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We consider finite point subsets (distributions) in compact connected metric measure

spaces. The spaces under study are specialized by conditions on the volume of metric balls

as a function of radii. The conditions are not hard and hold, particularly, for all compact

Riemannian manifolds. Under these conditions we prove nontrivial upper bounds for

the Lp-discrepancies of point distributions for any p > 0 and p = ∞ (Theorem 1.1 and

Corollary 1.1). The order of these bounds is sharp, at least, for compact Riemannian

symmetric manifolds of rank one and 2 6 p <∞.
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1. Introduction

In the present paper we continue the study of point distributions in compact met-
ric measure spaces. In the previous papers [11, 12] the L2-discrepancies of point
distributions were investigated. In [11] the upper bounds for the L2-discrepancies
were given for general compact rectifiable spaces while the lower bounds were es-
tablished in [12] for compact Riemannian symmetric manifolds of rank one.

In the present paper we consider the Lp-discrepancies of point distributions in
compact connected metric measure spaces satisfying simple conditions on the vol-
ume of metric balls. Particularly, these conditions hold for all compact Riemannian
manifolds. For such spaces and for 0 < p 6 ∞, we prove nontrivial upper bounds
for the Lp-discrepancies. For 2 6 p < ∞ and for compact Riemannian symmetric
manifolds of rank one, the order of these bounds turns out to be sharp as it follows
from the lower bounds for the L2-discrepancies given in [12].

Let M be a compact metric measure space with a fixed metric θ and a finite
non-negative Borel measure µ, normalized, for convenience, by

µ(M) = 1, diamM = 1, (1.1)

where diamE = sup{θ(y1, y2), y1, y2 ∈ E} denotes the diameter of a set E ⊆ M.
Since M is connected and satisfies (1.1), the set of values of θ coincides with the

interval I = [0, 1]. We write B(y, r) = {x : θ(x, y) < r} for the ball in M of radius
r ∈ I centered at y ∈ M and of volume v(y, r) = µ(B(y, r)). We can conveniently
write B(y, r) = ∅ and v(y, r) = 0 if r 6 0 and B(y, r) = M and v(y, r) = 1 if r > 1.

We specialize the spaces M by the following two conditions.
Condition A. The volume v(y, r) satisfies the bounds

c−1
1 rd 6 v(y, r) 6 c1r

d, y ∈ M, r ∈ I, (1.2)

with positive constants d and c1 independent of y ∈ M and r ∈ I
The spaces satisfying the Condition A are known as Ahlfors regular spaces, see,

for example, [7].
In the following, we write consecutively c1, c2, c3, . . . for positive constants de-

pending only on M.
Condition B. The volume as a function of r is Lipschitz continuous:

|v(y, r1) − v(y, r2)| 6 c2|r1 − r2|, y ∈ M, r1, r2 ∈ I. (1.3)

It is not difficult to give many examples of compact spaces satisfying both Condi-
tions A and B. Particularly, a Riemannian manifold can be thought of as a mertric
measure space with respect to the Riemannian distance and measure, and the fol-
lowing is true.

Proposition 1.1. Any compact d-dimensional Riemannian manifold satisfies the

Conditions A and B.

The Condition A is well-known for compact Riemannian manifolds, see, for ex-
ample, [8, 10], while the Condition B is a little more specific, it can be derived from
the Bishop–Gromov volume comparison theorem. For completeness, we shall give
a short proof of Proposition 1.1 in Appendix in Section 4.
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The local discrepancy of an N -point subset DN ⊂ M (distribution) in a metric
ball B(y, r) is defined by

L[B(y, r),DN ] = #(B(y, r) ∩ DN ) − Nv(y, r))

=
∑

x∈DN

L(y, r, x), (1.4)

where

L(y, r, x) = χ(B(y, r), x) − v(y, r), (1.5)

and χ(E , x) denotes the characteristic function of a subset E ⊂ M.
The Lp-discrepancy is defined by

Lp[ξ,DN ] =

(
∫∫

M×I

L[y, r,DN ]p dµ(y) dξ(r)

