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Abstract. Riemann’s zeta-function (defined by a certain
Dirichlet series) satisfies an identity known as the functional equa-
tion. H. Hamburger established that the function is identified by
the equation inside a wide class of functions defined by Dirichlet
series.

Riemann’s zeta-function is a member of a large family of func-
tions with similar properties, in particular, satisfying certain func-
tional equations. Hamburger’s theorem can be extended to some
(but not to all) of these equations.

The paper address the following question: how could we dis-
cover the Dirichlet series satisfying given functional equation?
Two “rules of thumb” for performing such discoveries via numer-
ical computations are demonstrated for functional equations sat-
isfied by Dirichlet eta-function, Ramanujan tau L-function, and
Davenport—Heilbronn function.

A conjectured discrete version of Hamburger’s theorem is stated.

Key words: Hamburger’s theorem, functional equation, Riemann’s zeta
function, Ramanujan tau L-function, Davenport—Heilbronn function



[MPEITPUHTHL
Cankt-ITerepOypreckoro oTaeIeHus
Maremarudeckoro uncturyra um. B. A. Creknosa
Poccuiickoit akaleMun HayK

PREPRINTS
of the St.Petersburg Department
of Steklov Institute of Mathematics

['JTIABHBIIT PEJAKTOP

C. B. Kucigakosn

PEJIKOJIJTET A

B. M. Bbasu4, H. A. BAB1JIOB, A. M. BEPIIUK,
M. A. BCEMUPHOB, A. . 'EHEPAJIOB,
. A. UBPATUMOB, JI. FO. KOJTOTUJINHA,
b.B.JIVPBE, 0. B. MATUACEBUUY,
H.}O. HEUBETAEB, C. . PENuH, I'. A. CEPEI'MH



1 Number-theoretical backgrounds

This introductory section presents some well-known definitions and re-
sults required for understanding the rest of the paper.

1.1 Riemann’s zeta-function

One of the most important open problems in Number Theory is the cele-
brated Riemann Hypothesis. 1t is a prediction about positions of the zeroes
of Riemann’s zeta-function. This function can be defined via Dirichlet series

((s) =) _n*. (1.1)

This series converges for Re(s) > 1 but the function can be extended to the
whole complex plane with the exception of the point s = 1 (at this point the
zeta-function has its only pole).

B. Riemann [I7] conjectured that all non-real zeros of the zeta-function
lie on the critical line Re(s) = 1/2.

While the function is named after Riemann, it was studied (for real values
of the argument) already by L. Euler. He also worked with closely related
entire function

n(s) = (1—2x 27)¢(s) = 3 (1)1~ (1.2)

n=1

named alternating zeta-function or Dirichlet eta-function. The alternating
series in (1.2) has the advantage over the series (1.1)) of being convergent in
the wider region Re(s) > 0. Respectively, at this half-plane the zeta-function
can be calculated as

n(s) D one (1) 07

- . (1.3)

) =19 x> l—2x2>

1.2 Euler product

Euler also gave another, rather different from (1.1) and (1.3), definition
of the zeta-function:

) = I 7= (1.4



Similar to the series (1.1]), the product in (1.4) also converges for Re(s) > 1
only. The right hand side of (1.4)) is nowadays known as Fuler product.
In order to see why ([1.4) is true one can at first observe that

11 1_; = [ G+pr+p>+...), (1.5)

_ m—S
p prime p p prime

and then apply the Fundamental Theorem of Arithmetic. This theorem states
that every natural number has a unique factorization into product of powers
of primes. This is equivalent to the fact that expanding the right hand side
of one gets exactly the right hand side of (1.I)!

The equivalence of two definitions, and (1.4), explains why the zeta-

function is a very important tool in the study of prime numbers.

1.3 The functional equation

Euler began his study of the zeta-function by determining its values at
positive even integers. At first, he computationally discovered an approxi-

mate equality

7.‘.2

¢(2) = 3 (1.6)

by calculating (without Computer!E[) many decimal digits of the left- and
right-hand sides in (|1.6]). Later, he proved that the equality is in fact exact,
and, more generally, that

(=1)™*1(2m)?™ By,
2(2m)! ’

C(2m) = m=1,2...; (1.7)

here By =1, By = %, By, = %, B3 =0, ...are the Bernoulli numbers.

Euler also indicated values of the zeta-function at negative integers:

Bn+1
—n) = — =1,2,... 1.8
((-m) == n=12 (18)
In particular,
¢(=2m) =0, (1.9)

'In this respect it is interesting to note that in [21] A. Turing used the word “computer”
having in mind “a man performing computations”; in this sense a computer (namely, Euler)
was involved in the discovery of (1.6).



and today even negative integers are called the trivial zeros of the zeta-
function.

Comparison of and allows one to eliminate Bernoulli numbers
and get the equality

2(2m — DIC(2m) = (=1)™(27)*"¢C(1 —2m), m=1,2,...  (1.10)
Euler stated that, more generally, for every real s
9(s)¢(s) = g(1 = 5)¢(1 — s) (1.11)
whered?]
g(s) = 7 2(s— DI +1). (1.12)

The identity (1.11)) is known today as the functional equation; its validity
for all complex s was proved by Riemann [I7].

