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Abstract. Riemann's zeta-function (de�ned by a certain

Dirichlet series) satis�es an identity known as the functional equa-

tion. H. Hamburger established that the function is identi�ed by

the equation inside a wide class of functions de�ned by Dirichlet

series.

Riemann's zeta-function is a member of a large family of func-

tions with similar properties, in particular, satisfying certain func-

tional equations. Hamburger's theorem can be extended to some

(but not to all) of these equations.

The paper address the following question: how could we dis-

cover the Dirichlet series satisfying given functional equation?

Two �rules of thumb� for performing such discoveries via numer-

ical computations are demonstrated for functional equations sat-

is�ed by Dirichlet eta-function, Ramanujan tau L-function, and

Davenport�Heilbronn function.

A conjectured discrete version of Hamburger's theorem is stated.

Key words: Hamburger's theorem, functional equation, Riemann's zeta
function, Ramanujan tau L-function, Davenport�Heilbronn function
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1 Number-theoretical backgrounds

This introductory section presents some well-known de�nitions and re-
sults required for understanding the rest of the paper.

1.1 Riemann's zeta-function

One of the most important open problems in Number Theory is the cele-
brated Riemann Hypothesis. It is a prediction about positions of the zeroes
of Riemann's zeta-function. This function can be de�ned via Dirichlet series

ζ(s) =
∞∑
n=1

n−s. (1.1)

This series converges for Re(s) > 1 but the function can be extended to the
whole complex plane with the exception of the point s = 1 (at this point the
zeta-function has its only pole).

B. Riemann [17] conjectured that all non-real zeros of the zeta-function
lie on the critical line Re(s) = 1/2.

While the function is named after Riemann, it was studied (for real values
of the argument) already by L. Euler. He also worked with closely related
entire function

η(s) = (1− 2× 2−s)ζ(s) =
∞∑
n=1

(−1)n+1n−s (1.2)

named alternating zeta-function or Dirichlet eta-function. The alternating
series in (1.2) has the advantage over the series (1.1) of being convergent in
the wider region Re(s) > 0. Respectively, at this half-plane the zeta-function
can be calculated as

ζ(s) =
η(s)

1− 2× 2−s
=

∑∞
n=1 (−1)n+1n−s

1− 2× 2−s
. (1.3)

1.2 Euler product

Euler also gave another, rather di�erent from (1.1) and (1.3), de�nition
of the zeta-function:

ζ(s) =
∏

p prime

1

1− p−s
. (1.4)
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Similar to the series (1.1), the product in (1.4) also converges for Re(s) > 1
only. The right hand side of (1.4) is nowadays known as Euler product.

In order to see why (1.4) is true one can at �rst observe that∏
p prime

1

1−s − p−s
=

∏
p prime

(
1 + p−s + p−2s + . . .

)
, (1.5)

and then apply the Fundamental Theorem of Arithmetic. This theorem states
that every natural number has a unique factorization into product of powers
of primes. This is equivalent to the fact that expanding the right hand side
of (1.5) one gets exactly the right hand side of (1.1)!

The equivalence of two de�nitions, (1.1) and (1.4), explains why the zeta-
function is a very important tool in the study of prime numbers.

1.3 The functional equation

Euler began his study of the zeta-function by determining its values at
positive even integers. At �rst, he computationally discovered an approxi-
mate equality

ζ(2) ≈ π2

6
(1.6)

by calculating (without computer!1) many decimal digits of the left- and
right-hand sides in (1.6). Later, he proved that the equality is in fact exact,
and, more generally, that

ζ(2m) =
(−1)m+1(2π)2mB2m

2(2m)!
, m = 1, 2, . . . ; (1.7)

here B0 = 1, B1 = 1
2
, B2 = 1

12
, B3 = 0, . . . are the Bernoulli numbers.

Euler also indicated values of the zeta-function at negative integers:

ζ(−n) = −Bn+1

n+ 1
, n = 1, 2, . . . (1.8)

In particular,
ζ(−2m) = 0, (1.9)

1In this respect it is interesting to note that in [21] A. Turing used the word �computer�
having in mind �a man performing computations�; in this sense a computer (namely, Euler)
was involved in the discovery of (1.6).
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and today even negative integers are called the trivial zeros of the zeta-
function.

Comparison of (1.7) and (1.8) allows one to eliminate Bernoulli numbers
and get the equality

2(2m− 1)!ζ(2m) = (−1)m(2π)2mζ(1− 2m), m = 1, 2, . . . (1.10)

Euler stated that, more generally, for every real s

g(s)ζ(s) = g(1− s)ζ(1− s) (1.11)

where2

g(s) = π−
s
2 (s− 1)Γ( s

2
+ 1). (1.12)

The identity (1.11) is known today as the functional equation; its validity
for all complex s was proved by Riemann [17].