)1/p

, 0 < p < ∞, (1.6)

where ξ is a finite (non-negative) measure on I normalized by ξ(I) = 1. For p = ∞,
we put

L∞[DN ] = sup
y,r

L[y, r,DN ], (1.7)

where the supremum is taken over all balls B(y, r) ⊂ M.
We introduce also the following extremal discrepancies

λp[ξ, N ] = inf
DN

Lp[ξ,DN ], λ∞[N ] = inf
DN

L∞[DN ], (1.8)

where the infimum is taken over all N -point subsets DN ⊂ M.
Now we are in position to state our main results.

Theorem 1.1. Let M be a compact connected metric measure space satisfying the

Conditions A and B. Then for all N we have the bound

λp[ξ, N ] 6 c3(p + 1)
1

2 N
1

2
− 1

2d , 0 < p < ∞, (1.9)

where ξ is an arbitrary normalized measure on I.

Particularly, the bound (1.9) holds for any compact Riemannian manifold of

dimension d.

The proof of Theorem 1.1 is given in Section 3. In its proof, special random
N -point distributions will be used. Such random distributions are constructed in
terms of partitions of the space M into N subsets of equal measure and small
diameters. The local discrepancies of such distributions can be written as sums of
random independent variables, and the Marcinkiewicz–Zigmund inequality can be
applied to obtain the bound (1.9).

In (1.9), the dependence on the exponent p is described explicitly. This allows
us to obtain upper bounds for the extremal L∞-discrepancy. For this purpose, we
use the following a priory estimate, which is also of interest by itself.

Proposition 1.2. Let the assumptions of Theorem 1.1 hold. Then for an arbitrary

N -point subset DN ⊂ M, we have

L∞[DN ] 6 2m2/pLp[ξ0,DN ] + c4 Nm−1/d, (1.10)

where ξ0 is the standard Lebesgue measure on I, while p > 1 and integer m > c5

are arbitrary parameters. Particularly, we have

λ∞[N ] 6 2m2/pλp[ξ0, N ] + c4 Nm−1/d. (1.11)
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The proof of Proposition 1.2 is given in Section 2.
Comparing Theorem 1.1 and Proposition 1.2, we arrive at the following.

Corollary 1.1. Let the assumptions of Theorem 1.1 hold. Then for all N we have

λ∞[N ] 6 c6 N
1

2
− 1

2d (log N)1/2. (1.12)

Proof. Putting m = Nd in (1.11) and using (1.9), we obtain

λ∞[N ] 6 2N
2d
p λp[ξ0, N ] + c4 6 2c3N

2d
p (p + 1)1/2N

1

2
− 1

2d + c4.

Now, we choose p = 2d logN (with the log in base 2, say) to obtain

λ∞[N ] 6 2c3N
1

2
− 1

2d (2d log N + 1)1/2 + c4 6 c6N
1

2
− 1

2d (log N)1/2,

that completes the proof. �

Under such general assumptions one cannot expect that the bounds (1.9) are best
possible. The corresponding counterexample can be found in [5, 11, 12]. In this
counterexample the space is the d-dimensional Euclidean sphere Sd, the measure
ξ is atomic and concentrated at the point r = 1/2 and all discrepancies λp[N ] are
bounded by a constant independent of N and p.

One can conjecture that if the measure ξ is absolutely continuous on I, then the
order of the bounds (1.9) is the best possible. In the paper [12] this conjecture was
proved for 2 6 p < ∞ and all compact Riemannian symmetric manifolds of rank
one (two-point homogeneous spaces). Recall that these manifolds are the spheres
Sd, the real, complex and quaternionic projective spaces FPn, F = R, C, H, and the
octonionic projective plane OP 2, see, for example, [10].

