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Abstract. This paper demonstrate on numerical examples several
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1 Introduction. Syntactical and semantical ap-
proximations

Suppose that we are interested to study some function D(s) defined by a
certain Dirichlet series,

D(s) = Zann_s. (1.1)

We could try to get information about D(s) via its approximations by some finite
Dirichlet series

DN(S) =an,1 X 17° + 4 an,nN X N~°. (12)

Informally, we can classify such approximations as syntactical and semantical.

In the former case the starting point is the right-hand side in (L.1]), the Dirich-
let series. Namely, we define numbers ay ,, in some way via numbers a,,, and then
we examine to what extent function Dy (s), defined by (L.2), is similar to D(s).
The simplest case is the plain truncation

ANp = Q. (1.3)
Typically, better numerical approximation is achieved for a smoothed truncation

ANn = WNnQn (14)

with some weights wy ,, such that wy,, ~ 1 for small n and wy, ~ 0 for n close
to N; often there are many ways to select such weights giving good approxima-
tions.

In the case of semantical approximation the starting point is the function D(s)
itself, and we need not know the coefficients of its Dirichlet series. Numbers ayy,
are defined in the framework of a certain mode of similarity saying that function
Dy (s) behaves like D(s) in a certain respect. After that we ask: in what other
respects are these two functions similar? Also we can scrutinize the numbers ay,
themselves.

In general, semantical approximations (in comparison with syntactical ones)
are less amenable to analysis because of the indirect character of the definition
of their coefficients.

Many results found in the literature can be viewed as studies of particular
modes of similarity, and below a few sample are briefly described; two new modes
are introduced in Section 3, and Sections 4-5 present corresponding numerical
data.



Example 1 Having in (1.2) N parameters ayi, ...,anny, we can select N
different testing points s, ..., sy and demand that

D ($m) = D(m)- (1.5)

A particular case of such an interpolation was considered in [7] (for prehistory
see [§], for further development see [I, @, 12]). There D(s) is the Riemann zeta
function, and its initial non-trivial zeros were used in the role of the testing points.
Respectively, conditions simplified to

Dy (sm) = 0. (1.6)

Clearly, this is trivially satisfied by anx 1 = --- = ayn = 0. In order to avoid such
a degeneration one syntactical condition of normalization was imposed, namely,

an1 = 1. (1.7)
For an odd N, N = 2K + 1, K pairs of the initial conjugate zeta zeroes
pe1=1/2ximn, ... pax =1/2Eiyk (1.8)

were used as testing points, that is, for n > 1 the coefficients ay,, were defined
by solving the linear system

Dn(1/2 +iy,) =0, m=1,..., K. (1.9)
The first numerical discovery was as follows: Dy (s) also vanishes very close
to a certain amount of subsequent zeroes pi(xi1y,...,p+x’ (see [7, Section 2],
[1, Table 2|) and very close to several initial trivial zeroes —2, ..., —2J (see [I,
Table 3]).

Numbers (1.8]) are also zeros of Euler alternating zeta function

n(s) =Y (=107 = (1 -2 x27°)((s). (1.10)
n=1

The next numerical discovery was as follows: Dy (s) vanishes also near the zeros
of 1 —2 x 27° that are small in absolute value but different from s =1 (see [T,
Table 2|). Moreover, the values of Dy(s) approximate values of 7(s) very well.
This holds for a large range of s, both inside the critical strip and to the left of
it, and this is true also for the derivatives of Dy (s) and 7(s) (see [7, Figure 5-8|,
[1, Table 5]).

The coefficients of Dy (s) by themselves are very interesting numbers encoding
primes in several ways (for details see |7, [I])).
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Example 2 The similarity condition exploited in [4, B [6] is formulated via
smoothed approximate functional equations (see [I3], Sect. 3.2]). In spite of the
name, they are exact equalities of the form

= (fal(s,n)n™" + falc— s,n)n""*)a, (1.11)
n=1

where ¢ and h(s) are respectively the constant and the function from a functional
equation

h(s)D(s) = h(c — s)D(c — s) (1.12)

satisfied by D(s). Function fg in (1.13]) is defined via an auxiliary entire func-
tion G which should satisfy some mild conditions on its growth. For any two such
functions GGy and G5 we have the identity