1.4 Hamburger's theorem

H.Hamburger [10] established that the functional equation (1.11) iden-
ti�es the zeta-function inside a wide class of functions de�ned by Dirichlet
series. In particular, the zeta-function is the only function D(s) such that

• D(s) can be de�ned for Re(s) > 1 by convergent Dirichlet series of the
form

D(s) = 1 +
∞∑
n=2

ann
−s; (1.13)

• (s− 1)D(s) is an entire function of �nite order;

• D(s) satis�es the functional equation

g(s)D(s) = g(1− s)D(1− s) (1.14)

where g(s) is de�ned by (1.12).

2This form of writing this identity is due to Riemann [17]; Euler [9, Sect. 10] published
an equivalent formula in terms of function η(s).
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1.5 Futher generalizations

Riemann's zeta-function is (historically �rst) member of a large family
of functions with similar properties. A. Selberg [18] axiomatically described
what is now known as Selberg class S. Each function from class S can be
de�ned by a Dirichlet series as well as by (a counterpart of) Euler product,
satis�es certain functional equation, and has some other feature akin to the
zeta-function.

Also all functions from the class S are expected to satisfy correspond-
ing analogs of the Riemann Hypothesis, and for this the existence of Euler
products and functional equations is believed to be indispensable.

Original Hamburger's results were extended to other functional equations
and improved by weakening certain restrictions on the function; for a recent
survey of such converse theorem see [16]. However, in general case the linear
space of Dirichlet series satisfying certain functional equation has dimension
greater than 1.

2 Our objective

We will look at converse theorems of Hamburger type from computational
point of view. In this paper we con�ne ourselves to consideration of functional
equations of the simplest form

h(s)D(s) = h(c− s)D(c− s). (2.1)

Here c and h(s) are given number and function respectively, and D(s) is an
unknown Dirichlet series with real coe�cients,

D(s) =
∞∑
n=1

ann
−s. (2.2)

Suppose that we expect that (2.1) has a unique solution under certain
extra restrictions on D(s) (but we may not know these restrictions). The
main question is: how could we discover this series?

We can distinguish two subquestions:

• how could we calculate (approximate) values of the initial coe�cients,
a1, a2, . . . ;
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• how could we calculate (approximate) value of function D(s) and its
derivatives for a given s (which need not lie in the half-plane of the
convergence of the series)?

In a more general situation we can expect only that the linear space of
functions satisfying (2.1) has a �nite dimension. Then we can ask:

• could we select in a natural way a single �canonical� solution of (2.1)?

• how could we discover a basis for the linear space of solution of (2.1)?

The author found (by computer experiments) several rather unexpected
ways to answer such questions. These procedures work at least for a number
of already studied functional equations; hopefully, this technique can be used
for �solving� other functional equations as well.

Below the e�ciency of some of such �rules of thumb� is demonstrated on
a number of examples.

3 Calculation of the eta-function

Within this section we presuppose that

c = 1 and h(s) =
g(s)

1− 2× 2−s
=
π−

s
2 (s− 1)Γ( s

2
+ 1)

1− 2× 2−s
. (3.1)

With this choice, the equation (2.1) is satis�ed by the function η(s) (accord-
ing to (1.2) and (1.11)) but this fact is used here only as a motivation to
consider this particular functional equation.

3.1 First general construction

In order to discover coe�cients of D(s) (of the form (2.2) satisfying (2.1))
we will try to approximate this in�nite series by �nite series

DN(s) =
N∑
n=1

aN,nn
−s (3.2)

with su�ciently large N . The latter series should imitate the expected so-
lution of equation (2.1) in the following sense: we formally replace D(s) by
DN(s) in (2.1) and require that the equality

h(s)DN(s) = h(1− s)DN(1− s). (3.3)
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should hold, but for certain values of s only.
Functional equation (2.1) can determine D(s) up to a multiplicative con-

stant only; thus we need a kind of normalization condition, and we impose
that

a1 = 1. (3.4)

Respectively, we put
aN,1 = 1, (3.5)

and de�ne the remaining N − 1 coe�cients, aN,2, . . . , aN,N , by solving the
linear system consisting of N−1 replicas of equation (3.3) for s from a certain
set SN containing N − 1 elements.

3.2 Our specialization

Such a set SN can be chosen in many ways. Within this section we opt
for

SN = {3/2, 5/2, . . . , N − 1/2}. (3.6)

The reason for such a choice is as follows.
The gamma-function (entering in (3.3)) satis�es the functional equation

Γ(s+ 1) = sΓ(s). (3.7)

According to Bohr�Mollerup theorem [7], this equation (together with some
other mild restrictions) uniquely determines the gamma-function.