1.4 Hamburger’s theorem

H. HAMBURGER [10] established that the functional equation (1.11)) iden-
tifies the zeta-function inside a wide class of functions defined by Dirichlet
series. In particular, the zeta-function is the only function D(s) such that

e D(s) can be defined for Re(s) > 1 by convergent Dirichlet series of the
form

D(s) =1+ Zann_s; (1.13)
n=2

e (s —1)D(s) is an entire function of finite order;
e D(s) satisfies the functional equation
9(s)D(s) = g(1 - $)D(1 - 5) (1.14)

where g(s) is defined by (L.12)).

2This form of writing this identity is due to Riemann [17]; Euler [9, Sect. 10] published
an equivalent formula in terms of function 7(s).
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1.5 Futher generalizations

Riemann’s zeta-function is (historically first) member of a large family
of functions with similar properties. A. Selberg [I8] axiomatically described
what is now known as Selberg class S. FEach function from class S can be
defined by a Dirichlet series as well as by (a counterpart of) Euler product,
satisfies certain functional equation, and has some other feature akin to the
zeta-function.

Also all functions from the class S are expected to satisfy correspond-
ing analogs of the Riemann Hypothesis, and for this the existence of Euler
products and functional equations is believed to be indispensable.

Original Hamburger’s results were extended to other functional equations
and improved by weakening certain restrictions on the function; for a recent
survey of such converse theorem see [16]. However, in general case the linear
space of Dirichlet series satisfying certain functional equation has dimension
greater than 1.

2 Our objective

We will look at converse theorems of Hamburger type from computational
point of view. In this paper we confine ourselves to consideration of functional
equations of the simplest form

h(s)D(s) = h(c — s)D(c — s). (2.1)

Here ¢ and h(s) are given number and function respectively, and D(s) is an
unknown Dirichlet series with real coefficients,

o0

D(s) = Z a,n=°. (2.2)

n=1

Suppose that we expect that has a unique solution under certain
extra restrictions on D(s) (but we may not know these restrictions). The
main question is: how could we discover this series?

We can distinguish two subquestions:

e how could we calculate (approximate) values of the initial coefficients,
ai, az, ...;



e how could we calculate (approximate) value of function D(s) and its
derivatives for a given s (which need not lie in the half-plane of the
convergence of the series)?

In a more general situation we can expect only that the linear space of
functions satisfying (2.1)) has a finite dimension. Then we can ask:

e could we select in a natural way a single “canonical” solution of (2.1]) 7

e how could we discover a basis for the linear space of solution of (2.1]) ¢

The author found (by computer experiments) several rather unexpected
ways to answer such questions. These procedures work at least for a number
of already studied functional equations; hopefully, this technique can be used
for “solving” other functional equations as well.

Below the efficiency of some of such “rules of thumb” is demonstrated on
a number of examples.

3 Calculation of the eta-function

Within this section we presuppose that

RICESNNCES!
c=1 and h(s) = 9(s) _ ( TG ) (3.1)
1—-2x2"s 1—2x2s
With this choice, the equation (2.1)) is satisfied by the function 7(s) (accord-
ing to (L.2) and (1.11])) but this fact is used here only as a motivation to

consider this particular functional equation.

3.1 First general construction

In order to discover coefficients of D(s) (of the form (2.2)) satisfying (2.1)))
we will try to approximate this infinite series by finite series

N

Dy(s) = Z an,n"* (3.2)

n=1

with sufficiently large N. The latter series should imitate the expected so-
lution of equation (£2.1) in the following sense: we formally replace D(s) by
Dy (s) in (2.1) and require that the equality

h(s)Dn(s) = h(1 — s)Dy(1 — s). (3.3)

7



should hold, but for certain values of s only.

Functional equation (2.1)) can determine D(s) up to a multiplicative con-
stant only; thus we need a kind of normalization condition, and we impose
that

a)p = 1. (34)
Respectively, we put

ani =1, (3.5)
and define the remaining N — 1 coefficients, anys,...,an n, by solving the

linear system consisting of N —1 replicas of equation (3.3)) for s from a certain
set G containing N — 1 elements.

3.2 Our specialization

Such a set Gy can be chosen in many ways. Within this section we opt
for
6y =1{3/2,5/2,...,N — 1/2}. (3.6)
The reason for such a choice is as follows.
The gamma-function (entering in (3.3)) satisfies the functional equation

['(s+1) =sI'(s). (3.7)

According to Bohr—Mollerup theorem [7], this equation (together with some
other mild restrictions) uniquely determines the gamma-function.
Equality (3.7)) can be easily generalized: for a natural number m

