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Abstract. The Riemann Hypothesis has many equivalent reformulations.
Some of them are arithmetical, that is, thewy are statements about proper-
ties of integers or natural numbers. Among them the reformulations with the
simplest logical structure are those from the class 1Y from the arithmetical
hierachy, that is, having the form “for every x1,...,zy, relation A(z1,...,zy)
holds”, where A is decidable. As an example one can take the reformulation
of the Riemann Hypothsis as the assertion that certain Diophantine equation
has no solution (such particular equation can be given explicitly).

While the logical structure of this reformulation is indeed very simple, all
known methods for constructing such Diophantine equation produce equations
occupying several pages. On the other hand, there are known other reformula-
tion also belonging to class II{ but having rather short wording. As examples
one can mention the criteria of the validity of the Riemann Hypothesis pro-
posed by J.-L. Nicolas, by G.Robin, and by J. Lagarias. The shortcoming of
these reformulations (as compared to Diophantine equations) consists in the
usage of constants and funtions which are “more complicated” than integers and
addition and multiplication sufficient for constructing Diophantine equations.

The paper presents a system of 9 conditions imposed on 9 variables. In
order to state these conditions one needs only addition, multiplication, expo-
nentiation (unary, with fixed base 2), congruences and remainders, inequalities,
and binomial coefficient. The whole system can be written explicitly on a single
sheet of paper. It is proved that the system is inconsistent if and only if the
Riemann Hypothesis is true.

Key words: the Riemann Hypothesis, binomial coefficients.

*The following formulas were corrected: (2.4)), (2.15), (2.16), (2.37), (2.41), and
2.49).
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1 Introduction

The Riemann Hypothesis, like many other great problems, has very large
number of equivalent reformulations. Many of them are presented in recent two-
volume monograph [I, 2]. Such reformulations are given in very diverse terms,
but powerful technique of arithmetization, developed by K.Godel [3] allows one
to transform them into statements about integers or natural numbers. In this
paper we will restrict ourselves to such arithmetical reformulations.

A. Turing, who made made important cotributions to verification of the Rie-
mann Hypothesis (see, for example, [, 14, [5 6] [7]), was also interested to know how
simple, from logical point of view, can a reformulation of the Riemann Hypothesis
be. In [8] he introduced the notion of number-theoretical theorem:

By a number-theoretic theorem we shall mean a theorem of the form
“0(x) vanishes for infinitely many natural numbers z”, where 0(z) is
a primitive recursive function. ...An alternative form for number-
theoretic theorems is “for each natural number x there exists a nat-
ural number y such that f(x,y) vanishes”, where f(z,y) is primitive
recursive.

Number-theoretical theorems of Turing are equivalent to provable formulas
from class I19 of the arithmetical hierarchy. This class can be described as ckass
of formulas of the form

Var . X3y Yn AT, Ty Yy - Yn), (1.1)
where A(x1,...,Zm, Y1,---,Yn) is a decidable relation among natural numbers z,
cos Ty Y1y - - -, Yn. Justifying his definition, Turing constructed a formula from

class TIY which is equivalent to the Riemann hypothesis.
This result was improved by G.Kreisel [9] who reformulated the Riemann
Hypothesis by a formula from class I1{ consisting of formulas of the form

Vay .. xp Az, .o Tp). (1.2)

Such formulas can be characterized as effectively refutable: if a formula is
false then this can be established be exhibiting one particular set of n numbers
x1 ...z, not satisfying relation A. Using the decidability of this relation one
can construct, saty, a Turing machine (o write a program in some programming
language) which would perform the exaustive search of possible values of z; ...z,
trying to find the required counterexample. Such a machine/program will work

eternally if and only if formula (1.2) is true.
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Thanks to this result of Kreisel it became possible to find such a machine/pro-
gram for the Riemann Hypothesis, and this was actually done in a number of
papers. S. Aaronson and A. Yedidia [10] constructed a particular Turing machine
with two-symbol tape alphabet which, having started with the empty tape, will
never halt if and only if the Rieman Hypothesis is true. In [I0] the machine has
5372 states; later this was improved to 744 states (see [11]). C. Calude, E. Calude,
and M. Dinneen |12}, T3] and the author [14] constructed several versions of register
machines with analogous property.

