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1 Introduction

The main objective of this paper is to study the influence of defects in the
vessel walls near the bifurcation point on the pressure drop matriz Q |3]. We
calculate the material derivative in the case of oblong plaques or aneurysms
(see Fig 1, a and b) and the topological derivative in the case of localized
ones (see Fig.1, ¢ and d). The pressure drop matrix was introduced in [3]

Figure 1: Variations in the shape of a bifurcation node: oblong (a) and sac-

cular (¢) aneurysms, oblong parietal (b) and localized nodular (d) cholesterol
plaques.

as an integral characteristic of a junction of several pipes with absolutely
rigid walls. It appears that the elements of this matrix are included in the
modified Kirchhoff transmission conditions, which describe more adequately
the total pressure loss at the bifurcation point of the flow passed through the
corresponding junction of the pipes, see [1, 2, 4].

In the paper [2| a one-dimensional model of a fluid flow at a junction of
thin vessels with rigid walls was developed. In particular, a new transmission
condition at the bifurcation point was derived, which can be considered as
a modification of the classical Kirchhoff condition. Clearly, the total flux at
the bifurcation point is zero but continuity of the pressure is not so obvious.
In fluid mechanics, one uses the total pressure loss in the flow passing the
bifurcation point, see [4]. An appropriate object to describe this pressure



loss is the pressure drop matrix, elements of which are involved in the mod-
ified Kirchhoff conditions. This modification improves the model in several
directions. First, the discrepancy of the approximation of three-dimensional
model by the one-dimensional one is O(e™%), where h is the thickness of
the vessel and p is a positive constant. We remind that the application of
the classical Kirchhoff conditions brings the discrepancy O(h?) for the veloc-
ities and O(h) for the pressure. This difference is essential if we deal with
a large system with many bifurcations. Second, the modified transmission
conditions depend on the geometry of the bifurcation region.

The pressure drop matrix () is the symmetric (2 x 2) matrix. So it has
three parameters (the diagonal elements )1, ()—_ and the off-diagonal ones
Q4+- = Q_4). The influence of () on the transmission conditions can be taken
into account also by the small variations in the lengths of the edges incident to
the bifurcation point and by introducing effective lengths Lo (h), «=0,%,
of one-dimensional images of blood vessels whilst keeping the classic Kirchhoff
transmission conditions and exponential small approximation errors, see [2].
Since the number of channels is also three the effective lengths L,(h) can
be isomorphically determined by the entries of Q). By [2], the increments of
lengths hl,, a =0, =,

4
r
@ 1
ce )

where v is the viscosity of the fluid and r, is the radius of the vessel, we
introduce perturbed edges with the effective lengths

lo=—-ByQ+- =—BoQ_4, lx=DBi(Qiy —Q1s), B,=

La(R) = L + hla, 2)

where L, are initial lengths of the edges. The effective lengths (2) are the at-
tributes of the vessels themselves and preserve when you change the direction
of blood flow through the node.

Our aim with this article is to calculate asymptotics of the pressure drop
matrix and hence the total increments h ) [, namely,

hY la=> La(h) =) La

=h(Q+— (B4 +B-—By) —QB, —Q__B_), (3)
of the effective lengths of the vessels taking into account the influence of
perturbations (e.g., plaques, aneurysms) arising near the bifurcation node
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of the artery in the three-dimensional problem. As a result, we calculate
the total increments of the effective lengths, and even determine their signs.
Changes in the effective lengths of the vessels correspond to the presence of
some defects in the vessel walls. So we can localize them by examining the
process of blood flow through a bifurcation node.

In Sect. 2 we consider the Stokes system in an unbounded domain with
cylindrical outlets to infinity (see, e.g., [5, 6, 7, 8, 9]) and prove the unique
solvability of the problem. For obtaining the asymptotic behavior of the
solution we exploit special homogeneous solutions to the Stokes problem with
non-zero flux and with a linear growth in the pressure at infinity (see [3]). As
a consequence, we obtain a definition of the symmetric pressure drop matrix
@, which plays a crucial role in the functioning of the bifurcation node.

Sect. 3 is the main part of this work. We analyze the influence of certain
formations in the bifurcation node and close to it on the matrix ). Using
asymptotic analysis of elliptic boundary value problems in regularly (or sin-
gularly) [10, 11] perturbed domains we find the increments of the pressure
drop matrix and also determine their signs. In virtue of formulae (1) we cal-
culate the total increments of the effective lengths of one-dimensional images
of the blood vessels.

In Appendix it will be explained why the modification of the second
Kirchhoff’s law by means of the pressure drop matrix unexpectedly deeply
increases the accuracy of approach for three-dimensional fluid flow in a system
of thin channels by the one-dimensional Reynolds-Poiseuille model. Also, we
give proofs of supporting assertions of Sect. 2, 3. Note that considered in 4.2
the Cauchy problem for the homogeneous Stokes system supplemented by
the Neumann condition on the part of the boundary it is also of independent
interest.

