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as a function of radii. The conditions are not hard and hold, particularly, for all compact
Riemannian manifolds. Under these conditions we prove nontrivial upper bounds for
the Lp-discrepancies of point distributions for any p > 0 and p = co (Theorem 1.1 and
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1. INTRODUCTION

In the present paper we continue the study of point distributions in compact met-
ric measure spaces. In the previous papers [11, 12] the Lo-discrepancies of point
distributions were investigated. In [11] the upper bounds for the Lo-discrepancies
were given for general compact rectifiable spaces while the lower bounds were es-
tablished in [12] for compact Riemannian symmetric manifolds of rank one.

In the present paper we consider the L,-discrepancies of point distributions in
compact connected metric measure spaces satisfying simple conditions on the vol-
ume of metric balls. Particularly, these conditions hold for all compact Riemannian
manifolds. For such spaces and for 0 < p < oo, we prove nontrivial upper bounds
for the L,-discrepancies. For 2 < p < oo and for compact Riemannian symmetric
manifolds of rank one, the order of these bounds turns out to be sharp as it follows
from the lower bounds for the Lo-discrepancies given in [12].

Let M be a compact metric measure space with a fixed metric 6 and a finite
non-negative Borel measure p, normalized, for convenience, by

uM) =1, diamM =1, (1.1)

where diam & = sup{0(y1, y2), y1, y2 € £} denotes the diameter of a set £ C M.
Since M is connected and satisfies (1.1), the set of values of 6 coincides with the
interval Z = [0, 1]. We write B(y,r) = {z : (z,y) < r} for the ball in M of radius
r € T centered at y € M and of volume v(y,r) = u(B(y,r)). We can conveniently
write B(y,7) = 0 and v(y,r) = 0if r <0 and B(y,r) = M and v(y,r) =1ifr > 1.
We specialize the spaces M by the following two conditions.
Condition A. The volume v(y, ) satisfies the bounds

citrt <oy, r) <er?, yeM, rel, (1.2)

with positive constants d and ¢; independent of y € M and r € 7

The spaces satisfying the Condition A are known as Ahlfors regular spaces, see,
for example, [7].

In the following, we write consecutively ci,ca,c3,... for positive constants de-
pending only on M.

Condition B. The volume as a function of r is Lipschitz continuous:

lw(y,m1) —v(y,r2)| < calrs — 72|, y €M, ri,r €T (1.3)

It is not difficult to give many examples of compact spaces satisfying both Condi-
tions A and B. Particularly, a Riemannian manifold can be thought of as a mertric
measure space with respect to the Riemannian distance and measure, and the fol-
lowing is true.

Proposition 1.1. Any compact d-dimensional Riemannian manifold satisfies the
Conditions A and B.

The Condition A is well-known for compact Riemannian manifolds, see, for ex-
ample, [8, 10], while the Condition B is a little more specific, it can be derived from
the Bishop—Gromov volume comparison theorem. For completeness, we shall give
a short proof of Proposition 1.1 in Appendix in Section 4.



The local discrepancy of an N-point subset Dy C M (distribution) in a metric
ball B(y,r) is defined by

L[B(va'),DN] = #(B(y,?") N DN) - NU(y,T’))
= Z L(y,r, x), (1.4)

T€DN
where
L(y,r,x) = x(B(y, ), x) = v(y,7), (1.5)
and x(&,x) denotes the characteristic function of a subset £ C M.
The L,-discrepancy is defined by

£,l€, Dy) = ( //ML[“ Dyl du(y) de<r>) " tcpes (1

where ¢ is a finite (non-negative) measure on Z normalized by £(Z) = 1. For p = oo,
we put
EOO[DN] :supL[y,r, DN]7 (17)

Y,r
where the supremum is taken over all balls B(y,r) C M.
We introduce also the following extremal discrepancies

AP[EaN] :gl]\fgﬁp[gaDN]a >\oo[N] :gl]\fgﬁoo[DN]a (18)

where the infimum is taken over all N-point subsets Dy C M.
Now we are in position to state our main results.

