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Abstract. The Riemann Hypothesis has many equivalent reformulations.

Some of them are arithmetical, that is, thewy are statements about proper-

ties of integers or natural numbers. Among them the reformulations with the

simplest logical structure are those from the class Π0
1 from the arithmetical

hierachy, that is, having the form �for every x1, . . . , xm relation A(x1, . . . , xm)
holds�, where A is decidable. As an example one can take the reformulation

of the Riemann Hypothsis as the assertion that certain Diophantine equation

has no solution (such particular equation can be given explicitly).

While the logical structure of this reformulation is indeed very simple, all

known methods for constructing such Diophantine equation produce equations

occupying several pages. On the other hand, there are known other reformula-

tion also belonging to class Π0
1 but having rather short wording. As examples

one can mention the criteria of the validity of the Riemann Hypothesis pro-

posed by J.-L.Nicolas, by G.Robin, and by J. Lagarias. The shortcoming of

these reformulations (as compared to Diophantine equations) consists in the

usage of constants and funtions which are �more complicated� than integers and

addition and multiplication su�cient for constructing Diophantine equations.

The paper presents a system of 9 conditions imposed on 9 variables. In

order to state these conditions one needs only addition, multiplication, expo-

nentiation (unary, with �xed base 2), congruences and remainders, inequalities,

and binomial coe�cient. The whole system can be written explicitly on a single

sheet of paper. It is proved that the system is inconsistent if and only if the

Riemann Hypothesis is true.

Key words: the Riemann Hypothesis, binomial coe�cients.

∗The following formulas were corrected: (2.4), (2.15), (2.16), (2.37), (2.41), and

(2.42).
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1 Introduction

The Riemann Hypothesis, like many other great problems, has very large
number of equivalent reformulations. Many of them are presented in recent two-
volume monograph [1, 2]. Such reformulations are given in very diverse terms,
but powerful technique of arithmetization, developed by K.G�odel [3] allows one
to transform them into statements about integers or natural numbers. In this
paper we will restrict ourselves to such arithmetical reformulations.

A.Turing, who made made important cotributions to veri�cation of the Rie-
mann Hypothesis (see, for example, [1, 4, 5, 6, 7]), was also interested to know how
simple, from logical point of view, can a reformulation of the Riemann Hypothesis
be. In [8] he introduced the notion of number-theoretical theorem:

By a number-theoretic theorem we shall mean a theorem of the form
�θ(x) vanishes for in�nitely many natural numbers x�, where θ(x) is
a primitive recursive function. . . . An alternative form for number-
theoretic theorems is �for each natural number x there exists a nat-
ural number y such that f(x, y) vanishes�, where f(x, y) is primitive
recursive.

Number-theoretical theorems of Turing are equivalent to provable formulas
from class Π0

2 of the arithmetical hierarchy. This class can be described as ckass
of formulas of the form

∀x1 . . . xm∃y1 . . . ynA(x1, . . . , xm, y1, . . . , yn), (1.1)

where A(x1, . . . , xm, y1, . . . , yn) is a decidable relation among natural numbers x1,
. . . , xm, y1, . . . , yn. Justifying his de�nition, Turing constructed a formula from
class Π0

2 which is equivalent to the Riemann hypothesis.
This result was improved by G.Kreisel [9] who reformulated the Riemann

Hypothesis by a formula from class Π0
1 consisting of formulas of the form

∀x1 . . . xmA(x1, . . . , xm). (1.2)

Such formulas can be characterized as e�ectively refutable: if a formula (1.2) is
false then this can be established be exhibiting one particular set of n numbers
x1 . . . xn not satisfying relation A. Using the decidability of this relation one
can construct, saty, a Turing machine (o write a program in some programming
language) which would perform the exaustive search of possible values of x1 . . . xn
trying to �nd the required counterexample. Such a machine/program will work
eternally if and only if formula (1.2) is true.
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Thanks to this result of Kreisel it became possible to �nd such a machine/pro-
gram for the Riemann Hypothesis, and this was actually done in a number of
papers. S.Aaronson and A.Yedidia [10] constructed a particular Turing machine
with two-symbol tape alphabet which, having started with the empty tape, will
never halt if and only if the Rieman Hypothesis is true. In [10] the machine has
5372 states; later this was improved to 744 states (see [11]). C.Calude, E.Calude,
and M.Dinneen [12, 13] and the author [14] constructed several versions of register
machines with analogous property.