Equality (3.7) can be easily generalized: for a natural number m

Γ(z +m) =

(
z+m−1∏
k=z

k

)
Γ(z). (3.8)

The di�erence of the arguments of the gamma-factors in the left- and
right-hand sides in (3.3) is equal to s − 1/2, which is a positive integer
whenever s ∈ SN . Respectively, applying (3.8) we can make both arguments
equal and cancel the gamma-factors. Thus for s ∈ SN equation (3.3) reduces
to

h1(s)DN(s) = h2(1− s)DN(1− s) (3.9)

where

h1(s) = (2s− 2)!!
(
1− 2−s

)
, (3.10)

h2(s) = (−1)(2s−3)(2s−1)/8π
1
2
−s (1− 2−s

)
. (3.11)
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3.3 Explicit formulas

We can write down an explicit expression for DN(s). Consider N × N
matrix

MN(s) =

(
µm,n(s)

)N

m=1

N

n=1

(3.12)

where

µm,n(s) =

{
n−s, if m = 1,

h1(m− 1/2)n1/2−m − h2(3/2−m)nm−3/2, otherwise .
(3.13)

Let LN be the (N − 1) × (N − 1) matrix resulting from MN(s) by deleting
the �rst row and the �rst column. Then

DN(s) =
det(MN(s))

det(LN)
. (3.14)

3.4 Numerical data

At �rst sight the idea of using numbers from the set (3.6) as values of s
in (3.3) looks crazy � the in�nite series in (1.2) does not converge at points
1− s. Astoundingly, this trick works!

Table 1 shows the coe�cients of DN(s) for N = 50. Examining the
initial coe�cients one can surmise that alternating an = (−1)n+1 should give
a solution of (2.1), and we know that this is indeed so.

More important is the observation that DN(s) gives good approximations
to η(s) for a large range of values of s � see Table 2. Respectively, (approx-
imate) values of the zeta-function and its derivatives can be calculated as

dk

dsk
ζ(s) ≈ dk

dsk
DN(s)

1− 2× 2−s
. (3.15)
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Table 1: Coe�cients of D50(s) for (2.1)

n b50,n

1 1.0000000000000000...

3 0.9999999999989788...

5 0.9999999998274060...

7 0.9999999877970622...

9 0.9999995568036840...

11 0.9999906661069766...

13 0.9998765303771978...

15 0.9989149039834088...

17 0.9933942170370522...

19 0.9712077550029767...

21 0.9075744066371679...

23 0.7755520378458773...

25 0.5756614095764715...

27 0.3537541018518465...

29 0.1729474483683150...

31 0.0651146675641168...

33 0.0183498194062661...

35 0.0037635967925978...

37 0.0005445947606385...

39 0.0000535126895000...

41 0.0000033941685251...

43 0.0000001292559287...

45 0.0000000026399504...

47 0.0000000000236649...

49 0.0000000000000588...

n b50,n

2 -0.9999999999999517...

4 -0.9999999999849114...

6 -0.9999999984068907...

8 -0.9999999207764316...

10 -0.9999978351017259...

12 -0.9999641614198762...

14 -0.9996158801266156...

16 -0.9972031802946021...

18 -0.9856470926223216...

20 -0.9464927728130374...

22 -0.8511115240177615...

24 -0.6822017143861291...

26 -0.4632926781019783...

28 -0.2550737531447883...

30 -0.1098431344988656...

32 -0.0359028510830116...

34 -0.0086628349972250...

36 -0.0014987102715588...

38 -0.0001796757789624...

40 -0.0000142901860447...

42 -0.0000007100592081...

44 -0.0000000201600405...

46 -0.0000000002822698...

48 -0.0000000000014588...

50 -0.0000000000000011...
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Table 2: Approximation of η(s) by D50(s) for (3.1)

s
∣∣∣D50(s)
η(s)

− 1
∣∣∣

−35 1.05021...·10−8
−33 + 1i 1.97364...·10−9
−31 + 3i 2.06803...·10−9
−29 + 5i 2.22572...·10−9
−27 + 7i 2.61390...·10−9
−25 + 8i 1.06488...·10−9
−23 + 10i 1.62068...·10−9
−21 + 12i 2.69873...·10−9
−19 + 13i 1.78099...·10−9
−17 + 14i 1.37291...·10−9
−15 + 15i 1.22591...·10−9
−13 + 16i 1.25674...·10−9
−11 + 17i 1.46323...·10−9
−9 + 18i 1.90802...·10−9
−5 + 19i 1.86971...·10−9

0 1.24841...·10−15
5i 4.81114...·10−15

s
∣∣∣D50(s)
η(s)

− 1
∣∣∣

10i 4.59065...·10−13
16i 7.65086...·10−11
22i 9.21145...·10−9
0.5 1.26385...·10−15

0.5 + 6i 9.76838...·10−15
0.5 + 8i 8.51062...·10−14

0.5 + 11i 7.51379...·10−13
0.5 + 13i 5.86538...·10−12
0.5 + 15i 4.16476...·10−11
0.5 + 18i 7.69482...·10−10
0.5 + 20i 2.09350...·10−9

1 1.24841...·10−15
1 + 6i 9.42471...·10−15

1 + 12i 1.28347...·10−12
1 + 20i 1.20238...·10−9
3 + 26i 1.07592...·10−9
5 + 38i 1.02395...·10−9
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3.5 Conjectures

Numerical data (presented in this paper and other calculations performed
by the author) allow one to state a number of conjectures.

Conjecture A. For every n

lim
N→∞

aN,n = (−1)n+1. (3.16)

Conjecture B. For every s

η(s) = lim
N→∞

det(MN(s))

det(LN)
. (3.17)

It was known before that smooth truncations (similar to that in Table 1)
of series (1.2) can produce good approximations. For example, P. Borwein
[8] described a class of such smooth truncations giving exponentially close
approximations to η(s).