WE

(fGl (37 n)n_s + fG,l(C — 8, n)nc_s)an =
1

3
I

Z fo,(s,n)n™% + fa,(c — ,n)nc_s)an (1.13)
n=1

and can demand that finite series (|1.3)) should satisfy similar equalities

M =

(fe (s,m)n™ + fai(c—s,n)n"*)an, =
1

3
Il

N

Z (fGQ(s, n)n"° + fg,(c— s, n)nc_s)ann (1.14)

n=1

for a suitable set of triples (s, G1, G). It is demonstrated in [4} 5] [6] that in many
cases it is possible to calculate in this way multiprecision values of the function

satisfying ((1.12), and to determine it.

Example 3 An essentially different way of using a functional equation for defin-
ing a mode of similarity was introduced in [10, [II]. It is based on the “gen-
uine” functional equation rather than on its smoothed counterpart .
Namely, one demands that finite series (1.3) should satisfy the exact replica of
(1.12)),

h(s)Dn(s) = h(c — s)Dn(c —s), (1.15)

but for a certain finite set of values of s only. Surprisingly, it turned out possible
to use very large real values of s, that is, such that ¢— s is less than the abscissa of
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convergency of series . This allows one to select for s special values (typically,
integer or half-integer) for which the gamma factors from the both sides of
can be cancelled due to the functional equation for the gamma function; the
resulting form of is much simpler than (1.14]).

In [IT] such simplified version of mode of similarity was used for getting
very good approximations for n(s) and ((s) and for the initial derivatives of these
functions in broad range of values of the arguments inside and to the left of the
critical strip.

In [I0] a simplified version of mode (|1.15)) was used for rediscovering Ramanu-
jan tau numbers which are the coefficients of the Dirichlet series for Ramanujan
function L.(s).

Example 4 Another mode of similarity considered in [10] 11| can be viewed as
as the limiting form of when s — ¢/2.
Namely, the functional equation ((1.12)) is equivalent to the infinite system of
numerical equalities
dk

@h(S)D(S)

=0 (1.16)
s=c/2
which hold for all odd k. Respectively, a mode of similarity can consists of the
validity of equalities
dk:
——h(s)Dn(s)

T = 0. (1.17)

s=c/2

for a certain set of odd values of k.

Calculations presented in [11] demonstrate how the well-known Davenport—
Heilbronn function f(s) (for definition see [15, Subsection 10.25]) can be found
as the solution of corresponding system of equations of the form .

Calculations presented in [I1] demonstrate that Ramanujan tau numbers can

also be rediscovered via ([1.17)).

2 Riemann—Siegel and Hardy functions

The two new modes of similarity considered in this paper are also based on a
functional equation; they will be introduced here for the case of the zeta function.
This function has well-known representation

C(1/2+it) = e 9O Z(1) (2.1)

for real ¢ where continuous real valued functions 6(t) and Z(t) are known re-
spectively as the Riemann—Siegel theta function and the Hardy Z-function. The
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former function can be defined as
0(t) = Im (Inl" (it/2 4+ 1/4)) — In(7)t/2, 6(0) =0, (2.2)

where Inl" is the continuous version of the natural logarithm of the gamma func-
tion; respectively, _
Z(t) = eD¢(1/2 +it). (2.3)

The significance of representation is due to the fact that Z(t) is real for
real ¢ (this is implied by the functional equation for the zeta function). Thus in
the information about {(1/2+it) is split into two parts: 6(¢) is its argument
(up to an integer multiple of 7), and Z(t) is its absolute value (up to the sign).
However, Riemann—Siegel formula ([14], see also [3, Chapter 7]) allows one to
calculate approximate value of Z(t) via function 6. Thus, in a sense this function
alone contains full information about the zeta function.

Below we present numerical data suggesting that plausibly there are several
other ways for calculating the zeta function via function 6. Actually we will deal
with the eta function ; in its terms the reality of Z(t) is expressed as

e?On(1/2 + it)
Im (1 — 2_1/H) =0. (2.4)

3 First new mode of similarity

Our first mode of similarity consists of the formal counterparts of equality

29): o
WDy (1/2 +1t)
Im ( o w o ) = 0. (3.1)

We shall see how well 7(s) is approximated by Dy(s) for two particular ways of
selecting values of ¢; with some abuse of the language, they will be called testing
points as well.