Theorem 1.1. Let M be a compact connected metric measure space satisfying the
Conditions A and B. Then for all N we have the bound

M€ N <es(p+1)2N2721, 0<p< o, (1.9)

where £ is an arbitrary normalized measure on T.
Particularly, the bound (1.9) holds for any compact Riemannian manifold of
dimension d.

The proof of Theorem 1.1 is given in Section 3. In its proof, special random
N-point distributions will be used. Such random distributions are constructed in
terms of partitions of the space M into N subsets of equal measure and small
diameters. The local discrepancies of such distributions can be written as sums of
random independent variables, and the Marcinkiewicz—Zigmund inequality can be
applied to obtain the bound (1.9).

In (1.9), the dependence on the exponent p is described explicitly. This allows
us to obtain upper bounds for the extremal L.,-discrepancy. For this purpose, we
use the following a priory estimate, which is also of interest by itself.

Proposition 1.2. Let the assumptions of Theorem 1.1 hold. Then for an arbitrary
N -point subset Dy C M, we have

Loo[Dn] < 2m2/PL,[E0, DN + c4 Nm~1/ 4, (1.10)

where & is the standard Lebesgue measure on I, while p > 1 and integer m > cs
are arbitrary parameters. Particularly, we have

Aoo[N] < 2m% P\, [€0, N] 4 ca Nm~/2, (1.11)



The proof of Proposition 1.2 is given in Section 2.
Comparing Theorem 1.1 and Proposition 1.2, we arrive at the following.

Corollary 1.1. Let the assumptions of Theorem 1.1 hold. Then for all N we have
Aoo[N] < ¢ N2 724 (log N)'/2. (1.12)
Proof. Putting m = N in (1.11) and using (1.9), we obtain
Ao [N] < 2N 5 Ay [€0, N] + ¢4 < 2esN 7 (p+ 1)V/2N3 720 4 ¢y
Now, we choose p = 2dlog N (with the log in base 2, say) to obtain

Aoo[N] < 23N 2722 (2dlog N + 1)'/% + ¢4 < g N2~ 34 (log N)/?,
that completes the proof. O

Under such general assumptions one cannot expect that the bounds (1.9) are best
possible. The corresponding counterexample can be found in [5, 11, 12]. In this
counterexample the space is the d-dimensional Euclidean sphere S¢, the measure
¢ is atomic and concentrated at the point » = 1/2 and all discrepancies A\,[N] are
bounded by a constant independent of N and p.

One can conjecture that if the measure £ is absolutely continuous on Z, then the
order of the bounds (1.9) is the best possible. In the paper [12] this conjecture was
proved for 2 < p < oo and all compact Riemannian symmetric manifolds of rank
one (two-point homogeneous spaces). Recall that these manifolds are the spheres
S9, the real, complex and quaternionic projective spaces FP",F = R, C, H, and the
octonionic projective plane QP?, see, for example, [10].

Point distributions on the spheres S¢ have been studied by many authors, see
the surveys [2, 6] and references therein. Mention should be made of the fol-
lowing results intimately related with the context of the present paper. For the
Lo-discrepancy of point distributions on the spheres S?, the bound (1.9) with the
special measure d§(r) = 7 sin(nr)dr,r € T has been established by Alexander [1]
and Stolarsky [13], see also [4, pp.237-239]. Beck [3] proved that this bound is
sharp, see also [4, Corollary 24C]. For the L.o-discrepancy of point distributions on
the spheres S, Beck proved the bound (1.12), see [4, Theorem 24D]; the proof is
based on the large-deviation inequalities for sums of random variables.

The present paper is organized as follows. In Section 2 we describe the necessary
facts on partitions of metric measure spaces and prove Proposition 1.2. In Section 3
we describe the construction of random point distributions and prove Theorem 1.1.
Finally, in Section 4 we prove Proposition 1.1.