2 Statement of the problem

2.1 Domains with cylindrical outlets to infinity and func-
tional spaces

We introduce the domain €2 with three cylindrical outlets to infinity (see
Fig.2). Let £ be an open unbounded domain with Lipschitz boundary 02
admitting the representation

Q=QuQUQTUQ, where N =g fora#p, a,B=0=+. (4)
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Here Q% = {z% = (y*,2%) : y* € wa, 2% > Ly} in a certain Cartesian
coordinate system x® = (y*, 2%) in R3 where y® are the variables in the
cross-section of the outlet 2%, 2 is the variable along the axis of Q¢ and w,
is a bounded domain in R%. The bounded domain €' is given by ' = {z €
Q : 2% < L} for certain L, L > max, L,. Henceforth z = (1,29, 23) is a
global coordinate system in R? related to the whole domain . We define

xu

Figure 2: Artery bifurcation (domain €2)

L, 5(€2) as the space of measurable functions in © with a finite norm

1/2
w2y s0) (/ |u(z)Pdr + Z / | 2% Ju(y®, 2*)|?dy®dz™ ) :

a=0,%+

If 8 =0 we will use the usual notation Lo(2) for this space.
By using the Sobolev space H'(Q) together with Lo ;(£2) we introduce
the space of real-valued vector functions in 2,

H(Q) = {u = (u1,us,u3) € (H'(Q))’| div u € Ly1(Q)} (5)

with the norm given by

||ulZyqy /(|Vu( W+ |u(z)[?)dx + Z / |22 |div u(y®, 2%)|*dy*dz".

a=0,+
(6)
Let also H(€2) be the subspace in H(§2) consisting of vector functions equal
zero on 0f). The dual space of Ho(2) is denoted by (Ho(2))*.
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2.2 Formulation of the problem
Consider the Dirichlet problem for the stationary Stokes system with nonzero
divergence
—vAu(x) + Vp(z) = F(z), —divu(z)=_G(x), =z €, (7)
u(x) =0, =z €. (8)

Here, u(x) = (u1(x), us(x), us(x)) is the velocity field and p(x) is the pressure,
v > 0 is the viscosity of fluid, which is assumed to be constant.

In order to define a weak solution of the problem (7), (8), we introduce a
bilinear form on H((2):

3
a(u,w) = ZLVuijjdx.
j=1

So if (u,p) is a classical solution of (7), (8), then multiplying the first
equation in (7) by w € Ho(2) and integrating over 2, we obtain

va(u, w) — / p divw dzx = / Fw dz  for any w € Hy(92). 9)
Q Q

Weak solution of the problem (7), (8) is called a pair (u,p) € Ho(£2) X
Ly _1(92) satisfying the integral identity (9) for all w € Ho(Q2) and the equa-
tion —div u = G in €2, where F' € (H,(2))* and G € Ly;(2) are given.

To prove the main result of this section we need the following

Lemma 2.1. For arbitrary g € Lo () subject to

/ g(x)dz =0 (10)
Q
there exists a vector function u € Ho(2) such that —div u = g in 2, and

[l < cllgllron@)- (11)
Here, ¢ is a constant independent of g.

Lemma’s proof is presented in Appendix.

The following theorem on existence and uniqueness of weak solutions to
the boundary value problem (7)-(8) is quite standard and we present it here
for readers convenience.



Theorem 2.1. Suppose that F € (Ho(Q))" and G € Ly1(Q) is such that

/ G(z)dx = 0. (12)

Then there exists a weak solution (u,p) € Ho(2) x Ly _1(2) of the problem
(7), (8) satisfying the estimate

o) + 112l -1 @) < ¢ (IF @) + 1G] lan @) - (13)

Here, ¢ is a constant independent of F' and G. This solution is defined up to
an additive constant in the pressure p.

Proof. Ezistence. Let w € Ho(2) be a solution to the problem
—div w(z) =G(z), ze€ Q, w()=0, ze 00 (14)

satisfying estimate (11). Such solution exists due to Lemma 2.1. Then the
vector function V' (z) = u(z) — w(zx) solves the following Stokes problem

) =
—vAV (z) + Vp(x) = ﬁ,—&vvugzo, xeQ, (15)
V(z)=0, =zedQ, (16)

where F(z) = F(x) 4+ vAw(z) € (7—[ (Q))* Introduce the space HiY(Q) =
{W e H}Q): div W =01in Q}. Then the vector function V € Ha¥(Q) is
found from the equality

ymmm—/me:mmeeMW). (17)
Q

By the Riesz theorem such solution exists and satisfies

V1) < ellFllgw@y < CUIFlaw@y + 1G] za@):

To find p we proceed as follows. By Lemma (2.1), for any g € Lo1(€2) subject
to (10) there exists a vector function v, € Ho(2) such that —div v, = ¢g in Q,
and

[vgllny < cllgllra. -

Moreover the correspondence g — v, is linear. We consider the functional
G(g) = / Fu, dz —va(V,v,) (18)
Q
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on L51(Q) ={g € L21(Q) : [, 9(x)dz = 0}. In virtue of

1G(9)] < ¢ (1P uacan + IV Il ) Hellaaiey < ell Bl 191l a0

the linear functional G(g) is continuous on L5 1(2). Therefore there exist an
element p in Ly _1(€2) such that

G(g) = /pg dr forall g € L51(9)
0

and
1Pl s 0) < ¢ (1Fl oy + G121 (0)) -

Clearly, the pair (u,p) is the required weak solution.

