?,
green for ¢ from t? to t5, and magenda for ¢ from t5 to t. The scale of Figure
differs from that of Figures [[}H2] and respectively the red and green arcs on the
former picture look much smaller than the same arcs on the latter pictures.

The magenta arc Figure[3]is again is very close to the corresponding osculating
circle touching the trajectory at the point

Y350.310(30,1/3,v3) = —5.4194... x 107> 4 1.1554... x 1072, (2.11)
The radius of this osculating circle is equal to

R3 = 5.8365... x 1074, (2.12)



and its center lies at the point
C3 = —5.4463... x 107" +5.7180... x 107241 (2.13)

When ¢ runs from t§ = 24.8431... to t§y = 25.1787..., the argument of the differ-
ence Y350 349(30,1/3,¢) — C3 changes from (near) 0 to (near) m while the absolute
value stayes near R3. The distortion of the spanned semicircle (shown in bold

magenta on Figure [2)is a bit worse than in ([2.6) but better than in (2.10):
0.0.99953 R35 < |T3507349(30, 1/3, t) — Cgl < 1.00048 R5. (214)

We can continue to extend the range of ¢, and many times observe the same
pattern (see Figures 4-30): if k is not too big, then the kth nontrivial zeta zero
manifests itself by an (almost complete almost ideally circular) arc with point
T'350,349(30, 1/3,7%) lying near the topmost or bottommost (depending on the
parity of k) point of this part of the trajectory.

With the growth of k the radii of these circles enlarge. Let Ry and C, be the
radius and the center of the osculating circle at point Y350 349(30, 1/3, vx). Table
demonstrate the growth of the radii. The data from this table are well fit by the
curve

R(t) = —242.418 + 0.098t + 0.0009078¢> + 0.00001235¢ (2.15)

— see Figure (31}
The distortion increases as well. Table [5| contains approximate values of tF
and t} such that 7, € (t¥,t}), and the argument of the difference

T350734g(30, 1/3, t) — Ck (216)

increases (almost) by 7 when ¢ runs from t} to ty (shown in bold on Figures
1-30). The two last columns in Table [5| contain approximations to the minimal
and the maximal values of
| T350,349 (30, 1/3, 1) — Gy
Ry,

(2.17)

for t € [t t] (actually, this extreme values were calculated by sampling the
interval with step 1/100).

Traditionally, one studies the zeta function on the upper half plane because
the lower half plane just mirrors the upper one. This is not so in our case — unless
7 = 0, the trajectory for the negatives values of ¢ is not the mirror image of the
trajectory for the positive values of ¢ (cf. Figures —1 and 1 paying attention to
the difference in their scales). In general, for negative ¢ the trajectory follows the
same pattern of alternating almost circular arcs but they have larger radii and
deteriorate quicker.



3 Zeta zeros

As it was indicated above, n(s) is well approximated by nx (7, s), and the latter
function has zeroes near the zeta zeros. As for Yy n(7,0,t) (defined by ([2.2)),
at first sight it seems that this ratio need not contain any information about
(approximate) positions of the zeta zeros, at least when o # 1/2. Moreover, the
values of ny (7,0 + it) and ny (7,0 + it) are both close to n(s) and hence they
cancel one another rather severely. However, some information about zeta zeros
can be extracted from Yy y(7, 0, 1), and in several ways, some of which are rather
surprising.

At first, let us have a look at the real part of Yy n(7,0,t). According to
Table [4 and Figure [31] there is a fast growth of the radii of the osculating circles.
By this reason, in order to be able to see details for sufficiently large range of t,
on Figure [32| we depict the values of the product

107707, §(7, 0, 1) (3.1)

where R(t) is the fitting function (2.15)).

The dots on the vertical axis correspond to the nontrivial zeta zeros. We
see that the real part of Y3s50349(30,1/3,¢) vanishes whenever ¢ is close to the
imaginary part of a nontrivial zeta zero; Table [0] contains corresponding numer-
ical values. Observe that Re(Y350,349(30,1/3,)), in contrast to Re(¢(1/2 + it)),
vanishes (in this range of ¢, at least) near the imaginary parts of the nontrivial
zeta zeros only while Re(¢(1/2 + it)) has many other zeros.

There is yet another distinction between Ys50349(30,1/3,¢) and ((1/2 + it),
namely, the imaginary part of Yss50349(30,1/3,¢) does not vanishes whenever ¢
is close to the imaginary part of a nontrivial zeta zero; quite the opposite, near
these points Im(Y350.319(30,1/3,¢)) has its extremes — see Figure (the same
property can be observed on Figures 1-30, namely, points corresponding to t = 4
lie very close to the topmost or bottommost point of the corresponding semicircle).
Table (6) shows that the zeros of Im( %5 549(30, 1/3,t)) lie closer to the imaginary
parts of the nontrivial zeta zeros than the zeros of Re(Ys50349(30,1/3,1)).

Figure is somewhat akin to the well-known Fourier transform of the von
Mangoldt function [9]; however, there is an essential difference — on Figure (33))
the spikes alternate their directions.

The derivatives of the real part of Yy v (7, 0, t) also contain information about
the zeta zeros. Let us denote the positive imaginary parts of consecutive zeros of

Re(Ty, n(7,0,1)) as

tE/[,NQ(T? U)? tI_]\l/[,N,l(Tv O)a tI]\J/[,N,l(’ra J)a t]]?J,N,l(’B 0)7 te

t%/[,N,k(T7 0)7 t[J\J/I,N,k(Tu 0)7 tll?i,N,k (T) 0)7 s (32)



Table [7| presents the values of these numbers for the case M = 350, N = 349, 7 =
30, 0 =1/3, and k = 1,...,30. Each of the intervals (ty; y ,(7,0), ti; n,(T,0))
contains 7, and this number lies close to the center of the interval — see Table 8]

The second derivatives of Re(Yy n(7,0,%)) and Im (Y n(T,0,t)) also “feel”
the zeta zeros.

4 Variations of the trajectories

We have considered the trajectory of for one fixed selection of the values
of the parameters M, N, 7, and 0. For other values of these parameters the
picture is qualitatively the same (but the radii changes); here we consider what
happens when we modify one of these parameters.

Larger difference of the sizes of Dirichlet series. So far we considered
the behavior of Yy, n(7,0,t) for the case M — N = 1 but this condition is not
necessary — see Figure [34]

Shorter Dirichlet series. The circular structure of the trajectories of
Yy n(T,0,t) becomes visual already for small values of M and N — see Fig-
ures 39 and [36]

Different o. Figure |38 shows the trajectories for certain fixed M, N, and T,
and diverse o.