['(z+m)= ( 1_[_ k;) ['(2). (3.8)

k=z

The difference of the arguments of the gamma-factors in the left- and
right-hand sides in is equal to s — 1/2, which is a positive integer
whenever s € Gy. Respectively, applying we can make both arguments
equal and cancel the gamma-factors. Thus for s € G equation (3.3]) reduces
to

hi(s)Dn(s) = ha(1 — s)Dn(1 — s) (3.9)

where
hi(s) = (2s=2)(1-27%), (3.10)
ho(s) = (—1)@=3E=D/Sp3=s (1 _9=5), (3.11)



3.3 Explicit formulas

We can write down an explicit expression for Dy(s). Consider N x N
matrix

N N
My (s) = (um,n(s>) (3.12)
m=1In=1
where
n—s lf m = ].
. _ ) ’ 3.13
) {h1(m —1/2)n!27" — hy(3/2 — m)n™ %2, otherwise . 19

Let Ly be the (N — 1) x (N — 1) matrix resulting from My(s) by deleting
the first row and the first column. Then

B det(MN(s))'

Dy () = =4t L) (3.14)

3.4 Numerical data

At first sight the idea of using numbers from the set as values of s
in looks crazy — the infinite series in does not converge at points
1 — s. Astoundingly, this trick works!

Table (1| shows the coefficients of Dy(s) for N = 50. Examining the
initial coefficients one can surmise that alternating a,, = (—1)"** should give
a solution of (2.1)), and we know that this is indeed so.

More important is the observation that Dy(s) gives good approximations
to n(s) for a large range of values of s — see Table . Respectively, (approx-
imate) values of the zeta-function and its derivatives can be calculated as

dk . dk DN(S)

L ) = NS 1
P Ol Pk s wos e (3.15)



Table 1: Coefficients of Dsq(s) for (2.1)

n b50n1 n b50,n

1 1.0000000000000000. .. 2 1| -0.9999999999999517. ..
3 0.9999999999989788. . . 4 || -0.9999999999849114. ..
5 0.9999999998274060. .. 6 || -0.9999999984068907. ..
7 0.9999999877970622. .. 8 || -0.9999999207764316. ..
9 0.9999995568036840. .. 10 || -0.9999978351017259. ..
11 0.9999906661069766. . . 12 || -0.9999641614198762. . .
13 0.9998765303771978. .. 14 || -0.9996158801266156. . .
15 0.9989149039834088. . . 16 || -0.9972031802946021. ..
17 0.9933942170370522. .. 18 || -0.9856470926223216. ..
19 0.9712077550029767. .. 20 || -0.9464927728130374. ..
21 0.9075744066371679. .. 22 || -0.8511115240177615. ..
23 0.7755520378458773. .. 24 || -0.6822017143861291. ..
25 0.5756614095764715. .. 26 || -0.4632926781019783. ..
27 0.3537541018518465. .. 28 || -0.2550737531447883. ..
29 0.1729474483683150. .. 30 || -0.1098431344988656. ..
31 0.0651146675641168. .. 32 || -0.0359028510830116. ..
33 0.0183498194062661. .. 34 || -0.0086628349972250. ..
35 0.0037635967925978. .. 36 || -0.0014987102715588. ..
37 0.0005445947606385. .. 38 || -0.0001796757789624. ..
39 0.0000535126895000. .. 40 || -0.0000142901860447. ..
41 0.0000033941685251. .. 42 || -0.0000007100592081. ..
43 0.0000001292559287. . . 44 1| -0.0000000201600405. ..
45 0.0000000026399504. . . 46 || -0.0000000002822698. ..
47 0.0000000000236649. .. 48 || -0.0000000000014588. ..
49 0.0000000000000588. .. 50 || -0.0000000000000011. ..
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Table 2: Approximation of 7(s) by Ds(s) for (3.1)

. S 1] . St 1]
—351 1.05021...-10°8 10i || 4.59065...-10713
—334+1i || 1.97364...-107°° 16i || 7.65086...-107 11
—31+3i| 2.06803...-10°° 22i || 9.21145...-107°°
—29 +5i || 2.22572...-107° 0.5 1.26385....1071°
—27T+7i || 2.61390...-107° 0.5+6i || 9.76838...-1071
—25+8i || 1.06488...-107° 0.5+ 8i || 8.51062...-107 1
—23+10i || 1.62068...-107° 0.5+ 11i || 7.51379...-107 13
—21+12i || 2.69873...-10°° 0.5+ 13i || 5.86538...-107 2
—19+13i || 1.78099...-107° 0.5+ 151 || 4.16476...-107 11
—17+14i || 1.37291...-107° 0.5+ 18i || 7.69482....107 %
—15+15i || 1.22591...-10°° 0.5+20i || 2.09350...-107°
—13+16i || 1.25674...-107° 11 1.24841...-107%°
—11+17i || 1.46323...-10°° 14+6i| 9.42471....1071
—9+18i || 1.90802...-107° 1412i || 1.28347....107*2
—5+19i || 1.86971...-107° 1420i | 1.20238...-10°°
0 1.24841...-107% 3+26i || 1.07592...-107°
5i || 4.81114...-107%° 5438 || 1.02395...-10°°

11




3.5 Conjectures

Numerical data (presented in this paper and other calculations performed
by the author) allow one to state a number of conjectures.

