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Abstract. We consider a bifurcation of an artery. The in�uence of defects
of the vessel's wall near the bifurcation point on the pressure drop matrix is
analyzed. The elements of this matrix are included in the modi�ed Kirchho�
transmission conditions, which were introduced earlier in [1], [2], and which
describe adequately the total pressure loss at the bifurcation point of the
�ow passed through it.
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1 Introduction

The main objective of this paper is to study the in�uence of defects in the
vessel walls near the bifurcation point on the pressure drop matrix Q [3]. We
calculate the material derivative in the case of oblong plaques or aneurysms
(see Fig.1, a and b) and the topological derivative in the case of localized
ones (see Fig.1, c and d). The pressure drop matrix was introduced in [3]

a b

c d

Figure 1: Variations in the shape of a bifurcation node: oblong (a) and sac-
cular (c) aneurysms, oblong parietal (b) and localized nodular (d) cholesterol
plaques.

as an integral characteristic of a junction of several pipes with absolutely
rigid walls. It appears that the elements of this matrix are included in the
modi�ed Kirchho� transmission conditions, which describe more adequately
the total pressure loss at the bifurcation point of the �ow passed through the
corresponding junction of the pipes, see [1, 2, 4].

In the paper [2] a one-dimensional model of a �uid �ow at a junction of
thin vessels with rigid walls was developed. In particular, a new transmission
condition at the bifurcation point was derived, which can be considered as
a modi�cation of the classical Kirchho� condition. Clearly, the total �ux at
the bifurcation point is zero but continuity of the pressure is not so obvious.
In �uid mechanics, one uses the total pressure loss in the �ow passing the
bifurcation point, see [4]. An appropriate object to describe this pressure
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loss is the pressure drop matrix, elements of which are involved in the mod-
i�ed Kirchho� conditions. This modi�cation improves the model in several
directions. First, the discrepancy of the approximation of three-dimensional
model by the one-dimensional one is O(e−

ρ
h ), where h is the thickness of

the vessel and ρ is a positive constant. We remind that the application of
the classical Kirchho� conditions brings the discrepancy O(h3) for the veloc-
ities and O(h) for the pressure. This di�erence is essential if we deal with
a large system with many bifurcations. Second, the modi�ed transmission
conditions depend on the geometry of the bifurcation region.

The pressure drop matrix Q is the symmetric (2 × 2) matrix. So it has
three parameters (the diagonal elements Q++, Q−− and the o�-diagonal ones
Q+− = Q−+). The in�uence of Q on the transmission conditions can be taken
into account also by the small variations in the lengths of the edges incident to
the bifurcation point and by introducing e�ective lengths Lα(h), α = 0,±,
of one-dimensional images of blood vessels whilst keeping the classic Kirchho�
transmission conditions and exponential small approximation errors, see [2].
Since the number of channels is also three the e�ective lengths Lα(h) can
be isomorphically determined by the entries of Q. By [2], the increments of
lengths hlα, α = 0,±,

l0 = −B0Q+− = −B0Q−+, l± = B±(Q±∓ −Q±±), Bα =
πr4α
8ν

, (1)

where ν is the viscosity of the �uid and rα is the radius of the vessel, we
introduce perturbed edges with the e�ective lengths

Lα(h) = Lα + hlα, (2)

where Lα are initial lengths of the edges. The e�ective lengths (2) are the at-
tributes of the vessels themselves and preserve when you change the direction
of blood �ow through the node.

Our aim with this article is to calculate asymptotics of the pressure drop
matrix and hence the total increments h

∑
α lα, namely,

h
∑
α

lα =
∑
α

Lα(h)−
∑
α

Lα

= h (Q+− (B+ +B− −B0)−Q++B+ −Q−−B−) , (3)

of the e�ective lengths of the vessels taking into account the in�uence of
perturbations (e.g., plaques, aneurysms) arising near the bifurcation node
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of the artery in the three-dimensional problem. As a result, we calculate
the total increments of the e�ective lengths, and even determine their signs.
Changes in the e�ective lengths of the vessels correspond to the presence of
some defects in the vessel walls. So we can localize them by examining the
process of blood �ow through a bifurcation node.

In Sect. 2 we consider the Stokes system in an unbounded domain with
cylindrical outlets to in�nity (see, e.g., [5, 6, 7, 8, 9]) and prove the unique
solvability of the problem. For obtaining the asymptotic behavior of the
solution we exploit special homogeneous solutions to the Stokes problem with
non-zero �ux and with a linear growth in the pressure at in�nity (see [3]). As
a consequence, we obtain a de�nition of the symmetric pressure drop matrix
Q, which plays a crucial role in the functioning of the bifurcation node.

Sect. 3 is the main part of this work. We analyze the in�uence of certain
formations in the bifurcation node and close to it on the matrix Q. Using
asymptotic analysis of elliptic boundary value problems in regularly (or sin-
gularly) [10, 11] perturbed domains we �nd the increments of the pressure
drop matrix and also determine their signs. In virtue of formulae (1) we cal-
culate the total increments of the e�ective lengths of one-dimensional images
of the blood vessels.

In Appendix it will be explained why the modi�cation of the second
Kirchho�'s law by means of the pressure drop matrix unexpectedly deeply
increases the accuracy of approach for three-dimensional �uid �ow in a system
of thin channels by the one-dimensional Reynolds-Poiseuille model. Also, we
give proofs of supporting assertions of Sect. 2, 3. Note that considered in 4.2
the Cauchy problem for the homogeneous Stokes system supplemented by
the Neumann condition on the part of the boundary it is also of independent
interest.

2 Statement of the problem

2.1 Domains with cylindrical outlets to in�nity and func-
tional spaces

We introduce the domain Ω with three cylindrical outlets to in�nity (see
Fig.2). Let Ω be an open unbounded domain with Lipschitz boundary ∂Ω
admitting the representation

Ω = Ω′ ∪ Ω0 ∪ Ω+ ∪ Ω−, where Ωα ∩ Ωβ = ∅ for α ̸= β, α, β = 0,±. (4)
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Here Ωα = {xα = (yα, zα) : yα ∈ ωα, z
α > Lα} in a certain Cartesian

coordinate system xα = (yα, zα) in R3, where yα are the variables in the
cross-section of the outlet Ωα, zα is the variable along the axis of Ωα and ωα

is a bounded domain in R2. The bounded domain Ω′ is given by Ω′ = {x ∈
Ω : zα < L} for certain L, L > maxα Lα. Henceforth x = (x1, x2, x3) is a
global coordinate system in R3 related to the whole domain Ω. We de�ne

x

x
2

3

z

z

z

0

+

-

Figure 2: Artery bifurcation (domain Ω)

L2,β(Ω) as the space of measurable functions in Ω with a �nite norm

||u||L2,β(Ω) =

(∫
Ω′
|u(x)|2dx+

∑
α=0,±

∫
Ωα

|zα|2β|u(yα, zα)|2dyαdzα
)1/2

.

