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Abstract. This paper demonstrate on numerical examples several
plausible ways of calculating values of the Riemann zeta function via
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1 Introduction. Syntactical and semantical ap-
proximations

Suppose that we are interested to study some function D(s) defined by a
certain Dirichlet series,

D(s) =
∞∑
n=1

ann
−s. (1.1)

We could try to get information about D(s) via its approximations by some finite
Dirichlet series

DN(s) = aN,1 × 1−s + · · ·+ aN,N ×N−s. (1.2)

Informally, we can classify such approximations as syntactical and semantical.
In the former case the starting point is the right-hand side in (1.1), the Dirich-

let series. Namely, we define numbers aN,n in some way via numbers an, and then
we examine to what extent function DN(s), defined by (1.2), is similar to D(s).
The simplest case is the plain truncation

aN,n = an. (1.3)

Typically, better numerical approximation is achieved for a smoothed truncation

aN,n = wN,nan (1.4)

with some weights wN,n such that wN,n ≈ 1 for small n and wN,n ≈ 0 for n close
to N ; often there are many ways to select such weights giving good approxima-
tions.

In the case of semantical approximation the starting point is the functionD(s)
itself, and we need not know the coefficients of its Dirichlet series. Numbers aN,n
are defined in the framework of a certain mode of similarity saying that function
DN(s) behaves like D(s) in a certain respect. After that we ask: in what other
respects are these two functions similar? Also we can scrutinize the numbers aN,n
themselves.

In general, semantical approximations (in comparison with syntactical ones)
are less amenable to analysis because of the indirect character of the definition
of their coefficients.

Many results found in the literature can be viewed as studies of particular
modes of similarity, and below a few sample are briefly described; two new modes
are introduced in Section 3, and Sections 4–5 present corresponding numerical
data.
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Example 1 Having in (1.2) N parameters aN,1, . . . , aN,N , we can select N
different testing points s1, . . . , sN and demand that

DN(sm) = D(sm). (1.5)

A particular case of such an interpolation was considered in [7] (for prehistory
see [8], for further development see [1, 9, 12]). There D(s) is the Riemann zeta
function, and its initial non-trivial zeros were used in the role of the testing points.
Respectively, conditions (1.5) simplified to

DN(sm) = 0. (1.6)

Clearly, this is trivially satisfied by aN,1 = · · · = aN,N = 0. In order to avoid such
a degeneration one syntactical condition of normalization was imposed, namely,

aN,1 = 1. (1.7)

For an odd N , N = 2K + 1, K pairs of the initial conjugate zeta zeroes

ρ±1 = 1/2± iγ1, . . . , ρ±K = 1/2± iγK (1.8)

were used as testing points, that is, for n > 1 the coefficients aN,n were defined
by solving the linear system

DN(1/2± iγm) = 0, m = 1, . . . , K. (1.9)

The first numerical discovery was as follows: DN(s) also vanishes very close
to a certain amount of subsequent zeroes ρ±(K+1), . . . , ρ±K′ (see [7, Section 2],
[1, Table 2]) and very close to several initial trivial zeroes −2, . . . ,−2J (see [1,
Table 3]).

Numbers (1.8) are also zeros of Euler alternating zeta function

η(s) =
∞∑
n=1

(−1)n+1n−s = (1− 2× 2−s)ζ(s). (1.10)

The next numerical discovery was as follows: DN(s) vanishes also near the zeros
of 1 − 2 × 2−s, that are small in absolute value but different from s = 1 (see [1,
Table 2]). Moreover, the values of DN(s) approximate values of η(s) very well.
This holds for a large range of s, both inside the critical strip and to the left of
it, and this is true also for the derivatives of DN(s) and η(s) (see [7, Figure 5–8],
[1, Table 5]).

The coefficients of DN(s) by themselves are very interesting numbers encoding
primes in several ways (for details see [7, 1])).
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Example 2 The similarity condition exploited in [4, 5, 6] is formulated via
smoothed approximate functional equations (see [13, Sect. 3.2]). In spite of the
name, they are exact equalities of the form

h(s)D(s) =
∞∑
n=1

(
fG(s, n)n−s + fG(c− s, n)nc−s

)
an (1.11)

where c and h(s) are respectively the constant and the function from a functional
equation

h(s)D(s) = h(c− s)D(c− s) (1.12)

satisfied by D(s). Function fG in (1.13) is defined via an auxiliary entire func-
tion G which should satisfy some mild conditions on its growth. For any two such
functions G1 and G2 we have the identity

