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1 Introduction

Alan Turing, one of the founders of modern Computer Science, during the
whole his lifetime was fond of Number Theory. His very last paper that he saw
published, namely, [36], was in Number Theory. That paper1 was devoted to
computer veri�cation of the celebrated Riemann Hypothesis ; nowadays it is one
of the seven Millenium problems [2].

The Hypothesis predicts the positions of complex zeroes of so called Riemann's
zeta function. This meromorphic function can be de�ned for Re(s) > 1 by a
Dirichlet series,

ζ(s) =
∞∑
n=1

1

ns
. (1)

L. Euler gave another de�nition of this function,

ζ(s) =
∏

p prime

1

1− p−s
. (2)

The equality of the right-hand sides in (1) and (2), known as Euler identity, is
essentially an analytical form of the Fundamental Theorem of Arithmetic, stating
that every natural number can be represented in a unique way as a product of
powers of prime numbers. This is the reason why Riemann's zeta function plays
so important role in the study of prime numbers.

In particular, B.Riemann proved in his seminal paper [33] that

π(x) = Li(x)− 1

2
Li(x

1
2 ) +

∑
ζ(ρ)=0

Li(xρ) + small terms. (3)

Here π(x) denotes the number of primes below some bound x,

Li(x) =

∫ x

2

1

ln(t)
dt. (4)

and the summation is taken over non-real zeroes of Riemann's zeta function.
According to the Riemann Hypothesis, all these zeros should have real parts
equal to 1/2. In terms of the function π(x) the Hypothesis can be reformulated
as

π(x)− Li(x) = O(x
1
2 log(x)). (5)

The Riemann Hypothesis has many other important corollaries in Number
Theory and, more surprisingly, in Computer Science as well. In particular, the

1More details about Turing's contribution to Number Theory can be found in [8, 7, 17, 9, 4].
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Year Number of zeroes Author

1903 15 J. P. Gram
1914 79 R. J. Backlund
1925 138 J. I. Hutchinson
1936 1041 E. C. Titchmarsh

1953 1104 A. M. Turing
1956 25000 D. H. Lehmer
1958 35337 N. A. Meller
1966 250000 R. S. Lehman
1968 3500000 J. B. Rosser, J. M. Yohe, L. Schoenfeld
1977 40000000 R. P. Brent
1979 81000001 R. P. Brent
1982 200000001 R. P. Brent, J. van de Lune,

H. J. J. te Riele, D. T. Winter
1983 300000001 J. van de Lune, H. J. J. te Riele
1986 1500000001 J. van de Lune, H. J. J. te Riele,

D. T. Winter
2004 900000000000 S. Wedeniwski
2004 10000000000000 X. Gourdon

Table 1: Numerical veri�cation of the Riemann Hypothesis

best known today deterministic test for the primality of a number p has com-
plexity Ω(p6); but already in 1976 G. L.Miller [29] proposed an algorithm of
complexity O(p4) assuming the validity of the (extended) Riemann Hypothesis.

Table 1 shows results of computational veri�cation of the Riemann Hypoth-
esis for the initial (pairs of conjugate) zeros of the zeta function. It should be
emphasized that, while it was done via �nite computation with numbers of �nite
accuracy, the computations present mathematically rigourous proofs that the real
parts of these zeros are exactly equal to 1/2.

Reported in [36] contribution of Turing, that is, about zeros from 1042nd to
1104th, does not look impressive compared neither with his predecessor no with
his follower. However, it was a milestone in numerical veri�cation of the Riemann
Hypothesis. On the one hand, it was one of the �rst usage of an electronic
computer for proving non-trivial mathematical statements. But more important
is the following: for performing his computation Turing developed an e�cient
method for testing the Riemann Hypothesis. It is know in Number Theory as
Turing method and all subsequent computations, up to our days, are based on
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this method.
In a typical paper about Turing one reads that he has published only two

number-theoretical paper, [37, 36]. This is not quite so. Turing dealt with the
Riemann Hypothesis also in his Ph.D. thesis which was later published as [35].
There he introduced the notion of number-theoretical theorems. Turing wrote:

By a number-theoretic theorem we shall mean a theorem of the form
�θ(x) vanishes for in�nitely many natural numbers x�, where θ(x) is
a primitive recursive function. ... An alternative form for number-
theoretic theorems is �for each natural number x there exists a natural
number y such that φ(x, y) vanishes�, where φ(x, y) is primitive re-
cursive.