If β = 0 we will use the usual notation L2(Ω) for this space.
By using the Sobolev space H1(Ω) together with L2,1(Ω) we introduce

the space of real-valued vector functions in Ω,

H(Ω) =
{
u = (u1, u2, u3) ∈ (H1(Ω))3| div u ∈ L2,1(Ω)

}
(5)

with the norm given by

||u||2H(Ω) =

∫
Ω

(|∇u(x)|2 + |u(x)|2)dx+
∑
α=0,±

∫
Ωα

|zα|2|div u(yα, zα)|2dyαdzα.

(6)
Let also H0(Ω) be the subspace in H(Ω) consisting of vector functions equal
zero on ∂Ω. The dual space of H0(Ω) is denoted by (H0(Ω))

∗.
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2.2 Formulation of the problem

Consider the Dirichlet problem for the stationary Stokes system with nonzero
divergence

−ν∆u(x) +∇p(x) = F (x), −div u(x) = G(x), x ∈ Ω, (7)

u(x) = 0, x ∈ ∂Ω. (8)

Here, u(x) = (u1(x), u2(x), u3(x)) is the velocity �eld and p(x) is the pressure,
ν > 0 is the viscosity of �uid, which is assumed to be constant.

In order to de�ne a weak solution of the problem (7), (8), we introduce a
bilinear form on H(Ω):

a(u,w) =
3∑

j=1

∫
Ω

∇uj∇wjdx.

So if (u,p) is a classical solution of (7), (8), then multiplying the �rst
equation in (7) by w ∈ H0(Ω) and integrating over Ω, we obtain

νa(u,w)−
∫
Ω

p div w dx =

∫
Ω

Fw dx for any w ∈ H0(Ω). (9)

Weak solution of the problem (7), (8) is called a pair (u, p) ∈ H0(Ω) ×
L2,−1(Ω) satisfying the integral identity (9) for all w ∈ H0(Ω) and the equa-
tion −div u = G in Ω, where F ∈ (H0(Ω))

∗ and G ∈ L2,1(Ω) are given.
To prove the main result of this section we need the following

Lemma 2.1. For arbitrary g ∈ L2,1(Ω) subject to∫
Ω

g(x)dx = 0 (10)

there exists a vector function u ∈ H0(Ω) such that −div u = g in Ω, and

||u||H(Ω) ≤ c||g||L2,1(Ω). (11)

Here, c is a constant independent of g.

Lemma's proof is presented in Appendix.
The following theorem on existence and uniqueness of weak solutions to

the boundary value problem (7)-(8) is quite standard and we present it here
for readers convenience.
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Theorem 2.1. Suppose that F ∈ (H0(Ω))
∗ and G ∈ L2,1(Ω) is such that∫

Ω

G(x)dx = 0. (12)

Then there exists a weak solution (u, p) ∈ H0(Ω) × L2,−1(Ω) of the problem
( 7), ( 8) satisfying the estimate

||u||H(Ω) + ||p||L2,−1(Ω) ≤ c
(
||F ||(H0(Ω))∗ + ||G||L2,1(Ω)

)
. (13)

Here, c is a constant independent of F and G. This solution is de�ned up to
an additive constant in the pressure p.

Proof. Existence. Let w ∈ H0(Ω) be a solution to the problem

−div w(x) = G(x), x ∈ Ω, w(x) = 0, x ∈ ∂Ω (14)

satisfying estimate (11). Such solution exists due to Lemma 2.1. Then the
vector function V (x) = u(x)− w(x) solves the following Stokes problem

−ν∆V (x) +∇p(x) = F̂ , −div V (x) = 0, x ∈ Ω, (15)

V (x) = 0, x ∈ ∂Ω, (16)

where F̂ (x) = F (x) + ν∆w(x) ∈ (H0(Ω))
∗. Introduce the space Hdiv

0 (Ω) =
{W ∈ H1

0 (Ω) : div W = 0 in Ω} . Then the vector function V ∈ Hdiv
0 (Ω) is

found from the equality

νa(V,W ) =

∫
Ω

F̂W dx for any W ∈ Hdiv
0 (Ω). (17)

By the Riesz theorem such solution exists and satis�es

||V ||H(Ω) ≤ c||F̂ ||(H0(Ω))∗ ≤ C(||F ||(H0(Ω))∗ + ||G||L2,1(Ω)).

To �nd p we proceed as follows. By Lemma (2.1), for any g ∈ L2,1(Ω) subject
to (10) there exists a vector function vg ∈ H0(Ω) such that −div vg = g in Ω,
and

||vg||H(Ω) ≤ c||g||L2,1(Ω).

Moreover the correspondence g → vg is linear. We consider the functional

G(g) =

∫
Ω

F̂ vg dx− νa(V, vg) (18)
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on L2,1(Ω) = {g ∈ L2,1(Ω) :
∫
Ω
g(x)dx = 0}. In virtue of

|G(g)| ≤ c
(
||F̂ ||(H0(Ω))∗ + ||V ||H(Ω)

)
||vg||H(Ω) ≤ c||F̂ ||(H0(Ω))∗ ||g||L2,1(Ω)

the linear functional G(g) is continuous on L2,1(Ω). Therefore there exist an
element p in L2,−1(Ω) such that

G(g) =

∫
Ω

pg dx for all g ∈ L2,1(Ω)

and
||p||L2,−1(Ω) ≤ c

(
||F ||(H0(Ω))∗ + ||G||L2,1(Ω)

)
.

Clearly, the pair (u, p) is the required weak solution.
Uniqueness. If F = 0 and G = 0 then from the de�nition of the weak

solution it follows that a(u, u) = 0 and hence u = 0. This implies that∫
Ω
p divwdx = 0 for all w ∈ H0(Ω). Using Lemma 2.1, we conclude that p is

constant.
The theorem is proved.