Point distributions on the spheres Sd have been studied by many authors, see
the surveys [2, 6] and references therein. Mention should be made of the fol-
lowing results intimately related with the context of the present paper. For the
L2-discrepancy of point distributions on the spheres Sd, the bound (1.9) with the
special measure dξ(r) = π

2 sin(πr)dr, r ∈ I has been established by Alexander [1]
and Stolarsky [13], see also [4, pp.237–239]. Beck [3] proved that this bound is
sharp, see also [4, Corollary 24C]. For the L∞-discrepancy of point distributions on
the spheres Sd, Beck proved the bound (1.12), see [4, Theorem 24D]; the proof is
based on the large-deviation inequalities for sums of random variables.

The present paper is organized as follows. In Section 2 we describe the necessary
facts on partitions of metric measure spaces and prove Proposition 1.2. In Section 3
we describe the construction of random point distributions and prove Theorem 1.1.
Finally, in Section 4 we prove Proposition 1.1.

2. Partitions of metric spaces. Proof of Proposition 1.2

The following general result is due to Gigante and Leopardi [9, Theorem 2].

Lemma 2.1. Let M be a compact connected metric measure space satisfying the

Condition A. Then for all sufficiently large m > c7 there exists a partition Pm =
{Pj}m

1 of M into m subsets Pj with the following properties

M =
⋃

16j6m

Pj , Pj ∩ Pi = 0, j 6= i, µ(Pj) = m−1, 1 6 j 6 m (2.1)

and

c−1
8 m−1/d 6 diamPj 6 c8 m−1/d, 1 6 j 6 m (2.2)
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Partitions with such properties occur in many fields of geometry and analysis.
For special spaces, such as the spheres Sd, they have long been in use. In the
general case, the proof of Lemma 2.1 given in [9] relies on a nontrivial construction
of the so-called ’dyadic cubes’ in Alhfors regular spaces [8].

We wish to give some simple corollaries of Lemma 2.1 needed for the proofs of
Theorem 1.1 and Proposition 1.1. We write Σ(y, r) = {x : θ(x, y) = r} for the
sphere in M of radius r ∈ I centered at y ∈ M. For a partition Pm = {Pj}m

1 of
M, we put

Jm = Jm(y, r) = {j : Σ(y, r) ∪ Pj 6= ∅},

Km = Km(y, r) = #{Jm(y, r)}.

}

(2.3)

Thus, Km is the number of subsets Pj ∈ Pm entirely covering the sphere Σ(y, r).

Lemma 2.2. Let M be a compact connected metric measure space satisfying the

Conditions A and B and let Pm = {Pj}m
1 be the partition of M from Lemma 2.1.

Then, we have

Km(y, r) 6 c9 m1− 1

d . (2.4)

Proof. Put Σ̃(y, r) =
⋃

j∈Jm
Pj. In view of (2.1), µ(Σ̃(y, r)) = m−1Km. From the

other hand, in view of (2.2), the union Σ̃(y, r) is a subset in the spherical shell
B(y, r + c8 m−1/d) \ B(y, r − c8 m−1/d). By the Condition B, we obtain

Km 6 m
(

v(y, r + c8 m−1/d) − v(y, r − c8 m−1/d)
)

6 4c2c8 m1− 1

d ,

that completes the proof. �

Introduce the following kernels

δMm (y, z) = m
∑

16j6m

χ(Pj , y)χ(Pj, z) y, z ∈ M, (2.5)

where Pm = {Pj}m
1 is an equal measure partition of M, see (2.1),

δIm(r, u) = m
∑

16i6m

χ(Qi, y)χ(Qi, z) r, u ∈ I, (2.6)

where Qm = {Qi}
m
1 is the partition of I \ {0} into the segments Q = ( i−1

m , i
m ] of

equal length m−1. We put

δm(y, z; r, u) = δMm (y, z) δIm(r, u). (2.7)

The kernel (2.7) is non-negative and one can easily check the following relations
∫∫

M×I

δm(y, z; r, u) dµ(z) du = 1, (2.8)

(
∫∫

M×I

δm(y, z; r, u)q dµ(z) du

)1/q

= m2/p, (2.9)

where 1 < q < ∞, 1 < p < ∞ and 1
q + 1

p = 1.