Respectively, a problem is called number-theoretical if its solution can be
given in the form of a number-theoretical theorem. It is easy to see that the set
of such problems is exactly the class Π0

2 from the arithmetical hierarchy.
As one of the examples of a number-theoretical problems Turing proves that

the Riemann Hypothesis can be reformulated as Π0
2 statement.

It is interesting to note that Turing didn't believe in the validity of the Rie-
mann Hypothesis. He wrote in [36]:

The calculations were done in an optimistic hope that a zero would
be found o� the critical line [where Re(s) = 1/2], and the calculations
were directed more towards �nding such zeros than proving that none
existed.

The class of arithmetical statements which can be refuted by a �nite calcula-
tion is Π0

1, and in 1958 G.Kreisel improved Turing's result by constructing a Π0
1

formula equivalent to the Riemann Hypothesis2.
Neither Turing's no Kreisel's reformulations of the Riemann Hypothesis im-

mediately attracted attention of specialists in Number Theory. The situation
changed in 1970 when the author made the last step in the proof of what is
nowadays referred to as DPRM-theorem3. This theorem establishes that every
formula from Π0

1 with parameters a1, . . . , am is equivalent to a formula of the
special form

∀x1 . . . xn[P (a1, . . . , am, x1 . . . xn) 6= 0] (6)

where P is a polynomial with integer coe�cients.

2This was just a particular application of a very general technique developed by Kreisel
in [25].

3After M.Davis, H. Putnam, J.Robinson and Yu.Matiyasevich; for detailed proofs see, for
example, [1, 3, 27, 18, 24]
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Together with the above mentioned result of Kreisel, DPRM-theorem has
the following corollary: one can construct a particular polynomial R(x1 . . . xn)
with integer coe�cients such that the Riemann Hypothesis is equivalent to the
statement that Diophantine equation

R(x1 . . . xn) = 0 (7)

has no solutions.
A method for an actual construction of such an equation (7) was described in

[19, Section 2]. Later a simpli�ed version was presented in [3, Section 6.4]; more
details are supplied in [11]; both methods are discussed in [32].

DPRM-theorem was worked out as a tool to establish the undecidability of
Hilbert's 10th problem. It is one of the 23 mathematical problems posed by
D.Hilbert in 1900 in [23]. In this problem he asked for an algorithm for recog-
nizing whether given arbitrary Diophantine equation has a solution.

The Riemann Hypothesis is a part of Hilbert's 8th problem. Now an equation
(7) shows that this Hypothesis is a very special case of the 10th problem; such
a relationship (found via the Computability Theory) between the 8th and 10th
Hilbert's problems seems have never been anticipated by specialists in Number
Theory.

Hardly we can hope to prove (or refute) the Riemann Hypothesis by examining
corresponding Diophantine equation (7). But we can look at such reformulation
from a di�erent point of view. Namely, besides the formal proof of the undecid-
ability of Hilbert's 10th problem, we have an informal �evidence� of the di�culty
of Diophantine equations � for some of them one cam easily prove that they are
equivalent to the tricky Riemann Hypothesis.

But how could one measure the di�culty of a mathematical problem? C. S.Calude,
E.Calude, and M. J.Dinneen ([15], for further development see [13, 14, 12]) sug-
gested that the complexity of a statement from Π0

1 can be de�ned as the com-
plexity of the simplest machine (or program) that never halts if and only if the
statement is true. Among other famous mathematical problems they estimated
(from above) the complexity of the Riemann Hypothesis. Of course, such a bound
heavily depends on our current level of knowledge, and it will drastically fell down
if someday someone proves or refutes the Riemann Hypothesis.