Remark 2.1. Consider a non-homogeneous Dirichlet problem for Stokes sys-
tem, i.e. equations ( 7) are supplied with the boundary condition

u(x) = H, x ∈ ∂Ω, (19)

where H ∈ H(Ω)and instead ( 10) we require∫
Ω

G(x)dx+

∫
∂Ω

H(x) · ndΓ = 0, (20)

where n is the unit, outward normal to ∂Ω. Substituting u(x) = v(x) +H(x)
into ( 7), ( 19) we obtain

−ν∆v(x) +∇p(x) = f(x), −div v(x) = g(x), x ∈ Ω, (21)

v(x) = 0, x ∈ ∂Ω, (22)

where f(x) = F (x) + ν∆H(x) ∈ (H0(Ω))
∗ and g(x) = G(x) + div H(x) ∈

L2,1(Ω) veri�es ( 10). Now application of the previous theorem gives the ex-
istence of a pair (v, p) ∈ H0(Ω) × L2,−1(Ω) solving problem ( 7), ( 19) and
satisfying the estimate

||v||H(Ω) + ||p||L2,−1(Ω) ≤ c
(
||f ||(H0(Ω))∗ + ||g||L2,1(Ω) + ||H||H(Ω)

)
. (23)

Moreover, p is de�ned up to an additive constant.
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2.3 Asymptotics of the variational solution

Let the right-hand sides in (7), (8) satisfy∫
Ω′
|F (x)|2dx+

∑
α

∫
Ωα

|F (xα)|2e2azαdxα < ∞ (24)

and ∫
Ω′
|G(x)|2dx+

∑
α

∫
Ωα

|G(xα)|2e2azαdxα < ∞, (25)

where a is a positive number. Let also G be subject to (12). Then according
to Theorem 2.1 the problem (7), (8) has a solution (u, p) ∈ H0(Ω)×L2,−1(Ω).
We can conclude that this solution satis�es the following asymptotic repre-
sentation at in�nity

(u, p) =
∑
α=0,±

χαcα(0, 1) + (ṽ, p̃), (26)

where χα = χα(z
α) are smooth functions equal 1 for zα > Lα + 1 and 0 for

zα < Lα, (ṽ, p̃) are exponentially decaying terms at zα → ∞ and cα are real
constants. Since this solution is de�ned up to an additive constant we can
(and will) assume c0 = 0. Then the solution is unique.

The remaining part of this section is devoted to �nding formulas for eval-
uation of constants c+ and c−. For this purpose we need solutions of homo-
geneous problem (7), (8), which have a linear growth at in�nity, namely we
introduce two linear independent solutions (V ±, P±) which have the following
asymptotic representations (see [3])

(V ±, P±) = −χ0(V0,P0) + χ±(V±,P±) + (v±, p±), (27)

where (Vα,Pα) is the Poiseuille �ow in the cylinder Ωα, i.e. Vα
yαi
(x) = 0,

i = 1, 2, Pα(x) = −Cαz
α and Vα

zα = Vα
zα(y

α) solves the following Dirichlet
problem in ωα

∆Vα
zα = −Cα in ωα, Vα

zα = 0 on ∂ωα.

The normalizing constant Cα is choosing to satisfy∫
ωα

Vα
zα(y

α)dyα = 1. (28)
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In the most important case of the circular cylinder, i.e. ωα = {yα : |yα| <
rα},

Vα
zα(x) =

2(r2α − |yα|2)
πr4α

, Pα(x) =
−8ν

πr4α
zα.

The remainder term (v±, p±) in (27) satis�es the problem

−ν∆v± +∇p± = f±, −divv± = g± in Ω, (29)

v± = 0 on ∂Ω, (30)

where the right-hand sides

f± := ν∆(χ0V0 − χ±V±)−∇(χ0P0 − χ±P±) (31)

and
g± := div(χ0V0 − χ±V±) (32)

have compact supports. To verify condition (20) in Theorem (2.1) for g±, we
apply the Gauss theorem for the domain ΩR = {x ∈ Ω : za < R}, where R
is a su�ciently large number, and obtain∫
Ω

g±dx = lim
R→∞

∫
ΩR

div(χ0V0−χ±V±)dx =

∫
ω0
R

V0
z0(y

0)dΣ−
∫
ω±
R

V±
z±(y

±)dΣ = 0.

Here we used the normalization condition (28). Therefore, (v±, p±) admits
the asymptotic representation (26), where c0 = 0 and (ṽ, p̃) exponentially
tends to zero when zα → ∞.

Now we can present formulas for calculation of coe�cients in (26)

Theorem 2.2. Let the functions F and G satisfy ( 24)-( 25) and let the
asymptotic formula ( 26) be valid with c0 = 0. Then

c± =

∫
Ω

(
FV ± +GP±) dx (33)

Proof. Let ΩR be the same domain as before. Multiplying equations (7),
(8) by (V ±, P±), integrating over ΩR and using Green's formula, we obtain∫

ΩR

(
(−ν∆v +∇p)V ± − divvP±) dx

=
∑
α

∫
ωα

(
− ν

(
V ±∂zαvzα − v∂zαV

±
zα

)
+
(
pV ±

zα − P±vzα
) )∣∣∣

zα=R
dyα.
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Taking here limit and using asymptotic formulas for (V ±, P±) and (26) we
arrive at (33).

Applying formula (33) to the solution (v±, p±) of the problem (7), (8)
with the right hand sides given by (31), (32), we obtain the representations

(v±, p±) = χ±Q±±(0, 1) + χ∓Q±∓(0, 1) + (ṽ±, p̃±), (34)

where the coe�cients are evaluated according to

Qγτ =

∫
Ω

(fγV τ + gγP τ ) dx, γ, τ = ±. (35)

From (27) and (34) we get the following representations

(V ±, P±) = −χ0(V0,P0) + χ±(V±,P±)

+χ±Q±±(0, 1) + χ∓Q±∓(0, 1) + (ṽ±, p̃±), (36)

with the remainders (ṽ±, p̃±) exponentially decaying at in�nity. Note that
a straightforward calculation gives the equality Qγτ = Qτγ. The coe�cients
Qγτ in the expansion (36) of the pressure at in�nity in Ω± form the symmetric
(2 × 2) � matrix Q called the pressure drop matrix. Another approach to
introducing the matrix Q was presented in [3].