Borwein's truncations are de�ned via selection of certain polynomials
with special properties, and he indicated two particular choices of such poly-
nomials. However, these polynomials are not directly connected with the
zeta-function, so the resulting smooth truncations are not inherent to it.

A kind of smooth truncation intrinsic to the zeta-function appeared in
[13] (for further development see [12, 6, 15]). The coe�cients of arising
Dirichlet series encode a lot of information about prime numbers. However,
from computational point of view this method is very complicated because
it requires precalculations of the zeta-zeros with high accuracy.

In our case, entries to matrices MN(s) and LN arise in a natural way
from the functional equations (1.11) and (3.7) but de�nitions of these en-
tries (given by (3.10), (3.11) and (3.13)) use only �simple� functions like the
exponentiation and the double factorial.

It is interesting to study other properties of matricesMN(s), in particular,
their eigenvalues and singular values (they �feel� zeta-zeros).

Conjectures A and B say that the coe�cients of the Dirichlet series for
η(s) and values of this function can be calculated from the meager informa-
tion contained in (3.5) and (3.9)�(3.11) for s ∈ SN . Does it indicate that
Bohr�Mollerup and Hamburger's theorems could be combined and produce
the following discrete version of the latter theorem?
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Conjecture C. Riemann's zeta-function is the only function D(s) such
that

• D(s) can be de�ned for Re(s) > 1 by a convergent Dirichlet series of
the form

D(s) = 1 +
∞∑
n=2

ann
−s; (3.18)

• (s− 1)D(s) is an entire function of �nite order;

• for m = 1, 2, . . . function D(s) satis�es the numerical equalities

g(m+ 1/2)D(m+ 1/2) = g(1/2−m)D(1/2−m) (3.19)

where g(s) is de�ned by (1.12).

3.6 Other options

The selection of the set (3.6) is not rigid, it can be replaced by many
other sets. For example, for values of s we could use integers greater than 1.
In this case equation (3.3) reduces to counterparts of equalities (1.9) and
(1.7) found already to Euler. Namely, for an odd s = 2m+ 1 equation (3.3)
simpli�es to

DN(−2m) = 0, (3.20)

and to

2(2m− 1)!(1− 2× 22m−1)DN(2m) =

(−1)m(2π)2m(1− 2× 2−2m)DN(1− 2m) (3.21)

for an even s = 2m.
Integers can be uses for values of s both instead of half-integers or together

with them; in the latter case the accuracy of approximation of η(s) by DN(s)
is considerably higher.

Naturally, one can extend Conjectures A, B, and C for other choices of
the set SN .
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Table 3: Initial coe�cients of DN(s) for (4.1)

n N aN,n

30 0.2841393450505322423648802. . .
2 60 0.2840790438403573189026424. . .

90 0.2840790438404122960282913. . .
30 -0.2844747272382600399086622. . .

3 60 -0.2840790438400370082649792. . .
90 -0.2840790438404122960282888. . .
30 -0.9977157059817277186689871. . .

4 60 -1.0000000000024692403274721. . .
90 -1.0000000000000000000000198. . .
30 -0.0142683988631866552023641. . .

5 60 0.0000000000201869092463668. . .
90 0.0000000000000000000001553. . .
30 1.0920687449236902877982957. . .

6 60 0.9999999998079004381711738. . .
90 0.9999999999999999999991173. . .
30 -0.2827413866159128279052885. . .

7 60 0.2840790456867030872580591. . .
90 0.2840790438404122960080168. . .
30 2.8784730710492549088446329. . .

8 60 -0.2840790592273102172511881. . .
90 -0.2840790438404122947139839. . .
30 -16.5679500529887487367574618. . .

9 60 -0.9999999192097203175804888. . .
90 -1.0000000000000000487473701. . .
30 66.7426105379517569482375592. . .

10 60 0.0000003828326636970813932. . .
90 0.0000000000000014726845966. . .
30 -246.7604018799068158985862084. . .

11 60 0.9999815553656583309079810. . .
90 0.9999999999999613898393090. . .
30 794.8300805378296122198943507. . .

12 60 0.2843997083405965241718633. . .
90 0.2840790438413085216718576. . .
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4 Davenport�Heilbronn function

Within this section we presuppose that

c = 1 and h(s) =

(
5

π

)s/2
Γ

(
s

2
+

1

2

)
. (4.1)

4.1 Second general construction

Again, in order to construct a �nite approximation (3.2) we will use (2.1)
not in its full generality but only a few of its consequences. Namely, (2.1) is
equivalent to saying that the function

F (z) = h(c/2 + z)D(c/2 + z) (4.2)

is even, which can be expressed by the in�nite system of numerical equalities

dk

dzk
F (z)

∣∣∣∣
z=0

= 0, k = 1, 3, . . . , 2m+ 1, . . . (4.3)

In terms of D(s) this corresponds to

dk

dsk

(
h(s)D(s)

)∣∣∣∣
s=c/2

= 0, k = 1, 3, . . . , 2m+ 1, . . . (4.4)

We again impose normalizing condition (3.5) and de�ne coe�cients
aN,2, . . . , aN,N from (3.2) by solving the system consisting of N − 1 analogs
of (4.4):

dk

dsk

(
h(s)DN(s)

)∣∣∣∣
s=c/2

= 0, k = 1, 3, . . . ,M (4.5)

where M = 2N − 3.