2. PARTITIONS OF METRIC SPACES. PROOF OF PROPOSITION 1.2
The following general result is due to Gigante and Leopardi [9, Theorem 2].

Lemma 2.1. Let M be a compact connected metric measure space satisfying the
Condition A. Then for all sufficiently large m > c7 there exists a partition P, =
{P;}1" of M into m subsets P; with the following properties

M = U Pja ijpi:()a J# i, ﬂ(Pj):mila 1<j<m (21)
1<jsm

and
gt m V< diam Py < g mVE 1< i<m (2.2)



Partitions with such properties occur in many fields of geometry and analysis.
For special spaces, such as the spheres S? they have long been in use. In the
general case, the proof of Lemma 2.1 given in [9] relies on a nontrivial construction
of the so-called 'dyadic cubes’ in Alhfors regular spaces [§].

We wish to give some simple corollaries of Lemma 2.1 needed for the proofs of
Theorem 1.1 and Proposition 1.1. We write X(y,r) = {z : 6(z,y) = r} for the
sphere in M of radius r € T centered at y € M. For a partition P,, = {P;}7* of
M, we put

Im = Im(y,r) = {j : L(y,r) UP; # 0}, } (2.3)

Ky = Kp(y,r) = #{Jm( Yy, 1)}
Thus, K,, is the number of subsets P; € P, entirely covering the sphere X(y,r).

Lemma 2.2. Let M be a compact connected metric measure space satisfying the
Conditions A and B and let P, = {P;}T" be the partition of M from Lemma 2.1.
Then, we have

Kn(y,r) < com' ™. (2.4)

Proof. Put X(y,r) = Ujes, Pj- In view of (2.1), w(X(y,7)) = m 'K,,. From the
other hand, in view of (2.2), the union X(y,r) is a subset in the spherical shell

B(y,r + cs m~Y9)\ B(y, r — csm~1/4). By the Condition B, we obtain
Km <m (v(y, rtesm” V) — oy, r — e m_l/d)> < deacsm! A,
that completes the proof. 0

Introduce the following kernels

My, 2)=m D X(Pjy)x(P2) y.z €M, (2.5)

1<j<m

where P,, = {P;}T* is an equal measure partition of M, see (2.1),

5ﬁ(r,u):m Z x(9Qi,y)x(Qi,2) ru€el, (2.6)

1<i<m

where Qn, = {Q;}7" is the partition of Z \ {0} into the segments Q = (=1, L] of
equal length m~'. We put

Om(ys 25, w) = 6, (y, 2) &, (r, ). (2.7)

The kernel (2.7) is non-negative and one can easily check the following relations

//sz Sy, 27 0) dp(z) du = 1, (2.8)

( / /sz 6m (y, 2, u)? dpu(2) du) v = m?/P, (2.9)

where 1 < ¢ < o0, 1<p<ooand%+%:1.
For the characteristic function and the volume of a ball B(y,r), we consider the
following approximations (piece-wise on the partition P, X Z,,)

(B //M (77, w)X(B (2, ), ) dpa(2) du, (2.10)



Um (y,7) = //sz Om (y, z;ryu)v(z, u) du(z) du. (2.11)

Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then, we have

Xm(B(y,r —em),x) < X(B(y,7),2) < Xm (B, 7+ €m), ©), (2.12)
Um (Y7 — em) <Y, 7) < UM (Y, 7+ €m), (2.13)
1/d.

where €y, = 2cgm™

Proof. By the triangle inequality, the ball B(z,u) contains the ball B(y,r~) with
r~ =u—60(y,z) and is contained in the ball B(y,r") with r* = u + 0(y, 2).