∞∑
n=1

(
fG1(s, n)n−s + fG,1(c− s, n)nc−s

)
an =

∞∑
n=1

(
fG2(s, n)n−s + fG2(c− s, n)nc−s

)
an (1.13)

and can demand that finite series (1.3) should satisfy similar equalities

N∑
n=1

(
fG1(s, n)n−s + fG,1(c− s, n)nc−s

)
aN,n =

N∑
n=1

(
fG2(s, n)n−s + fG2(c− s, n)nc−s

)
aN,n (1.14)

for a suitable set of triples 〈s,G1, G2〉. It is demonstrated in [4, 5, 6] that in many
cases it is possible to calculate in this way multiprecision values of the function
satisfying (1.12), and to determine it.

Example 3 An essentially different way of using a functional equation for defin-
ing a mode of similarity was introduced in [10, 11]. It is based on the “gen-
uine” functional equation (1.12) rather than on its smoothed counterpart (1.13).
Namely, one demands that finite series (1.3) should satisfy the exact replica of
(1.12),

h(s)DN(s) = h(c− s)DN(c− s), (1.15)

but for a certain finite set of values of s only. Surprisingly, it turned out possible
to use very large real values of s, that is, such that c−s is less than the abscissa of
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convergency of series (1.1). This allows one to select for s special values (typically,
integer or half-integer) for which the gamma factors from the both sides of (1.15)
can be cancelled due to the functional equation for the gamma function; the
resulting form of (1.15) is much simpler than (1.14).

In [11] such simplified version of mode of similarity (1.15) was used for getting
very good approximations for η(s) and ζ(s) and for the initial derivatives of these
functions in broad range of values of the arguments inside and to the left of the
critical strip.

In [10] a simplified version of mode (1.15) was used for rediscovering Ramanu-
jan tau numbers which are the coefficients of the Dirichlet series for Ramanujan
function Lτ (s).

Example 4 Another mode of similarity considered in [10, 11] can be viewed as
as the limiting form of (1.5) when sk → c/2.

Namely, the functional equation (1.12) is equivalent to the infinite system of
numerical equalities

dk

dsk
h(s)D(s)

∣∣∣∣
s=c/2

= 0 (1.16)

which hold for all odd k. Respectively, a mode of similarity can consists of the
validity of equalities

dk

dsk
h(s)DN(s)

∣∣∣∣
s=c/2

= 0. (1.17)

for a certain set of odd values of k.
Calculations presented in [11] demonstrate how the well-known Davenport–

Heilbronn function f(s) (for definition see [15, Subsection 10.25]) can be found
as the solution of corresponding system of equations of the form (1.17).

Calculations presented in [11] demonstrate that Ramanujan tau numbers can
also be rediscovered via (1.17).

2 Riemann–Siegel and Hardy functions
The two new modes of similarity considered in this paper are also based on a

functional equation; they will be introduced here for the case of the zeta function.
This function has well-known representation

ζ(1/2 + it) = e−iθ(t)Z(t) (2.1)

for real t where continuous real valued functions θ(t) and Z(t) are known re-
spectively as the Riemann–Siegel theta function and the Hardy Z-function. The
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former function can be defined as

θ(t) = Im (lnΓ (it/2 + 1/4))− ln(π)t/2, θ(0) = 0, (2.2)

where lnΓ is the continuous version of the natural logarithm of the gamma func-
tion; respectively,

Z(t) = eiθ(t)ζ(1/2 + it). (2.3)

The significance of representation (2.1) is due to the fact that Z(t) is real for
real t (this is implied by the functional equation for the zeta function). Thus in
(2.1) the information about ζ(1/2+it) is split into two parts: θ(t) is its argument
(up to an integer multiple of π), and Z(t) is its absolute value (up to the sign).
However, Riemann–Siegel formula ([14], see also [3, Chapter 7]) allows one to
calculate approximate value of Z(t) via function θ. Thus, in a sense this function
alone contains full information about the zeta function.

Below we present numerical data suggesting that plausibly there are several
other ways for calculating the zeta function via function θ. Actually we will deal
with the eta function (1.10); in its terms the reality of Z(t) is expressed as

Im

(
eiθ(t)η(1/2 + it)

1− 2× 2−1/2−it

)
= 0. (2.4)

3 First new mode of similarity
Our first mode of similarity consists of the formal counterparts of equality

(2.4):

Im

(
eiθ(t)DN(1/2 + it)

1− 2× 2−1/2−it

)
= 0. (3.1)

We shall see how well η(s) is approximated by DN(s) for two particular ways of
selecting values of t; with some abuse of the language, they will be called testing
points as well.