In 1970 the author made the last step in the proof of what today is often called
DPRM—theoremﬂ This result allowed one to transform an arbitrary formula from
class TI{ into an equivalent formula from the same class having the following
special form:

Vry...xpP(ry,. .., 2m) #0, (1.3)

where P(xy,...,2,) is a polynomial with integer coefficients. It particular, it is
possible to explicitly specify a polynomial R(xy,...,z,,) such that the Riemann
Hypothesis is equivalent to the statement that Diophantine equation

R(xy,...,xm) =0 (1.4)

has no solution. Methods for constructing such a polynomial are presented in [17,
Section 2| and [16, Subsection 6.4]; more details are given in [I8] 19]; see also [20].
Reformulation of the Riemann Hypothesis certainly has very simple
structure: it contains universal quantifiers only, and verification of the condi-
tition consists just in calculation of the value of a polynomial. On the other
hand, while 9 variables are sufficient for such a polynomial (|21], for details see
[22]), all earlier known methods pruced polynomial occupying several pages.

There is quite a few other reformulation of of the Riemann Hypothesis having
the form (|1.2) in which relation A can be written very shortly but which are more
difficult for verification; several such examples are given below.

Many classical results have the form resembling but contain, for example,
big O notation having hidden existential quantifier. One can get rid of it by
finding explicit numerical value of the implied constant.

Diophantine equation in [17] and Turing machine in [10] are based on
the reformulation of the Riemann Hypothesis proposed by H.Shapiro (see |17,
Section 2| and [I, Subsection 10.2|). It is given in terms of Chebyshev function
1 (n) which is defined as follows:

YP(n) = In(LCM(L,...,n)) = In(2) logy,(LCM(1, ..., n)), (1.5)

L After M. Davis, H. Putnam, J. Robinson, and the author of this paper; detailed proofs of
the theorem are given, for example, in [15] [16].
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where LCM is the least common multiple. The Riemann Hypothesis is equivalent
to the following statement:

Y(n) = n+ Oy/nln*(n). (1.6)

In order to avoid hidden in the big O constant, Shapiro considered summatory

function
di(n) = > (m) (1.7)

1<m<n

and established that the Riemann Hypothesis is equivalent to the following in-
equality with an explicite constant:

m2

Y1 (m) < 6my/m. (1.8)

Later L. Schoenfeld (23], see also [I, Theorem 4.9]) found an explicit value
for the constant in (1.6)), namely, he proved that the Riemann Hypothesis is
equivalent to the validity of the inequality

[9(n) —nl < o viin(n)’ (1.9)

for n > 74. It was the usage of this criterium (insread of (L.8)) that allowed
to simplify construction of polynomial in [I6] and to reduce the number of
states of the Turing machine in [IT].

J.-L. Nikolas (|24], see also [I, Theorem 5.31]) established that the Riemann
Hypothesis is equivalent to the inequality

Nn
¢(N)

where e = 2.71828 ..., v = 0.577215... is the Euler constant, /V,, denotes the
product of the first n prime numbers, ¢(m) is Euler totient function (the quan-
tity of number which are not greater than m and are relatively prime with this
number).

G. Robin (|25], see also [1, Theorem 7.16]) proved that the the Riemann Hy-
pothesis is equivalent to the validity, for n > 5040, of the inequality

e”log(log(N,,)) < (1.10)

o(n) < e'nlog(log(n)), (1.11)

where o(n) is the sum of all divisors of n. This necessary and sufficient condition is
also known as criterium of Ramanujan—Robin, because S. Ramanujan established



inequality for sufficiently large n under the assumption of the validity of
the Riemann Hypothesis.