5 Functional equation

The functional equation is considered to be an important property of the zeta
function. Here we will see what kinds of functional equations nearly hold for
nn (7, s) and for Yo N (7, s).

5.1 The case of the zeta and eta functions

The classical functional equation can be stated as the identity

§(1—s)=&(s) =0 (5.1)

where
§(s) = g(s)C(s), (5.2)
g(s) = 72 (s—DI'(E+1). (5.3)



Whenever £(s) # 0, the functional equation can be rewritten in multiplicative

form: €1 )
-5
—1=0. 5.4
50 o
Further, taking in acount that
£(s) =¢(1-3), (5.5)
we can rewrite (5.4) as
§(1—5)
— - —1=0. 5.6
€ >0
In terms the eta function, the xi function is defined as
§(s) = h(s)n(s) (5.7)
where i T )
g(s) T 2(s—1I'(5+1
h = = . .
) =T=0%2 1—2x2+ (5:8)
Respectively, the three forms of the functional equation, (5.1)), (5.4)), and (5.6)),
can be rewritten as
h(1 = s)n(1 —s) = h(s)n(s) = 0, (5.9)
Ml-s) nl=s) 4 _, (5.10)
h(s) n(s)
and
h(l1—-3 1-75
1-5  n1=5 _,_, (5.11)
h(s) n(s)
5.2 The case of ny(T, s)
We can introduce, by an analogy with (5.7]), function
En(T,8) = h(s)nn (T, s). (5.12)

Since nn (7, s) is only an approximation to 7(s),

nn (T, s) = n(s), (5.13)

function &x (7, s) need not satisfy the ezact counterpart of the functional equation.

Still we can consider the counterparts of the left-hand sides in (5.1]), (5.4), and

, that is
En(T,1—8) —En(T, ), (5.14)
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£N<T,1— 8)

(5] -1, (5.15)
and -
fN(T, 1— §) B
En(rs) 1, (5.16)
and expect them to be small numbers:
En(T,1—35) —&n(T,8) =0, (5.17)
fN(T, 1-— S) 1
—SN(ﬂ ) 1~0, (5.18)
and _
fN(T, 1-— §) e
En(rs) 1~0. (5.19)

Approximate equalities of the forms ((5.17)), (5.18]), and (5.19)) can be called nearby

functional equations (to be distinguished from the approzimate functional equa-
tion).

While exact equalities , , and are all equivalent, this is not so
in the nearby case. The difference might be small just thanks to both
En(T,1 —s) and &n (7, s) being small, thus containing no information about the
relationship between these two values. Unless 7 = 0 function &y (7, s) does not
satisfy the counterpart of so numbers ((5.15]) and need not be equal.
Since in general the values of ny(7, s) are more accurate approximations to 7(s)
when s is closer to 1/2 + i, we will work with the nearby functional equation of
the type , which can be written in several equivalent forms:

En(T,1— 0 +it)

)~ . 5.20

En(T,0 +it) 20

_ Mi-e+i)  ow(nl-ooi) (5.21)
h(o +it) (7,0 +it)
. 1 — i

_ et ownlootit) (5.22)
1 —o +it) (7,0 + it)

- el ) ot (5.23)

n(l—o+it) n(o +it)

~ w(nl-o+i)/nl—o+it)
- (T, 0 + 1) /(o + it) L. (5.24)
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Let us consider a numerical example. For N = 50, 7 = 13, ¢ = 6/13, and
t = 15 we have:

ny(r,0 +it) = 1.080872499541473621601321376. ..
+1.174962823312851061269515668 . . . 1, (5.25)

n(oc+it) =  1.080872499541473621601321194 . ..
+1.174962823312851061269515481 . . . 1, (5.26)

thus the real and the imaginary parts of ny (7,0 + it) have 26 common leading
decimal digits respectively with the real and the imaginary parts of n(o + it).
The same is true for ny (7,1 — o +it) and n(1 — o + it):

ny(m,1—o+1it) = 1.093895809232589213678025552.. . .
+1.018513185335408858144374977 .. .1, (5.27)
n(l—o+it) = 1.093895809232589213678025378. ..

+1.018513185335408858144374805 . ..i.  (5.28)

Thus one could expect similar accuracy in the fulfillment of the nearby func-

tional equation ((5.23]) (and hence of ((5.20)—(5.22)) as well). Surprisingly, here the
accuracy is much higher:

— 1| = 3.803254784 - - - x 1071, (5.29)

En(T,1 — 0 +it)
En(T, 0 +it)

that is, the real and the imaginary parts of £y (7, 0 +it) and of £(1 — o + it) have
110 common leading decimal digits. Twenty six of them can be “explained” by
the classical functional equation and the neighbourship of f and
of (5.27)—(5.28)), but what is “the reason” for the extra 84 common digits?

These extra common digits manifest themselves also in the following nearby
functional equation:

— 1| =2.326372--- x 107%. (5.30)

nn(r,1—o+it)/n(l —o+it) —1
(1,0 +1it) /(o +it) — 1

5.3 The case of Yy, n(7,5)

As it was already mentioned in Section (3] the values of ny (7,0 + it) and
nn (7,0 +it) are both close to 7(s) and hence they severely cancel one another in
the numerator in ([2.2). By this reason it is not evident that the ratio Ty n(7, 0, t)
should meet any interesting (nearby) functional equation. Nevertheless, it does.
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On can observe on Figure 38| that the trajectory for o = 2/3 (in blue) mirrors
the trajectory for ¢ = 1/3 (in green). This corresponds to nearby functional
equation

TM,N(T: 1 — O, t)
Yyn(T,0,t)
Table |§| demonstrates how small is the left-hand side of for M = 350,
N = 349, 7 = 30, and diverse values of ¢ and ¢.

In the case of ny(7, s) we were able to explain the nearby functional equation
(f) via the classical functional equation, at least partially (for 26 dec-
imal digits out of total 110 in the numerical example); in the case of Yy (7, 0, 1)
it is not clear how the classical functional equation could be used for explaining
the date from Table [9.