Uniqueness. If F = 0 and G = 0 then from the definition of the weak
solution it follows that a(u,u) = 0 and hence v = 0. This implies that
pr divwdz = 0 for all w € Ho(2). Using Lemma 2.1, we conclude that p is
constant.

The theorem is proved.

Remark 2.1. Consider a non-homogeneous Dirichlet problem for Stokes sys-
tem, i.e. equations (7) are supplied with the boundary condition

w(x) =H, x€ 09, (19)

where H € H(Q)and instead (10) we require
/ G(z)dx + H(z)-ndl’ =0, (20)

Q o9
where n is the unit, outward normal to 0X). Substituting u(z) = v(z) + H(x)
into (7), (19) we obtain

—vAv(x) + Vp(x) = f(z), —div v(z) =g(x), x € Q, (21)
v(z) =0, =z €09, (22)

where f(z) = F(x) + vAH(x) € (Ho(2))* and g(x) = G(z) +div H(z) €
Ly 1(Q2) verifies (10). Now application of the previous theorem gives the ex-
istence of a pair (v,p) € Ho(2) X Lo_1(Q2) solving problem (7), (19) and
satisfying the estimate

[ollraer + 1Pl za, i) < e 1 llioony: + 1ollasie + 1Hllm) - (23)

Moreover, p is defined up to an additive constant.

9



2.3 Asymptotics of the variational solution

Let the right-hand sides in (7), (8) satisfy
|F(z)]2dx + Z/ |F(2%)]2e***" dz* < oo (24)
Q o (91

and

Glo)de + 3 / G (2%) 2625 dz® < oo, (25)
Q/ o Qa

where a is a positive number. Let also G' be subject to (12). Then according
to Theorem 2.1 the problem (7), (8) has a solution (u, p) € Ho(2) x Ly _1(€2).
We can conclude that this solution satisfies the following asymptotic repre-
sentation at infinity

(u,p) = Y Xa€al0,1) + (3, 5), (26)

a=0,%t

where x, = Xa(2%) are smooth functions equal 1 for 2¢ > L, + 1 and 0 for
2% < L, (0,p) are exponentially decaying terms at z* — oo and ¢, are real
constants. Since this solution is defined up to an additive constant we can
(and will) assume ¢y = 0. Then the solution is unique.

The remaining part of this section is devoted to finding formulas for eval-
uation of constants ¢, and c_. For this purpose we need solutions of homo-
geneous problem (7), (8), which have a linear growth at infinity, namely we
introduce two linear independent solutions (V*, P¥) which have the following
asymptotic representations (see [3])

(Vi> Pi) = _XO<V07 PO) + Xi(vi>lpi) + (Uiapi>7 (27)

where (V*,P?) is the Poiseuille flow in the cylinder Q% ie. Vi (z) = 0,
i =1,2, P*(z) = —Cyo2z® and V2 = V2% (y*) solves the following Dirichlet
problem in w,

AV = —C, inw,, Ve =0 on dw,.
The normalizing constant C,, is choosing to satisfy

/ Vi (y*)dy® = 1. (28)
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In the most important case of the circular cylinder, i.e. w, = {y* : |y°*| <

Tt
2,2 _
208 = 0°F) gy - “Va

z
4
Ty,

Va(z) =

4
Tra

The remainder term (v*, p*) in (27) satisfies the problem

—vAvE + Vpt = fF, —divo® = ¢F in Q, (29)
vE =0 on 09, (30)
where the right-hand sides
fFi=vAMxV’ = xaVF) = V(xoP° = x+P*) (31)
and
g* = div(xol” — x2 V") (32)

have compact supports. To verify condition (20) in Theorem (2.1) for g*, we
apply the Gauss theorem for the domain Qr = {x € Q : 2* < R}, where R
is a sufficiently large number, and obtain

/ grdr = lim div(xoV'—xeVF)dr = / Vo (y°)dx— / X VE (y*)ds = 0.
Q R w® YR

R—o0 Q

Here we used the normalization condition (28). Therefore, (v*, p*) admits
the asymptotic representation (26), where ¢o = 0 and (0,p) exponentially
tends to zero when 2% — oo.

Now we can present formulas for calculation of coefficients in (26)

Theorem 2.2. Let the functions F' and G satisfy (24)-(25) and let the
asymptotic formula (26) be valid with ¢y = 0. Then

cr = / (FV* +GPY)dx (33)

Proof. Let {2i be the same domain as before. Multiplying equations (7),
(8) by (V*, P%), integrating over Qg and using Green’s formula, we obtain

/ ((—vAv + Vp) VF — divoP*) dx
Qr

-y / (=¥ (V4000 — 000 VE) + (VE = PHosa) )

dy®.
z2=R

11



Taking here limit and using asymptotic formulas for (V*, P%) and (26) we
arrive at (33).