For the characteristic function and the volume of a ball B(y, r), we consider the
following approximations (piece-wise on the partition Pm × Im)

χm(B(y, r), x) =

∫∫

M×I

δm(y, z; r, u)χ(B(z, u), x) dµ(z) du, (2.10)
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vm(y, r) =

∫∫

M×I

δm(y, z; r, u)v(z, u) dµ(z) du. (2.11)

Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then, we have

χm(B(y, r − εm), x) 6 χ(B(y, r), x) 6 χm(B(y, r + εm), x), (2.12)

vm(y, r − εm) 6 v(y, r) 6 vm(y, r + εm), (2.13)

where εm = 2c8 m−1/d.

Proof. By the triangle inequality, the ball B(z, u) contains the ball B(y, r−) with
r− = u − θ(y, z) and is contained in the ball B(y, r+) with r+ = u + θ(y, z).

From the definitions (2.5) and (2.6), we conclude that the kernel (2.7) does not
vanish, if and only if both centers y and z belong to the same subset Pj ∈ Pm and
both radii r and u belong to the same subset Qi ∈ Qm. In such a situation, from
(2.2) and the definition of the partition Pm, we obtain

r− > r − c8 m−1/d − m−1/d
> r − εm,

r+
6 r + c8 m−1/d + m−1/d

6 r + εm.

Therefore, the ball B(z, u) contains the ball B(y, r − εm) and is contained in the
ball B(y, r + εm). For the characteristic functions, this means

χ(B(y, r − εm), x) 6 χ(B(z, u), x) 6 χ(B(y, r + εm), x).

Substituting these inequalities into (2.10) and using (2.8), we obtain

χ(B(y, r − εm), x) 6 χm(B(y, r), x) 6 χ(B(y, r + εm), x).

Replacing in these inequalities r with r−εm and next with r+εm, we obtain (2.12).
Integrating (2.12) with respect to x ∈ M, we obtain (2.13). �

Proof of Proposition 1.2. Substituting (2.12) and (2.13) into (1.4), we obtain

Lm[B(y, r − εm),DN ] − Nα−
m(y, r) 6 L[B(e, r),DN ]

6 Lm[B(y, r + εm),DN ] − Nα+
m(y, r),

(2.14)

where
α−

m(y, r) = v(y, r) − v(y, r − εm) > 0,

α+
m(y, r) = v(y, r + εm) − v(y, r) > 0

}

(2.15)

and
L[B(y, r),DN ] =

∑

x∈DN

χm(B(y, r), x) − Nvm(y, r)

=

∫∫

M×I

δm(y, z; r, u)L[(B(z, u),DN ]. dµ(z) du,

(2.16)

From (2.14), we obtain the bound

|L[B(y, r),DN ]| 6 |L[B(y, r − εm),DN ]| + |L[B(y, r + εm),DN ]|

+ Nα−
m(y, r) + Nα+

m(y, r).
(2.17)

The quantities (2.15) can be easily estimated by the Condition B

α−
m(y, r) 6 2c2 c8 m−1/d, α+

m(y, r) 6 2c2 c8 m−1/d. (2.18)

Applying Hölder’s inequality to the integral (2.16) and using (2.9), we obtain

|L[B(y, r),DN ]| 6 m2/p Lp[ξ0,DN ], (2.19)
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where ξ0 is the standard Lebesgue measure on the interval I.
Notice that the right hand sides in (2.18) and (2.19) are independent of y and r.