According to the definition , can be rewritten as

—1~0. (5.31)

(T, 1 — 0o +it) y nn (T, 1 — 0o +it) — (7,1 — o +it)
Ny (7,0 + it) nn (1,0 +it) — (1,0 + it)

—1~0. (5.32)

According to the nearby functional equation ((5.22)) and the classical functional

equation (|b.11])

nu(t,1—o+it)  n(r,1—0+it) h(o + it)

— T~ = — 5.33
(T, 0 +it) n(r, o +it) h(1 — o +it) (5:83)
hence ([5.31]) and (5.32)) imply that
h(a—kit). " nN(T,l—O'—I—?t) —77M(7',1—c.7+it) 1m0, (5.34)
h(1 — o +it) nn (1,0 +it) — (1,0 + it)

This is nothing else but the counterpart of ([5.11]) with 7(s) replaced by
nn (7, 8) — (7, 8). (5.35)

In other words, this difference nearly satisfies the classical functional equation (in
the form for the eta function).

The nearby functional equation for ny(7,s) is not surprising because this
function mimics the eta function, in particular, the initial Dirichlet coefficients
are close to the alternating 1 and —1 (as in Table[l]). As for the difference (5.35)),
its coefficients behave quite differently: the initial coefficients are very small due
to the severe cancellation of the initial coefficients of ny/(7, s) and ny(7,s) — see
Figure (39|
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6 Another type of approximation

We have considered the trajectories of the ratio (2.2)) for the particular series

m(r,s), ..., nn(7,8), ... (6.1)

of approximations to the eta function defined in Section[I] The same can be done
for any other sequence

ni(s), -, nn(s), ... (6.2)

of functions (which supposedly approximate function 7(s)). Namely, by analogy
with (2.2) we can define

* 't * ‘t _ * 't
’ M (0 +it) M (0 +it)

and consider the trajectory of Y3, y(o,t) as function of ¢ for fixed M, N, and o.
In [5] (for prehistory see [3], for further development see [I], 4], [§]) the author
considered the following mode of similarity:

2L
Mrs1(s) =1+ Z a1 6k, (6.4)
k=2
M (1/2+iw) =0, k=1,...,L. (6.5)

Figure [40| shows the trajectory of for M =499, N =497, 0 = 1/3, and ¢
from 0 to 500. The picture has rather regular structure, but this structure differs
very much from what can be seen on Figures 1-30. It seems that the trajectory
spans the area between two oval-looking envelopes; however, the picture might
change for lager t.

7 Nearby properties

The phenomena demonstrated above can be named nearby properties of the
zeta function]l] This is a rather informal notion which can be described as follows.
Besides the zeta (or the eta) function one considers a definite class of functions,
(*(s) or n*(s), which are akin to the zeta (respectively, to the eta) function in a
certain sense. Particular forms of such conformity were named in [7] modes of
similarityf}

1Suggested Russian term: 6imsieskarue cBoifcTBa a3eTa (yHKIINNI.
2Suggested Russian term: dpopma cxoncTsa
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Functions (*(s) and n*(s) may depend on one or several parameters, integer
valued, real valued, or complex valued. Typically, one of the parameters, say, N,
characterizes the complexity of corresponding function (X (s) or ni (s), for exam-
ple, such a function might be defined by a finite Dirichlet sum of N summands.
Also it is typical (but not necessary) that

(s)= Jim Gi(s)  or  nls) = Jim wi(s). (7.1)

By nearby properties of the zeta function we understand just the properties of
such functions (*(s) or n*(s).

We can distinguish two kinds of nearby properties. Some of them are shareable.
A shareable property holds for the zeta or eta function, and nearly holds for (*(s)
or n*(s), that is, a sharable property is inherited by these functions from the zeta
or eta functions. On the other hand, the validity of often allows one to
deduce the property of the zeta or eta function from a quantitative form of the
nearby property of (*(s) or n*(s) (that is, when this property is stated not as
... ~ 0 but, for example, as ... = O(N7')). As an example of a shareable

property we can mention the functional equation ((5.11)) for 7(s) and for
(7, 5).

More interesting are original, not shareable own nearby properties, that is such
properties of (*(s) or n*(s) which have no counterpart stated exclusively in terms
of ((s) or n(s). As an example of such an own nearby property we can refer
to : according to Conjecture A an attempt to go there to the limit when
M — oo and N — oo leads to undetermined left-hand side

h(o + it) n(l—o+it) —n(l —o +it)
hl—otit) | n(o +it) — n(o + it) - (7.2)

Some other surprising own nearby properties were discovered for the mode
of similarity — (and for an analogous mode of similarity involving the
gamma function) — see [3| 5, [T, 4, 8]. In particular, coefficients a},, approach the
coefficients of the eta function, that is,

a*N,nm(_l)nJrlv (7.3)
but the differences
ay, — (=1 (7.4)

encode, and at least in two ways, the prime numbers.
On Figure [41] each colored dot has coordinates of the form

(n, 10%10(“3999,71 - (_1)n+1> (7.5)

15



for an odd n between 2 and 800.

The red dots at the top “level” corresponds to odd n of the form 3k with k£ > 2;
these numbers are crossed out at the second stage of the Sieve of Eratosthenes.

The orange dots at the second “level” correspond to n of the form 5k with
k > 2 and ged(k, 2 x 3) = 1); these numbers are crossed out at the third stage of
the Sieve of Eratosthenes.

The brown dots at the third “level” correspond to n of the form 7k with k£ > 2
and ged(k,2 x 3 x 5) = 1); these numbers are crossed out at the forth stage of
the Sieve of Eratosthenes.

The green dots at the fourth “level” correspond to n of the form 11k with
k> 2 and ged(k,2 x 3 x 5 x 7) = 1); these numbers are crossed out at the fifth
stage of the Sieve of Eratosthenes.

The cyan dots at the fifth “level” correspond to n of the form 13k with k£ > 2
and ged(k,2 x 3 x 5 x 7 x 11) = 1); these numbers are crossed out at the sixth
stage of the Sieve of Eratosthenes.

The blue dots at the sixth “level” correspond to n of the form 17k with & > 2
and ged(k,2 x 3 x 5 x 7 x 11 x 13) = 1); these numbers are crossed out at the
seventh stage of the Sieve of Eratosthenes.

The magenta dots at the seventh “level” correspond to n of the form 19k with
k> 2 and ged(k,2 x 3 x5 x 7 x 11 x 13 x 17) = 1); these numbers are crossed
out at the eighth stage of the Sieve of Eratosthenes.

The pink dots at the eighth “level” correspond to n of the form 23k with £ > 2
and ged(k,2 x3 x5 x 7 x 11 x 13 x 17 x 19) = 1); these numbers are crossed out
at the ninth stage of the Sieve of Eratosthenes.

At last, the black dots correspond to prime n.

Such an appearance of the Sieve of Eratosthenes is certainly an own nearby
property because the limiting values in are the dull £1 containing no in-
formation about the prime numbers. It is not clear how to “explain” why the
nontrivial zeta zeros (used in definition ([6.5))) produce such a form of the Sieve
of Eratosthenes.