Applying formula (33) to the solution (v*,p*) of the problem (7), (8)
with the right hand sides given by (31), (32), we obtain the representations

(v, p") = x2Qx+(0,1) + x5 Q=+(0,1) + (0, ps), (34)

where the coefficients are evaluated according to
Q.r — / (FV" 4+ P dz, 4.7 =+ (35)
Q
From (27) and (34) we get the following representations
(VE PF) = —xo(V°, PY) + x2(V*, P)
+X+Q1+(0,1) + X7Q15(0,1) + (0, P, (36)

with the remainders (04, p+) exponentially decaying at infinity. Note that
a straightforward calculation gives the equality @), = Q);,. The coefficients
()+- in the expansion (36) of the pressure at infinity in Q4 form the symmetric
(2 x 2) — matrix @ called the pressure drop matriz. Another approach to
introducing the matrix ) was presented in [3].

3 Asymptotics of the effective lengths

3.1 Regular perturbation of the boundary of )

We assume that the boundary 0f2 is sufficiently smooth. We introduce coor-
dinates (n,7) in a neighborhood of the boundary as follows: n is the oriented
distance to 9Q (n > 0 outside Q) and 7 is a local coordinate on 9. Let
© = (7) be a smooth function (positive or negative) with a compact support
on 0f). Now define the surface I'. as the perturbation of the surface 92 as

I.={x:n=¢cp(r)}, (37)

where € > 0 is a small parameter. Let €. is domain with the boundary I..
For the perturbed domain 2. we have analog of formula (36)

(VE,PF) = =xo(V°, P) + X2 (VF, P¥) + (v1, %), (38)

(0%, P5) = x£Q=(€)(0, 1) + x5Qx=()(0, 1) + (0%, p5)- (39)

12



Theorem 3.1. Let Q). be domain with reqular perturbation of the boundary
(37). Then formulae (38), (39) have the asymptotic expansion of elements
of the matriz Q)

Qrrl(e) = Qo + 2 +O(H), 7.7 = £ (40)

Here, ¢ = Vrf 00,V - 0,VTdx.
0

Proof. Let
(w67q8> = (U:Etvpei) - (Uiapi) = (Vsiv Psi) - (Vi7pi)'

If it is needed we extend smoothly functions (vy,p+) outside 2. Then the
pair (w®, ¢°) satisfies the following problem

—vAw® +Vq¢° =0, —divw® =0 in €, (41)

w®=—-V* onT.. (42)
We take the asymptotic ansatz for a solution (41), (42) as follows:

1 17

(ws’ qE) = 5(U;|:7plzl:) + 52<U:tvp:t) +.. (43)
where (v, p.) must satisfy the problem in
—vAv, + Vp, =0, —dive, = 0 in €, (44)

v, = h* on 9Q. (45)
Comparing (42) and (45) we see that

h* = —0,V* on Ty. (46)

Finally, using that 9,V = 0 on 9% (this follows from —divV* = 0) we
obtain (40).

Note that the matrix {c]}, =+ in (40) is positive definite for ¢ > 0 and
is negative definite for ¢ < 0. Indeed, if some of the coefficients ¢J = 0 then
0,VT =0, 7 = =+, on the supp ¢ and by 4.2 (see Appendix) the homo-
geneous Stokes problem (7), (8) will have trivial solution (u,p) = (0,0,0; 1)
only.
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Taking into account the formulae (3), (40) we obtain the asymptotic
expansion for the total increments of the effective lengths

D lale) =) Lo+l +0(e), (47)

where
Y= V/ o{(By + B- = By)d, V' -0,V™ — B, |0,V*[" = B_|0,V"|"}d%.
To

Let the radii of the blood vessels r,, a = 0,=£, be connected as follows
ry+ = 0419, 0 < 61 < 1. We have the following theorem that gives us possi-
bility to estimate by means of the effective lengths the influence of changes
in the vessel walls geometry.

Theorem 3.2. Let 64 be real numbers such that |07 — 62| < 1, then in (47)
the matriz of quadratic form VU is negative definite for p > 0 and is positive
definite for ¢ < 0.

Proof. Substituting the asymptotic expansion (40) into (3), using Sylvester’s
criterion for the matrix of quadratic form W, we immediately prove the as-
sertion of Theorem 3.2.

So we can conclude that if near the bifurcation of an artery the cholesterol
plaque (in the case of ¢ < 0) is located then the total effective length of the
vessels increases. Vascular injury associated with aneurysm (in the case of
¢ > 0) corresponds to the decreasing in the total effective length of the
vessels, see Appendix.

3.2 Model problem in a half-space

Consider the homogeneous Stokes system in the half-space R} = {Y =
(Y',Ys) = (Vi,Ya, Ya) : Y3 > 0}:

—vAU(Y)+VPY)=0, —divU({Y)=0, Y eR:, (48)

UY’,00=0, Y e€R% (49)

We are interested in solutions of (48), (49) having the form U(z) = r*u(w),
P(x) = r 1p(w), where r = Y|, w = Y/r and ) is a complex number.
Such solutions exist only when A = 1,2, ... or A = —2,—3,.... Moreover,
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the space of such solutions is the same for A and —1 — A, see for example
Theorem 5.2.1 in [11].

For A = 1 this problem has the following three solutions (Vj, Py), k =
1,2, 3, where

Vi(Y) = (Y3,0,0), Va(Y)=(0,Y5,0), V3=0, PP=P,=0 and Py =1.

