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Abstract
Let m ≥ 5 be a positive integer and G be a 3-connected graph on at

least 2m+ 1 vertices. We prove, that G has a contractible set W , such that
m ≤ |W | ≤ 2m − 4. (Recall, that a set W ⊂ V (G) of a 3-connected graph
G is contractible, if the graph G(W ) is connected and the graph G −W is
2-connected.) A particular case for m = 4 is that any 3-connected graph on
at least 11 vertices has a contractible set of 5 or 6 vertices.
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Basic definitions
Before introducing results of our paper let us recall main definitions that we
need. We consider undirected graphs without loops and multiple edges and
use standard notation.

For a graph G we denote the set of its vertices by V (G) and the set of its
edges by E(G). We use notation v(G) for the number of vertices of G. For
disjoint sets X, Y ⊂ V (G) we denote by EG(X, Y ) the set of all edges of the
graph G, joining X and Y . A notation xy ∈ EG(X, Y ) means that x ∈ X
and y ∈ Y .

We denote the degree of a vertex x in the graph G by dG(x).
Let NG(w) denote the neighbourhood of a vertex w ∈ V (G) (i.e. the set

of all vertices of the graph G, adjacent to w).
For a set of vertices U ⊂ V (G) we denote by G(U) the induced subgraph

of the graph G on the set U .
We say that a vertex u ∈ V (G) is adjacent to a set W ⊂ V (G), if

u /∈ W and W contains a vertex, adjacent to u. We say, that two disjoint
sets U,W ⊂ V (G) are adjacent, if there exist adjacent vertices u ∈ U and
w ∈ W .

In this paper, every path or cycle is simple, i.e. passes any vertex at most
once. An xy-path is a path between vertices x and y. If P is a path containing
vertices x, y, then xPy denote the part of P between x and y.

Definition 1. 1) Let R ⊂ V (G). We denote by G−R the graph obtained
from G upon deleting all vertices of the set R and all edges incident to vertices
of R. The set R is a cutset, if the graph G−R is disconnected.

2) A graph G is k-connected, if |V (G)| > k and G has no cutset of size
less than k.

Definition 2. 1) A vertex set W ⊂ V (G) is connected, if the graph G(w) is
connected.

2) Let G be a 3-connected graph. A set W ⊂ V (G) is contractible, if W
is connected and the graph G−W is 2-connected.

1 Introduction and main results
Consider a 2-connected graph G on n vertices, let n1, n2 be positive integers
with n1 + n2 = n. It is rather clear, that there exists a connected vertex set
decomposition of the vertex set of G into two disjoint connected sets V1 and
V2, such that |V1| = n1, |V2| = n2.
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In 1994, McCuaig and Ota [4] have formulated the following conjecture
for 3-connected graphs. This conjecture was mentioned in Mader’s survey on
connectivity [3].

Conjecture. Let m ∈ N. Then there exists an integer n such that every
3-connected graph G on at least n vertices has a contractible set of m vertices.

For m = 1 this statement is clear, for m = 2 it is rather easy and
well-known (it was proved by Tutte). The case m = 3 was proved by authors
of this conjecture [4], the case m = 4 was proved by M.Kriesell [5]. For any
m ≥ 5 Conjecture is open now. It is only known [6], that in case m = 5
Conjecture is true for cubic graphs and graphs of average degree close to 3.

We suggest a new result on existence of large contractible sets in
3-connected graphs.

Theorem 1. Let m ≥ 5 be a positive integer and G be a 3-connected graph
on at least 2m + 1 vertices. Then G has a contractible set W , such that
m ≤ |W | ≤ 2m− 4.

A particular case of this theorem for m = 5 is the following.

Corollary 1. A 3-connected graph on n ≥ 11 vertices has a contractible set
of 5 or 6 vertices.

In what follows we formulate several facts on the structure of 2-connected
graphs and after that, with the help of them, we prove Theorem 1.

2 Necessary tools
We start with well known definitions of blocks and cutpoints.

2.1 Blocks and cutpoints of a connected graph

For connected graphs, we have a classic instrument to study graph’s structure
— blocks and cutpoints. Let’s recall the definitions.

Definition 3. Let G be a connected graph.
A vertex a ∈ V (G) is a cutpoint of G, if the graph G− a is disconnected.
A block of the graph G is a maximal up to inclusion subgraph, having no

cutpoints.
The interior Int(B) of a block B is the set of all its vertices which are

not cutpoints of G.
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The structure of mutual disposition of blocks and cutpoints of a connected
graph can be described by the tree of blocks and cutpoints (see [7]). Recall,
that the tree of blocks and cutpoints of a graphG is a bipartite graph. Vertices
of the first partition are all cutpoints a1, . . . , an of the graph G, vertices of
the second partition are all blocks B1, . . . , Bm of the graph G. Vertices ai and
Bj are adjacent if and only if ai ∈ V (Bj). It is easy to prove, that this graph
is a tree, all leaves of which correspond to blocks (which are called pendant
blocks).