3.1 Classical Gram points
Well-known Gram points are defined via the solutions of equation
6(t) = mm. (3.2)

For a non-negative integer m Gram point g,, is the unique (see Fig. positive
solution of this equation. For m = —1 there are two positive solutions, they are
usually denoted as g_o = 3.436218 ... and g_; = 9.666908 . . ..
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Figure 1: Plot of 6(t) and Gram points g,,
The reality of Z(t) implies that
Im(¢(1/2 +igm)) = 0 (3.3)

for any Gram point g,,.
The reason to use Gram points for testing is as follows: in this case condi-
tion (3.1)) simplifies to

Im< Dn(1/2 4+ 1g1m) ) _o

1— 2 x 2-1/2~igm (3:4)

In other words, function # comes into this mode of similarity via Gram points
only. However, the plain usage of Gram points does not work: clearly, Dy(s) =
1 —2 x 277 trivially satisfies . Thus if we want to avoid such a degeneration,
we need to add some extra condition.
One possible way to do it is to use, besides , yet another syntactical
condition, namely,
aN2 = —1; (35)

the rest of the coefficients is still defined via semantical conditions for m =
-2, ..., N—5,

We can write down an explicit expressions for Dy(s). Consider (N — 1) x
(N — 1) matrix

N-1N—-1

M (5) = (simls)) (3.6)

m=1In=1
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Figure 2: Coeflicients as,, defined by (1.7), (3.4), and (3.5)); points are red for

odd values of n, and blue otherwise

where .
1—27%, iftm=1, n=1,
(n+ 1), ifm=1,n>1,
R L Y I SRt D
—1/2—igy,_ .
\Im % ., otherwise.

Let Ly be the (N —2) x (N — 2) matrix resulting from My (s) by deletion of the
first row and the first column. In this notation

_ det(My(s))

Dy(s) = — ) (3.8)

If NN < N then My is a submatrix of My, and so are Ly and Ly as
well. Thanks to this, Gauss elimination can be organized in such a way that
the coefficients of all Dy(s), ..., Dy(s) are computed after O(N?3) arithmetical
operations (see [2]).

Figure [2| presents coefficients of Dygg(s) for the testing points t,, = ¢,,_3 in
for m =1, ..., 198. We see that the coefficients looks as if they were
defined via a smooth truncation of the coefficients from the alternating
series from (1.10). What is remarkable is the following: we haven’t “invented” the
weights wy ,,, they emerged naturally from the solution of the system consisting

of equations (1.7)), (3.4), and (3.5).
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Figure 3: Absolute values of the differences between asgo,, (defined by ,
(3.4), and (3.5)) and (—1)""! in logarithmic scale

Figure [2] and other calculations performed for greater value of N suggest the
following surmise.

Conjecture A. For every fited n and N — oo
ann—(=1)"" (3.9)
where ay,p, is defined by (1.7), (3.4), and (3.5)).

In order to scrutinize the way in which ay, approaches (—1)"™! we can con-
sider the difference of these two quantities and switch to logarithmic scale — see
Figure 3| The picture looks rather similar to [7, Fig. 30] and [9, Fig. 5.5]. How-
ever, there is an essential difference: the two latter picture were produced using
“complicated” non-trivial zeros of the zeta function while for Figure [3| we need
only “simple” Gram points.

Table [1| shows the accuracy with which Dsgo(s) approximates 7(s) for diverse
arguments. This data and calculations performed for different values of s and
greater values of NV suggest the following surmise.

Conjecture B. For every s such that 1 —2 x 27° # 0,

s det(Mn(s))
C(s) = lim (1—2x 2% det(Ly)

. (3.10)