Substituting (2.18) and (2.19) into (2.17) and using the definition of L∞-discrepancy
(1.7), we obtain

L∞[DN ] 6 2m2/p Lp[ξ0,DN ] + 4c2 c8 Nm−1/d. (2.20)

This proves the bound (1.10) with c4 = 4c2c8 and c5 = c7. �

3. Random point distributions. Proof of Theorem 1.1

Random N -point distributions can be constructed as follows. Suppose that a
partition PN = {Pj}N

1 of the space M into N parts Pj ⊂ M of equal measure N−1

is given. Introduce the probability space

ΩN =
∏

16j6N

Pj = {XN = (x1, . . . , xN ) : xj ∈ Pi, 1 6 i 6 N}, (3.1)

with a probability measure ωN =
∏

16j6N µ̃j , where µ̃j = Nµ|Pj
, and µ|Pj

denotes

the restriction of the measure µ to a subset Pj ⊂ M. We write EF [ · ] for the
expectation of a random variable F [XN ], XN ∈ ΩN :

EF [ · ] =

∫

ΩN

F [XN ] dωN

= NN

∫

. . .

∫

P1×...×PN

F (x1, . . . , xN ) dµ(x1) . . . dµ(xN ). (3.2)

Particularly, if F [XN ] = f(xj), where j is a fixed index and f(x), x ∈ M, is a
summable function, then

EF [ . ] = N

∫

Pj

f(x) dµ(x). (3.3)

Elements XN = (x1, . . . , xN ) ∈ ΩN can be thought of as random N -point distri-
butions in the space M, and their local discrepancies Lp[ξ, XN ] as random variables
on the probability space ΩN . We shall prove the following

Lemma 3.1. Let M be a compact connected metric measure space satisfying the

Conditions A and B, and let the probability space ΩN in (3.1) be constructed by the

partition PN = {Pj}N
1 of M from Lemma 2.1 with m = N . Then, we have

( E | Lp[ξ, .] |
p )

1/p
6 c10 (p + 1)1/2 N

1

2
− 1

2d , 0 < p < ∞, (3.4)

where ξ is an arbitrary normalized measure on I.

Theorem 1.1 is a direct corollary of Lemma 3.1.

Proof of Theorem 1.1. It follows from (3.4) that for each 0 < p < ∞ there exists

an N -point subset X
(p)
N ∈ ΩN such that

Lp[ξ, X
(p)
N ] 6 c10 (p + 1)1/2 N

1

2
− 1

2d ,

and the bound (1.9) follows for N > c7 with c3 = c10, while for N 6 c7, we have
λp[ξ, N ] 6 2c7. This proves Theorem 1.1. �

For the proof of Lemma 3.1, we need the Marcinkiewicz–Zigmund inequality,
which can be stated as follows.
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Lemma 3.2. Let ζj , j ∈ J, #{J} < ∞, be a finite collection of real-valued indepen-

dent random variables on a probability space Ω with expectations E ζj = 0, j ∈ J .

Then, we have

E |
∑

j∈J

ζj |
p

6 2p (p + 1)p/2
E (

∑

j∈J

ζ2
j )p/2, 1 6 p < ∞. (3.5)

The proof of Lemma 3.2 can be found in [7, Section 10.3,Theorem 2].

Proof of Lemma 3.1. Introduce the notation

J0
m = J0

m(y, r) = {j : Pj ⊂ B(y, r)},

K0
m = K0

m(y, r) = #{J0
m(y, r)}.

}

(3.6)

In the notation (2.3) and (3.6) the characteristic function and volume of a ball can
be written as

χ(B(y, r), x) =
∑

j∈J0

N

χ(Pj , x) +
∑

j∈JN

χ(B(y, r) ∩ Pj , x),

v(y, r) = N−1K0
N +

∑

j∈JN

µ(B(y, r) ∩ Pj).

With the help of these formulas we can calculate the local discrepancy (1.4) for the
random point distribution XN = (x1, . . . , xN ) ∈ ΩN :

L[B(y, r), XN ] = #(B(y, r) ∩ XN ) − Nv(y, r))

= K0
N +

∑

j∈JN

χ(B(y, r) ∩ Pj , xj) − K0
N − N

∑

j∈JN

µ(B(y, r) ∩ Pj)