Conjecture A. For everyn

lim ay, = (—1)". (3.16)

N—oo

Conjecture B. For every s

. det(MN(s))
o) = i S 317

It was known before that smooth truncations (similar to that in Table
of series can produce good approximations. For example, P. Borwein
[8] described a class of such smooth truncations giving exponentially close
approximations to n(s).

Borwein’s truncations are defined via selection of certain polynomials
with special properties, and he indicated two particular choices of such poly-
nomials. However, these polynomials are not directly connected with the
zeta-function, so the resulting smooth truncations are not inherent to it.

A kind of smooth truncation intrinsic to the zeta-function appeared in
[13] (for further development see [12l [6, 15]). The coefficients of arising
Dirichlet series encode a lot of information about prime numbers. However,
from computational point of view this method is very complicated because
it requires precalculations of the zeta-zeros with high accuracy.

In our case, entries to matrices My(s) and Ly arise in a natural way
from the functional equations and but definitions of these en-
tries (given by (3.10)), (3.11) and (3.13])) use only “simple” functions like the
exponentiation and the double factorial.

[t is interesting to study other properties of matrices My(s), in particular,
their eigenvalues and singular values (they “feel” zeta-zeros).

Conjectures A and B say that the coefficients of the Dirichlet series for
n(s) and values of this function can be calculated from the meager informa-
tion contained in and (3.9)-(3.11) for s € Sy. Does it indicate that
Bohr—Mollerup and Hamburger’s theorems could be combined and produce
the following discrete version of the latter theorem?

12



Conjecture C. Riemann’s zeta-function is the only function D(s) such
that

e D(s) can be defined for Re(s) > 1 by a convergent Dirichlet series of
the form

D(s)=1+ Z apn=*; (3.18)
n=2

e (s—1)D(s) is an entire function of finite order;
e form=1,2,... function D(s) satisfies the numerical equalities
gm+1/2)D(m +1/2) = g(1/2—m)D(1/2 —m) (3.19)

where g(s) is defined by (1.12)).

3.6 Other options

The selection of the set is not rigid, it can be replaced by many
other sets. For example, for values of s we could use integers greater than 1.
In this case equation (3.3]) reduces to counterparts of equalities and
found already to Euler. Namely, for an odd s = 2m + 1 equation ((3.3))
simplifies to

Dy (—2m) =0, (3.20)

and to

2(2m — )11 — 2 x 22" Dy (2m) =
(=1)™(27)*™(1 — 2 x 272™)Dy(1 — 2m) (3.21)

for an even s = 2m.

Integers can be uses for values of s both instead of half-integers or together
with them; in the latter case the accuracy of approximation of 7(s) by Dy(s)
is considerably higher.

Naturally, one can extend Conjectures A, B, and C for other choices of
the set Gy.

13



Table 3: Initial coefficients of Dy (s) for (4.1)

n | N ann
30 0.2841393450505322423648802. ..
2 | 60 0.2840790438403573189026424. ..
90 0.2840790438404122960282913. ..
30 -0.2844747272382600399086622. . .
3|60 -0.2840790438400370082649792. ..
90 -0.2840790438404122960282888. ..
30 -0.9977157059817277186689871. ..
4160 -1.0000000000024692403274721. ..
90 -1.0000000000000000000000198. ..
30 -0.0142683988631866552023641. ..
5|60 0.0000000000201869092463668. ..
90 0.0000000000000000000001553. ..
30 1.0920687449236902877982957. ..
6 | 60 0.9999999998079004381711738. ..
90 0.9999999999999999999991173. ..
30 -0.2827413866159128279052885. . .
7|60 0.2840790456867030872580591. ..
90 0.2840790438404122960080168. ..
30 2.8784730710492549088446329. ..
8 160 -0.2840790592273102172511881. ..
90 -0.2840790438404122947139839. ..
30 -16.56795005629887487367574618. ..
9160 -0.9999999192097203175804888. ..
90 -1.0000000000000000487473701. ..
30 66.7426105379517569482375592. ..
10 | 60 0.0000003828326636970813932. ..
90 0.0000000000000014726845966. ..
30 || -246.7604018799068158985862084. . .
11 | 60 0.9999815553656583309079810. ..
90 0.9999999999999613898393090. ..
30 794.8300805378296122198943507. ..
12 | 60 0.2843997083405965241718633. ..
90 0.2840790438413085216718576. ..

14




4 Davenport—Heilbronn function

Within this section we presuppose that

c=1 and  h(s)= (%)sm r (g + %) . (4.1)

4.1 Second general construction

Again, in order to construct a finite approximation (3.2]) we will use (2.1)
not in its full generality but only a few of its consequences. Namely, (2.1)) is
equivalent to saying that the function

F(z) = h(c/2+ 2)D(c/2 + =) (4.2)
is even, which can be expressed by the infinite system of numerical equalities

dk
)

=0, k=1,3,....2m+1,... (4.3)
z=0

In terms of D(s) this corresponds to

o (mon)

We again impose normalizing condition (3.5) and define coefficients
a2, .., ay from (3.2)) by solving the system consisting of N — 1 analogs

of :

=0, k=1,3,....2m+1,... (4.4)

s=c/2

e (1opate))

where M = 2N — 3.