10



D s D s

: i -1 : R
—10+900i || 4.41730...-107%2 600i || 1.28877...-107%°
—84+500i || 2.78142...-107% 7001 || 4.41919...-107%8
—6+900i || 1.53815...-10722 800i || 1.08592...-107%2
—5+500i || 1.78207...-107%7 900i || 5.58937...-107%8
—44+900i || 9.25972...-1072 0.5 1.71437....107%
—34500i || 2.87433...-107% 0.5+ 100i || 4.99083...-107%
—24900i || 5.79830...-:10723 0.5+ 200i || 4.96293...-10°%°
—1 | 1.55777...-107%2 0.5+ 300i || 4.07432...-107%°
—1+500i || 4.77712...-107%° 0.5 +400i || 2.96713...-107%8
0| 3.15370...-107% 0.5+ 500i || 1.75993...-107%°
100i || 3.24485...-107%6 0.5+ 600i || 6.35035...-107%°
200i || 2.47524...-107%° 1+ 700i || 3.86352...-107°°
300i || 2.64273...-107%° 148001 || 9.62379...-107%
4001 || 1.99062...-107%° 2 +800i || 8.44679...-10°%
500i || 2.10556...-107%° 3+800i || 6.41067...-107%8

Table 1: Approximation of 7(s) by Dsg(s) defined by (1.7)), (3.5) and (3.1]) for
tm = Gm, m = —2, ...,495

Conjectures A and B tell us that full information about the values of the
zeta function and the coefficients of its Dirichlet series is contained in the modest

numerical equalities (3.3) and values (1.7) and (3.5) of the first two Dirichlet
coefficients of the eta function. Thus these two conjectures proffer

Conjecture C. Riemann’s zeta function is the only function R(s) such that
e it can be defined as

1 =27 3 s aen T

R(s) 1—2x2>

(3.11)

where the Dirichlet series in the numerator converges for Re(s) > 0 to an
entire function ;

o R(1/2+1igy) is real form = =2, —1, ...
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3.2 Gram points with half-integer indices

Instead of syntactical condition (3.5)) we can use semantical condition at
additional testing points. In particular, we can consider Gram points with half-
integer indices. They are defined by the same equation ; for m = —1/2 there
are (see Fig. (1)) two positive solutions which we denote as g_3/o = 0.819545. ..
and g_;/p = 14.517919 ... For Gram point g, with half-integer index m condi-

tion (3.1]) simplifies to
Dn(1/2+1igm) \
Re (1 5 i ) = 0. (3.12)

There is no need to use all initial Gram points (with integer and half-integer
indices) for testing, moreover, it seems more natural that for calculation of ((s)
we should select Gram points in the vicinity Im(s).

Let us consider the following example. We wish to calculate ((1/24 239i); we
put N = 120 and use 119 Gram points

in conditions (3.4) and (3.12)). Calculation gives, as we might expect, quite good
approximation

Digo(1/2 + 2391) = 3.0796627956. .. — 0.8238469365. . . i, (3.14)
7(1/2 4 239i) — Di2o(1/2 + 239i)| = 1.50430... x 107" (3.15)

But in fact this is rather surprising if one looks at the coefficients of Dj9(s)
presented in Table 2] Almost one third of the initial coefficients are very close to
the alternating 41 (similar to Fig. , but others have very large absolute values.

4 Second new mode of similarity

If we wish to calculate ((s) for s = o + i, then the ultimate form of selecting

the testing points in the vicinity of 7 is just to put t,, = 7 for all m. Of course,
in such a case we need to modify (3.1]). Namely, (2.4 implies that

- ( dk e®p(1/2 + it)) o (4.1)

dth1—2 x 2172t

and we replace (3.1)) by counterpart of (4.1),
d* e Dy (1/2 + it
Im( "Dy (1/2 +it)

dtk 1 —2 x 2-1/2-it

M) = 0. (4.2)
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n @120,n n a120,n n a120,n n a120,n