3.1 Classical Gram points

Well-known Gram points are defined via the solutions of equation

θ(t) = mπ. (3.2)

For a non-negative integer m Gram point gm is the unique (see Fig. 1) positive
solution of this equation. For m = −1 there are two positive solutions, they are
usually denoted as g−2 = 3.436218 . . . and g−1 = 9.666908 . . . .

7



Figure 1: Plot of θ(t) and Gram points gm

The reality of Z(t) implies that

Im(ζ(1/2 + igm)) = 0 (3.3)

for any Gram point gm.
The reason to use Gram points for testing is as follows: in this case condi-

tion (3.1) simplifies to

Im

(
DN(1/2 + igm)

1− 2× 2−1/2−igm

)
= 0. (3.4)

In other words, function θ comes into this mode of similarity via Gram points
only. However, the plain usage of Gram points does not work: clearly, DN(s) =
1− 2× 2−s trivially satisfies (3.4). Thus if we want to avoid such a degeneration,
we need to add some extra condition.

One possible way to do it is to use, besides (1.7), yet another syntactical
condition, namely,

aN,2 = −1; (3.5)

the rest of the coefficients is still defined via semantical conditions (3.4) for m =
−2, . . . , N − 5.

We can write down an explicit expressions for DN(s). Consider (N − 1) ×
(N − 1) matrix

MN(s) =

(
µm,n(s)

)N−1

m=1

N−1

n=1

(3.6)
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Figure 2: Coefficients a200,n defined by (1.7), (3.4), and (3.5); points are red for
odd values of n, and blue otherwise

where

µm,n(s) =


1− 2−s, if m = 1, n = 1;

(n+ 1)−s, if m = 1, n > 1;

Im
(

1−2−1/2−igm−4

1−2×2−1/2−igm−4

)
, if m > 1, n = 1;

Im
(

(n+1)−1/2−igm−4

1−2×2−1/2−igm−4

)
, otherwise.

(3.7)

Let LN be the (N − 2)× (N − 2) matrix resulting from MN(s) by deletion of the
first row and the first column. In this notation

DN(s) =
det(MN(s))

det(LN)
. (3.8)

If N ′ < N then MN ′ is a submatrix of MN , and so are LN ′ and LN as
well. Thanks to this, Gauss elimination can be organized in such a way that
the coefficients of all D1(s), . . . , DN(s) are computed after O(N3) arithmetical
operations (see [2]).

Figure 2 presents coefficients of D200(s) for the testing points tm = gm−3 in
(3.4) for m = 1, . . . , 198. We see that the coefficients looks as if they were
defined via a smooth truncation (1.4) of the coefficients from the alternating
series from (1.10). What is remarkable is the following: we haven’t “invented” the
weights wN,n, they emerged naturally from the solution of the system consisting
of equations (1.7), (3.4), and (3.5).
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Figure 3: Absolute values of the differences between a2000,n (defined by (1.7),
(3.4), and (3.5)) and (−1)n+1 in logarithmic scale

Figure 2 and other calculations performed for greater value of N suggest the
following surmise.

Conjecture A. For every fixed n and N →∞

aN,n→(−1)n+1 (3.9)

where aN,n is defined by (1.7), (3.4), and (3.5).

In order to scrutinize the way in which aN,n approaches (−1)n+1 we can con-
sider the difference of these two quantities and switch to logarithmic scale — see
Figure 3. The picture looks rather similar to [7, Fig. 30] and [9, Fig. 5.5]. How-
ever, there is an essential difference: the two latter picture were produced using
“complicated” non-trivial zeros of the zeta function while for Figure 3 we need
only “simple” Gram points.

Table 1 shows the accuracy with which D500(s) approximates η(s) for diverse
arguments. This data and calculations performed for different values of s and
greater values of N suggest the following surmise.