The numerical value of such complexity measure depends also on the formal-
ism used for describing computations. L.Adleman and K.Manders [6] introduced
the notion of Non-Deterministic Diophantine Machine, NDDM for short. Each
such machine is speci�ed by a parametric Diophantine equation

P (a, x1, . . . , xn) = 0 (8)
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NDDM

P (a, x1, . . . , xm)
?
= 0 �-

?

 -

input

a

guess

x1, . . . , xm

YES NO

accept a reject

Figure 1: Non-Deterministic Diophantine Machine

and works as follows: on input a it guesses the numbers x1, . . . , xn and then
checks (8); if the equality holds, then a is accepted.

The DPRM-theorem is exactly the statement that NDDMs are as powerful
as, say, Turing machines4. Thus the di�culty of any problem from Π0

1 can be
measured by any complexity measure (such as the number of the unknowns and
the degree) of the Diophantine equation from corresponding NDDM. In particu-
lar, equations equivalent to the Riemann Hypothesis (described, for example, in
[19, 3, 11]) can perform this role with respect to the Hypothesis.

In [15, 14, 16] a version of register machines was used for estimating the com-
plexity of mathematical problems. Such models of computational devices were
proposed in 1961 by J. Lambek [26], by Z.A.Melzak [28], and by M.L.Minsky
[30] (see also [31]). A register machine has a �nite number of registers capable
to contain arbitrary large non-negative integers. Types of possible instructions
can varies. In [15, 14, 16] they are rather powerful: assigning an arbitrary value
to a register, adding the values of two registers, conditional branches and calling
subroutines. The Riemann Hypothesis is presented in [16] by a program with
178 such instructions (this is an improvement over machine with 290 instructions
provided in [15]).

More recently, A.Yedidia and S.Aaronson [38] constructed a classical Turing
machine with two-letter tape alphabet which, having started with the empty tape,

4The crucial question is whether NDDMs are as e�cient as Turing machines. If they are,

then NDDMs could be used for the study of P
?
=NP problem. Partial progress in this direction

was archived in [6] but this intriguing question still remains open.
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will never halt if and only if the Riemann Hypothesis is true. Their machine has
5372 state. Its construction was based on the reformulation of the Riemann
Hypothesis used in [19] for constructing corresponding Diophantine equation (7).
The usage of another reformulation presented in [3, Section 6.4] reduced the
number of states to 744 (see [5]).

Register machines constructed in [15, 16] are also based on the same reformu-
lation of the Riemann Hypothesis from [3]. In the next Section we introduce a
di�erent method of refuting the Riemann Hypothesis (if it false) by a �nite com-
putation. It is presented in two forms: as the Python program from Figure 2 and
as the register machine from Figure 3. This machine has only 128 instructions,
and they are of two very simple types in style of [26] and [30]: to increment or
decrement a register by 1. As it was remarked in [30], register machines with
such primitive instructions can be viewed as Turing machines with several always
empty semi-in�nite tapes (only the ends of the tapes are marked with a special
symbol).

2 New construction

We start with the well-known reformulation of the Riemann Hypothesis via
Chebyshev psi function,

ψ(n) = ln(q(n)), (9)

where q(n) is the least common multiple of numbers 1, . . . , n. Functions π(n)
and ψ(n) are closely related but the latter allows simpler (without integral (4))
reformulation of the Riemann hypothesis. For our goal it better to state the
necessary and the su�cient conditions separately. Namely,

• the Riemann Hypothesis implies that for all n > 1

ψ(n)− n < 1

25
n

1
2 ln(n)2; (10)

• if for some constant C for all su�ciently large n

ψ(n)− n < Cn
1
2 ln(n)2 (11)

then the Riemann Hypothesis holds.

The bound 1/(8π) on the absolute value of the left-hand side in (10) for n ≥
74 was given in [34] (see also [9, Theorem 4.6]); it is easy to verify that one-
sided inequality (10) holds for n = 2, . . . , 73 as well. The su�ciency of the
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condition (11) follows from the well-known Ω±-result about the psi function (see,
for example, [9, Theorem 4.8]). We shall use the fact that whenever C > 1/25,
the su�cient condition (11) is weaker than the necessary condition (10).