The first two vector functions are called the Quette flows and the third one is
constant. Using Theorem 5.4.4 [11], we can describe all solutions for A = —2.
They are given by pairs (U, P),

U=r"v(ww, P=r732vw)-c),

where
(6 +6)v=3c in ST and v =0 on 9S3. (50)

Here 4 is the Laplace-Beltrami operator on S?. Solutions to (50) are obtained
from solutions to Av = 3¢ in ]Rijr with zero Dirichlet boundary conditions
and v being second order polynomial. Therefore these solutions are given as

(V1,P1), Vo, Ps) and (Vs3, Ps), where

WrWs WrWs3

Vi(Y) = — 5 (wi,w,ws), PeY) =2—735=, k=12,
and , 2 2
— w3 - w3
Vi(Y) = V—rz(whwz,w;g), Ps(Y) = 27»_3 ~ o3

These functions verify the following bi-orthogonality conditions

(Vi o). (Vi ) = /

/,ﬁ

= M,.6, (51)

(( —VAQ) + V(XP)) -V = div(ka)Pj>dY

3
+

(= (@Y Vi = Vi 0,V)) + PV — w0 - WPy 1S,

where y is a smooth function equals 0 for small |Y| and 1 for large |Y|, dS,,
spherical area element and

-1
M, = 5/ wzwgdSw for k =1,2 and M5 = —/ wgdSw.
52 voJs:

15



3.3 Domain close to a half-space

Now let us turn to the Stokes system in a domain = which coincides with
R? outside a ball Bs(0) given by [Y| < 26 and Z = {Y € B;(0) : Y3 >
#(Y1,Y32)}, where ¢ is a smooth function equal to 0 for |Y'| > o:

—vAu(Y)+VpY)=F(Y), —divuY)=G(Y), Y €E, (52)
wY)=0, Y e€o=, (53)

Theorem 3.3. Let F € (H}(Z))* and G € L*(
(53) has a unique weak solution (u,p) € Hy(
satisfies

[1]

). Then the problem (52),
) x L*(Z). This solution

[1]

lulline + lIpll@ < C(IE ey + G )-
Now, we are interesting in asymptotics of solutions for large |Y|.

Theorem 3.4. Let F' € (H}(Z2))* and G € L*(Z) have compact supports.
Then solution (u,p) € HY(Z) x L*(Z) from the previous theorem satisfies

3 3
wV) =Y aVe+O0(Y[%), p(Y) =) aPe+O(Y[™), for large Y],
k=1 k=1
(54)
where O(-) terms can be differentiated.
Proof. Let x be the smooth cut-off function in R?, namely x(Y) =1
for |Y| > Ry, x(Y) = 0 for |Y| < Ry, where Ry = const. We transform the

problem (52), (53) in = to the following problem in R?

A

—vA(xu) + V(xp) = F, —div (xu) =G, Y eRi, (55)

xu=0, Y €R? (56)

where the right-hand sides F = xF — v((Ax)u + 2(Vy, V)u) + pVy and
G = xG — (u, Vx) have compact supports.
Let U = yu — v. Here v is a solution to the problem

—dive=G, Y eR3, (57)

v=0, Y eR (58)
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And we arrive at
VAU +VP=f —divU=G, YRS, (59)

U=0, Y eR? (60)

where (Ho(R3))* > f = I+ vAv and P = xp.

Exploiting the explicit form of the Green’s tensor (a tensor field G(Y,Z)
and a vector field g(Y,Z)) for the homogeneous Stokes system in the half-
space (see, e.g., |13, Appendix 1|) we find estimates

G5(Y. Z) = G(Y,0)| < ClY = Z| 7%, |gi(Y, Z) — i(Y, 0)] < oY — Z|*
(61)
Using the estimates (61) for the solution to (59), (60)

U = [ Gty 252z, P = [ alv.2)(2)0z

we get formulae (54). The proof is complete.

_In order to evaluate the constants cj, in (54) we introduce three solutions
(Ve(Y), P.(Y)), k = 1,2,3, of the homogeneous problem (52), (53), having
the form

Ve(Y) = Vi(Y) + Vi(Y), Bu(Y) = P(Y) + Bi(Y) (62)

with (Vi, Py) € H'Y(Z) x L*(E). Since Vs = 0 and P; = 1, we have V3 = 0
and P; = 0. One can verify that

—vAV,+ VP, =0, —divV,=0, Y €E, (63)

and f/k + Vi = 0 on 0=. By Theorems 3.3 and 3.4 this problem has solution
and it satisfies

ZAk Y)+O(|Y]™3), ZAk Y)+O(]Y]™) (64)

for large |Y'|. One can see directly that Vo=0and P = P; = 1.

Theorem 3.5. Let F' and G be the same as in Theorem 3.4 and let ¢, be
coefficients in (54). Then
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Proof. Let Zr ={Y € = : [Y| < R} and Sg ={Y € = : |[V| = R}.
Then multiplying the first equation in (52) by V} and the second equation in
(52) by Py, summing them up and integrating over Zg, we obtain

/5 ) ((—VAU(Y)+VP(Y)).Vk—divu(Y)Pk>dY = / (F(Y)- Vit G(Y) By)dY.

—R

Using the Green formula in the left-hand side of the last relation, we get

/ (v (@ Vim0, 3) 4 Vimou(¥) B S, = / (FOY) Vit GY) B)dY,
Sr

—R

Replacing vector functions (u,p) and (Vk,f’k) by their asymptotics, taking
the limit as R — oo and using (51), we verify (65).