3 Asymptotics of the e�ective lengths

3.1 Regular perturbation of the boundary of Ω

We assume that the boundary ∂Ω is su�ciently smooth. We introduce coor-
dinates (n, τ) in a neighborhood of the boundary as follows: n is the oriented
distance to ∂Ω (n > 0 outside Ω̄) and τ is a local coordinate on ∂Ω. Let
φ = φ(τ) be a smooth function (positive or negative) with a compact support
on ∂Ω. Now de�ne the surface Γε as the perturbation of the surface ∂Ω as

Γε = {x : n = εφ(τ)} , (37)

where ε > 0 is a small parameter. Let Ωε is domain with the boundary Γε.
For the perturbed domain Ωε we have analog of formula (36)

(V ±
ε , P±

ε ) = −χ0(V0,P0) + χ±(V±,P±) + (vε±, p
ε
±), (38)

(vε±, p
ε
±) = χ±Q±±(ε)(0, 1) + χ∓Q±∓(ε)(0, 1) + (ṽε±, p̃

ε
±). (39)
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Theorem 3.1. Let Ωε be domain with regular perturbation of the boundary
( 37). Then formulae ( 38), ( 39) have the asymptotic expansion of elements
of the matrix Q

Qγτ (ε) = Qγτ + εcτγ +O(ε2), γ, τ = ±. (40)

Here, cτγ = ν
∫
Γ0

φ∂nV
γ · ∂nV τdΣ.

Proof. Let

(wε, qε) = (vε±, p
ε
±)− (v±, p±) = (V ±

ε , P±
ε )− (V ±, P±).

If it is needed we extend smoothly functions (v±, p±) outside Ω. Then the
pair (wε, qε) satis�es the following problem

−ν∆wε +∇qε = 0, −divwε = 0 in Ωε, (41)

wε = −V ± on Γε. (42)

We take the asymptotic ansatz for a solution (41), (42) as follows:

(wε, qε) = ε(v
′

±, p
′

±) + ε2(v
′′

±, p
′′

±) + . . . (43)

where (v
′
±, p

′
±) must satisfy the problem in Ω:

−ν∆v
′

± +∇p
′

± = 0, −divv
′

± = 0 in Ω, (44)

v
′

± = h± on ∂Ω. (45)

Comparing (42) and (45) we see that

h± = −φ∂nV
± on Γ0. (46)

Finally, using that ∂nV
±
n = 0 on ∂Ω (this follows from −divV ± = 0) we

obtain (40).
Note that the matrix {cτγ}γ,τ=± in (40) is positive de�nite for φ > 0 and

is negative de�nite for φ < 0. Indeed, if some of the coe�cients cτγ = 0 then
∂nV

τ = 0, τ = ±, on the supp φ and by 4.2 (see Appendix) the homo-
geneous Stokes problem (7), (8) will have trivial solution (u, p) = (0, 0, 0; 1)
only.
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Taking into account the formulae (3), (40) we obtain the asymptotic
expansion for the total increments of the e�ective lengths∑

α

lα(ε) =
∑
α

lα + εΨ+O(ε2), (47)

where

Ψ = ν

∫
Γ0

φ{(B+ +B− −B0)∂nV
+ · ∂nV − −B+

∣∣∂nV +
∣∣2 −B−

∣∣∂nV −∣∣2}dΣ.
Let the radii of the blood vessels rα, α = 0,±, be connected as follows

r± = δ±r0, 0 < δ± < 1. We have the following theorem that gives us possi-
bility to estimate by means of the e�ective lengths the in�uence of changes
in the vessel walls geometry.

Theorem 3.2. Let δ± be real numbers such that |δ2+ − δ2−| < 1, then in ( 47)
the matrix of quadratic form Ψ is negative de�nite for φ > 0 and is positive
de�nite for φ < 0.

Proof. Substituting the asymptotic expansion (40) into (3), using Sylvester's
criterion for the matrix of quadratic form Ψ, we immediately prove the as-
sertion of Theorem 3.2.

So we can conclude that if near the bifurcation of an artery the cholesterol
plaque (in the case of φ < 0) is located then the total e�ective length of the
vessels increases. Vascular injury associated with aneurysm (in the case of
φ > 0) corresponds to the decreasing in the total e�ective length of the
vessels, see Appendix.

3.2 Model problem in a half-space

Consider the homogeneous Stokes system in the half-space R3
+ = {Y =

(Y ′, Y3) = (Y1, Y2, Y3) : Y3 > 0}:

−ν∆U(Y ) +∇P (Y ) = 0, −div U(Y ) = 0, Y ∈ R3
+, (48)

U(Y ′, 0) = 0, Y ′ ∈ R2. (49)

We are interested in solutions of (48), (49) having the form U(x) = rλu(ω),
P (x) = rλ−1p(ω), where r = |Y |, ω = Y/r and λ is a complex number.
Such solutions exist only when λ = 1, 2, , . . . or λ = −2,−3, . . .. Moreover,
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the space of such solutions is the same for λ and −1 − λ, see for example
Theorem 5.2.1 in [11].

For λ = 1 this problem has the following three solutions (Vk, Pk), k =
1, 2, 3, where

V1(Y ) = (Y3, 0, 0), V2(Y ) = (0, Y3, 0), V3 = 0, P1 = P2 = 0 and P3 = 1.

The �rst two vector functions are called the Quette �ows and the third one is
constant. Using Theorem 5.4.4 [11], we can describe all solutions for λ = −2.
They are given by pairs (U, P ),

U = r−2v(ω)ω, P = r−3(2v(ω)− c),

where
(δ + 6)v = 3c in S2

+ and v = 0 on ∂S2
+. (50)

Here δ is the Laplace-Beltrami operator on S2. Solutions to (50) are obtained
from solutions to ∆v = 3c in R3

+ with zero Dirichlet boundary conditions
and v being second order polynomial. Therefore these solutions are given as
(V1,P1), (V2,P2) and (V3,P3), where

Vk(Y ) =
ωkω3

νr2
(ω1, ω2, ω3), Pk(Y ) = 2

ωkω3

r3
, k = 1, 2,

and

V3(Y ) =
ω2
3

νr2
(ω1, ω2, ω3), P3(Y ) = 2

ω2
3

r3
− 2

3r3
.