=0, k=13,....M (4.5)

s=c/2

4.2 Numerical data

Table 3| shows corresponding values of ay o, ..., an 12 for N = 30, 60, 90.
The numerical data suggest the following surmises for N — co:

o coefficients an, an7, and ani2 approach certain limiting value
a = 0.2840790404 . . .;

15



coefficients ay 3 and ayg approach —a;

coefficients an4 and ay g approach —1;

coefficients an s and ay 10 approach 0;

coefficients an ¢ and ax 11 approach 1.

Table 4: Comparison of even derivatives of h(s)f(s) and h(s)Dso(s) for (4.1)

. ﬁ%%um@me»L:UQ__l . ﬁ%%um@wa»L:UQ__l
g G| g S ED] _,
0 4.10785...-107° 26 || 3.38965...-10712
2| 8.41657...-1077 28 1.43867...-10712
41 2.13426...-1077 30| 6.20969...-10713
6| 6.15266...-10°8 32| 2.64828...-107 13
8 1.93507...-107°8 34 1.34226....10713
10 || 6.48438...-10°° 36 || -1.05994...-107%
12 || 2.28126...-107° 38 || 3.41245...-107 %
14 || 8.34335...-1071° 40 || -1.99099...-107 1
16 || 3.15036...-1071° 42 1.61377...-10°
18 1.22191....10710 44 || -1.70056...-1071°
20 | 4.84975....107% 46 || 2.41375...-107°
22 || 1.96387...-107 % 48 || -4.79564...-10°8
24 || 8.09412...-10712 50 1.40744...-10°°

The above surmises can be generalized by guessing that for all n coeffi-
cients ay,, approach certain limiting quantity a,, which depends only on the
value of n modulo 5. Respectively, we can expect that the Dirichlet series

53(&n+1)S+«A&n+2)s—a@nw+$ﬁ{&n+4)s (4.6)

m=0

is a solution of (2.1)) for (4.1).

As for the nature of a, both The Inverse Symbolic Calculator [2] and
WolframAlpha [3] suggest that « is a root of the equation

2422 627 —22+1=0, (4.7)

16



Table 5: Coefficients of Dsg(s) for (4.1)

n a3on n a30,n

1 1.00000000... 16 19241.29315524. ..
2 0.28413934... 17 -29407.07560910. ..
3 -0.28447472. .. 18 38570.85113607. ..
4 -0.99771570. .. 19 -43253.85469735. ..
5 -0.01426839... 20 41265.28452795. ..
6 1.09206874. .. 21 -33287.54237140. ..
7 -0.28274138. .. 22 22535.105525613. ..
8 2.87847307... 23 -12681.87163010. ..
9 -16.56795005. .. 24 5858.25583683. ..
10 66.74261053. .. 25 -2182.96010798. ..
11 -246.76040187. .. 26 639.95094404. ..
12 794.83008053. .. 27 -142.11869475. ..
13 -2199.87496770. .. 28 22.47824068. ..
14 5254.16299598. .. 29 -2.25669057. ..
15 -10831.19871227. .. 30 0.10811767...

that is

(4.8)

Y —1—-vV5+V10+2V5
- 5 :

With this value of a function is the well-known Davenport—Heilbronn
Junction f(s). Tt indeed satisfies functional equation (2.1)) with ¢ and h(s)
defined by (see [20, 10.25]) and is the only solution of this equation (see
I1, 5.1] or [5] Sect. 8]).

When calculating coefficients asg, we imposed restrictions of two kinds:

e normalization agzy; = 1;
e vanishing of odd derivatives of the product h(s)Dso(s) at s = 1/2.

Surprisingly, the values of even derivatives of h(s)Dso(s) give very good
approximations to the values of corresponding derivatives of the product
h(s)f(s) at s = 1/2 — see Table [ This fact is more peculiar than the good
approximations of 77(s) shown in Table |2, and the reason why it is so startling
is as follows. Table |5| presents all coefficients of Dsg(s); we see that, except
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for a few initial, these coefficients differ very much from the coefficients in

[5).

5 Ramanujan tau Lfunction

Within this section we presuppose that

c=12 and h(s) = (2m) " T'(s). (5.1)

We have two way for “solving” a functional equation — via replicas of the
equation itself for particular values of s (as in Section , and via vanishing
of the odd derivatives at one point (as in Section . In this paper we will use
the latter way (the former one was used in [I4]; of course, one can combine

equations of both types, (3.3)) and (4.5)), in one system).

5.1 Numerical data

To begin with we define coefficients ay ., . .., ax y of Dy(s) by and
(4.5) with M = 2N — 3.

Table[6]shows corresponding values of ay s, ..., an;y for N =50, ..., 250.
It does not looks like that the coefficients approach some limiting values.
More likely, they behave as partial sums of an asymptotic series — at first
approaching “correct” value, but then retreating it.