4.2 Numerical data

Table 3 shows corresponding values of aN,2, . . . , aN,12 for N = 30, 60, 90.
The numerical data suggest the following surmises for N →∞:

• coe�cients aN,2, aN,7, and aN,12 approach certain limiting value
α = 0.2840790404 . . . ;
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• coe�cients aN,3 and aN,8 approach −α;

• coe�cients aN,4 and aN,9 approach −1;

• coe�cients aN,5 and aN,10 approach 0;

• coe�cients aN,6 and aN,11 approach 1.

Table 4: Comparison of even derivatives of h(s)f(s) and h(s)D30(s) for (4.1)

m
dm

(ds)m
(h(s)D30(s))|

s=1/2

dm

(ds)m
(h(s)f(s))|

s=1/2

− 1

0 4.10785...·10−6
2 8.41657...·10−7
4 2.13426...·10−7
6 6.15266...·10−8
8 1.93507...·10−8

10 6.48438...·10−9
12 2.28126...·10−9
14 8.34335...·10−10
16 3.15036...·10−10
18 1.22191...·10−10
20 4.84975...·10−11
22 1.96387...·10−11
24 8.09412...·10−12

m
dm

(ds)m
(h(s)D30(s))|

s=1/2

dm

(ds)m
(h(s)f(s))|

s=1/2

− 1

26 3.38965...·10−12
28 1.43867...·10−12
30 6.20969...·10−13
32 2.64828...·10−13
34 1.34226...·10−13
36 -1.05994...·10−14
38 3.41245...·10−13
40 -1.99099...·10−12
42 1.61377...·10−11
44 -1.70056...·10−10
46 2.41375...·10−9
48 -4.79564...·10−8
50 1.40744...·10−6

The above surmises can be generalized by guessing that for all n coe�-
cients aN,n approach certain limiting quantity an which depends only on the
value of n modulo 5. Respectively, we can expect that the Dirichlet series

∞∑
m=0

(5m+ 1)−s + α(5m+ 2)−s−α(5m+ 3)−s−(5m+ 4)−s (4.6)

is a solution of (2.1) for (4.1).
As for the nature of α, both The Inverse Symbolic Calculator [2] and

WolframAlpha [3] suggest that α is a root of the equation

z4 + 2z3 − 6z2 − 2z + 1 = 0, (4.7)
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Table 5: Coe�cients of D30(s) for (4.1)

n a30,n

1 1.00000000. . .
2 0.28413934. . .
3 -0.28447472. . .
4 -0.99771570. . .
5 -0.01426839. . .
6 1.09206874. . .
7 -0.28274138. . .
8 2.87847307. . .
9 -16.56795005. . .
10 66.74261053. . .
11 -246.76040187. . .
12 794.83008053. . .
13 -2199.87496770. . .
14 5254.16299598. . .
15 -10831.19871227. . .

n a30,n

16 19241.29315524. . .
17 -29407.07560910. . .
18 38570.85113607. . .
19 -43253.85469735. . .
20 41265.28452795. . .
21 -33287.54237140. . .
22 22535.10552513. . .
23 -12681.87163010. . .
24 5858.25583683. . .
25 -2182.96010798. . .
26 639.95094404. . .
27 -142.11869475. . .
28 22.47824068. . .
29 -2.25669057. . .
30 0.10811767. . .

that is

α =
−1−

√
5 +

√
10 + 2

√
5

2
. (4.8)

With this value of α function (4.6) is the well-known Davenport�Heilbronn
function f(s). It indeed satis�es functional equation (2.1) with c and h(s)
de�ned by (4.1) (see [20, 10.25]) and is the only solution of this equation (see
[1, 5.1] or [5, Sect. 8]).

When calculating coe�cients a30,n we imposed restrictions of two kinds:

• normalization a30,1 = 1;

• vanishing of odd derivatives of the product h(s)D30(s) at s = 1/2.

Surprisingly, the values of even derivatives of h(s)D30(s) give very good
approximations to the values of corresponding derivatives of the product
h(s)f(s) at s = 1/2 � see Table 4. This fact is more peculiar than the good
approximations of η(s) shown in Table 2, and the reason why it is so startling
is as follows. Table 5 presents all coe�cients of D30(s); we see that, except

17



for a few initial, these coe�cients di�er very much from the coe�cients in
(4.6).

5 Ramanujan tau Lfunction

Within this section we presuppose that

c = 12 and h(s) = (2π)−s Γ(s). (5.1)

We have two way for �solving� a functional equation � via replicas of the
equation itself for particular values of s (as in Section 3), and via vanishing
of the odd derivatives at one point (as in Section 4). In this paper we will use
the latter way (the former one was used in [14]; of course, one can combine
equations of both types, (3.3) and (4.5), in one system).