The main di�culty in the implementation of these conditions via compu-
tational devices is caused by the necessity to calculate the real-valued natural
logarithms, in (9) and in (10)�(11). Methods for overcoming similar di�culty
when constructing Diophantine equation (7) were proposed in [19] and [3] and
then adopted in [15, 16] and in [38] for machines. The methods used in this paper
are quite di�erent. It is more oriented on computations because main calculated
quantities are de�ned by recursion.

First, instead of computing the natural logarithm in (9), we shall work with
(the integer part of) the binary logarithm,

l(n) = blog2(q(n))c. (12)

Clearly,
0 ≤ log2(q(n))− l(n) < 1. (13)

However, we need to transform the binary logarithms into natural ones; to
this end we shall calculate (approximate value of) the natural logarithm, but of
single number only, namely, of 2. Let

b(n) =
n−1∑
k=1

(−1)k+1k−1, (14)

so ln(2) = b(∞). For n ≥ 30 we have the elementary inequality∣∣ ln(2)− b(n)
∣∣ < 3

5
n−1. (15)

Together with (13) this implies that for n ≥ 30∣∣ψ(n)− b(n)l(n)
∣∣ < 1

25
n

1
2 ln(n)2. (16)

Actually, in order to deal with integers only, we shall calculate not b(n) but
its multiple

d(n) =
(2n− 2)!!

2
b(n). (17)

This can be done via the recurrent relations

d(1) = 0, d(n+ 1) = 2nd(n)− (−1)n(2n− 2)!!. (18)
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Our elimination of the logarithms in (10)�(11) is based on the Prime Number
Theorem5 stating that function π(n) growth approximately as n/ ln(n). We do
not need to know the exact asymptotic behavior of this function but we need
explicit lower and upper bounds valid for su�ciently large n. We shall use the
Chebyshev type6 inequalities : for n ≥ 30

1 <
π(n)

n/ ln(n)
<

13

10
. (19)

The same double factorial, (2n− 2)!! from (17), will be used for calculation of
an approximation to n

1
2 . Namely, according to the Stirling formula, for n ≥ 30

9

2
n5/2 <

(2n+ 3)!!

(2n− 2)!!
< 5n5/2. (20)

Now (10), (16), (19), and (20) imply that for n ≥ 30

π(n)2 (d(n)l(n)− f0(n)) < f3(n) (21)

where

f0(n) =
(2n)!!

2!!
, f3(n) =

(2n+ 3)!!

5!!
. (22)

In fact, the inequality (21) holds for n = 1, . . . , 29 as well, which can be veri�ed
by a direct numerical calculation.

In its turn, the inequality (21), together with (16), (19), and (20), implies (11)
with C = 2/5. Thus the ful�lment of the inequality (21) for all n is a necessary
and su�cient condition for the validity of the Riemann Hypothesis.

The least common multiple, q(n) from (21), can be calculated via the recurrent
equations:

q(1) = 1, q(n+ 1) = (n+ 1)q(n)/g(n+ 1) (23)

where
g(m) = GCD(m, q(m− 1)). (24)

5The theorem was proved independently by J.Hadamard [22] and by Ch.-J. de la Vall�ee
Poussin [20].

6Other inequalities, 0.921 · · · < π(n)/(n/ ln(n)) < 1.105 . . . , are attributed in many papers
and books to P. L.Chebyshev as valid for all n ≥ 30. It was indicated in [10] that in fact these
inequalities fail, for example, for n = 100. In reality, Chebyshev had proved inequalities with
such bounds but for the ratio ψ(n)/n. The validity of (19) can be deduced from sharper bounds
known for su�ciently large n (see, for example, [21]) and numerical veri�cation for remaining
smaller values of n.
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from math import gcd

d=m=p=0

f0=f1=f3=n=q=1

while p**2*(m-f0)<f3:

d=2*n*d-(-1)**n*f1

n=n+1

g=gcd(n,q)

q=n*q/g

if g==1: p=p+1

m=0; q2=q

while q2>1:

q2=q2//2; m=m+d

f1=2*f0

f0=2*n*f0

f3=(2*n+3)*f3

Figure 2: Python program that never halts if and only the Riemann Hypothesis
is true