The values of ay 2, esspecially ajp 2, are very close to an integer, so we

can make a guess that
ay = —24. (5.2)

Similar but less confident guesses could be made about the values of ay 3,
an4, ans, and ayg. But already for ay 7 the data from the table are not
sufficient in order to make choice between —16744 and —16745.

At the moment we make only commitment (5.2), that is, from now on we

assume not only (3.5) but
anN2 = —24 (53)

as well; respectively, we reduce the number of other equations 1, that is, we
proceed with the system (4.5) with M = 2N — 5.

Table[7|shows values of an 3, ..., ayg recalculated under the two assump-
tions, (3.5) and (5.3)). We get greater confidence that
as = 252 (5.4)
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Table 6: Values of ay,, from solutions of system (4.5 for (5.1) with M =

2N — 3 under assumption ((3.5))

n| N AN
50 -24.000000000118497. ..
100 -23.999999999999942. ..
2 | 150 -23.999999999999770. ..
200 -23.999999998866933. . .
250 -24.000199961334035. ..
o0 252.000000057374527. ..
100 251.999999999961931. ..
3| 150 251.999999999836542. . .
200 251.999999165844212. ..
250 252.149430632741081. ..
50 -1472.000012515395811. ..
100 -1471.999999986251471. ..
4 1150 -1471.999999931279260. . .
200 -1471.999626780797076. . .
250 -1540.912343773167466. . .
50 4830.001582240256756. . .
100 4829.999996590998579. . .
5| 150 4829.999978579614166. . .
200 4829.871536668917347. ..
250 29755.868246403074758. ..
o0 -6048.129472974338049. ..
100 -6047.999374391124392. ..
6 | 150 -6047.994675315311927. ..
200 -6011.297392336898792. ..
250 -7657439.816197617182839. ..
50 -16736.650298606985052. ..
100 -16744.088289724678448. ..
71 150 -16745.089444954449710. ..
200 -25731.482054790443951. ..
250 2061626557.103562626814415. ..
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Table 7: Values of ay, from solutions of system (4.5 for (5.1) with M =

2N — 5 under assumptions (3.5) and (5.3)

n| N AN
50 252.000000001276967. . .
100 251.999999999999973. ..
3| 150 252.000000000000027. ..
200 251.999999999845893. ..
250 252.000030423879946. . .
o0 -1472.000000679159479. ..
100 -1471.999999999973598. . .
4 1150 -1472.000000000034434. ..
200 -1471.999999792994376. . .
250 -1472.042583958137485. ..
50 4830.000145096068699. . .
100 4829.999999987556299. ..
5 | 150 4830.000000022057612. ..
200 4829.999851805405458. ..
250 4862.471493291169755. ..
50 -6048.016996351377522. ..
100 -6047.999996384861074. ..
6 | 150 -6048.000009448467037. ..
200 -6047.926302953560375. . .
250 -23666.925084998437692. ..
o0 -16742.744014527296735. ..
100 -16744.000722228039628. ..
7 1 150 -16743.997009796162146. . .
200 -16772.110633412127340. ..
250 7502100.474170648682726. ..
50 84416.317314370117715. ..
100 84480.105533105112501. ..
8 | 150 84479.263918168986183. ..
200 93122.012655507139459. ..
250 || -2651916509.556645449374102. ..
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Table 8: Values of ay, from solutions of system (4.5 for (5.1) with M =
2N — 7 under assumptions (3.5)), (5.3]), and (5.5))

n| N AN
50 -1472.000000014705761. ..
100 -1472.000000000000225. ..
4 | 150 -1472.000000000000278. ..
200 -1471.999999999999752. . .
250 -1472.000010741048018. ..
o0 4830.000006623631354. ..
100 4830.000000000255668. . .
5| 150 4830.000000000433781. ..
200 4829.999999999870874. . .
250 4830.020863090813102. ..
50 -6048.001194719567767. ..
100 -6048.000000130026647. ..
6 | 150 -6048.000000326036551. . .
200 -6048.000000262414081. ..
250 -6068.908783173152161. ..
50 -16743.881211654650012. ..
100 -16743.999960465762010. ..
71 150 -16743.9998441502112563. ..
200 -16743.999559817499552. ..
250 -2503.262375742032465. . .
o0 84472.490032773918378. ..
100 84479.991888819148223. ..
8 | 150 84479.947056235365133. ..
200 84479.656617018282086. ..
250 -7254372.111906719899883. ..
50 -113314.578115188801735. ..
100 -113641.796404697915159. ..
9 | 150 -113629.420756134702361. ..
200 -113465.380053378057042. . .