In 1970 the author made the last step in the proof of what today is often called
DPRM-theorem1. This result allowed one to transform an arbitrary formula from
class Π0

1 into an equivalent formula from the same class having the following
special form:

∀x1 . . . xmP (x1, . . . , xm) 6= 0, (1.3)

where P (x1, . . . , xm) is a polynomial with integer coe�cients. It particular, it is
possible to explicitly specify a polynomial R(x1, . . . , xm) such that the Riemann
Hypothesis is equivalent to the statement that Diophantine equation

R(x1, . . . , xm) = 0 (1.4)

has no solution. Methods for constructing such a polynomial are presented in [17,
Section 2] and [16, Subsection 6.4]; more details are given in [18, 19]; see also [20].

Reformulation (1.3) of the Riemann Hypothesis certainly has very simple
structure: it contains universal quanti�ers only, and veri�cation of the condi-
tition consists just in calculation of the value of a polynomial. On the other
hand, while 9 variables are su�cient for such a polynomial ([21], for details see
[22]), all earlier known methods pruced polynomial occupying several pages.

There is quite a few other reformulation of of the Riemann Hypothesis having
the form (1.2) in which relation A can be written very shortly but which are more
di�cult for veri�cation; several such examples are given below.

Many classical results have the form resembling (1.2) but contain, for example,
big O notation having hidden existential quanti�er. One can get rid of it by
�nding explicit numerical value of the implied constant.

Diophantine equation (1.4) in [17] and Turing machine in [10] are based on
the reformulation of the Riemann Hypothesis proposed by H. Shapiro (see [17,
Section 2] and [1, Subsection 10.2]). It is given in terms of Chebyshev function
ψ(n) which is de�ned as follows:

ψ(n) = ln(LCM(1, . . . , n)) = ln(2) log2(LCM(1, . . . , n)), (1.5)

1After M.Davis, H. Putnam, J.Robinson, and the author of this paper; detailed proofs of
the theorem are given, for example, in [15, 16].
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where LCM is the least common multiple. The Riemann Hypothesis is equivalent
to the following statement:

ψ(n) = n+O
√
n ln2(n). (1.6)

In order to avoid hidden in the big O constant, Shapiro considered summatory
function

ψ1(n) =
∑

1≤m<n

ψ(m) (1.7)

and established that the Riemann Hypothesis is equivalent to the following in-
equality with an explicite constant:∣∣∣∣ψ1(m)− m2

2

∣∣∣∣ < 6m
√
m. (1.8)

Later L. Schoenfeld ([23], see also [1, Theorem 4.9]) found an explicit value
for the constant in (1.6), namely, he proved that the Riemann Hypothesis is
equivalent to the validity of the inequality

|ψ(n)− n| < 1

8π

√
n ln(n)2 (1.9)

for n ≥ 74. It was the usage of this criterium (insread of (1.8)) that allowed
to simplify construction of polynomial (1.3) in [16] and to reduce the number of
states of the Turing machine in [11].

J.-L.Nikolas ([24], see also [1, Theorem 5.31]) established that the Riemann
Hypothesis is equivalent to the inequality

eγ log(log(Nn)) <
Nn

φ(Nn)
(1.10)

where e = 2.71828 . . . , γ = 0.577215 . . . is the Euler constant, Nn denotes the
product of the �rst n prime numbers, φ(m) is Euler totient function (the quan-
tity of number which are not greater than m and are relatively prime with this
number).

G.Robin ([25], see also [1, Theorem 7.16]) proved that the the Riemann Hy-
pothesis is equivalent to the validity, for n ≥ 5040, of the inequality

σ(n) < eγn log(log(n)), (1.11)

where σ(n) is the sum of all divisors of n. This necessary and su�cient condition is
also known as criterium of Ramanujan�Robin, because S.Ramanujan established
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inequality (1.11) for su�ciently large n under the assumption of the validity of
the Riemann Hypothesis.