J. C. Lagarias ([26], see also I, Theorem 7.18|) replaced the right-hand side
in and got yet another condition which is both necessary and sufficient for
the validity of the Riemann Hypothesis:

o(n) < H, + e log(H,) (1.12)

where H,, =1+ 1/24--- 4 1/n and n is arbitrary.

Conditions of the type (L.8)—(L.12) are decidable and have short wording;
however, they contain real constants and functions like ¥ (n), N,, ¢(n), o(n),
which are more “complicated” in comparison to the integer coefficients and oper-
ations of addition and multiplication used in . The goal of this paper is to
propose a “compromise” reformulation of the Riemann Hypothesis. Tts advantage
over the Diophantine equation is its brevity — it can be written on a sinle sheet of
paper. Its disadvantage in comparison with (I.4), but advantage in comparision
with f consists in the functions used. Besides addition and multipli-
cation, we need only exponentiation (unary, with base 2), square root (it can
be easily eliminated), rem(a, b) (the remainder of dividing a by b), inequalities,
congruences, and binomial coefficient which plays a key role.

The binomial coefficients have surprisingly great expressive power. H. B. Mann
and n D. Shanks [27] gave a criteria of primality in terms of divisibility of certain
entries in the Pascal triangle. L. Hsu and P. J.-S. Shiue [28] reformulated Fermat’s
Last Theorem as vanishing of certain sums of products of binomial coefficients.
The author [29] gave, in the form of divisibility of a single binomial coefficient,
criteria for

1. number p to be prime;

2. numbers p and p + 2 be twin-primes;
3. number p be Fermat !! prime;

4. number p be Mersenne !! prime.

In [30] the author reformulated the Four Color Conjecture (now Theorem) as
non-divisibility of a certain product of binomial coefficients. In similar style
M. Margenstern and the author [31] reformulated well-known 3z + 1-problem.

The constructions in [29, B0, BI] are based on the following properties of
binomial coefficients.



Theorem (E. Kummer [32]). Let a and b be numbers with the following
p-bas positional representation where p is a prime:

a:Zakpk, b:Zbkpk, 0<ap<p, 0<bp,<p, k=0,...,m; (1.13)
k=0 k=0

then the exponent of p in the prime factorization of binomial coefficient (“Zb) I8
equal to the number of carries performed during adding a and b.

This result of Kummer for a long time remained little-known and was redis-
covered by many authors; proofs of the theorem can be found also in |16} 33].

We shall use the following corllary of Kummer’s theorem for the case p = 2 in
(L.13). Let us say that a masks b (and write a > b), if a;, > by, for k =0,...,m.
Rummer’s theorem implies that:

(Z) =1 (mod2) < a>b. (1.14)

This can be deduced from a special case of Lukas’s theotem [34, Section XXIJ:

(Z) = (ZE) (Z:) (mod p). (1.15)

2 New reformulation of the Riemann Hypothesis

The inequality (1.9) will be our starting point, but we modify it in two ways,
differently for necessary and for sufficient conditions:

e the Riemann Hypothesis implies that for all n > 1
¥(n) > n —/nlogy(n); (2.1)

e if the Riemann Hypothesis is not true than there are infinitely many values
of n for which
Y(n) < n —20y/nlogs(n). (2.2)

We shall use the fact that the right-hand side in the necessary condition is
larger than the right-hand side in the sufficient condition (2.2). The inequality
for n > 74 follows from (1.9)), and the remaining cases n = 2,...,73 can be
verified by numerical calculation. The sufficiency of condition follows from
Q-result for function ¢ (n), which was obtained by E. Schmidt ([35], see also |36,
Theorem 32| and [} Theorem 4.8]).