Yet another sieve for prime numbers arises from the same coefficients in the
following way. Let

bhvm =14 di,, (7.6)

m=2

where a}y ,, are defined by —. On Figures 42| and [43| each colored dot has
coordinates of the form (n,log;,(b59g9 ,,)) for n from 1 to 300 on Figure {42 and to
1600 on Figure 43,

The red dots at the top “level” correspond to all n not divisible by 2.

16



The brown dots at the second “level” correspond to n divisible by 2 but not
divisible by 6 = LCM(2, 3).

The green dots at the third “level” correspond to n divisible by 6 = LCM(2, 3)
but not divisible by 12 = LCM(2, 3, 4).

The cyan dots at the fourth “level” correspond to n divisible by
12 = LCM(2, 3,4) but not divisible by 60 = LCM(2, 3,4, 5).

The blue dots at the fifth “level” correspond to n divisible by
60 = LCM(2, 3,4,5) but not divisible by 420 = LCM(2, 3,4,5,6,7).

The magenta dots at the sixth “level” correspond to n divisible by 420 =
LCM(2,3,4,5,6,7) but not divisible by 840 = LCM(2,3,4,5,6,7,8).

The single black dot at the seventh “level” corresponds to n = 840 =
LCM(2,3,4,5,6,7,8) which is not divisible by 2520 = LCM(2, 3,4,5,6,7,8,9).

The sieve on Figures 42| and 43|is in a certain sense dual to the classical Sieve
of Eratosthenes (more exactly this duality is explained in [6]).

Again this dual sieve is an own nearby property because, according to ((7.3)),
the limiting values in are just alternating 1 and 0 containing no information
about the prime numbers. We have no “explanation” why the nontrivial zeta
zeros produce this dual sieve.

The study of own nearby properties of the zeta function seems to be very
intriguing area of research.
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Appendix 1. Calculation of ay,,

Here we give explicit formulas for calculation of coefficients (1.4)).
At first we make the linear transformation

by n(T) = ann ()07 (7.7)
of the coefficients and then separate the real and the imaginary parts: let
b () = by o (T) + iy (7) (7.8)

with real by (1) and bjy (7). In this notation
N
(T, 8) = bya(r)n 67 (7.9)
n=1
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According to (L.12) by () = 0; in order to determine the values of the other
numbers, we can write down conditions ([1.11)) and (1.12]) in matrix notation as a
linear system of the form

AN(T)BN(T) = UN (710)

with unknown vector-columns

By(7) = by (1), - bya(r), bya(m), -y by (D] (7.11)

and certain vector-column Uy and (2N —1) x (2N —1) matrix Ay(7); their entries
will be specified now.

To keep notation uniform and symmetric, we shall number the columns in
An(7) from —(N —1) to N — 1, and the rows in this matrix will numbered from
—1 to 2N — 3, that is,

2N—-3 |[N—-1

A7) = (7 (712)

m=—1In=—(N-1)

The topmost (that is, numbered —1) row of Ay (7) corresponds to equation

(1.12)), respectively,
1, ifn=0,
:u—l,n(T) = { (713)

0, otherwise,

and the topmost entry in Uy is equal to 1.
All the remaining rows of matrix Ay(7) correspond to conditions ((1.11]); re-
spectively, for m > 0

Re(
Im(

h(1/2+it)(1 —n)~/ZHETD] ) ifn <0,

_ (7.14)
h(1/2 4 it) (1 +n)~W2HETD] ) if n > 0;

dm
dagm
Hm,n (1) = gm

dt?’n

all but the topmost entries into Uy are equal to 0.

Now we can find the values of by solving the system , and then
determine the values of @ according to and .

Solving the system @ by Gauss elimination requires the number of arith-
metical operations proportional to N3. If N < M, then matrix Ay(7) is a
submatrix of matrix Ay (7). This allows one to organize the Gauss elimination
in such a way that performing O(M?) operations are sufficient for calculation of
coefficients ay,(7) for all N and n such that n < N < M (for details see [2]).

18



Appendix 2. Calculation of ny(7,s)

There is no need to calculate coefficients ((1.4)) in order to find the value of
nn (7, $); this can be done more directly, via calculation of just two determinants.
Namely, let

2N—3 [N-1
An(1,8) = {um,n(T, s)} (7.15)
m=—1In=—(N-1)
be the matrix which differs from Ay(7) in the topmost row only, namely,
i(1—n)~677 ifm=—1, n<0,
fnn(T,8) =< (1 +n)"6= ifm = —1, n >0, (7.16)

Pomn (T), if m > 0.

Further, let Ly(7) be the (2N — 2) x (2N — 2) matrix resulting from Ay (7)
(or, equivalently, from An(7,s)) by deleting the center column (corresponding
ton = 0in (7.12))) and deleting the topmost row (corresponding to m = —1 in
(7.12))), that is

2N-3 | N-2
Ly(r) = {um,m(r)} (7.17)
m=0 In=—(N-1)
where
if
D L (7.18)
n+1, ifn>0.
In this notation A
det ,
(7, s) = (=) (Ax(7,) (7.19)

det (LN(T)) '
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an . (T)

—0.999999999462...
0.999999981346...
—1.000000132306...
0.9999985632692...
—1.000023074322...
0.999832847415...
—0.999828074202...
1.006073273365...
—1.003409572208...
0.943642817258...
—0.881170399806...
1.095992799304...
—1.648417832184...
1.933660264445...
—1.361021281976...
0.289821251354...
0.417225221049...
—0.474446209986...
0.241550741270...
—0.066573186267 ...
0.007620943299...
0.000753407568...
—0.000307528825...
0.000024255272...