J. C. Lagarias ([26], see also [1, Theorem 7.18]) replaced the right-hand side
in (1.11) and got yet another condition which is both necessary and su�cient for
the validity of the Riemann Hypothesis:

σ(n) < Hn + eHn log(Hn) (1.12)

where Hn = 1 + 1/2 + · · ·+ 1/n and n is arbitrary.
Conditions of the type (1.8)�(1.12) are decidable and have short wording;

however, they contain real constants and functions like ψ(n), Nn, φ(n), σ(n),
which are more �complicated� in comparison to the integer coe�cients and oper-
ations of addition and multiplication used in (1.4). The goal of this paper is to
propose a �compromise� reformulation of the Riemann Hypothesis. Its advantage
over the Diophantine equation is its brevity � it can be written on a sinle sheet of
paper. Its disadvantage in comparison with (1.4), but advantage in comparision
with (1.8)�(1.12) consists in the functions used. Besides addition and multipli-
cation, we need only exponentiation (unary, with base 2), square root (it can
be easily eliminated), rem(a, b) (the remainder of dividing a by b), inequalities,
congruences, and binomial coe�cient which plays a key role.

The binomial coe�cients have surprisingly great expressive power. H.B.Mann
and è D. Shanks [27] gave a criteria of primality in terms of divisibility of certain
entries in the Pascal triangle. L.Hsu and P. J.-S. Shiue [28] reformulated Fermat's
Last Theorem as vanishing of certain sums of products of binomial coe�cients.
The author [29] gave, in the form of divisibility of a single binomial coe�cient,
criteria for

1. number p to be prime;

2. numbers p and p+ 2 be twin-primes;

3. number p be Fermat !! prime;

4. number p be Mersenne !! prime.

In [30] the author reformulated the Four Color Conjecture (now Theorem) as
non-divisibility of a certain product of binomial coe�cients. In similar style
M.Margenstern and the author [31] reformulated well-known 3x+ 1-problem.

The constructions in [29, 30, 31] are based on the following properties of
binomial coe�cients.
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Theorem (E.Kummer [32]). Let a and b be numbers with the following
p-bas positional representation where p is a prime:

a =
m∑
k=0

akp
k, b =

m∑
k=0

bkp
k, 0 ≤ ak < p, 0 ≤ bk < p, k = 0, . . . ,m; (1.13)

then the exponent of p in the prime factorization of binomial coe�cient
(
a+b
a

)
is

equal to the number of carries performed during adding a and b.

This result of Kummer for a long time remained little-known and was redis-
covered by many authors; proofs of the theorem can be found also in [16, 33].

We shall use the following corllary of Kummer's theorem for the case p = 2 in
(1.13). Let us say that a masks b (and write a � b), if ak ≥ bk for k = 0, . . . ,m.
Rummer's theorem implies that:(

a

b

)
≡ 1 (mod 2) ⇐⇒ a � b. (1.14)

This can be deduced from a special case of Lukas's theotem [34, Section XXI]:(
a

b

)
≡
(
a0
b0

)
. . .

(
am
bm

)
(mod p). (1.15)

2 New reformulation of the Riemann Hypothesis

The inequality (1.9) will be our starting point, but we modify it in two ways,
di�erently for necessary and for su�cient conditions:

� the Riemann Hypothesis implies that for all n > 1

ψ(n) > n−
√
n log2

2(n); (2.1)

� if the Riemann Hypothesis is not true than there are in�nitely many values
of n for which

ψ(n) < n− 20
√
n log2

2(n). (2.2)

We shall use the fact that the right-hand side in the necessary condition (2.1) is
larger than the right-hand side in the su�cient condition (2.2). The inequality
(2.1) for n ≥ 74 follows from (1.9), and the remaining cases n = 2, . . . , 73 can be
veri�ed by numerical calculation. The su�ciency of condition (2.2) follows from
Ω±-result for function ψ(n), which was obtained by E. Schmidt ([35], see also [36,
Theorem 32] and [1, Theorem 4.8]).
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Theorem 1. Let us cosider the following system of conditions:

2l ≤ n < 2l+1, (2.3)

2m ≤ 2q < 2m+1, (2.4)

s =
Bn+1

(
B(n+1)n − n− 1

)
+ n

(Bn+1 − 1)2
, (2.5)

t =
(2m − 1)

(
Bn2 − 1

)
Bn − 1

, (2.6)

(
t

r

)
≡ 1 (mod 2), (2.7)

u = rem
(
rs, Bn2−n), (2.8)

rs− u ≡ Bn2−n (Bn − 1)

B − 1
q (mod Bn2

), (2.9)

p = rem(r, Bn + 1), (2.10)

mp < nq − 15l2q
√
n, (2.11)

where B is an abridgement for 2l+m+1.
(A) If the Riemann Hypothesis is true then system (2.3)�(2.11) has no solution

in positive integers l,m, n, p, q, r, s, t, u.
(B) If the Riemann Hypothesis is false then the system (2.3)�(2.11) has in-

�nitely many such solutions.