From the definitions (2.5) and (2.6), we conclude that the kernel (2.7) does not
vanish, if and only if both centers y and z belong to the same subset P; € P, and
both radii » and u belong to the same subset Q; € @,,. In such a situation, from
(2.2) and the definition of the partition P,,, we obtain

T >r708m_1/d7m_1/d27"75m,
Pt <7‘+Cgm71/d+m71/d<r+€m.

Therefore, the ball B(z,u) contains the ball B(y,r — e,,) and is contained in the
ball B(y,r + &,,,). For the characteristic functions, this means

X(B(y,T - Em)vx) < X(B(Zvu)a 1') < X(B(ya r+ Em)a 1')
Substituting these inequalities into (2.10) and using (2.8), we obtain
X(B(y, 7 —em),2) < Xm(B(y,7), 2) < X(B(Y, 7 + &m), T).

Replacing in these inequalities r with r — e, and next with r+e&,,, we obtain (2.12).
Integrating (2.12) with respect to z € M, we obtain (2.13). O

Proof of Proposition 1.2. Substituting (2.12) and (2.13) into (1.4), we obtain
Lm[B(ya r—= Em)a DN] - NOé;L(y,T') < L[B(G,T'),DN]

- . (2.14)
< Ln[B(y,r +em),Dn] — Nai (y,7),
where
Oé,:n(y,T') = U(y,?") - v(y,r - Em) 2 0; (2 15)
al (y,r) = vy, +em) —v(y,r) >0 '
and

L[B(yar)aDN] = Z Xm(B(yar)ax)*N’Um(yaT)

z€DN

(2.16)
- // 6y, 77, u) LI(B(2,u), D dpa(z) du,
MXT
From (2.14), we obtain the bound
IL[B(y,r), DN]| < [L[B(y, — &m), DN]| + |L[B(y, 7 + &m), Dn]| 2.17)
+ Noy, (y,7) + Nag, (y,7). '
The quantities (2.15) can be easily estimated by the Condition B
o (y,r) < 2cacsm™ Y4 o (y,1) < 2¢0 cam ™4, (2.18)

Applying Hélder’s inequality to the integral (2.16) and using (2.9), we obtain
IL[B(y, ), Dn]| < m*? L,[&, D, (2.19)



where & is the standard Lebesgue measure on the interval Z.

Notice that the right hand sides in (2.18) and (2.19) are independent of y and r.
Substituting (2.18) and (2.19) into (2.17) and using the definition of L.-discrepancy
(1.7), we obtain

Loo[Dn] < 2m3/P L[€0, Dn] + 4eg cg Nm~ Y4, (2.20)
This proves the bound (1.10) with ¢4 = 4cacg and ¢5 = ¢r. O

3. RANDOM POINT DISTRIBUTIONS. PROOF OF THEOREM 1.1

Random N-point distributions can be constructed as follows. Suppose that a
partition Py = {”Pj}{v of the space M into N parts P; C M of equal measure N !
is given. Introduce the probability space

A

with a probability measure wy =[], <y fij, where fi; = Nulp;, and p|p; denotes
the restriction of the measure p to a subset P; C M. We write EF|[-] for the
expectation of a random variable F[Xn], Xy € Qn:

BF(] = | FlXx)doy

QN
_ N//p Pl o) due) - dpGex). (32)

Particularly, if F[Xy] = f(z;), where j is a fixed index and f(z), z € M, is a
summable function, then

EF[.] = N/P. f(z) dp(x). (3.3)

Elements Xy = (z1,...,2n5) € Qn can be thought of as random N-point distri-
butions in the space M, and their local discrepancies £,[{, Xn| as random variables
on the probability space 2. We shall prove the following

Lemma 3.1. Let M be a compact connected metric measure space satisfying the
Conditions A and B, and let the probability space Qn in (3.1) be constructed by the
partition Py = {P;} of M from Lemma 2.1 with m = N. Then, we have

(E|L,6, ]P)/P <crolp+ DYENE 22, 0<p< o, (3.4)
where £ is an arbitrary normalized measure on I.
Theorem 1.1 is a direct corollary of Lemma 3.1.