+0.000000001418...
—0.000000003537...
—0.000000220798...
—0.000002479966...
—0.000012082058...
+0.000085757775...
+0.001072547774...
—0.000381035897...
—0.019218051925...
+0.025728928022...
+0.113124344315...
—0.352123480104...
+0.222815698522...
+0.566663995977...
—1.435554699987 ...
+1.5659838727104...
—0.956065835578...
+0.296721873956..
+0.009203578184..
—0.048170652836..
+0.019765872565..
—0.003820493816..
+0.000334993600..
—0.000007378101...

e e e pde pde pmde e e s pde pmde e s pde pde pmde e s pde pde e e s e

Table 1: Coefficients (1.4]) for N =25 and 7 = 14
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771\7(7—15) _
n(s) 1’

s N=50 | N=7 | N=100
—7][352...-1072 [1.15...- 1075 [ 6.84...- 1079
—7410i || 3.99...-10727 | 2.39...-107* | 2.05...-107%
—7+430i || 3.56...-107% | 8.20...-107*2 | 1.04...-107®
—5 | 1.20...-107* | 3.29...-107% | 1.64...-10~%
—5+10i || 1.08...-10726 | 6.03...-107* | 4.98...-107%
~5+430i || 4.54...-107" | 7.16...- 107" | 7.87...-107®
—3/5.69...-107% | 7.08...-107% | 3.07...-107%
—3+410i || 243...-10720 | 1.27...-107% | 1.02...-107%
—3+430i || 4.67...-107 | 5.29...-107% | 5.20...-107°"
—1 1.23...-107 | 1.10...-107%2 | 4.39....107%
—1+410i || 4.16...-10726 | 2.11...- 107 | 1.67...-107%
—1+30i || 3.95...-107%* | 3.58...-107% | 3.30...- 107
0 1.46...-1072* | 1.20...-107*2 | 4.72...-107%

10i || 4.70...-10726 | 2.36...-107% | 1.87...-107%

30i || 1.28...-107% | 1.11...- 10738 | 1.01...-107%

L 149...-1072 | 1.22...- 1072 | 4.76...- 107
1410 || 4.78...-10720 | 2.40...-107% | 1.89...-107%
$+30i || 2.07...-107% | 1.77...-107%® | 1.61...- 107"
1]/1.46...-107% | 1.20...-107%2 | 4.72...- 1079
1+10i || 4.70...-107% | 2.36...-107% | 1.87....107%
1+30i || 1.28...-107% | 1.11...-1073® | 1.01...- 10
2| 1.23...-1072* | 1.10...- 1072 | 4.39...-107%
2+10i || 4.16...-10726 | 2.11...-107* | 1.67...- 1079
2+30i || 3.95...-10722 | 3.58...-10"% | 3.30...- 107

Table 2: Approximation of n(s) by ny(7,s) for 7 = 14, for N = 50, 75, 100 and
diverse values of s
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Distance to the nearest zero
k N=50 | N=10 | N=350
112927...-107Y | 7.953...-10790 | 1.342...-1072*?
21 1.395...-107'7 | 2.110...-107% | 1.235...- 10724
31 1.586...-10717 | 4.304...-107% | 5.100...- 10724
411 2396...-1077 | 1.633...-107% | 5.450... 107240
51 2.272...-10717 | 2.933...-107% | 1.619...-10723
6| 5.340...-107® | 8.572...-107% | 1.132...-107238
71 1.799...-107'7 | 4.000...-1078" | 8.690... 107238
81 3.408...-10717 1 9.602...-1078" | 2.756...- 107237
91 1.778...-107%6 ] 1.334...-107® | 5.511...-107236
10 || 6.688...-107%6 | 4.287...-107% | 1.908...- 107
11 || 1.667...-107" | 2.098...-1078 | 9.708...- 107
12 || 7.233...-10713 | 2.953...-1078 | 1.214...- 107233
13 || 2.518...-107" | 5.874...-10782 | 1.885...- 107232
14 || 1.361...-10719 | 1.931...-1078" | 5.143...- 107232
151 9.859...-107° | 1.103...-107™ | 1.317...- 107230
16 || 4.219...-1078 [ 1.349...-107™ | 9.520...- 1070
17 || 2.781...-1077 | 2.397...-10777 | 7.374...- 107
18 || 4.853...-107% | 5.797...-10770 | 5.984...-1072%8
19 || 2.197...-107°% | 3.271...-107" | 3.803...-1072%
20 || 5.610...-107® | 5.719...-107" | 2.087...-1072%
21| 1.446...-107* | 3.432...-1077° | 1.218...-1072*
2211 1.274...-1073 | 1.328...-107%6 | 6.857...-107223
231 1.835...-107% | 5.569...-107% | 7.144...-107222
24 || 6.496...-1073 | 2.799...-107%% | 2.292...-107220
251 1.352...-1072 | 7.005...-107%" | 1.088... 107219

Table 3: Distances between the kth nontrivial zeta zero and the nearest to it zero
of nn(7,s) for 7 =30
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LR w [ logy(Re) |
1| 14.1347... | —240.8091 ...
2 || 21.0220... | —239.8462. ..
3| 25.0108... | —239.2338. ..
4| 30.4248... | —238.2026 ...
51| 32.9350... | —237.7357. ..
6| 37.5861... | —236.8906...
71| 40.9187... | —236.0056. ..
8| 43.3270... | —235.5102. ..
9| 48.0051... | —234.1981. ..

10 || 49.7738... | —233.6711...
11| 52.9703... | —232.9660. ..
12 || 56.4462.. . | —231.8657...
13 | 59.3470... | —230.6665. ..
14 || 60.8317... | —230.2458 ...
15 || 65.1125... | —228.8248. ..
16 || 67.0798... | —227.9758 ...
17 || 69.5464... | —227.0880 ...
18 || 72.0671... | —226.1815 ...
19 || 75.7046... | —224.3548 ...
20 || 77.1448... | —223.6370. ..
21 || 79.3373... | —222.8757. ..
22 || 82.9103... | —221.1063. ..
23 || 84.7354... | —220.1019. ..
24 || 87.4252... | —218.5793. ..
25 || 88.8091... | —217.9264 . ..
2% || 92.4918... | —215.9374. ..
927 || 94.6513... | —214.3246 . ..
98 || 95.8706... | —213.6610. ..
29 || 98.8311... | —212.0707. ..
30 || 101.3178... | —210.3509. ..