In the next theorem we prove a positivity property of the coefficients in
(64) when the function ¢ in the definition of = has sign.

Theorem 3.6. Let ¢ be not identically zero. Then the matrix
{MkA?}Z,j:b

is positive definite for ¢ < 0 and is negative definite for ¢ > 0. Moreover,
A3 =A,=0,j=1,2,3.

Proof. Since (Vi, P3) = (0,1) we have A2 =0.
Let ¢ > 0 and let =; be defined as above. Integrating by parts in the
right-hand side of

0= / ((—vAV, + VBV, — divV, Py)dY

R

(1]

and taking the limit as R — oo, we get
MjAg? = / (—V@an + nfD]) - V,dS,
oG

where n is the unit outward normal to =. Using (62) and that V; + V; = 0
on 0=, we can write the last relation as

M;Ak = /ia:(—yanv; +nP;) - VdS — /a (=10, V; + nP;) - VidS.
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Now, applying Green’s formula in the domains = and R3 \ Z, we get
M;A% = —y/ VV; - VVidY —v VV; - VV,dY.
2 R3\E

If we denote by Q = {Q;i}};_, the matrix on the right, then this matrix is
symmetric, Q;3 = 0 and the matrix Q = {Q;1}7 ;_, is negative definite since
the vector functions Vj}, 7 = 1,2, are linear independent, and therefore

Af = (M)~ Q. (66)

Now consider the situation when ¢ < 0. Then we represent = as Ri U =,

where =y = =\ RY. We are looking for the solutions (Vi, By,) in the form
Vk:w_F%w pk::ﬁk’a k:1727
where V/ = V4 in R? and V}/ = 0 in Zo. Multiplying the equation —vAV} +

VP, =0 by V; and integrating over R? we get

VO (V7)) dY '+ / Pu(V— 77 )sdY".

Y3=0

M;A% :V/YO%-aYBV}dY/ :V/Y

=0

Hence

MjA;?:/ (—W,C.ayﬁ—ﬁk(vj)g)dy’+/ (VVi - Oy, Vs + Bu(V;)5)dY".
Y3=0 Y5

=0

Using Green’s formula in the domains R? and Z, we get

M;A =v [ VYV - VVdY +v / VVi - VV;dY.
=o

3
Ry

3.4 Concentrated perturbation of the boundary of (2

Here we consider a domain 2. which coincides with 2 outside B.(z() where
xg is a fixed point on 9f. Inside B.(z() the domain €. is given by

{y =y, y3) € Be(20) = y3 > c9(y'/e)},
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where y = (y1, Y2, y3) are Cartesian coordinates with the center at xy and ¢
is a smooth function such that ¢(y’) = 0 for |y/| > 6. Our goal is to find the
asymptotics of the matrix Q.

We are looking for solution (V,2, P¢) in the form

Vil(z) = (1= x(y/e)) (Valo) + Vi (@) + ' ¢(0)Waly/e) + walz, ),
Pi(r) = (L = x(y/e) (Palz) + eP{P(x)) + & '¢(x)Raly/e) + Salz,2).
Here x(Y") is a smooth cut-off function equals 1 for |Y'| < § and 0 for |Y| > 2,

( is also a cut-off function equals 1 for |z| < §/2 and 0 for |x| > &, where §
is a fixed positive number. Using that

Va(@) = agVi(y) + agVa(y) + O(Jx — wo]?), Pa(2) = ag + O(|z — o)),
we conclude that the vector function (W, R,) must satisfy the system
—UAWAL(Y) + VRa(Y) = —vA((Y) (@l Vi(Y) + a2Va(Y))) + aVx(Y)

and
—div Wo(Y) = —div (x(Y)(@lVi(Y) + a2Va(Y)))

in = with the homogeneous Dirichlet boundary condition on 0=. According

to Theorems 3.3 and 3.4 this problem has a unique solution in Hj (=) x L*(Z)
and this solution satisfies

Wo(Y) =) CoVe(Y)+O(Y]™?),

B
w HMw
==

R,(Y) = CoPe(Y) 4+ 0O(JY ™) for large |Y], (67)
k=1

and the coefficients here are evaluated as
Cp = /_ ( — yA()((Y)(aaW(Y) + baVQ(Y))) + can(Y))deY

+V - (x(V)(aaVi(Y) + baVQ(Y)))Pk)dY. (68)

Now we can write the system for (Vogl), Ptgl)):

—vAV (2)+ VP = —vA(((2) Y CpVi(@)+V(C(x) Y CoPr(x)) (69)

k=1 k=1
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and
—div V() = div(¢ Z CiVe(z (70)
in 2 with zero Dirichlet boundary condltlon on 0f). Denote the right-hand

sides in (69) and (70) by £V and gV respectively. In order to apply Theo-
rems 2.1 and 2.2 to problem (69), (70), we must verify that

GVdx = 0.
Q
We have
3
/ GWVdx = / div(¢(x) > CpVi() / ZCM -wdS,
Q Q k=1 S% k=1

Cg = [ V- (x(Y)(auVi(Y) 4 baVa(Y)))dY

= | V- ((x(Y) = D(aVi(Y) + baVa(Y)))dY

[1]