250 3025890243.971514185540493. . .
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Table 9: Values of ay, from solutions

2N — 9 under assumptions (3.5)), (5.3), (5.5), and (5.7)

of system (4.5 for (5.1) with M =

n| N aNn
50 4830.000000079105807. . .
100 4830.000000000004008. . .
51 150 4830.000000000001438. ..
200 4830.000000000316194. ..
250 4830.000000161564014. ..
50 -6048.000027589401480. . .
100 -6048.000000004386464. . .
6 | 150 -6048.000000002441836. ..
200 -6048.000000665629448. . .
250 -6048.000349947935199. ..
50 -16743.996092066542882. ..
100 -16743.999997890350852. . .
71150 -16743.999998065045899. ..
200 -16743.999318063485484. ..
250 -16743.633330978509881. ..
50 84479.691889532967686. . .
100 84479.999400486350227. ..
8 | 150 84479.999048286456341. ..
200 84479 .549703982396722. ..
250 84236.978331976094194. ..
o0 -113627.478816657760268. . .
100 -113642.885788007170829. ..
9 | 150 -113642.673364788701395. ..
200 -113428.463299544266846. . .
250 -2200.273147271369263. . .
50 -116460.643498323631911. ..
100 -115935.685178325567478. . .
10 | 150 -116003.489243160027771. ..
200 -194313.225722385114160. . .
250 -35879210.651607157671389. ..
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and from now on we assume also that
angs = 252. (5.5)

Further recalculation (see Table [8) performed under the three assump-

tions, (3.5)), (5.3) and (5.5, suggests that

ay = —1472 (5.6)
and from now on we assume that
an4 = —1472. (5.7)

The next recalculation with this additional assumption (see Table [9) allows

us to guess that
as = 4830 and ag = —6048. (5.8)

The On-Line Encyclopedia of Integer Sequences [I9] recognizes (3.4)),
(5.2), (5.4), (5.6), and (5.8 as the beginning of Sequence A000594 of tau

numbers of Ramanujan, usually denoted as 7(n). They can be defined in
many ways, in particular, via the formal expansion

I -a =3 rn)g (5.9)

Values 77 = —17644 and 73 = 84480 are in a sufficiently good agreement with
Table [0
The Dirichlet generating function for the tau numbers,

Lo(s) =) 7an™*, (5.10)

is called Ramanujan tau L-function. It indeed satisfies the functional equa-
tion (2.1)) for parameters (5.1)) as it was shown by J. R. Wilton [22].

6 An equation with many solutions

Within this section we presuppose that
c=1 and h(s) = 527 %/?I'(5/2). (6.1)
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For these parameters the functional equation (2.1)) is satisfied by Dirichlet
L-function

L(§é3>7 S) — 1—5 o 2—8 . 3—8 4 4—3 4
67 —T77°—=8°+97°+... (6.2)

and by the product

F(s) = (1+ V5 x57°)((s) =
17 4275 437 447 + (1 +V5)57° +
6+ 7 +8 +9°+(1+V5)107°+ ... (6.3)
(this example of a pair of functions solving the same functional equation was

considered by E. P. Balanzario and J. Sdnchez-Ortiz in [4, [5]). Thus there are
infinitely many Dirichlet series (for example, any linear combination of (6.2))

and (6.3)) satisfying (2.1)) for ¢ and h(s) from (6.1), so it is not evident what

will be the behavior of the coefficients of our finite Dirichlet series Dy (s) in
this case.

6.1 Numerical data I

We begin by defining coefficients an ,, . . ., ay .y of Dy(s) via (3.5) and (3.3)
for N — 1 integral and half-integral values of s, namely, for

3 5) N +1
Gyn=49-,2, =, ..., — 7. 6.4
ERS N {27 ) 27 ) 2 } ( )
Table shows corresponding values of ajs01, -.., @15025. They clearly

proffer series as a solution of our functional equation.

It would be interesting to find the “reason” why numbers ay,, “vote” so
strongly in favour of (6.2). One possible explanation is as follows: this series
defines an entire function while has a pole.

Another elucidation can be due to the following fact proved (in a greater
generality) by J. Kaczorowski, G. Molteni, and A. Alberto in [I1]: among all
functions satisfying the functional equation for ¢ and h(s) from ,
which are defined by Dirichlet series and fulfill some other natural conditions,
only one (up to a multiplicative constant) function has an FEuler product,
namely, Dirichlet L-function (6.2). Thus we can say that, in a sense, our
method of solving the functional equation “is aware of” the existence of the
Euler product.
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Table 10: Initial coefficients of Dy50(s) for (6.1)

3

A150,n

O~ O Ot = W N —

N N T N T N T N S S G G S = Gy S Gy
= O N/ O © 00~ O UL W H—H= OO

|
O O OO P, P OF P OO0 OO K =

[
=)