Conjecture B. For every s such that 1− 2× 2−s 6= 0,

ζ(s) = lim
N→∞

det(MN(s))

(1− 2× 2−s) det(LN)
. (3.10)
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s
∣∣∣D500(s)

η(s)
− 1
∣∣∣

−10 + 900i 4.41730...·10−22
−8 + 500i 2.78142...·10−56
−6 + 900i 1.53815...·10−22
−5 + 500i 1.78207...·10−57
−4 + 900i 9.25972...·10−23
−3 + 500i 2.87433...·10−58
−2 + 900i 5.79830...·10−23

−1 1.55777...·10−42
−1 + 500i 4.77712...·10−59

0 3.15370...·10−45
100i 3.24485...·10−56
200i 2.47524...·10−59
300i 2.64273...·10−59
400i 1.99062...·10−59
500i 2.10556...·10−59

s
∣∣∣D500(s)

η(s)
− 1
∣∣∣

600i 1.28877...·10−59
700i 4.41919...·10−58
800i 1.08592...·10−52
900i 5.58937...·10−23
0.5 1.71437...·10−46

0.5 + 100i 4.99083...·10−57
0.5 + 200i 4.96293...·10−60
0.5 + 300i 4.07432...·10−59
0.5 + 400i 2.96713...·10−58
0.5 + 500i 1.75993...·10−59
0.5 + 600i 6.35035...·10−60

1 + 700i 3.86352...·10−59
1 + 800i 9.62379...·10−54
2 + 800i 8.44679...·10−56
3 + 800i 6.41067...·10−58

Table 1: Approximation of η(s) by D500(s) defined by (1.7), (3.5) and (3.1) for
tm = gm, m = −2, . . . , 495

Conjectures A and B tell us that full information about the values of the
zeta function and the coefficients of its Dirichlet series is contained in the modest
numerical equalities (3.3) and values (1.7) and (3.5) of the first two Dirichlet
coefficients of the eta function. Thus these two conjectures proffer

Conjecture C. Riemann’s zeta function is the only function R(s) such that

• it can be defined as

R(s) =
1− 2−s +

∑∞
n=3 ann

−s

1− 2× 2−s
(3.11)

where the Dirichlet series in the numerator converges for Re(s) > 0 to an
entire function ;

• R(1/2 + igm) is real for m = −2, −1, . . .
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3.2 Gram points with half-integer indices

Instead of syntactical condition (3.5) we can use semantical condition (3.1) at
additional testing points. In particular, we can consider Gram points with half-
integer indices. They are defined by the same equation (3.2); for m = −1/2 there
are (see Fig. 1) two positive solutions which we denote as g−3/2 = 0.819545 . . .
and g−1/2 = 14.517919 . . . For Gram point gm with half-integer index m condi-
tion (3.1) simplifies to

Re

(
DN(1/2 + igm)

1− 2× 2−1/2−igm

)
= 0. (3.12)

There is no need to use all initial Gram points (with integer and half-integer
indices) for testing, moreover, it seems more natural that for calculation of ζ(s)
we should select Gram points in the vicinity Im(s).

Let us consider the following example. We wish to calculate ζ(1/2 + 239i); we
put N = 120 and use 119 Gram points

g71 = 186.810 . . . , g71.5 = 187.735 . . . , . . ., g130 = 289.038 . . . (3.13)

in conditions (3.4) and (3.12). Calculation gives, as we might expect, quite good
approximation

D120(1/2 + 239i) = 3.0796627956. . . − 0.8238469365. . . i, (3.14)∣∣η(1/2 + 239i)−D120(1/2 + 239i)
∣∣ = 1.50430. . . × 10−7. (3.15)

But in fact this is rather surprising if one looks at the coefficients of D120(s)
presented in Table 2. Almost one third of the initial coefficients are very close to
the alternating ±1 (similar to Fig. 2), but others have very large absolute values.

4 Second new mode of similarity
If we wish to calculate ζ(s) for s = σ+ iτ , then the ultimate form of selecting

the testing points in the vicinity of τ is just to put tm = τ for all m. Of course,
in such a case we need to modify (3.1). Namely, (2.4) implies that

Im

(
dk

dtk
eiθ(t)η(1/2 + it)

1− 2× 2−1/2−it

)
= 0, (4.1)

and we replace (3.1) by counterpart of (4.1),

Im

(
dk

dtk
eiθ(t)DN(1/2 + it)

1− 2× 2−1/2−it

∣∣∣∣
t=τ

)
= 0. (4.2)
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n a120,n n a120,n n a120,n n a120,n