Table 4: Imaginary parts of the nontrivial zeta zeros and the radii of the osculating
circles at the corresponding point on the trajectory of Tss50349(30,1/3, %)
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‘ k [ ~ tk I ~ tg I min I max

1 13.96 14.31 | 0.99974 | 1.00025

2 20.85 21.20 | 0.99906 | 1.00095

3 24.84 25.18 | 0.99954 | 1.00047

4 30.25 30.60 | 0.99699 | 1.00311

5 32.76 33.11 | 0.99974 | 1.00028

6 37.41 37.76 | 0.99772 | 1.00235

7 40.74 41.09 | 0.99653 | 1.00359

8 43.15 43.50 | 0.99939 | 1.00064

9 47.83 48.19 | 0.99024 | 1.01023
10 49.60 49.95 | 0.99913 | 1.00097
11 52.80 53.15 | 0.99751 | 1.00257
12 56.27 56.62 | 0.99483 | 1.00537
13 59.17 59.53 | 0.98657 | 1.01415
14 60.66 61.01 | 0.99948 | 1.00080
15 64.93 65.30 | 0.98797 | 1.01268
16 66.90 67.26 | 0.99451 | 1.00574
17 69.37 69.73 | 0.99437 | 1.00587
18 71.89 72.24 | 0.99551 | 1.00466
19 75.52 75.90 | 0.97458 | 1.02703
20 76.97 77.32 | 0.99423 | 1.00615
21 79.16 79.52 | 0.99562 | 1.00456
22 82.73 83.10 | 0.98050 | 1.02064
23 84.56 84.92 | 0.99090 | 1.00955
24 87.24 87.62 | 0.97419 | 1.02746
25 88.63 88.99 | 0.99661 | 1.00366
26 92.31 92.69 | 0.97660 | 1.02487
27 94.46 94.87 | 0.96173 | 1.04101
28 95.69 96.05 | 0.99495 | 1.00548
29 98.65 99.02 | 0.98223 | 1.01879
30 || 101.13 | 101.52 | 0.97780 | 1.02350

Table 5: Minimal and maximal values of ratio (2.17) for ¢ € [t} t}]
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Distance to the nearest
zero of Re(T)) | zero of Im(T”))

7.422...-1073 | 1.058...-107°
1.232...-1072 | 3.901...-10°°
7.781...-1073 | 1.922....107°
1.860...-1072 | 1.271...-107*
5.515...-1073 | 1.101...-107°
1.695...-1072 | 9.607...-107°
1.833...-1072 | 1.465...-10~*
7.781...-1073 | 2.581...-107°
2992...-1072 | 4.188...-10°*
10 || 9.082...-1073 | 3.799...-107°
11| 1.647...-1072 | 1.049...-10~*
12 || 2.413...-1072 | 2.200...-10~*
13/ 3.163...-1072 | 5.784...-10~*
14 | 5.241...-1073 | 2.325...-107°
15 || 3.451...-1072 | 5.205...-107*
16 || 2.180...-1072 | 2.342...-107*
17 || 2.300...-1072 | 2.400...-107*
18 || 2.194...-1072 | 1.906...-10~*
19 || 4.546...-1072 | 1.116...-1073
20 || 2.045...-1072 | 2.491...-107*
21 || 2.061...-1072 | 1.862...-107*
22 || 4.287...-1072 | 8.538...-107*
23 || 2.885...-1072 | 3.920...-10°*
24 || 4.437...-1072 | 1.132...-1073
251 1.739...-1072 | 1.472...-107*
26 || 4.808...-1072 | 1.035...-1073
27 || 5.177...-1072 | 1.702...-1073
28 || 2.014...-1072 | 2.207...-107*
29 || 4.267...-1072 | 7.786...-107*
30| 4.672...-1072 | 9.778...-107*

© 00O TR W N T

Table 6: Distances between v, and the nearest to it zeros of Re( Y350 349(30, 1/3,1))
and of Im(T55 549(30,1/3, 1))
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k tIM,N,k(Ta o) t%LN,k (1,0) t]]?/[,N,k (1,0)
0 6.534700. ..
1 13.967450... | 14.302085... | 16.353063...
2 20.853949 ... | 21.190452... | 22.446686...
3 24.843117 ... | 25.178755... | 26.735195...
4 30.255233 ... | 30.595616... | 31.371273...
5 32.766832 ... | 33.103382... | 34.517890...
6 37.416891 ... | 37.756286... | 38.638753...
7 40.748725 ... | 41.089989... | 41.814839...
8 43.158447 ... | 43.495915... | 44.700091...
9 47.831968 ... | 48.182395... | 48.625899...
10 49.604126 ... | 49.943868... | 50.886825...
11 52.800727 ... | 53.140820... | 53.982595...
12 56.274973 ... | 56.619520... | 57.238475...
13 59.172639... | 59.527331... | 59.894207...
14 60.661485 ... | 61.001885... | 62.037331...
15 64.937874 ... | 65.292550... | 65.687742...
16 66.908104 ... | 67.253668... | 67.835631...
17 69.374814 ... | 69.720188... | 70.305902...
18 71.896075... | 72.239960... | 72.896544...
19 75.525127 ... | 75.898780... | 76.121560...
20 76.972092... | 77.319943... | 77.850720...
21 79.166178 ... | 79.510256... | 80.162911...
22 82.732313 ... | 83.098592... | 83.380780...
23 84.561740 ... | 84.913114...| 85.371916...
24 87.245803 ... | 87.619465... | 87.839555...
25 88.636958 ... | 88.982634... | 89.617592...
26 92.311693 ... | 92.685745... | 92.922976...
27 94.467982 ... | 94.864956... | 94.983230...
28 95.696936 ... | 96.046488 ... | 96.573666 ...
29 98.653281 ... | 99.018232... | 99.321411...
30 || 101.138048 ... | 101.510240... | 101.760719. ..

Table 7: Positions of the local extremes of Re(Yy n(T,0,t)) for M = 350, N =
349, 7 = 30, and o = 1/3
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k t%w,N,k(T’U);rt}ef,N,k(T’g) — Ve
1 4.293125...-107°
2 1.614627...-1074
3 7.884871...-.107%
4 5.487810...-107*
5 4.601420...-107°
6 4.108770...-107*
7 6.386114...-107*
8 1.084718...-1074
9 2.030868...-1073
10 1.651130...-1074
11 4.526214...-107*
12 9.995608...-107*
13 2.941362...-1073
14 9.288354...-107°
15 2.668498...-1073
16 1.075942...-1073
17 1.100007...-1073
18 8.601805...-107*
19 7.263545....1073
20 1.178078...-1073
21 8.423115...-107*
22 5.072025...-1073
23 1.934822...-1073
24 7.360021...-1073
25 6.852817...-107*
26 6.820303...-1073
27 1.512557...-1072
28 1.078061...-1073
29 4.562747...-1073
30 6.293852...-1073

Table 8:  Distance between <, and the middlepoint of the
(tirng(T:0), thyni(T,0)) for M =350, N =349, 7 = 30, and 0 = 1/3
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TM?N(’T,l—O',t) _ 1
T, N (T,00)

t co=1/4 | o=1/3 | 0=2/5

01/ 9.691...-1072% [9.300...-1072° [ 9.191....- 10725
3 5491...-10726 | 5319...-10726" | 5.271...- 10726
6| 2.195...-1072% | 2.125...-1072 | 2.106...- 1072