Calculated by Euclidean algorithm greatest common divisor (24) can be used
also for calculating π(n) via the recurrent relations

π(1) = 0, π(n+ 1) =

{
π(n) + 1, if g(n) = 1,

π(n), otherwise.
(25)

At last, functions (22) are calculated via the natural recurrent relations:

f0(1) = 1, f0(n+ 1) = (2n+ 2)f0(n), (26)

f3(1) = 1, f3(n+ 1) = (2n+ 5)f3(n). (27)

Combining the recursions (18), (23), and (25)�(27), we come to the following
result: the Riemann Hypothesis is valid if and only if the program on Figure 2
never halts.

Figure 3 presents a register machine that never halts if and only if the Riemann
Hypothesis is true. The machine has 24 registers D, D1, D2, F0�F7, G, G1, M, N,
N1, N2, P, P1, Q, Q1�Q3, S which are empty when the machine starts. Instructions
have two form: either

〈label〉〈register〉++[〈next〉] (28)
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1F0++ 33G++31 65N1++ 97Q2++96

2F1++ 34Q2--41 66Q3--69 98F2--101

3F3++ 35Q2++ 67Q++ 99F0++

4N++ 36G--31 68Q1++66 100M--98:98

5Q++ 37N2++36 69Q--71 101P--108

6N--14 38N2++ 70Q3++69 102P1++

7N1++ 39G--31 71F4--74 103M--106

8D--11 40Q2++39 72F0++ 104F7++

9D1++ 41G--46 73F2++71 105D2++103

10D2++8 42P++ 74F0--77 106F7--101

11D1--6 43G--46 75F4++ 107M++106

12D++ 44P--45 76F2++74 108P1--115

13D2++11 45G++ 77F5--80 109P++

14S--17 46G++ 78F3++ 110D2--113

15F1--20 47F0--51 79F6++77 111F7++

16D2--15:15 48F1++ 80F3--64 112N2++110

17S++ 49F1++ 81F5++ 113F7--108

18F1--20 50F4++47 82F6++80 114D2++113

19D2++18 51G--54 83Q1--86 115F6--0

20D--21:20 52Q3--57 84Q++ 116F3++

21D2--24 53G1++51 85Q2++83 117N2--118:115

22D++ 54Q++ 86Q2--89 118F6--120

23D1++21 55G1--51 87Q2--89 119F3++118

24N1++ 56G++55 88Q1++86 120D1--121:120

25Q--28 57Q--59 89Q1--98 121D2--122:121

26Q2++ 58Q3++57 90Q2++ 122F4--123:122

27Q3++25 59F3--64 91D1--94 123F5--124:123

28N1--31 60F5++ 92D2++ 124M--125:124

29N++ 61F6++ 93M++91 125N1--127

30N2++28 62F6++ 94D2--96 126N++125

31N2--34 63F6++59 95D1++94 127N2--128:127

32Q2--38 64N--83 96Q1--86 128Q3--6:128

Figure 3: Register machine that never halts if and only the Riemann Hypothesis
is true
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or
〈label〉〈register〉−−〈jump〉[: 〈next〉] (29)

In the former case performing instruction label, the machine increases register
by 1 and goes to performing instruction next. In the latter case, the machine
tries to decrease register by 1 and then to go to instruction next; however if
register was empty, its content does not change and the machine proceeds to
performing instruction jump. In the case when next=label+1, the instruction can
be abridged by omitting next. The machine starts from instruction 1; there is no
instruction 0 so the machine halts whenever it should go to instruction next=0

or jump=0.
Translation of the program from Figure 2 into a register machine may be done

quite straightforwardly. However, a small economy can be achieved. Namely, cal-
culations of q=n*q/g, f0=2*n*f0 and f3=(2*n+3)*f3 can be performed within
the same cycle of length n.
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