5.1 Numerical data

To begin with we de�ne coe�cients aN,n, . . . , aN,N of DN(s) by (3.5) and
(4.5) with M = 2N − 3.

Table 6 shows corresponding values of aN,2, . . . , aN,7 forN = 50, . . . , 250.
It does not looks like that the coe�cients approach some limiting values.
More likely, they behave as partial sums of an asymptotic series � at �rst
approaching �correct� value, but then retreating it.

The values of aN,2, esspecially a100,2, are very close to an integer, so we
can make a guess that

a2 = −24. (5.2)

Similar but less con�dent guesses could be made about the values of aN,3,
aN,4, aN,5, and aN,6. But already for aN,7 the data from the table are not
su�cient in order to make choice between −16744 and −16745.

At the moment we make only commitment (5.2), that is, from now on we
assume not only (3.5) but

aN,2 = −24 (5.3)

as well; respectively, we reduce the number of other equations 1, that is, we
proceed with the system (4.5) with M = 2N − 5.

Table 7 shows values of aN,3, . . . , aN,8 recalculated under the two assump-
tions, (3.5) and (5.3). We get greater con�dence that

a3 = 252 (5.4)
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Table 6: Values of aN,n from solutions of system (4.5) for (5.1) with M =
2N − 3 under assumption (3.5)

n N aN,n

50 -24.000000000118497...

100 -23.999999999999942...

2 150 -23.999999999999770...

200 -23.999999998866933...

250 -24.000199961334035...

50 252.000000057374527...

100 251.999999999961931...

3 150 251.999999999836542...

200 251.999999165844212...

250 252.149430632741081...

50 -1472.000012515395811...

100 -1471.999999986251471...

4 150 -1471.999999931279260...

200 -1471.999626780797076...

250 -1540.912343773167466...

50 4830.001582240256756...

100 4829.999996590998579...

5 150 4829.999978579614166...

200 4829.871536668917347...

250 29755.868246403074758...

50 -6048.129472974338049...

100 -6047.999374391124392...

6 150 -6047.994675315311927...

200 -6011.297392336898792...

250 -7657439.816197617182839...

50 -16736.650298606985052...

100 -16744.088289724678448...

7 150 -16745.089444954449710...

200 -25731.482054790443951...

250 2061626557.103562626814415...
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Table 7: Values of aN,n from solutions of system (4.5) for (5.1) with M =
2N − 5 under assumptions (3.5) and (5.3)

n N aN,n

50 252.000000001276967...

100 251.999999999999973...

3 150 252.000000000000027...

200 251.999999999845893...

250 252.000030423879946...

50 -1472.000000679159479...

100 -1471.999999999973598...

4 150 -1472.000000000034434...

200 -1471.999999792994376...

250 -1472.042583958137485...

50 4830.000145096068699...

100 4829.999999987556299...

5 150 4830.000000022057612...

200 4829.999851805405458...

250 4862.471493291169755...

50 -6048.016996351377522...

100 -6047.999996384861074...

6 150 -6048.000009448467037...

200 -6047.926302953560375...

250 -23666.925084998437692...

50 -16742.744014527296735...

100 -16744.000722228039628...

7 150 -16743.997009796162146...

200 -16772.110633412127340...

250 7502100.474170648682726...

50 84416.317314370117715...

100 84480.105533105112501...

8 150 84479.263918168986183...

200 93122.012655507139459...

250 -2651916509.556645449374102...
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Table 8: Values of aN,n from solutions of system (4.5) for (5.1) with M =
2N − 7 under assumptions (3.5), (5.3), and (5.5)

n N aN,n

50 -1472.000000014705761...

100 -1472.000000000000225...

4 150 -1472.000000000000278...

200 -1471.999999999999752...

250 -1472.000010741048018...

50 4830.000006623631354...

100 4830.000000000255668...

5 150 4830.000000000433781...

200 4829.999999999870874...

250 4830.020863090813102...

50 -6048.001194719567767...

100 -6048.000000130026647...

6 150 -6048.000000326036551...

200 -6048.000000262414081...

250 -6068.908783173152161...

50 -16743.881211654650012...

100 -16743.999960465762010...

7 150 -16743.999844150211253...

200 -16743.999559817499552...

250 -2503.262375742032465...

50 84472.490032773918378...

100 84479.991888819148223...

8 150 84479.947056235365133...

200 84479.656617018282086...

250 -7254372.111906719899883...

50 -113314.578115188801735...

100 -113641.796404697915159...

9 150 -113629.420756134702361...

200 -113465.380053378057042...

250 3025890243.971514185540493...
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Table 9: Values of aN,n from solutions of system (4.5) for (5.1) with M =
2N − 9 under assumptions (3.5), (5.3), (5.5), and (5.7)

n N aN,n

50 4830.000000079105807...

100 4830.000000000004008...

5 150 4830.000000000001438...

200 4830.000000000316194...

250 4830.000000161564014...

50 -6048.000027589401480...

100 -6048.000000004386464...

6 150 -6048.000000002441836...

200 -6048.000000665629448...

250 -6048.000349947935199...

50 -16743.996092066542882...

100 -16743.999997890350852...