9| 1.908...-1073% | 1.348...-1073%% | 1.236...-1073%
12 || 3.707...-1073% | 3.496...-1073% | 3.438....1073%¢
15 || 5.190...-107*0 | 4.752...-107%0 | 4.634...-10~%0
18 || 9.545...-107°97 | 6.539...-107°07 | 5.898...-10797
21 || 4.140...-1075% | 3.198...-107%% | 2.971...-1075%
22 || 3.859...-107632 | 2.771...-107%32 | 2.521....107632
23 || 8.170...-107™ | 5289 ....107% | 4.671...-10767
24 || 1.357...-107™9 | 7.506...-107™° | 6.336... 107"
25 || 1.042...-1077™ | 4.450...-1077 | 3.488...-1077™
26 || 7.770...-107%%2 | 2.074...-107%2 | 1.421...-107%*
27 1| 1.096...-1079%7 | 8.619...-1079% | 4.148...-1079%¥
28 || 2.090...-1071949 | 1.043...-1071951 | 2,959 . .10 1052
29 || 3.180...-10712%9 | 4.230...-107'%% | 9.803 ... 101262
30 || 6.906...-1071628 | 1.491....10718% | 5.862... 1071960
311 1.603...-1071%%1 | 2.111...-1071260 | 4.878....1071263
32| 3.754...-1071952 | 1.821...-107105 | 3.914....10710%%
33 || 7.589...-10792 | 7.006...-107933 | 3.536...-10793
34| 7.893...-107%6 | 2.075...-1078%6 | 1.415....107846
35 || 8.634...-107" | 3.735...-1077 | 2939...-107™
36 | 1.519...-107"* | 7.609...-10"™* | 6.215...-10" "
37 | 4.753...-107%7® | 3.164...-10798 | 2.814...-107678
38 || 7.534...-10739 | 5469...-10799 | 4.990...- 10763
39 || 3.947...-107%4 | 3.051...-107604 | 2.834....107604
40 || 5.121...-107°7 | 4.152...-107°™ | 3.911...-10757
42 | 4.530...-107°19 [ 3.928....107°9 | 3.771...-107°1¥
45 || 3.699...-107%2 | 3.208...-107%2 | 3.065... 107452
48 || 2.899...-10740 | 2738 ....107%09 | 2.694....10400
51 || 6.993...-107%6 | 6.708...- 10726 | 6.628...- 10356
54 || 1.871...-10731% | 1.775....-107316 | 1.741....107316
57 || 2.469...-10728% | 2.421...-1072%* | 2.408...- 10728
60 || 4.385...-1072% | 4.311...-107%5 | 4.291...-1072%

Table 9: Demonstration of the nearby functional equation (5.31)) for M = 350,
N =349, and 7 = 30

28



1x1072%¢

t=—t7
t=—t2
-2x107%° 1x107%%®
t=—t; %1072 t=—t;

Figure -1: Trajectory of Y3s50349(30,1/3,¢) for ¢ from —16.35 to —6.53
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1x10724
t=t t=to

—1x107%4

Figure 1: Trajectory of Yss0349(30,1/3,¢) for ¢ from 6.53 to 16.35 in red
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f:tg

10 290

Figure 2: Trajectory of Yss0349(30,1/3,¢) for ¢ from 6.53 to 16.35 in red, for ¢
from 16.35 to 22.44 in green
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t=ts

—-6x107240 5x1072%°

Figure 3: Trajectory of Yss0349(30,1/3,¢) for ¢ from 6.53 to 16.35 in red, for ¢
from 16.35 to 22.44 in green, for ¢ from 22.44 to 26.73 in magenta
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t=t,

Figure 4: Trajectory of Yss0349(30,1/3,¢) for ¢ from 6.53 to 16.35 in red, for ¢
from 16.35 to 22.44 in , for t from 22.44 to 26.73 in magenta, for ¢ from
26.73 to 31.37 in blue
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t=ty

_2x107%® B 2x107%¢
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Figure 5: Trajectory of Y350349(30,1/3,¢) for ¢ from 16.35 to 22.44 in green, for
t from 22.44 to 26.73 in magenta, for ¢ from 26.73 to 31.37 in blue, for ¢ from
31.37 to 34.51 in red
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Figure 6: Trajectory of Ys350340(30,1/3,¢) for ¢ from 22.44 to 26.73 in magenta,
for ¢ from 26.73 to 31.37 in blue, for ¢ from 31.37 to 34.51 in red, for ¢ from
34.51 to 38.63 in green
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—1x1073% o 7x1072%7

Figure 7: Trajectory of Ts50349(30,1/3,¢) for ¢t from 26.73 to 31.37 in blue, for ¢
from 31.37 to 34.51 in red, for ¢ from 34.51 to 38.63 in green, for ¢ from 38.63
to 41.81 in magenta
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Figure 8: Trajectory of Ys350340(30,1/3,¢) for ¢ from 31.37 to 34.51 in red, for ¢
from 34.51 to 38.63 in , for t from 38.63 to 41.81 in magenta, for ¢ from
41.81 to 44.70 in blue
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—8x107°% & () 4x10 22

Figure 9: Trajectory of Y350349(30,1/3,¢) for ¢ from 34.51 to 38.63 in green, for
t from 38.63 to 41.81 in magenta, for ¢ from 41.81 to 44.70 in blue, for ¢ from
44.70 to 48.62 in red
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Figure 10: Trajectory of Y350349(30,1/3,¢) for ¢ from 38.63 to 41.81 in magenta,
for ¢ from 41.81 to 44.70 in blue, for ¢ from 44.70 to 48.62 in red, for ¢t from
48.62 to 50.88 in green
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Figure 11: Trajectory of Y350349(30,1/3,¢) for ¢ from 41.81 to 44.70 in blue, for
t from 44.70 to 48.62 in red, for t from 48.62 to 50.88 in green, for ¢ from 50.88
to 53.98 in magenta
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Figure 12: Trajectory of Ys3s50349(30,1/3,¢) for ¢ from 44.70 to 48.62 in red, for
t from 48.62 to 50.88 in , for t from 50.88 to 53.98 in magenta, for ¢t from
53.98 to 57.23 in blue
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Figure 13: Trajectory of Ts50349(30,1/3,t) for ¢ from 48.62 to 50.88 in green, for
t from 50.88 to 53.98 in magenta, for ¢ from 53.98 to 57.23 in blue, for ¢ from
57.23 to 59.89 in red
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t=t$4