Theorem 1. Let us cosider the following system of conditions:

2l <m < 2 (2.3)
2M < 2q < 2mH (2.4)

B Bn+1 (B(nJrl)n —n—- 1) +n )
S = (Bn+1 _ 1)2 ) ( 5)

(-1 (B" -1)

p— 2.
t B —1 ’ (2:6)
t
( ) =1 (mod 2), (2.7)
r
u = rem(rs, B"2_”), (2.8)
_ BY T (B"—1) 2
rs—u= F1 q¢ (mod B™), (2.9)
p =rem(r, B" + 1), (2.10)
mp < ng — 151%¢\/n, (2.11)

where B is an abridgement for 27m+1,
(A) If the Riemann Hypothesis is true then system (2.3)—(2.11)) has no solution
in positive integers I, m,n,p,q,r,s,t, u.

(B) If the Riemann Hypothesis is false then the system (2.3)—(2.11) has in-
finitely many such solutions.

Proof of the Part (A) will be given “by contradiction”. Suppose that there

are numbers [, m,n, p,q, 7, s,t and u satisfying conditions (2.3)—(2.11).
According to ([2.3),

n>1 (2.12)

and
[ = |logy(n)]. (2.13)
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Clearly,
1<, 0<logy(n)—1<1. (2.14)

Similar, according to ([2.4)

m = [log,(q)] + 1 (2.15)

and
0 <m —logy(q) < 1. (2.16)

Let us consider B-base notation of numbers s, ¢, r and rs.
It is easy to check that (2.5)) implies that

s=Y jBUI0tn, (2.17)
j=1
This means that numbers 1,...,n are the only non-zero digits of number s, and

they are separated blocks of n zeros.
Similar, (2.6) implies that

n

t=> (2" —1)B* I (2.18)

k=1

in other words, all non-zero digits of number ¢ are equal to 2" — 1, and they are
separated blocks of n — 1 zeros.

The binary notation of any number a can be obtained from its B-base nota-
tion by replacing each B-base digits by its by its binary notation prepended, if
necessary, by leading zeros to the length [ + m + 1. This implies that a masks b
if and only if each B-base digit of a masks corresponding B-base digit of b.

According to (1.14)), implies that ¢ = r and hence number 7 has the form

r=>Y rBk" (2.19)
k=1
where
re,<2™—1, k=1,...,n. (2.20)
Let
2n2
rs=Y &;B', 0<d;<B, i=0,...2n" (2.21)
1=0



According to (2.17) and (2.19)

rs =Y Y jrpBr ke, (2.22)

j=1 k=1

It is easy to check that for 1 < j < n, 1 < k < nall numbers (n—j)(n+1)+(k—1)n
are pairwise distinct. Also (2.3)) and (2.19)) imply that

jre <n(2m—1) < 2™ — 1) < 2 = B (2.23)

Thus, all possible products jr; constitute all non-zero digits of number rs, more
precisely,

g — gre, ifi= (n —j)n+1)+(k—1)n (2.24)

0, otherwise.

In particular, in the case j = k we have:
dpz_p, =kry, k=1,...,n. (2.25)

According to (2.8)) and (2.21))

n2—n—1

u= Y dB" (2.26)
=0

In other words, number u is the “tail” of the product rs, formed by its n?> — n
least significant digits. Respectively,

2n? n?—1
rs—u= Z d;B" = Z d;B™ (mod B™). (2.27)
We have the identity
n?—1 2
B' = ; 2.28
,_22 q e — (2.28)
according to it (2.9)), (2.25) and (2.27) imply that
kr, =dype_r=q, k=1,...,n. (2.29)

From this we get the following values of the digits of number 7:

r=-, k=1...,n. (2.30)



According to (2.29) ¢ is divisible by 1,...,n, hence,

LCM(1,...,n) <q. (2.31)
The evident congruence
B"= -1 (mod B"+1) (2.32)
and identity (2.19) imply that
p=Y (=1)*'rp (mod B"+1). (2.33)
k=1

The summands in the alternating sum decrease in absolute value, the first
summand id equal to ¢, hence, the sum is positive and is at most ¢. Thus, both
left- and right-hand sides in the congruence are positive and do not exceed
its modulo, hence they are equal. Respectively,