1 1.0... 31 .99... 61 -.44...·1012 91 .78...·1018
2 -1.0... 32 -.99... 62 -.17...·1013 92 .68...·1018
3 .99... 33 .99... 63 -.64...·1013 93 .54...·1018
4 -.99... 34 -.99... 64 -.22...·1014 94 .40...·1018
5 .99... 35 .98... 65 -.75...·1014 95 .27...·1018
6 -.99... 36 -.95... 66 -.23...·1015 96 .17...·1018
7 .99... 37 .90... 67 -.68...·1015 97 .10...·1018
8 -.99... 38 -.89... 68 -.19...·1016 98 .58...·1017
9 .99... 39 .11...·101 69 -.49...·1016 99 .30...·1017
10 -.99... 40 -.17...·101 70 -.11...·1017 100 .15...·1017
11 .99... 41 .30...·101 71 -.27...·1017 101 .70...·1016
12 -.99... 42 -.47...·101 72 -.57...·1017 102 .30...·1016
13 .99... 43 .63...·101 73 -.11...·1018 103 .12...·1016
14 -.99... 44 -.79...·101 74 -.21...·1018 104 .48...·1015
15 .99... 45 .77...·101 75 -.36...·1018 105 .17...·1015
16 -.99... 46 -.13...·102 76 -.59...·1018 106 .58...·1014
17 .99... 47 -.20...·102 77 -.89...·1018 107 .18...·1014
18 -.99... 48 -.18...·103 78 -.12...·1019 108 .53...·1013
19 .99... 49 -.11...·104 79 -.16...·1019 109 .14...·1013
20 -.99... 50 -.68...·104 80 -.19...·1019 110 .35...·1012
21 .99... 51 -.41...·105 81 -.22...·1019 111 .78...·1011
22 -.99... 52 -.24...·106 82 -.22...·1019 112 .15...·1011
23 .99... 53 -.14...·107 83 -.20...·1019 113 .28...·1010
24 -.99... 54 -.78...·107 84 -.17...·1019 114 .44...·109
25 .99... 55 -.42...·108 85 -.11...·1019 115 .58...·108
26 -.99... 56 -.22...·109 86 -.61...·1018 116 .62...·107
27 .99... 57 -.11...·1010 87 -.62...·1017 117 .49...·106
28 -.99... 58 -.53...·1010 88 .37...·1018 118 .24...·105
29 .99... 59 -.24...·1011 89 .66...·1018 119 .25...·103
30 -.99... 60 -.10...·1012 90 .79...·1018 120 -.36...·102

Table 2: Coefficients of D120(s) defined by (3.4), (3.12), and (3.13)
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s
∣∣∣D50(s)
η(s)

− 1
∣∣∣

−5 6.70323...·10−21
−5 + 14i 2.38782...·10−26
−5 + 28i 2.69647...·10−17
−4 + 14i 5.96096...·10−26
−4 + 28i 1.10006...·10−17

−3 1.19722...·10−22
−3 + 14i 1.39945...·10−25
−3 + 28i 5.82625...·10−18
−2 + 14i 3.14114...·10−25
−2 + 28i 4.15247...·10−18

−1 4.01685...·10−24
−1 + 14i 7.16153...·10−25
−1 + 28i 3.85242...·10−18

0 8.10411...·10−25
7i 1.58864...·10−25

s
∣∣∣D50(s)
η(s)

− 1
∣∣∣

14i 2.35600...·10−24
21i 2.86786...·10−22
0.5 4.46752...·10−25

0.5 + 7i 1.54883...·10−25
0.5 + 14i 8.85659...·10−24
0.5 + 21i 6.92554...·10−21
0.5 + 28i 3.75762...·10−18

1 + 7i 1.40013...·10−25
1 + 14i 2.12103...·10−24
1 + 21i 2.94894...·10−22
1 + 28i 2.82332...·10−18

2 1.06736...·10−25
2 + 28i 5.50696...·10−19

3 4.76131...·10−26
3 + 28i 7.91534...·10−20

Table 3: Approximation of η(s) by D50(s) defined by (1.7) and (4.2) for τ = 14
and k = 4, . . . , 52
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In contrast to Taylor series, in order to calculate ζ(s) we need not use (4.2)
with consecutive initial values of k. Table 3 shows the accuracy with which η(s)
at diverse arguments is approximated by D50(s) defined by (1.7) and (4.2) for
τ = 14 and k = 4, . . . , 52.

5 Directions for further investigations
Selection of Gram points with integer and half-integer indices for the role of

testing points was motivated by the simplicity of resulting equations (3.4) and
(3.12). The distances between consecutive Gram points are of the same order
as the average distance between the nearby zeta zeros, that is, they decrease as
2π/ ln(n). This seems to be important for getting well-behaved coefficients in
finite Dirichlet series. The usage of equidistant testing points in (3.1) (such as
tn = n, for example) produces finite Dirichlet series giving good approximations
but having more complicated and less understood structure of their coefficients.
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