Figure 14: Trajectory of Y350349(30,1/3,¢) for ¢ from 50.88 to 53.98 in magenta,
for ¢ from 53.98 to 57.23 in blue, for ¢ from 57.23 to 59.89 in red, for ¢ from
59.89 to 62.03 in green
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Figure 15: Trajectory of Y350349(30,1/3,¢) for ¢ from 53.98 to 57.23 in blue, for
t from 57.23 to 59.89 in red, for ¢ from 59.89 to 62.03 in green, for ¢ from 62.03
to 65.68 in magenta
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Figure 16: Trajectory of Y3s50349(30,1/3,¢) for ¢ from 57.23 to 59.89 in red, for
t from 59.89 to 62.03 in , for t from 62.03 to 65.68 in magenta, for ¢t from
65.68 to 67.83 in blue
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Figure 17: Trajectory of Ts50349(30,1/3,t) for ¢ from 59.89 to 62.03 in green, for
t from 62.03 to 65.68 in magenta, for ¢ from 65.68 to 67.83 in blue, for ¢ from
67.83 to 70.30 in red

46



Figure 18: Trajectory of Y350349(30,1/3,¢) for ¢ from 62.03 to 65.68 in magenta,
for ¢ from 65.68 to 67.83 in blue, for ¢ from 67.83 to 70.30 in red, for ¢ from
70.30 to 72.89 in green
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f=tl1'9

—6x107%%° %1025

Figure 19: Trajectory of Y350349(30,1/3,¢) for ¢ from 65.68 to 67.83 in blue, for
t from 67.83 to 70.30 in red, for t from 70.30 to 72.89 in green, for ¢ from 72.89
to 76.12 in magenta
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Figure 20: Trajectory of Y3s50349(30,1/3,¢) for ¢ from 67.83 to 70.30 in red, for
t from 70.30 to 72.89 in , for t from 72.89 to 76.12 in magenta, for t from
76.12 to 77.85 in blue
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~15x107%%* 1x107%%°

T=t§1

Figure 21: Trajectory of Ts50349(30,1/3,t) for ¢ from 70.30 to 72.89 in green, for
t from 72.89 to 76.12 in magenta, for ¢ from 76.12 to 77.85 in blue, for ¢ from
77.85 to 80.16 in red
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Figure 22: Trajectory of Y350349(30,1/3,¢) for ¢ from 72.89 to 76.12 in magenta,
for t from 76.12 to 77.85 in blue, for ¢ from 77.85 to 80.16 in red, for ¢ from
80.16 to 83.38 in green
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-1x1072% ¢ 5410 221
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Figure 23: Trajectory of Y350349(30,1/3,¢) for ¢ from 76.12 to 77.85 in blue, for
t from 77.85 to 80.16 in red, for ¢ from 80.16 to 83.38 in green, for ¢ from 83.38
to 85.37 in magenta
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Figure 24: Trajectory of Y3s50349(30,1/3,¢) for ¢ from 77.85 to 80.16 in red, for
t from 80.16 to 83.38 in , for t from 83.38 to 85.37 in magenta, for ¢t from
85.37 to 87.83 in blue
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Figure 25: Trajectory of Ts50349(30,1/3,t) for ¢ from 80.16 to 83.38 in green, for
t from 83.38 to 85.37 in magenta, for ¢ from 85.37 to 87.83 in blue, for ¢ from
87.83 to 89.61 in red
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Figure 26: Trajectory of Y350.349(30,1/3,¢) for ¢ from 83.38 to 85.37 in magenta,
for ¢ from 85.37 to 87.83 in blue, for ¢ from 87.83 to 89.61 in red, for ¢ from
89.61 to 92.92 in green
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Figure 27: Trajectory of Y350349(30,1/3,¢) for ¢ from 85.37 to 87.83 in blue, for
t from 87.83 to 89.61 in red, for t from 89.61 to 92.92 in green, for ¢ from 92.92
to 94.98 in magenta
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Figure 28: Trajectory of Y3s50349(30,1/3,¢) for ¢ from 87.83 to 89.61 in red, for
t from 89.61 to 92.92 in , for t from 92.92 to 94.98 in magenta, for ¢t from
94.98 to 96.57 in blue
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Figure 29: Trajectory of Ts50349(30,1/3,t) for ¢ from 89.61 to 92.92 in green, for
t from 92.92 to 94.98 in magenta, for ¢ from 94.98 to 96.57 in blue, for t from
96.57 to 99.32 in red
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Figure 30: Trajectory of Y350349(30,1/3,¢t) for ¢ from 92.92 to 94.98 in magenta,
for ¢ from 94.98 to 96.57 in blue, for ¢ from 96.57 to 99.32 in red, for ¢ from
99.32 to 101.76 in green
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Figure 31: Points with coordinates (vx,log,q(Rx)) from Table 4] and the fitting
curve 2,15l
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Figure 32: Values of the real part of the product (3.1 (along the horizontal axis)
and the imaginary parts of the nontrivial zeta zeros (the dots along the vertical
axis)
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Figure 33: Values of the imaginary part of the product (3.1]) (along the horizontal

axis) and the imaginary parts of the nontrivial zeta zeros (the dots along the
vertical axis)
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Figure 34: Trajectories of Y350 x(30,1/3,¢) for ¢ from 6.5 to 23 and N = 349 in
red, N = 348 in green, N = 347 in magenta
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Figure 35: Trajectory of Yo;20(13,1/3,t) for ¢ from 6.5 to 23
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Figure 36: Trajectory of Y5 50(14,1/3,¢t) for ¢ from 6.5 to 23
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Figure 37: Trajectories of Tny1 5(30,1/3,t) for ¢ from 6.5 to 23 and N = 349 in
red, N = 348 in green, N = 347 in magenta
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Figure 38: Trajectories of Y350349(30, 0,t) for ¢ from 6.5 to 23 and ¢ = 0 in red,
o =1/3in green, o = 2/5 in magenta, o = 2/3 in blue
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Figure 39: Decimal logarithms of the absolute values of the Dirichlet coefficients
of the difference (5.35) for M = 350, N = 349, 7 = 30
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Figure 40: Trajectory of (6.3]) for n* defined by (6.4)—(6.5), M = 349, N = 347,
o =1/3, and t from 0 to 500
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Figure 41: The dots have coordinates of the form (n,log,(|adegy,, — (—1)""]))

with a}y,, defined by (6.4)-(6.5)
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Figure 42: The dots have coordinates of the form (n,log,o(b3gg9,)) With by,

defined by ((7.6)
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Figure 43: The dots have coordinates of the form (n,log,o(b3ggg,)) With by,

defined by ((7.6)
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