Proof of Theorem 1.1. It follows from (3.4) that for each 0 < p < co there exists
an N-point subset X](\],D) € Qn such that

L,[6, XP) < ero (p+ 1)V N33,

and the bound (1.9) follows for N > ¢7 with ¢3 = ¢19, while for N < ¢7, we have
Ap[€; N] < 2¢7. This proves Theorem 1.1. O

For the proof of Lemma 3.1, we need the Marcinkiewicz—Zigmund inequality,
which can be stated as follows.
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Lemma 3.2. Let (;, j € J, #{J} < 00, be a finite collection of real-valued indepen-
dent random variables on a probability space Q0 with expectations E(; = 0,5 € J.
Then, we have

E| > GIP<2?(p+1)PPE(Y G)?, 1<p<oo. (3.5)
jeJ JjeJ

The proof of Lemma 3.2 can be found in [7, Section 10.3,Theorem 2].

Proof of Lemma 3.1. Introduce the notation
I = Iy 1) ={j : P; C Bly. )},
Ky, = Ky (y. 1) = #{ T, (y,7)}.

In the notation (2.3) and (3.6) the characteristic function and volume of a ball can
be written as

X(B(y,r),z) = Y x(Pj, )+ > x(B(y,r) N Pj,x),

jeJ$ je€JIN

U(y,?") - NﬁlK}% + Z ,LL(B(y,T) mpj)

JEIN

(3.6)

With the help of these formulas we can calculate the local discrepancy (1.4) for the

random point distribution Xy = (z1,...,2n5) € Qn:

L[B(y,r), XN]:#(B( ;1) NXN) — No(y,r))

=K+ Y x(Bly.r)NPj.z;) — KX =N > u(By,r) N P;)

JEIN jEIN
= > xBly,r)NPj,x;) =N > u(By,r) NPy,
JjeEIN jeIN
and we can write
L[B(y,r), Xn] = > ¢[Xn]. (3.7)
JjEJIN

where
GIXN] = Gly,r, Xn] = x(B(y,r) NPy, ;) — Nu(B(y,r) N Pj). (3.8)

are random variables on the probability space Q.

The random variables (3.8) are independent, |(;[Xn]| < 1 and, in view of (3.3),
their expectations E¢;[.] = 0, j € Jn. Hence, the Marcinkiewicz—Zigmund inequal-
ity (3.5) can be applied to the sum (3.7), and taking the bound (2.4) into account,
we obtain

El S GLIP <220+ 1)2KY
JjeEIN (39)
< 2P (p+1)Y/2 CS/Q NG=2P 1< p< oo

Notice that the right hand side in (3.9) is independent of y and r. Integrating the
inequality (3.9) with respect to the measure u x & on M X Z, we obtain

//szEl Z alpers 11 duty) du (3.10)

JEJIN
Lole, )P < 28 (p+ 1)V P NGE2P 1< p < 0.
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This proves the bound (3.4) for 1 < p < co. Since the left hand side in (3.4) is a
non-decreasing function of p, the bound (3.4) holds for all 0 < p < co. d

4. APPENDIX: PROOF OF PROPOSITION 1.1

In this Section we consider a compact d-dimensional Riemanniam manifold M
with the standard Riemannian geodesic distance # and measure p defined by the
corresponding metric tensor on M, see, [10]. Notice that for such § and p the
normalization (1.1) fails but this is of no importance for the present discussion,
because the choose of normalization has effect only on the constants in the bounds
(1.2) and (1.3). We keep the same notation v(y,r) for the volume of a ball with
respect to the metric 6 and the measure p.

The bounds (1.2) for a compact Riemanniam manifold are well-known, see, for
example, [8, 10]. Recall that local consideration of any (compact or non-compact)
Riemannian manifold shows that at each point y € M and for small r, one has the
asymptotic v(y,r) = kar? + O(r?1), where k4 is the volume of unit ball in R9,
see [10, Chapter 5]. This implies the bounds (1.2) for small radii . Since M is
compact, the bounds (1.2) can be easily extended to all 0 < r < diam M.