=
∑

j∈JN

χ(B(y, r) ∩ Pj , xj) − N
∑

j∈JN

µ(B(y, r) ∩ Pj),

and we can write

L[B(y, r), XN ] =
∑

j∈JN

ζ[XN ]. (3.7)

where

ζj [XN ] = ζj [y, r, XN ] = χ(B(y, r) ∩ Pj , xj) − Nµ(B(y, r) ∩ Pj). (3.8)

are random variables on the probability space ΩN .
The random variables (3.8) are independent, |ζj [XN ]| < 1 and, in view of (3.3),

their expectations Eζj [ . ] = 0, j ∈ JN . Hence, the Marcinkiewicz–Zigmund inequal-
ity (3.5) can be applied to the sum (3.7), and taking the bound (2.4) into account,
we obtain

E |
∑

j∈JN

ζj [ . ] |
p 6 2p(p + 1)1/2K

p/2
N

6 2p (p + 1)1/2 c
p/2
9 N ( 1

2
− 1

2d
)p, 1 6 p < ∞.

(3.9)

Notice that the right hand side in (3.9) is independent of y and r. Integrating the
inequality (3.9) with respect to the measure µ × ξ on M×I, we obtain

∫∫

M×I

E |
∑

j∈JN

ζj [y, r, . ] |p dµ(y) du

= E(Lp[ξ, .])
p

6 2p (p + 1)1/2 c
p/2
9 N ( 1

2
− 1

2d
)p, 1 6 p < ∞.

(3.10)
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This proves the bound (3.4) for 1 6 p < ∞. Since the left hand side in (3.4) is a
non-decreasing function of p, the bound (3.4) holds for all 0 6 p < ∞. �

4. Appendix: Proof of Proposition 1.1

In this Section we consider a compact d-dimensional Riemanniam manifold M
with the standard Riemannian geodesic distance θ and measure µ defined by the
corresponding metric tensor on M, see, [10]. Notice that for such θ and µ the
normalization (1.1) fails but this is of no importance for the present discussion,
because the choose of normalization has effect only on the constants in the bounds
(1.2) and (1.3). We keep the same notation v(y, r) for the volume of a ball with
respect to the metric θ and the measure µ.

The bounds (1.2) for a compact Riemanniam manifold are well-known, see, for
example, [8, 10]. Recall that local consideration of any (compact or non-compact)
Riemannian manifold shows that at each point y ∈ M and for small r, one has the
asymptotic v(y, r) = κdr

d + O(rd−1), where κd is the volume of unit ball in Rd,
see [10, Chapter 5]. This implies the bounds (1.2) for small radii r. Since M is
compact, the bounds (1.2) can be easily extended to all 0 < r 6 diamM.

In order to prove the bound (1.3), we compare v(y, r) with the volume vk(r) of
a geodesic ball in the d-dimensional simply connected hyperbolic space of constant
negative sectional curvature −k2. The volume vk(r) is independent of the position
of its center and is given explicitly by

vk(r) = σd

∫ r

0

(

sinh ku

k

)d−1

du, 0 6 r < ∞,

where σd is the (d − 1)-dimensional area of the unit sphere in R
d.

Lemma 4.1. For any compact Riemannian manifold M, there exists a constant

kM > 0 depending only on M, such that for all k > kM the ratio
v(y,r)
vk(r) as a

function of r is non-increasing and tends to 1 as r → 0.

Lemma 4.1 is a very special case of the Bishop–Gromov volume comparison
theorem, see [10, Chapter 9, Lemma 36]. The constant kM is the smallest k0 > 0
such that the matrix R(y) + k2

0(d− 1)Id is not-negative defined for all y ∈ M, here
R(y) is the Ricci tensor at y ∈ M and Id is the identity d × d matrix.

By Lemma 4.1, for 0 < r1 6 r2 6 diamM, we have

v(y, r2)

vk(r2)
6

v(y, r1)

vk(r1)
6 1.

Therefore,

v(y, r2) − vk(r1) 6
v(y, r1)

vk(r1)
(vk(r2) − vk(r1)) 6 vk(r2) − vk(r1),

and the bound (1.3) follows, since vk(r) is smooth and increasing.
The proof of Proposition 1.1 is competed.
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