Proof of the Part (A) will be given �by contradiction�. Suppose that there
are numbers l,m, n, p, q, r, s, t and u satisfying conditions (2.3)�(2.11).

According to (2.3),
n > 1 (2.12)

and
l = blog2(n)c. (2.13)
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Clearly,
1 ≤ l, 0 ≤ log2(n)− l < 1. (2.14)

Similar, according to (2.4)

m = blog2(q)c+ 1 (2.15)

and
0 < m− log2(q) ≤ 1. (2.16)

Let us consider B-base notation of numbers s, t, r and rs.
It is easy to check that (2.5) implies that

s =
n∑
j=1

jB(n−j)(n+1). (2.17)

This means that numbers 1, . . . , n are the only non-zero digits of number s, and
they are separated blocks of n zeros.

Similar, (2.6) implies that

t =
n∑
k=1

(2m − 1)B(k−1)n; (2.18)

in other words, all non-zero digits of number t are equal to 2m − 1, and they are
separated blocks of n− 1 zeros.

The binary notation of any number a can be obtained from its B-base nota-
tion by replacing each B-base digits by its by its binary notation prepended, if
necessary, by leading zeros to the length l + m + 1. This implies that a masks b
if and only if each B-base digit of a masks corresponding B-base digit of b.

According to (1.14), (2.7) implies that t � r and hence number r has the form

r =
n∑
k=1

rkB
(k−1)n, (2.19)

where
rk ≤ 2m − 1, k = 1, . . . , n. (2.20)

Let

rs =
2n2∑
i=0

diB
i, 0 ≤ di < B, i = 0, . . . 2n2. (2.21)
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According to (2.17) and (2.19)

rs =
n∑
j=1

n∑
k=1

jrkB
(n−j)(n+1)+(k−1)n. (2.22)

It is easy to check that for 1 ≤ j ≤ n, 1 ≤ k ≤ n all numbers (n−j)(n+1)+(k−1)n
are pairwise distinct. Also (2.3) and (2.19) imply that

jrk ≤ n(2m − 1) < 2l+1(2m − 1) < 2l+m+1 = B. (2.23)

Thus, all possible products jrk constitute all non-zero digits of number rs, more
precisely,

di =

{
jrk, if i = (n− j)(n+ 1) + (k − 1)n

0, otherwise.
(2.24)

In particular, in the case j = k we have:

dn2−k = krk, k = 1, . . . , n. (2.25)

According to (2.8) and (2.21)

u =
n2−n−1∑
i=0

diB
i. (2.26)

In other words, number u is the �tail� of the product rs, formed by its n2 − n
least signi�cant digits. Respectively,

rs− u =
2n2∑

i=n2−n

diB
i ≡

n2−1∑
i=n2−n

diB
m (mod Bn2

). (2.27)

We have the identity

n2−1∑
i=n2−n

qBi =
(Bn − 1)Bn2−n

B − 1
q; (2.28)

according to it (2.9), (2.25) and (2.27) imply that

krk = dn2−k = q, k = 1, . . . , n. (2.29)

From this we get the following values of the digits of number r:

rk =
q

k
, k = 1, . . . , n. (2.30)
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According to (2.29) q is divisible by 1, . . . , n, hence,

LCM(1, . . . , n) ≤ q. (2.31)

The evident congruence

Bn ≡ −1 (mod Bn + 1) (2.32)

and identity (2.19) imply that

p ≡
n∑
k=1

(−1)k−1rk (mod Bn + 1). (2.33)

The summands in the alternating sum (2.33) decrease in absolute value, the �rst
summand id equal to q, hence, the sum is positive and is at most q. Thus, both
left- and right-hand sides in the congruence (2.33) are positive and do not exceed
its modulo, hence they are equal. Respectively,

p

q
=

n∑
k=1

(−1)k−1rk
q

=
n∑
k=1

(−1)k−1

k
≈

∞∑
k=1

(−1)k−1

k
= ln(2) (2.34)

and we have elementary inequalities

1

2
≤ p

q
,

∣∣∣∣pq − ln(2)