These functions verify the following bi-orthogonality conditions

⟨(Vk,Pk), (Vj, Pj)⟩ =
∫
R3
+

((
− ν∆(χVk) +∇(χPk)

)
· Vj − div(χVk)Pj

)
dY

=

∫
S2
+

(
− ν(∂rVk · Vj − Vk · ∂rVj) + Pkω · Vj − ω · VkPj

)
r2dSω

= Mkδ
j
k, (51)

where χ is a smooth function equals 0 for small |Y | and 1 for large |Y |, dSω

spherical area element and

Mk = 5

∫
S2
+

ω2
kω

2
3dSω for k = 1, 2 and M3 =

−1

ν

∫
S2
+

ω2
3dSω.
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3.3 Domain close to a half-space

Now let us turn to the Stokes system in a domain Ξ which coincides with
R3

+ outside a ball B2δ(0) given by |Y | ≤ 2δ and Ξ = {Y ∈ Bδ(0) : Y3 >
ϕ(Y1, Y2)}, where ϕ is a smooth function equal to 0 for |Y ′| > δ:

−ν∆u(Y ) +∇p(Y ) = F (Y ), −div u(Y ) = G(Y ), Y ∈ Ξ, (52)

u(Y ) = 0, Y ∈ ∂Ξ, (53)

Theorem 3.3. Let F ∈ (H1
0 (Ξ))

∗ and G ∈ L2(Ξ). Then the problem ( 52),
( 53) has a unique weak solution (u, p) ∈ H1

0 (Ξ) × L2(Ξ). This solution
satis�es

||u||H1(Ξ) + ||p||L2(Ξ) ≤ C
(
||F ||(H1

0 (Ξ))
∗ + ||G||L2(Ξ)

)
.

Now, we are interesting in asymptotics of solutions for large |Y |.

Theorem 3.4. Let F ∈ (H1
0 (Ξ))

∗ and G ∈ L2(Ξ) have compact supports.
Then solution (u, p) ∈ H1

0 (Ξ)× L2(Ξ) from the previous theorem satis�es

u(Y ) =
3∑

k=1

ckVk +O(|Y |−3), p(Y ) =
3∑

k=1

ckPk +O(|Y |−4), for large |Y |,

(54)
where O(·) terms can be di�erentiated.

Proof. Let χ be the smooth cut-o� function in R3
+, namely χ(Y ) = 1

for |Y | > R0, χ(Y ) = 0 for |Y | < R0, where R0 = const. We transform the
problem (52), (53) in Ξ to the following problem in R3

+

−ν∆(χu) +∇(χp) = F̂ , −div (χu) = Ĝ, Y ∈ R3
+, (55)

χu = 0, Y ∈ R2, (56)

where the right-hand sides F̂ = χF − ν((∆χ)u + 2(∇χ,∇)u) + p∇χ and
Ĝ = χG− (u,∇χ) have compact supports.

Let U = χu− v. Here v is a solution to the problem

−div v = Ĝ, Y ∈ R3
+, (57)

v = 0, Y ∈ R2. (58)
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And we arrive at

−ν∆U +∇P = f, −div U = Ĝ, Y ∈ R3
+, (59)

U = 0, Y ∈ R2, (60)

where (H0(R3
+))

∗ ∋ f = F̂ + ν∆v and P = χp.
Exploiting the explicit form of the Green's tensor (a tensor �eld G(Y,Z)

and a vector �eld g(Y,Z)) for the homogeneous Stokes system in the half-
space (see, e.g., [13, Appendix 1]) we �nd estimates

|Gij(Y, Z)−Gij(Y, 0)| ≤ C|Y − Z|−2, |gi(Y, Z)− gi(Y, 0)| ≤ c|Y − Z|−3.
(61)

Using the estimates (61) for the solution to (59), (60)

Uj(Y ) =

∫
R3
+

Gij(Y, Z)fi(Z)dZ, P (Y ) =

∫
R3
+

gi(Y, Z)fi(Z)dZ

we get formulae (54). The proof is complete.

In order to evaluate the constants ck in (54) we introduce three solutions
(V̂k(Y ), P̂k(Y )), k = 1, 2, 3, of the homogeneous problem (52), (53), having
the form

V̂k(Y ) = Vk(Y ) + Ṽk(Y ), P̂k(Y ) = Pk(Y ) + P̃k(Y ) (62)

with (Ṽk, P̃k) ∈ H1(Ξ) × L2(Ξ). Since V3 = 0 and P3 = 1, we have Ṽ3 = 0
and P̃3 = 0. One can verify that

−ν∆Ṽk +∇P̃k = 0, −div Ṽk = 0, Y ∈ Ξ, (63)

and Ṽk + Vk = 0 on ∂Ξ. By Theorems 3.3 and 3.4 this problem has solution
and it satis�es

Ṽk(Y ) =
3∑

j=1

Ak
jVj(Y ) +O(|Y |−3), P̃k(Y ) =

3∑
j=1

Ak
jPj(Y ) +O(|Y |−4) (64)

for large |Y |. One can see directly that V̂3 = 0 and P̂3 = P3 = 1.

Theorem 3.5. Let F and G be the same as in Theorem 3.4 and let ck be
coe�cients in ( 54). Then

Mkck =

∫
∂Ξ

(
FV̂k +GP̂k

)
dS. (65)
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Proof. Let ΞR = {Y ∈ Ξ : |Y | < R} and SR = {Y ∈ Ξ : |Y | = R}.
Then multiplying the �rst equation in (52) by V̂k and the second equation in
(52) by P̂k, summing them up and integrating over ΞR, we obtain∫
ΞR

((
−ν∆u(Y )+∇p(Y )

)
·Vk−divu(Y )P̂k

)
dY =

∫
ΞR

(
F (Y )·V̂k+G(Y )P̂k

)
dY.

Using the Green formula in the left-hand side of the last relation, we get∫
SR

(
−ν
(
∂ru·V̂k−u·∂rV̂k

)
+pω·V̂k−ω·u(Y )P̂k

)
dSω =

∫
ΞR

(
F (Y )·V̂k+G(Y )P̂k

)
dY.

Replacing vector functions (u, p) and (V̂k, P̂k) by their asymptotics, taking
the limit as R → ∞ and using (51), we verify (65).

In the next theorem we prove a positivity property of the coe�cients in
(64) when the function ϕ in the de�nition of Ξ has sign.

Theorem 3.6. Let ϕ be not identically zero. Then the matrix

{MkA
k
j}2k,j=1,

is positive de�nite for ϕ ≤ 0 and is negative de�nite for ϕ ≥ 0. Moreover,
A3

j = Aj
3 = 0, j = 1, 2, 3.

Proof. Since (V̂3, P̂3) = (0, 1) we have A3
j = 0.