1] 1.0...|[31] .99... 61]-.44...-10%] 91| .78...-10™®
21-1.0...(32]-.99... 62(-.17...-10'%| 92| .68...-10®
30 .99...1(/33] .99... 63|-.64...-10'%| 93| .54....10%®
41-.99...(/34]-.99... 64(-.22...-10%| 94| .40...-10%®
5/ .99...(35] .98... 65(-.75...-10%| 95| .27....10%®
6(-.99...(/36|-.95... 66(-.23...-10%| 96| .17...-10%®
71 .99...137| .90... 67(-.68...-10%%| 97| .10...-10%®
81-.99...(/38]-.89... 68(-.19...-10%| 98| .58...-10%
9 .99...(39| .11...-10' ||69|-.49...-10%| 99| .30...-10'
10/-.99...(40|-.17...-10% ||70]|-.11...-10%'|/100| .15...-10'
11| .99...(41| .30...-10* ||71|-.27...-10'7|[101| .70...-10%
121-.99...(/42|-.47....10* ||72|-.57...-10'7|[102| .30...-10%
13| .99...(43| .63...-10' ||73|-.11...-10%®|/103| .12...-10%
141-.99...(/44|-.79...-10 ||74|-.21...-10*®|[104| .48...-10%
15| .99...|/45| .77...-10* ||75/-.36...-10*®[105| .17...-10%®
16/-.99...(/46|-.13...-10% ||76|-.59...-10®|/106| .58...-10%
17| .99...(/47|-.20...-10% ||77|-.89...-10%®|/107| .18...-10%*
181-.99...(/48|-.18...-10% ||78]|-.12...-10*°|/108| .53...-10%3
19| .99...]49|-.11...-10* ||79|-.16...-10*°||109| .14....10%3
200-.99...||50|-.68...-10% ||80|-.19...-10%||110| .35...-10%*?
21| .99...|[51|-.41...-10% ||81|-.22...-10%(|111| .78...-10%
221-.99...(|52]-.24...-10% ||82]-.22...-10%%(|112| .15...-10%
23] .99...|[53|-.14...-10" [|83|-.20...-10%°||113| .28...-10%°
241-.99...|[54|-.78...-107 (|84 |-.17...-10%®||114| .44...-10°
25| .99...|[55|-.42...-10® [|85|-.11...-10%|115| .58...-108
26|-.99...|[56|-.22...-10° [|86|-.61...-10%®||116| .62...-107
271 .99...|[57|-.11...-10°(|87|-.62...-10'||117| .49...-108
281-.99...|[58]-.53...-10%°(|88| .37...-10%®|118] .24...-10°
29| .99...|[59|-.24...-10'*(|89| .66...-10%®|119| .25...-10°
30(-.99...]/60|-.10...-10%2{|90| .79...-10'®|/120(-.36...-102

Table 2: Coefficients of Dya(s) defined by (3.4), (3.12)), and (3.13)
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Dso(s) Dso(s)
s ‘ n(s) 1‘ s ) 7(s) 1)

—5|6.70323...-107% 14i | 2.35600...-107%*
—5+14i | 2.38782...-10°2¢ 21i | 2.86786...-107%2
—54+28i | 2.69647...-107Y7 0.5 | 4.46752...-1072°
—4+14i | 5.96096...-10°2¢ 0.5+ 7i| 1.54883...-1072°
—4+4+28i | 1.10006...-107%7 0.5+ 14i | 8.85659...-107%*
—311.19722...-1072? 0.5+21i | 6.92554...-107%
—3+14i | 1.39945....107% 0.5+28i | 3.75762...-10718
—3+28i | 5.82625...-10718 1+7i|1.40013...-107%
—2+14i | 3.14114....107% 1+14i| 2.12103...-107%
—24+28i | 4.15247...-10718 14+21i| 2.94894....1072?
—1|4.01685...-107% 1428 | 2.82332...-10°1®
—1+14i | 7.16153...-1072 21 1.06736...-1072
—1+28i | 3.85242....10718 2+28i | 5.50696...-1071°
0|8.10411...-107% 314.76131...-107%8

7i| 1.58864...-107%° 34 28i | 7.91534...-107%°

Table 3: Approximation of n(s) by Dsg(s) defined by (1.7) and (4.2) for 7 = 14
and k=4, ..., 52

14



In contrast to Taylor series, in order to calculate ((s) we need not use (4.2))
with consecutive initial values of k. Table 3| shows the accuracy with which 7(s)
at diverse arguments is approximated by Dso(s) defined by (1.7) and (4.2)) for
T=14and k=4, ..., 52.

5 Directions for further investigations

Selection of Gram points with integer and half-integer indices for the role of
testing points was motivated by the simplicity of resulting equations and
(3.12). The distances between consecutive Gram points are of the same order
as the average distance between the nearby zeta zeros, that is, they decrease as
27/ In(n). This seems to be important for getting well-behaved coefficients in
finite Dirichlet series. The usage of equidistant testing points in (3.1 (such as
t, = n, for example) produces finite Dirichlet series giving good approximations
but having more complicated and less understood structure of their coefficients.
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