1 ]
O O = O

.0000000000000000000000000000000000000000. . .
.0000000000000000000000000000000000503818. . .
.9999999999999999999999999999999993511570. . .
.9999999999999999999999999999999920664778. . .
.0000000000000000000000000000001297531999. . .
.9999999999999999999999999999971313135966.. . .
.9999999999999999999999999999219413414513. . .
.0000000000000000000000000023824492196236. . .
.0000000000000000000000000762228891639139. ..
.0000000000000000000000024432067893709509. . .
.0000000000000000000000761946711258008472. . .
.0000000000000000000022691776540366859765. . .
.9999999999999999999362164265029050271163. . .
.9999999999999999983198462791825519218419. . .
.0000000000000000413050105627139882799632. . .
.9999999999999990543012952193696130700355. . .
.9999999999999798506875667681724768850477 . . .
.0000000000003995494978841229526902410874.. . .
.0000000000073787608204712203349645563369. . .
.0000000001270467782293793017009278338761. . .
.0000000020421174897272628354810859712222. . .
.0000000306878756845227901699845834134406. . .
.99999956681947151741927104494293965174994 . . .
.9999943019805495162540206709295242723444 . . .
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Table 11: Initial coefficients of Dyso(s)

n EL150’” n dl50,n
1 1 13 2.11051...-10%
2 2.11051...-10% 14 || -4.22102...-10%
3 2.11051...-10%2 15 3.41488...-10%
4 || -4.22102...-10% 16 || -4.22102...-10%
5 3.41488...-10% 17 2.11051...-10%2
6 || -4.22102...-10% 18 2.11051...-10%2
7 2.11051...-10%2 19 || -1.14278...-10%
8 2.11051...-10% 20 || -3.41488...-10%
91 -9.73518...-10° 21 || -3.27188...-10%
10 || -3.41488...-10% 22 2.11051...-10%2
11 || -1.01328...-10%° 23 2.11051...-10%2
12 2.11051...-10%2 24 || -4.22101...-10%?

6.2 Numerical data II

In order to discover another solution, linear independent from (6.2)), we

need to work with a different functional equation.
Similar to what was done in Section [I.T} let us consider function

- h 5/ 22T (5 /2
his) = 1= 2<f<>2s - 1712 » 58/ )

and functional equation

where

Clearly, solutions of (2.1)) and are related in the following way:

__ D(s)
S 1l—2x 27
Again we introduce finite Dirichlet series

D(s)

N
DN(S) = Z (NIN’nn_s
n=1
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Table 12: Initial coeflicients of the renormalized solution of (6.10

n Cl150,n/a150,2

0.0000000000000000000000000000000047381833.. . .
1.0000000000000000000000000000000000000000. . .
1.0000000000000000000000000000000090824864 . . .
-2.0000000000000000000000000000000097325743. . .
.6180339887498948482045868343655872871425. ..
-1.9999999999999999999999999999983642221007 . . .
0.9999999999999999999999999999544680005399. . .
1.0000000000000000000000000014144310868154. . .

R~ DO W N
[

9 || -0.0000000000000000000000000461271066102859. . .
10 || -1.61803398874989484820458532569151114036191. ..
11 || -0.0000000000000000000000480114725108261323. ..
12 1.0000000000000000000014592559737179796915. . .
13 0.9999999999999999999581485098189617462655. . .
14 ]| -1.9999999999999999988755724360180755618786. . .
15 1.6180339887498948200221432474848726640823. . .
16 || -1.9999999999999993424569952410769364467755. . .
17 0.9999999999999857298476669180527403065751. . .
18 1.0000000000002881000325750133038334736396. . .
19 || -0.0000000000054147331057448374478772689388. . .
20 || -1.6180339886550517602553639788386115014737. . .
21 || -0.0000000015502803369016449669398574304662. . .
22 1.0000000236828778008923877292406545597831 . . .
23 0.9999996613464755355483477982666804654266. . .

[N}

e
|

(=Y

.9999954599136616169250566952909379210637. . .
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and imitate by

h(s)Dn(s) = h(1 — s)Dy(1 — s). (6.10)

Table shows values of an 1, ..., an24 Obtained by solving the system
consisting of equations (6.10) for s € Gy and normalization condition

iy =1 (6.11)

for N = 150. Extremely large values of all coefficients, different from the
default (6.11), suggest that this normalization was not felicitous. So we
perform renormalization via dividing all the coefficients by ay 2. Resulting
ratios (presented in Table also give a solution to for s € Gy.

Examination of the values in Table produces the following surmises
about the coefficients of a solution of ([6.6):

® 4] = a9 = a1 = Q19 = a1 = 0;

L C~l5 = —&10 = &15 = —&20 = ¢ where ¢ = 1.618033988...

Both The Inverse Symbolic Calculator [2] and WolframAlpha [3] recognize
1.618033988 as the familiar golden ratio, ¢ = (14 v/5)/2.

Now performing formal division in we get the following values for
the 24 initial coefficients of D(s):

® (] = a4 =ag = Gy = A11 = A14 = A1 = A19 = g1 = aAgq4 = 0;
® (3 =03 = a7 =ag = Q12 = A13 = Q17 = Q18 = (g3 = (23 = 1;
® a5 = ay = a5 = az = P.

It is quite natural to make a general guess that for all &
® aspi1 = Aspqa = 0;
® a5py2 = Aspq3 = 1

® s, = .
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But this is equivalent to saying that
D(s) = F(s)/2 = L(&Y,5) /2, (6.12)

thus we have discovered a second solution of the functional equation ([2.1))
for parameters (6.1). According to [5], all solutions of this equation with
periodic coefficients are linear combination of the two functions (6.2) and

63).
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