Let ϕ ≥ 0 and let ΞR be de�ned as above. Integrating by parts in the
right-hand side of

0 =

∫
ΞR

(
(−ν∆Ṽk +∇P̃k)V̂j − divṼkP̂j

)
dY

and taking the limit as R → ∞, we get

MjA
k
j =

∫
∂G

(−ν∂nV̂j + nP̂j) · ṼkdS,

where n is the unit outward normal to ∂Ξ. Using (62) and that Ṽk + Vk = 0
on ∂Ξ, we can write the last relation as

MjA
k
j =

∫
∂Ξ

(−ν∂nṼj + nP̃j) · ṼkdS −
∫
∂Ξ

(−ν∂nVj + nPj) · VkdS.
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Now, applying Green's formula in the domains Ξ and R3
+ \ Ξ, we get

MjA
k
j = −ν

∫
Ξ

∇Ṽj · ∇ṼkdY − ν

∫
R3
+\Ξ

∇Vj · ∇VkdY.

If we denote by Q = {Qjk}3k,j=1 the matrix on the right, then this matrix is
symmetric, Qj3 = 0 and the matrix Q = {Qjk}2k,j=1 is negative de�nite since
the vector functions Vj, j = 1, 2, are linear independent, and therefore

Ak
j = (Mj)

−1Qjk. (66)

Now consider the situation when ϕ ≤ 0. Then we represent Ξ as R3
+∪Ξ0,

where Ξ0 = Ξ \ R3
+. We are looking for the solutions (V̂k, P̂k) in the form

V̂k = V ′
k + Ṽk, P̂k = P̃k, k = 1, 2,

where V ′
k = Vk in R3

+ and V ′
k = 0 in Ξ0. Multiplying the equation −ν∆Ṽk +

∇P̃k = 0 by Vj and integrating over R3
+ we get

MjA
k
j = ν

∫
Y3=0

Ṽk·∂Y3VjdY
′ = ν

∫
Y3=0

Ṽk·∂Y3(V̂j−Ṽj)dY
′+

∫
Y3=0

P̃k(V̂j−Ṽj)3dY
′.

Hence

MjA
k
j =

∫
Y3=0

(−νṼk · ∂Y3Ṽj − P̃k(Ṽj)3)dY
′ +

∫
Y3=0

(νV̂k · ∂Y3V̂j + P̂k(V̂j)3)dY
′.

Using Green's formula in the domains R3
+ and Ξ0 we get

MjA
k
j = ν

∫
R3
+

∇Ṽk · ∇ṼjdY + ν

∫
Ξ0

∇V̂k · ∇V̂jdY.

3.4 Concentrated perturbation of the boundary of Ω

Here we consider a domain Ωε which coincides with Ω outside Bε(x0) where
x0 is a �xed point on ∂Ω. Inside Bε(x0) the domain Ωε is given by

{y = (y′, y3) ∈ Bε(x0) : y3 > εϕ(y′/ε)},
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where y = (y1, y2, y3) are Cartesian coordinates with the center at x0 and ϕ
is a smooth function such that ϕ(y′) = 0 for |y′| > δ. Our goal is to �nd the
asymptotics of the matrix Q.

We are looking for solution (V ε
α , P

ε
α) in the form

V ε
α (x) = (1− χ(y/ε))

(
Vα(x) + εV (1)

α (x)
)
+ ε−1ζ(x)Wα(y/ε) + wα(x, ε),

P ε
α(x) = (1− χ(y/ε))

(
Pα(x) + εP (1)

α (x)
)
+ ε−1ζ(x)Rα(y/ε) + Sα(x, ε).

Here χ(Y ) is a smooth cut-o� function equals 1 for |Y | < δ and 0 for |Y | > 2δ,
ζ is also a cut-o� function equals 1 for |x| < δ/2 and 0 for |x| > δ, where δ
is a �xed positive number. Using that

Vα(x) = a1αV1(y) + a2αV2(y) +O(|x− x0|2), Pα(x) = a3α +O(|x− x0|),

we conclude that the vector function (Wα, Rα) must satisfy the system

−ν∆Wα(Y ) +∇Rα(Y ) = −ν∆
(
χ(Y )(a1αV1(Y ) + a2αV2(Y ))

)
+ a3α∇χ(Y )

and
−div Wα(Y ) = −div

(
χ(Y )(a1αV1(Y ) + a2αV2(Y ))

)
in Ξ with the homogeneous Dirichlet boundary condition on ∂Ξ. According
to Theorems 3.3 and 3.4 this problem has a unique solution in H1

0 (Ξ)×L2(Ξ)
and this solution satis�es

Wα(Y ) =
3∑

k=1

Cα
k Vk(Y ) +O(|Y |−3),

Rα(Y ) =
3∑

k=1

Cα
kPk(Y ) +O(|Y |−4) for large |Y |, (67)

and the coe�cients here are evaluated as

Cα
k =

∫
Ξ

(
− ν∆

(
χ(Y )(aαV1(Y ) + bαV2(Y ))

)
+ cα∇χ(Y ))V̂kdY

+∇ ·
(
χ(Y )(aαV1(Y ) + bαV2(Y ))

)
P̂k

)
dY. (68)

Now we can write the system for (V (1)
α , P

(1)
α ):

−ν∆V (1)
α (x)+∇P (1)

α = −ν∆(ζ(x)
3∑

k=1

Cα
k Vk(x))+∇(ζ(x)

3∑
k=1

Cα
kPk(x)) (69)
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and

−div V (1)
α (x) = div(ζ(x)

3∑
k=1

Cα
k Vk(x)) (70)

in Ω with zero Dirichlet boundary condition on ∂Ω. Denote the right-hand
sides in (69) and (70) by F

(1)
α and G

(1)
α respectively. In order to apply Theo-

rems 2.1 and 2.2 to problem (69), (70), we must verify that∫
Ω

G(1)
α dx = 0.

We have∫
Ω

G(1)
α dx =

∫
Ω

div(ζ(x)
3∑

k=1

Cα
k Vk(x))dx = −

∫
S2
+

3∑
k=1

Cα
k Vk(ω) · ωdSω

= −Cα
3

∫
S2
+

ω2
3

ν
dSω.

Furthermore,

Cα
3 =

∫
Ξ

∇ ·
(
χ(Y )(aαV1(Y ) + bαV2(Y ))

)
dY

=

∫
Ξ

∇ ·
(
(χ(Y )− 1)(aαV1(Y ) + bαV2(Y ))

)
dY

= −R3

∫
S2
+

ω · (aαV1(ω) + bαV2(ω))dSω = 0.