_ —R3/ W - (aaVi(@) + baVa(w))dS. = 0.
52
Thus the problem (69), (70) is solvable and its solution satisfies the asymp-
totics . .
(Vi (@), PY) =) ePxo(0,1) + (VP (), P (),
o=+
where the coefficients are evaluated according to

= / (F -V + GYP?)da,
Q

Taking expressions for F\") and GY from (69) and (70), replacing €2 by
Q. ={re€Q : |x— x| > e} and using Green’s formula, we obtain

3 3
= Z C (Vs Pi), (agVi + agVa, af)) = > MiCiaf

=1
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_ Coefficients C}f admit the following interpretation. The vector function
(Vik, Pr) can be constructed also as follows:

where (V, P;) satisfies the system
VAV P = vAQ—x)Vi=V(1—x)B:, ~V-Vi=V-(1-x)V, inZ,

Vi =0, on O=.

Moreover the vector function (Vk, Pk) has the same asymptotic representation
(64) as (Vi, Pg). Therefore by Theorem 3.5

~

M A} = /G ((VA(l Ve = V(L= x)F) - V;+ V- (1~ XMPJ’)‘W'

Comparing this formula and (68) we see that

3
=) Al M, AY.
m=1
Thus
3 3
=> ) Ml M, Ay a
k=1 m=1
and hence
Qan(e) = Qoo + sci + 0(52). (71)

Using that A" = 0 when m or k is equal to 3, we get that

2 2
:ZZMka M,, Alay. (72)

k=1 m=1

Since the matrix {Ag‘}z’mzl is positive definite we conclude that the matrix
{c?}46== is also positive definite and

Z chaly = Z Z AR Z Myagéy) Z Mpnaltéa), (73)

k=1 m=1
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therefore

2
Z CZS&&G e Z(Z (11559)2. (74)
k=1 0

a,l

Formulas (71)-(74) describe the asymptotic behavior of the coefficients (Qng
for the domain €).. Replacing the elements of the pressure drop matrix ) by
their asymptotics (71) in (3) we get the asymptotic expansion of the effective
lengths of the vessels, i.e. the direct analog of Theorem 3.2 is executed.

4 Appendix

4.1 Pressure drop matrix and modified Kirchhoff trans-
mission conditions

Let’s truncate cylindrical outlets in {2 and assume
/ 0 .
Q=0 UQUuUQiuQ,,

Qp={z: [y*| <ra, 2*<h 'L}, a=04+, (75)

where A > 0 is a small dimensionless parameter, r, > 0, [, > 0 are certain
fixed radii and lengths respectively. In domain §2;, we define the homogeneous
(F'=0,G = 0) Stokes equations (7), and on its lateral surface X5 = 0€2;,N0Q
we impose the homogeneous (H = 0) no-slip conditions (8) (hereinafter refer
to these relations, implying that they are restricted to these sets). On the
truncated surfaces I = {z: |y <r., 2% =h"',} assign the following
conditions:

" (x) = =VO(y®), x €TV, (76)
v () =0, i =1,2,  —vOrvle(z) +p'(x) =p™, z €T}, 7=+ (77)

In other words, at the inlet cross-section of the vessel QV is assigned the
incoming unit flux of fluid, and on the allocated ends of the outlet cross-
sections of the vessels )* peripheral pressure p, is set. At the same time
compression of coordinates by h~! times transforms the problem stated to
the usual problem of the blood flow through the artery bifurcation node,
which walls, as already explained, it is assumed to be rigid (cf. [1]). In the
new coordinates the vessels become smaller radii hr, and fixed lengths /.
We emphasize that the problem (7), (8), (75), (76), (77) is still included in
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the symmetric Green’s formula in €. Its interpretation in the framework of
the weighted spaces technique with detached asymptotics is given in [3].
As an approximate solution of the problem stated in €2, we take the sums

"=V 4 d" VT, Pt = dPY 4 a" P+ af), (78)

where (VE, P%) are introduced special solutions (27) and the last term refers
to the constant pressure. Using the asymptotic representations (see Sect.
2.3), satisfy the boundary conditions (76), (77) up to exponentially small
terms for h — 40 and we obtain the following relations

1=al +a", (79)
P =ap — h'Lya" + Z Qraa, T =4, (80)
a=%

where L, = %la, a = 0,+, and henceforth L = diag{L,,L_}.
Let e = (1,1) and a" = (a”,a") be columns. In virtue of (80) we deduce

(p™ — ag)e = (Q —h'L)a",

hence
a" = (h'L — Q) "e(a — p™),

and thus equality (79) rewritten in the form e - a" = 1 leads to the relations
1 =Ty(a) —p™),
Th=e-(h'L—-Q)'e=h"te- L' (I —hQL ") e
=h7le (L' + hL7'\QL™ + O(h?))e.