In order to prove the bound (1.3), we compare v(y,r) with the volume vy (r) of
a geodesic ball in the d-dimensional simply connected hyperbolic space of constant
negative sectional curvature —k2. The volume v (r) is independent of the position
of its center and is given explicitly by

"/ sinh b\ 4
’Uk(’l“)za'd/ (sm u) du, 0<7r < oo,
0

k

where o is the (d — 1)-dimensional area of the unit sphere in R

Lemma 4.1. For any compact Riemannian manifold M, there exists a constant
kam = 0 depending only on M, such that for all k > kaq the ratio % as a
function of r is non-increasing and tends to 1 as r — 0.

Lemma 4.1 is a very special case of the Bishop—Gromov volume comparison
theorem, see [10, Chapter 9, Lemma 36]. The constant kq is the smallest kg > 0
such that the matrix R(y) + kZ(d — 1)1, is not-negative defined for all y € M, here
R(y) is the Ricci tensor at y € M and I; is the identity d x d matrix.

By Lemma 4.1, for 0 < r; < 79 < diam M, we have

U(yvrQ) /U(yvrl)
vg (12) S vg (1)

<1

Therefore,

v(y, ) — vr(ry) < Uv(f(’rzl)) (vi(r2) — vr(r1)) < vp(r2) — vi(r),

and the bound (1.3) follows, since vy (r) is smooth and increasing.
The proof of Proposition 1.1 is competed.

REFERENCES

[1] J.R. Alexander. On the sum of distances between n points on a sphere. Acta Math. Hungar.,
23 (1972), 443-448.

[2] J.R. Alexander, J. Beck and W.W.L. Chen. Geometric discrepancy theory and uniform dis-
tribution. In Handbook of Discrete and Computational Geometry, 3rd edn. (eds C.D.Toth,
J.E. Goodman and J. O’Rourke), pp 279-304. (Taylor and Francis, Boca Raton, FL, 2017).



3]
[4]
[5]
[6]
[7]
(8]
[9]
(10]
(11]
(12]

(13]

11

J. Beck. Sums of distances between points on a sphere — an application of the theory of
irregularities of distribution to distance geometry. Mathematika, 31 (1984), 33-41.

J. Beck and W.W.L. Chen. Irregularities of Distribution (Cambridge Tracts in Mathematics
89, Cambridge University Press, Cambridge, 1987).

D. Bilyk, F. Dai and R. Matzke. Stolarsky principle and energy optimization on the sphere.
Preprint, available at arXiv:1611.04420.

J.S. Brauchart, P.J. Grabner. Distributing many points on spheres: minimal energy and
designs. Preprint, available at arXiv:1407.8282v2.

Y.S. Chow, H. Teicher. Probability Theory: Independence, Interchangeability, Martingales.
(Springer-Verlag, NY, 1997).

G. David, S. Semmes. Fractured Fractals and Broken Dreams. Self-Similar Geometry through
Metric and Measure. (Clarendon Press, Oxford, 1997).

G. Gigante, P. Leopardi. Diameter bounded equal measure partitions of Ahlfors regular metric
measure spaces. Preprint, available at arXiv:1510.05236.

P. Petersen. Riemannian Geometry. (Graduate Texts in Math. 171, Springer Science + Busi-
ness Media, LLC, NY, 2006).

M.M. Skriganov. Point distributions in compact metric spaces. Mathematika, 63 (2017), 1152—
1171.

M.M. Skriganov. Point distributions in compact metric spaces, III. Two-point homogeneous
spaces. Preprint, available at arXiv:1701.04545v3.

K.B. Stolarsky. Sums of distances between points on a sphere, II. Proc. Amer. Math. Soc.,
41 (1973), 575-582.