-y D7 3 % ~3 <_113 (2 (2.34)

Q3

£ ln(2)‘ < —. (2.35)

Now ({2.11)) and ({2.35)) imply that

— 1572
m < D1V
p/q

Further, according to (2.35)), (2.36), (2.16)), (2.31)), (1.5), and (2.12), we have:

(2.36)

B> (1) = 5 ) m = 2 = 5% > In(2)ogy(a) ~ 1 =

In(g) — 1 > In(LCM(1,2,...,n)) — 1=
$(n) — 1> b(n) — 2y/logd(n). (2.3

On the other hand, according to (2.11)) u (2.14))

gm <n—1512\/n < n — 3y/nlog(n). (2.38)
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The three inequalities, (2.1)), (2.37), and (2.38)), give the required contradic-

tion. Part (A) is proved.

Proof of Part (B). For the role of n we take any integer whichis greater
than 1 and satisfies (2.2)). From the proof of Part (A) we can see that the values
of all other variables are almost uniquely determined by the value of n.

Let us take [ according to (2.13]), so (2.3) and (2.14) hold.

Let

g =LCM(1,...,n), (2.39)

and select m according to (2.15)), then (2.4) and (2.16) hold.
Let us select s according to (2.17)), so (2.5)) holds.

Let numbers 7, and r be defined according to (2.30) and (2.19)), then ([2.16])
implies the validity of (2.20) and (2.23)). The binary notation of number 2™ — 1

consists of m units, hence (2.23)) implies that
2" —1=r,, k=1,...,n. (2.40)

Let us take t according to (2.18), then (2.6) holds. All non-zero digits of
number ¢ are equal to 2™ — 1 and, according to (2.40)), they mask corresponding
digits of number . This implies that aro ¢ > r and, according to (1.14]), condition

(2.7) is fulfilled.

Similar to the proof of Part (A), we conclude that the digits d; in representa-

tion (2.21)) are defined by equality (2.24)) and mesnr particular case ([2.25).
Let us take u according to (2.26)), then (2.8) and (2.27) hold. According to

in the second sum in all d; are equal to ¢. Due to the identity ([2.28)),
condition is fulfilled.
Similat to the proof of Part (A) we conclude that that inequalities hold.
According to (2.39), (1.5), and (2.2)

log,(q) = log, (LCM(1,...,n)) = ¢(n)/In(2) < 2¢(n) < 3n. (2.41)

Using also (2.35)), (2.16)), (2.12)), (2.2)), and (2.14)), we get that

P < (1n(2) + 51 ) Goma(a) + 1) = vlo) + 2240 gz 4 5L <

< (n) + 3v/nlogi(n) < n — 17y/nlogs(n) < n — 17y/nl* (2.42)

hence, condition (2.11)) is fulfilled.
Part (B) is proved. Theorem is proved.
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Remark. If we allow exponentiation with arbitrary base (not only wucsa 2
as in (2.3)—(2.11)), then we can eliminate the binomial coefficient:

(i) =1 (mod2) <= rem((2'+1)",2"") > 2™ (2.43)
Replacing condition by the right-hand side in , we get a system of con-
ditions each of which can be easily transformed into an exponential Diophantine
equation at the cost of introduction of new variables. All these equations can be
easily combined into a single exponential Diophantine equation the undecidabil-
ity of which is equivalent to the Riemann Hypothesis. Standard technique (see,
for example, [I5] [16]) allows us to transform this exponential Diophantine equa-
tion into an equivalent equation with additional variables with relatively short
wording.

Conclusion

We have established that the Riemann Hypothesis is equivalent to the incon-
sistency of the conditions 72.11. It seems interesting to investigate systems
of conditions resulting from (2.3)—(2.11) by deletion of one of the conditions or
replacing it by a weaker one. For example, can we find a transparent descrip-
tion of the solutions of the system resulting from (2.3)-(2.11) via replacing the
binomial condition by its corollary r < ¢7
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