∣∣∣∣ < 1

2n
. (2.35)

Now (2.11) and (2.35) imply that

m <
n− 15l2p

√
n

p/q
≤ 2n. (2.36)

Further, according to (2.35), (2.36), (2.16), (2.31), (1.5), and (2.12), we have:

p

q
m >

(
ln(2)− 1

2n

)
m = ln(2)m− m

2n
> ln(2) log2(q)− 1 =

ln(q)− 1 ≥ ln(LCM(1, 2, . . . , n))− 1 =

ψ(n)− 1 > ψ(n)− 2
√
n log2

2(n). (2.37)

On the other hand, according to (2.11) è (2.14)

p

q
m < n− 15l2

√
n < n− 3

√
n log2

2(n). (2.38)
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The three inequalities, (2.1), (2.37), and (2.38), give the required contradic-
tion. Part (A) is proved.

Proof of Part (B). For the role of n we take any integer whichis greater
than 1 and satis�es (2.2). From the proof of Part (A) we can see that the values
of all other variables are almost uniquely determined by the value of n.

Let us take l according to (2.13), so (2.3) and (2.14) hold.
Let

q = LCM(1, . . . , n), (2.39)

and select m according to (2.15), then (2.4) and (2.16) hold.
Let us select s according to (2.17), so (2.5) holds.
Let numbers rk and r be de�ned according to (2.30) and (2.19), then (2.16)

implies the validity of (2.20) and (2.23). The binary notation of number 2m − 1
consists of m units, hence (2.23) implies that

2m − 1 � rk, k = 1, . . . , n. (2.40)

Let us take t according to (2.18), then (2.6) holds. All non-zero digits of
number t are equal to 2m − 1 and, according to (2.40), they mask corresponding
digits of number r. This implies that ÷òî t � r and, according to (1.14), condition
(2.7) is ful�lled.

Similar to the proof of Part (A), we conclude that the digits di in representa-
tion (2.21) are de�ned by equality (2.24) and øåû particular case (2.25).

Let us take u according to (2.26), then (2.8) and (2.27) hold. According to
(2.25) in the second sum in (2.27) all di are equal to q. Due to the identity (2.28),
condition (2.9) is ful�lled.

Similat to the proof of Part (A) we conclude that that inequalities (2.35) hold.
According to (2.39), (1.5), and (2.2)

log2(q) = log2

(
LCM(1, . . . , n)

)
= ψ(n)/ ln(2) < 2ψ(n) < 3n. (2.41)

Using also (2.35), (2.16), (2.12), (2.2), and (2.14), we get that

p

q
m <

(
ln(2) +

1

2n

)
(log2(q) + 1) = ψ(n) +

log2(q)

2n
+ ln(2) +

1

2n
<

< ψ(n) + 3
√
n log2

2(n) < n− 17
√
n log2

2(n) < n− 17
√
nl2 (2.42)

hence, condition (2.11) is ful�lled.
Part (B) is proved. Theorem is proved.
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Remark. If we allow exponentiation with arbitrary base (not only ÷èñëà 2
as in (2.3)�(2.11)), then we can eliminate the binomial coe�cient:(

t

r

)
≡ 1 (mod 2) ⇐⇒ rem((2t + 1)t, 2rt+1) > 2rt. (2.43)

Replacing condition (2.7) by the right-hand side in (2.43), we get a system of con-
ditions each of which can be easily transformed into an exponential Diophantine
equation at the cost of introduction of new variables. All these equations can be
easily combined into a single exponential Diophantine equation the undecidabil-
ity of which is equivalent to the Riemann Hypothesis. Standard technique (see,
for example, [15, 16]) allows us to transform this exponential Diophantine equa-
tion into an equivalent equation with additional variables with relatively short
wording.

Conclusion

We have established that the Riemann Hypothesis is equivalent to the incon-
sistency of the conditions (2.3)�(2.11). It seems interesting to investigate systems
of conditions resulting from (2.3)�(2.11) by deletion of one of the conditions or
replacing it by a weaker one. For example, can we �nd a transparent descrip-
tion of the solutions of the system resulting from (2.3)�(2.11) via replacing the
binomial condition (2.7) by its corollary r ≤ t?
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