We finally find that
ag = p> + T,

Ty = h(to+ hty + O(h)), to=e-L'e>0, t;=e-L'QL e, (81)

so we get
al = p™ + hty'(1 — hty 'ty + O(h?)). (82)

Thus, the pressure at the “input” T') up to the smaller terms is equal to

h™ Lo+ p™ + hty' — h%ty %t + O(R?). (83)
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The first term of (83) is the pressure drop, which provides the unit flux deliv-
ery to the artery bifurcation, the second term is also positive, it is necessary
to supply the fluxes to the points 2 = h~!l., and the third term, the sign of
which depends on the pressure drop matrix (), corresponds to just the shape
of the node.

If in the vicinity of the node is formed plaque (¢ < 0 in (37)) then
according to the formula (40), the magnitude of (81) decreases, i.e. the
pressure (83) increases. This fact is consistent with an obvious observation:
constriction of the channel requires the growth of pressure in the input. At
a constant pressure, decreases the flux supplied into the vessels Qf Many
reasons of hypertensive pressure doctors associated with the clogging of blood
vessels.

At first glance it seems that an aneurysm (¢ > 0 in (37)) facilitates the
passage of blood through a bifurcation node, i.e. the correction term O(h?)
in (83) is reduced due to the minus sign in front of it. This impression is
erroneous, i.e. statement of the problem adopted in the article does not
consider elasticity of the vessel walls. As it is known from medical reference
books and explained in [12], using the one-dimensional model of the types of
aneurysms, vascular permeability may be reduced due to the growth of the
hematoma in the aneurysm cavity. At the same time, increase of the pressure
at the input (increased heart rate while running and stress) provokes the wall
rupture and leads to a variety of sad consequences, such as death due to a
rapid expiration of a false aneurysm in a large femoral artery.

4.2 The Cauchy problem

Here we assume that the boundaries of the domains w, are analytic. Let also
I is the part of 09 which is 9Q N Y.

Here we prove that the homogeneous Stokes problem (7), (8) with the
additional Neumann boundary condition

Ohu(z) =0, x € T, (84)

has a trivial bounded solution (u,p), i.e. identically equals (0,0,0;1).

We assume that 02\ T'g is analytic. Here I'y is a compact subset of T
Since O,u(x) is analytic on the surface 9Q\I" as a solution to (7), (8) and due
to (84), we conclude that d,u = 0 on the whole 9€2. This implies Vu = 0 and
hence rot u = 0 on 0€2. Application of the operator rot to the homogeneous
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Stokes system (7), (8) gives the Dirichlet boundary value problem for rot u,
le.

A(rot u(z)) =0, z€Q, (85)
rot u(x) =0, x € 0N. (86)

Since we look for the bounded solution to (85), (86) (by using a local estimate
this implies that the gradient is also bounded at infinity), one can conclude
that rot u = 0, and hence we get u = V®, where ® is a scalar potential.
Thus we arrive at the following system of equations

V(—vA®(z) +p(x)) =0, —Ad(x)=0, x€Q, (87)

Vo(z) =0, =z €. (88)
In virtue of (87), (88) we obtain (u,p) = (0,0,0;1).

4.3 Proof of Lemma (2.1)

First we consider an auxiliary problem, namely we look for a solution of the
boundary value problem

—div ue (%) = na(y*)Ga(2%), z% € Q% (89)
U (z*) =0, %€ 0N, (90)
where
m() € CFw), [ mlydy =1 and Gu(e) = [ gt )y

One can verify directly that the vector function

@

%@%—@ﬁmxwmaf»/%@ﬂ——/mQﬁMt

solves the problem (89), (90). Moreover, by Hardy’s inequality (see Theorem
5.2 ([14]])

[[WallL3(Lao0) < C/ 2" Gal?dz" < Clgll Lo (Larco)- (91)

Lo

Using (91), we obtain
[uallr@e) < callglla,@e)- (92)
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We are looking for a solution to —div u = g in the form

U= Z Xa(2M)ua(y®, 2%) + U(z) (93)
a=0,%+

for the equation —divu = ¢ in ). Here the cut-off functions y, are defined
by
Xa(2%) =1 for 2% > 2L,, xa(2%) =0 for 2% < L,.

The function U in (93) satisfies the equation
—divU = g + div < Z Xo(2%)ua (Y%, za)> =ge Ly1(0)
a=0,%+

in Q2. It is easy to see that
/ gdy® =0 for 2% > L,. (94)

Let us introduce a local covering of Q. Let QF = {(y*,2%) : y* € wa, La +
j—1<z*<Lo+j+3/2},j=1,... Then

) ¥
a j=1
Let us consider the partition of unity corresponding to this covering:
L=¢'(z)+ > ) ¢%(2"), where ¢ € C3°(La+j — 1, La +j +3/2),
a j=1
and ¢’ is a smooth function supported in . We can write
G=9+>_ ) 45, where gy =93, § = ¢'(x)g.
a j=1

By (94) and (10) we have

/ g3dz* =0, and, / §g'dr =
Qo o
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So we obtain the problem in each bounded domain f:
—divUs = g§ in QF, (95)

U =0 on 997, (96)

and similar problem for U" in 2. These problems have solutions U € H(25)
(see [5]) which satisfy

U gy < OG5 Lancos)-
Thus the vector function
U=U"+>_ ) U Hy(Q)
a j=1

solves problem (95), (96) and satisfies

1y < O (10 ey + 32 3 102 ey ) < Colllles o

a j=1
The proof is complete.
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