Thus the problem (69), (70) is solvable and its solution satis�es the asymp-
totics

(V (1)
α (x), P (1)

α ) =
∑
θ=±

c(θ)α χθ(0, 1) + (Ṽ (1)
α (x), P̃ (1)

α (x)),

where the coe�cients are evaluated according to

cθα =

∫
Ω

(
F (1)
α · V θ +G(1)

α P θ
)
dx.

Taking expressions for F
(1)
α and G

(1)
α from (69) and (70), replacing Ω by

Ωε = {x ∈ Ω : |x− x0| > ε} and using Green's formula, we obtain

c(±)
α =

3∑
k=1

Cα
k ⟨(Vk,Pk), (a

1
θV1 + a2θV2, a

3
θ)⟩ =

3∑
k=1

MkC
α
k a

k
θ
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Coe�cients Cα
k admit the following interpretation. The vector function

(V̂k, P̂k) can be constructed also as follows:

V̂k = (1− χ)Vk + V̌k, P̂k = (1− χ)Pk + P̌k, k = 1, 2, 3,

where (V̌k, P̌k) satis�es the system

−ν∆V̌k+∇P̌k = ν∆(1−χ)Vk−∇(1−χ)Pk, −∇· V̌k = ∇·(1−χ)Vk, in Ξ,

V̌k = 0, on ∂Ξ.

Moreover the vector function (V̌k, P̌k) has the same asymptotic representation
(64) as (Ṽk, P̃k). Therefore by Theorem 3.5

MkA
k
j =

∫
G

(
(ν∆(1− χ)Vk −∇(1− χ)Pk) · V̂j +∇ · (1− χ)VkP̂j

)
dY.

Comparing this formula and (68) we see that

Cα
k =

3∑
m=1

amα MmA
m
k .

Thus

cθα =
3∑

k=1

3∑
m=1

Mka
m
α MmA

m
k a

k
θ

and hence
Qαθ(ε) = Qαθ + εcθα +O(ε2). (71)

Using that Am
k = 0 when m or k is equal to 3, we get that

cθα =
2∑

k=1

2∑
m=1

Mka
m
α MmA

m
k a

k
θ . (72)

Since the matrix {Am
k }2k,m=1 is positive de�nite we conclude that the matrix

{cθα}α,θ=± is also positive de�nite and

∑
α,θ

cθαξαξθ =
2∑

k=1

2∑
m=1

Am
k (
∑
θ

Mka
k
θξθ)(

∑
α

Mma
m
α ξα), (73)
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therefore ∑
α,θ

cθαξαξθ ≥ c0

2∑
k=1

(
∑
θ

akθξθ)
2. (74)

Formulas (71)-(74) describe the asymptotic behavior of the coe�cients Qαθ

for the domain Ωε. Replacing the elements of the pressure drop matrix Q by
their asymptotics (71) in (3) we get the asymptotic expansion of the e�ective
lengths of the vessels, i.e. the direct analog of Theorem 3.2 is executed.

4 Appendix

4.1 Pressure drop matrix and modi�ed Kirchho� trans-
mission conditions

Let's truncate cylindrical outlets in Ω and assume

Ωh = Ω
′ ∪ Ω0

h ∪ Ω+
h ∪ Ω−

h ,

Ωα
h =

{
x : |yα| < rα, zα < h−1lα

}
, α = 0,±, (75)

where h > 0 is a small dimensionless parameter, rα > 0, lα > 0 are certain
�xed radii and lengths respectively. In domain Ωh we de�ne the homogeneous
(F = 0, G = 0) Stokes equations (7), and on its lateral surface Σh = ∂Ωh∩∂Ω
we impose the homogeneous (H = 0) no-slip conditions (8) (hereinafter refer
to these relations, implying that they are restricted to these sets). On the
truncated surfaces Γα

h = {x : |yα| < rα, zα = h−1lα} assign the following
conditions:

vh(x) = −V 0(y0), x ∈ Γ0
h, (76)

vhyτi (x) = 0, i = 1, 2, −ν∂zτv
h
zτ (x) + ph(x) = p∞, x ∈ Γτ

h, τ = ±. (77)

In other words, at the inlet cross-section of the vessel Ω0 is assigned the
incoming unit �ux of �uid, and on the allocated ends of the outlet cross-
sections of the vessels Ω± peripheral pressure p∞ is set. At the same time
compression of coordinates by h−1 times transforms the problem stated to
the usual problem of the blood �ow through the artery bifurcation node,
which walls, as already explained, it is assumed to be rigid (cf. [1]). In the
new coordinates the vessels become smaller radii hrα and �xed lengths lα.
We emphasize that the problem (7), (8), (75), (76), (77) is still included in
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the symmetric Green's formula in Ωh. Its interpretation in the framework of
the weighted spaces technique with detached asymptotics is given in [3].

As an approximate solution of the problem stated in Ωh we take the sums

v̂h = ah+V
+ + ah−V

−, p̂h = ah+P
+ + ah−P

− + ah0 , (78)

where (V ±, P±) are introduced special solutions (27) and the last term refers
to the constant pressure. Using the asymptotic representations (see Sect.
2.3), satisfy the boundary conditions (76), (77) up to exponentially small
terms for h → +0 and we obtain the following relations

1 = ah+ + ah−, (79)

p∞ = ah0 − h−1Lτa
h
τ +

∑
α=±

Qταa
h
α, τ = ±, (80)

where Lα = 8ν
πr4α

lα, α = 0,±, and henceforth L = diag{L+, L−}.
Let e = (1, 1) and ah = (ah+, a

h
−) be columns. In virtue of (80) we deduce

(p∞ − ah0)e = (Q− h−1L)ah,

hence
ah = (h−1L−Q)−1e(ah0 − p∞),

and thus equality (79) rewritten in the form e · ah = 1 leads to the relations

1 = Th(a
h
0 − p∞),

Th = e · (h−1L−Q)−1e = h−1e · L−1(I − hQL−1)−1e

= h−1e · (L−1 + hL−1QL−1 +O(h2))e.

We �nally �nd that
ah0 = p∞ + T−1

h ,

Th = h(t0 + ht1 +O(h)), t0 = e · L−1e > 0, t1 = e · L−1QL−1e, (81)

so we get
ah0 = p∞ + ht−1

0 (1− ht−1
0 t1 +O(h2)). (82)

Thus, the pressure at the �input� Γ0
h up to the smaller terms is equal to

h−1L0 + p∞ + ht−1
0 − h2t−2

0 t1 +O(h3). (83)
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The �rst term of (83) is the pressure drop, which provides the unit �ux deliv-
ery to the artery bifurcation, the second term is also positive, it is necessary
to supply the �uxes to the points z± = h−1l±, and the third term, the sign of
which depends on the pressure drop matrix Q, corresponds to just the shape
of the node.