7 150 -16743.999998065045899...

200 -16743.999318063485484...

250 -16743.633330978509881...

50 84479.691889532967686...

100 84479.999400486350227...

8 150 84479.999048286456341...

200 84479.549703982396722...

250 84236.978331976094194...

50 -113627.478816657760268...

100 -113642.885788007170829...

9 150 -113642.673364788701395...

200 -113428.463299544266846...

250 -2200.273147271369263...

50 -116460.643498323631911...

100 -115935.685178325567478...

10 150 -116003.489243160027771...

200 -194313.225722385114160...

250 -35879210.651607157671389...
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and from now on we assume also that

aN,3 = 252. (5.5)

Further recalculation (see Table 8) performed under the three assump-
tions, (3.5), (5.3) and (5.5), suggests that

a4 = −1472 (5.6)

and from now on we assume that

aN,4 = −1472. (5.7)

The next recalculation with this additional assumption (see Table 9) allows
us to guess that

a5 = 4830 and a6 = −6048. (5.8)

The On-Line Encyclopedia of Integer Sequences [19] recognizes (3.4),
(5.2), (5.4), (5.6), and (5.8) as the beginning of Sequence A000594 of tau
numbers of Ramanujan, usually denoted as τ(n). They can be de�ned in
many ways, in particular, via the formal expansion

q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn. (5.9)

Values τ7 = −17644 and τ8 = 84480 are in a su�ciently good agreement with
Table 9.

The Dirichlet generating function for the tau numbers,

Lτ (s) =
∞∑
n=1

τnn
−s, (5.10)

is called Ramanujan tau L-function. It indeed satis�es the functional equa-
tion (2.1) for parameters (5.1) as it was shown by J. R. Wilton [22].

6 An equation with many solutions

Within this section we presuppose that

c = 1 and h(s) = 5s/2π−s/2Γ(s/2). (6.1)
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For these parameters the functional equation (2.1) is satis�ed by Dirichlet
L-function

L(ξ
〈3〉
5 , s) = 1−s − 2−s − 3−s + 4−s +

6−s − 7−s − 8−s + 9−s + . . . (6.2)

and by the product

F (s) = (1 +
√

5× 5−s)ζ(s) =

1−s + 2−s + 3−s + 4−s + (1 +
√

5)5−s +

6−s + 7−s + 8−s + 9−s + (1 +
√

5)10−s + . . . (6.3)

(this example of a pair of functions solving the same functional equation was
considered by E. P. Balanzario and J. S�anchez-Ortiz in [4, 5]). Thus there are
in�nitely many Dirichlet series (for example, any linear combination of (6.2)
and (6.3)) satisfying (2.1) for c and h(s) from (6.1), so it is not evident what
will be the behavior of the coe�cients of our �nite Dirichlet series DN(s) in
this case.

6.1 Numerical data I

We begin by de�ning coe�cients aN,n, . . . , aN,N ofDN(s) via (3.5) and (3.3)
for N − 1 integral and half-integral values of s, namely, for

s ∈ SN =

{
3

2
, 2,

5

2
, . . . ,

N + 1

2

}
. (6.4)

Table 10 shows corresponding values of a150,1, . . . , a150,25. They clearly
pro�er series (6.2) as a solution of our functional equation.

It would be interesting to �nd the �reason� why numbers aN,n �vote� so
strongly in favour of (6.2). One possible explanation is as follows: this series
de�nes an entire function while (6.3) has a pole.

Another elucidation can be due to the following fact proved (in a greater
generality) by J.Kaczorowski, G.Molteni, and A.Alberto in [11]: among all
functions satisfying the functional equation (2.1) for c and h(s) from (6.1),
which are de�ned by Dirichlet series and ful�ll some other natural conditions,
only one (up to a multiplicative constant) function has an Euler product,
namely, Dirichlet L-function (6.2). Thus we can say that, in a sense, our
method of solving the functional equation �is aware of� the existence of the
Euler product.
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Table 10: Initial coe�cients of D150(s) for (6.1)

n a150,n

1 1.0000000000000000000000000000000000000000...

2 -1.0000000000000000000000000000000000503818...

3 -0.9999999999999999999999999999999993511570...

4 0.9999999999999999999999999999999920664778...

5 0.0000000000000000000000000000001297531999...

6 0.9999999999999999999999999999971313135966...

7 -0.9999999999999999999999999999219413414513...

8 -1.0000000000000000000000000023824492196236...

9 1.0000000000000000000000000762228891639139...

10 -0.0000000000000000000000024432067893709509...

11 1.0000000000000000000000761946711258008472...

12 -1.0000000000000000000022691776540366859765...

13 -0.9999999999999999999362164265029050271163...

14 0.9999999999999999983198462791825519218419...

15 0.0000000000000000413050105627139882799632...

16 0.9999999999999990543012952193696130700355...

17 -0.9999999999999798506875667681724768850477...

18 -1.0000000000003995494978841229526902410874...

19 1.0000000000073787608204712203349645563369...

20 -0.0000000001270467782293793017009278338761...

21 1.0000000020421174897272628354810859712222...

22 -1.0000000306878756845227901699845834134406...

23 -0.9999995681947151741927104494293965174994...

24 0.9999943019805495162540206709295242723444...
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Table 11: Initial coe�cients of D̃150(s)

n ã150,n

1 1

2 2.11051...·1032
3 2.11051...·1032
4 -4.22102...·1032
5 3.41488...·1032
6 -4.22102...·1032
7 2.11051...·1032
8 2.11051...·1032
9 -9.73518...·106
10 -3.41488...·1032
11 -1.01328...·1010
12 2.11051...·1032

n ã150,n

13 2.11051...·1032
14 -4.22102...·1032
15 3.41488...·1032
16 -4.22102...·1032
17 2.11051...·1032
18 2.11051...·1032
19 -1.14278...·1021
20 -3.41488...·1032
21 -3.27188...·1023
22 2.11051...·1032
23 2.11051...·1032
24 -4.22101...·1032

6.2 Numerical data II

In order to discover another solution, linear independent from (6.2), we
need to work with a di�erent functional equation.

Similar to what was done in Section 1.1, let us consider function

h̃(s) =
h(s)

1− 2× 2−s
=

5s/2π−s/2Γ(s/2)

1− 2× 2−s
(6.5)

and functional equation

h̃(s)D̃(s) = h̃(1− s)D̃(1− s) (6.6)

where

D̃(s) =
∞∑
n=1

ãnn
−s. (6.7)

Clearly, solutions of (2.1) and (6.6) are related in the following way:

D(s) =
D̃(s)

1− 2× 2−s
. (6.8)

Again we introduce �nite Dirichlet series

D̃N(s) =
N∑
n=1

ãN,nn
−s (6.9)
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Table 12: Initial coe�cients of the renormalized solution of (6.10)

n ã150,n/ã150,2

1 0.0000000000000000000000000000000047381833...

2 1.0000000000000000000000000000000000000000...

3 1.0000000000000000000000000000000090824864...

4 -2.0000000000000000000000000000000097325743...

5 1.6180339887498948482045868343655872871425...

6 -1.9999999999999999999999999999983642221007...

7 0.9999999999999999999999999999544680005399...

8 1.0000000000000000000000000014144310868154...

9 -0.0000000000000000000000000461271066102859...

10 -1.6180339887498948482045853259151114036191...

11 -0.0000000000000000000000480114725108261323...

12 1.0000000000000000000014592559737179796915...

13 0.9999999999999999999581485098189617462655...

14 -1.9999999999999999988755724360180755618786...

15 1.6180339887498948200221432474848726640823...

16 -1.9999999999999993424569952410769364467755...

17 0.9999999999999857298476669180527403065751...

18 1.0000000000002881000325750133038334736396...

19 -0.0000000000054147331057448374478772689388...

20 -1.6180339886550517602553639788386115014737...

21 -0.0000000015502803369016449669398574304662...

22 1.0000000236828778008923877292406545597831...

23 0.9999996613464755355483477982666804654266...

24 -1.9999954599136616169250566952909379210637...
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and imitate (6.6) by

h̃(s)D̃N(s) = h̃(1− s)D̃N(1− s). (6.10)

Table 11 shows values of ãN,1, . . . , ãN,24 obtained by solving the system
consisting of equations (6.10) for s ∈ SN and normalization condition

ãN,1 = 1 (6.11)

for N = 150. Extremely large values of all coe�cients, di�erent from the
default (6.11), suggest that this normalization was not felicitous. So we
perform renormalization via dividing all the coe�cients by ãN,2. Resulting
ratios (presented in Table 12) also give a solution to (6.10) for s ∈ SN .

Examination of the values in Table 12) produces the following surmises
about the coe�cients of a solution of (6.6):

• ã1 = ã9 = ã11 = ã19 = ã21 = 0;

• ã2 = ã3 = ã7 = ã8 = ã12 = ã13 = ã17 = ã18 = ã22 = ã23 = 1;

• ã4 = ã6 = ã14 = ã16 = ã24 = −2;

• ã5 = −ã10 = ã15 = −ã20 = φ where φ = 1.618033988...

Both The Inverse Symbolic Calculator [2] and WolframAlpha [3] recognize
1.618033988 as the familiar golden ratio, φ = (1 +

√
5)/2.

Now performing formal division in (6.8) we get the following values for
the 24 initial coe�cients of D(s):

• a1 = a4 = a6 = a9 = a11 = a14 = a16 = a19 = a21 = a24 = 0;

• a2 = a3 = a7 = a8 = a12 = a13 = a17 = a18 = a22 = a23 = 1;

• a5 = a10 = a15 = a20 = φ.

It is quite natural to make a general guess that for all k

• a5k+1 = a5k+4 = 0;

• a5k+2 = a5k+3 = 1;

• a5k = φ.
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But this is equivalent to saying that

D(s) = F (s)/2− L(ξ
〈3〉
5 , s)/2, (6.12)

thus we have discovered a second solution of the functional equation (2.1)
for parameters (6.1). According to [5], all solutions of this equation with
periodic coe�cients are linear combination of the two functions (6.2) and
(6.3).
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