If in the vicinity of the node is formed plaque (φ < 0 in (37)) then
according to the formula (40), the magnitude of (81) decreases, i.e. the
pressure (83) increases. This fact is consistent with an obvious observation:
constriction of the channel requires the growth of pressure in the input. At
a constant pressure, decreases the �ux supplied into the vessels Ω±

h . Many
reasons of hypertensive pressure doctors associated with the clogging of blood
vessels.

At �rst glance it seems that an aneurysm (φ > 0 in (37)) facilitates the
passage of blood through a bifurcation node, i.e. the correction term O(h2)
in (83) is reduced due to the minus sign in front of it. This impression is
erroneous, i.e. statement of the problem adopted in the article does not
consider elasticity of the vessel walls. As it is known from medical reference
books and explained in [12], using the one-dimensional model of the types of
aneurysms, vascular permeability may be reduced due to the growth of the
hematoma in the aneurysm cavity. At the same time, increase of the pressure
at the input (increased heart rate while running and stress) provokes the wall
rupture and leads to a variety of sad consequences, such as death due to a
rapid expiration of a false aneurysm in a large femoral artery.

4.2 The Cauchy problem

Here we assume that the boundaries of the domains ωα are analytic. Let also
Γ′ is the part of ∂Ω which is ∂Ω ∩ Ω′.

Here we prove that the homogeneous Stokes problem (7), (8) with the
additional Neumann boundary condition

∂nu(x) = 0, x ∈ Γ′, (84)

has a trivial bounded solution (u, p), i.e. identically equals (0,0,0;1).
We assume that ∂Ω \ Γ0 is analytic. Here Γ0 is a compact subset of Γ.

Since ∂nu(x) is analytic on the surface ∂Ω\Γ′ as a solution to (7), (8) and due
to (84), we conclude that ∂nu = 0 on the whole ∂Ω. This implies ∇u = 0 and
hence rot u = 0 on ∂Ω. Application of the operator rot to the homogeneous
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Stokes system (7), (8) gives the Dirichlet boundary value problem for rot u,
i.e.

∆(rot u(x)) = 0, x ∈ Ω, (85)

rot u(x) = 0, x ∈ ∂Ω. (86)

Since we look for the bounded solution to (85), (86) (by using a local estimate
this implies that the gradient is also bounded at in�nity), one can conclude
that rot u ≡ 0, and hence we get u = ∇Φ, where Φ is a scalar potential.
Thus we arrive at the following system of equations

∇(−ν∆Φ(x) + p(x)) = 0, −∆ Φ(x) = 0, x ∈ Ω, (87)

∇Φ(x) = 0, x ∈ ∂Ω. (88)

In virtue of (87), (88) we obtain (u, p) = (0, 0, 0; 1).

4.3 Proof of Lemma (2.1)

First we consider an auxiliary problem, namely we look for a solution of the
boundary value problem

−div uα(x
α) = ηα(y

α)Gα(z
α), xα ∈ Ωα, (89)

uα(x
α) = 0, xα ∈ ∂Ωα, (90)

where

ηα(y
α) ∈ C∞

0 (ωα),

∫
ωα

ηα(y
α)dyα = 1 and Gα(z

α) =

∫
ωα

g(yα, zα)dyα.

One can verify directly that the vector function

uα(x
α) = (0, 0, ηα(y

α)wα(z
α)), wα(z

α) = −
∫ ∞

zα
Gα(t)dt,

solves the problem (89), (90). Moreover, by Hardy's inequality (see Theorem
5.2 [[14]])

||wα||L2(Lα,∞) ≤ c

∫ ∞

Lα

|zα|2|Gα|2dzα ≤ C||g||L2,1(Lα,∞). (91)

Using (91), we obtain

||uα||H(Ωα) ≤ cα||g||L2,1(Ωα). (92)
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We are looking for a solution to −div u = g in the form

u =
∑
α=0,±

χα(z
α)uα(y

α, zα) + U(x) (93)

for the equation −divu = g in Ω. Here the cut-o� functions χα are de�ned
by

χα(z
α) = 1 for zα > 2Lα, χα(z

α) = 0 for zα < Lα.

The function U in (93) satis�es the equation

−divU = g + div

(∑
α=0,±

χα(z
α)uα(y

α, zα)

)
≡ ĝ ∈ L2,1(Ω)

in Ω. It is easy to see that∫
ωα

ĝdyα = 0 for zα > Lα. (94)

Let us introduce a local covering of Ω. Let Ωα
j = {(yα, zα) : yα ∈ ωα, Lα +

j − 1 < zα < Lα + j + 3/2}, j = 1, . . . Then

Ω = Ω′ +
∑
α

∞∑
j=1

Ωα
j .

Let us consider the partition of unity corresponding to this covering:

1 = ϕ′(x) +
∑
α

∞∑
j=1

ϕα
j (z

α), where ϕα
j ∈ C∞

0 (Lα + j − 1, Lα + j + 3/2),

and ϕ′ is a smooth function supported in Ω′. We can write

ĝ = ĝ′ +
∑
α

∞∑
j=1

ĝαj , where ĝ
α
j = ϕα

j ĝ, ĝ′ = ϕ′(x)ĝ.

By (94) and (10) we have∫
Ωα

j

ĝαj dx
α = 0, and,

∫
Ω′
ĝ′dx = 0.
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So we obtain the problem in each bounded domain Ωα
j :

−divUα
j = ĝαj in Ωα

j , (95)

Uα
j = 0 on ∂Ωα

j , (96)

and similar problem for U ′ in Ω′. These problems have solutions Uα
j ∈ H0(Ω

α
j )

(see [5]) which satisfy

||Uα
j ||H(Ωα

j )
≤ C||ĝαj ||L2,1(Ωα

j )
.

Thus the vector function

U = U ′ +
∑
α

∞∑
j=1

Uα
j ∈ H0(Ω)

solves problem (95), (96) and satis�es

||U ||H(Ω) ≤ C1

(
||U ′||H(Ω′) +

∑
α

∞∑
j=1

||Uα
j ||H(Ωα

j )

)
≤ C2||g||L2,1(Ω).

The proof is complete.
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