2.2 The decomposition of a graph by a set of cutsets

We need to describe the structure of decomposition of a 2-connected graph
by its 2-vertex cutsets. We define the block tree of a 2-connected graph as
in [12]. In general, this structure is similar to Tutte’s one [1]. Let’s start with
the decomposition of a graph by a set of cutsets, defined in [10].

In our paper, connected components of a graph are vertex sets of maximal
up to inclusion connected subgraphs.

Definition 4. Let R ⊂ V (G) be a cutset.
1) Let X, Y ⊂ V (G), X 6⊂ R, Y 6⊂ R. We say that R separates the set X

from Y , if no two vertices vx ∈ X and vy ∈ Y belong to the same connected
component of the graph G−R.

2) We say that R splits a set X ⊂ V (G), if the set X \R is not contained
in one connected component of the graph G−R.

In this section, k ≥ 2 and G is a k-connected graph. Denote by Rk(G)
the set of all k-vertex cutsets of G.

Definition 5. Let S ⊂ Rk(G).
1) A set A ⊂ V (G) is a part of decomposition of G by S, if A is a maximal

up to inclusion set, such that no cutset of S splits A.
The set of all parts of decomposition of the graph G by S we denote by

Part(G;S).
2) A vertex of a part A ∈ Part(G) is inner, if it does not belong to a

cutset of S. The set of all inner vertices of the part A is called the interior
of A and denoted by Int(A).

The boundary of A is the set Bound(A) = A \ Int(A).
It is clear that if two parts of Part(G;S) have nonempty intersection,

then their intersection is a subset of a certain cutset of S.
It is easy to prove [11], that Bound(A) consists of all vertices of the

part A, which are adjacent to V (G) \ A. If Int(A) 6= ∅, then Bound(A)
separates Int(A) from V (G) \ A.
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Definition 6. Two cutsets S, T ∈ Rk(G) are independent, if S does not
split T and T does not split S. Otherwise, these sets are dependent.

It is proved [2, 8] that only two variants are possible for cutsets S, T ∈
Rk(G) of a k-connected graph G: either S and T are independent, or each of
them splits the other. The proof of this fact is easy.

2.3 The block tree of a 2-connected graph

In this section, the graph G is 2-connected.

Definition 7. 1) A cutset S ∈ R2(G) is single, if S is independent with all
other cutsets of R2(G). Denote by O(G) the set of all single cutsets of the
graph G.

2) We will write Part(G) instead of Part(G;O(G)). Parts of this
decomposition will be called simply parts of the graph G.

Definition 8. The block tree BT(G) of a 2-connected graph G is a bipartite
graph. The first partition of this graph is O(G), the second partition is
Part(G). Vertices S ∈ O(G) and A ∈ Part(G) are adjacent if and only
if S ⊂ A.

In what follows we list several properties of BT(G). Most of them are
similar to properties of the classic tree of blocks and cutpoints of a connected
graph.

Lemma 1. [13, Lemma 1] For a 2-connected graph G the following
statements hold.

1) BT(G) is a tree. Every leaf of BT(G) corresponds to a part of Part(S).
2) Let B,B′ ∈ Part(G). Then a cutset S ∈ O(G) separates B from B′

in G if and only if S separates B from B′ in BT(G).

Definition 9. A part A ∈ Part(G) is pendant, if it corresponds to a leaf
of BT(G).

Remark 1. If A ∈ Part(G) is a pendant part, then Bound(A) is a single
cutset of the graph G.

Definition 10. 1) For a 2-connected graph G, we denote by G′ the graph
obtained from G upon adding all edges of type ab where {a, b} ∈ O(G).

2) A part A ∈ Part(G) is called a cycle, if the graph G′(A) is a cycle. A
is called a block, if G′(A) is a 3-connected graph. If A is a cycle, then |A| is
the length of A.
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Lemma 2. [13, Lemma 2] For a 2-connected graph G the following
statements hold.

1) Every part of Part(G) is either a cycle or a block.
2) If A ∈ Part(G) is a cycle, then all vertices of Int(A) have degree 2 in

the graph G.
3) Let A ∈ Part(G) be a cycle of length at least 4. Then any pair of

its non-neighbouring vertices form a non-single cutset of the graph G. All
non-single cutsets of G are of such type.

Lemma 3. [12, Theorem 2] Let G be a 2-connected graph without single
cutsets. Then either G is 3-connected, or G is a cycle.

3 Proof of Theorem 1
In what follows, the graph G will be 3-connected.

Definition 11. A contractible set W ⊂ V (G) of a 3-connected graph G is
maximal, if there exists no vertex x ∈ V (G) \W , such that the set W ∪ {x}
is contractible.

Remark 2. Let W ⊂ V (G) be a maximal contractible set and x ∈ V (G)\W
be a vertex adjacent to W . Then the graph G−W − x is not 2-connected.

Lemma 4. Let G be a 3-connected graph, and W ⊂ V (G) be a maximal
contractible set, such that the graph H = G −W is not a cycle. Then the
following statements hold.

1) The set W is adjacent to all inner vertices of all parts-cycles of H.
2) There are at least two pendant parts in Part(H), all these parts are

cycles of length at least 4. The boundary of every pendant part is a single
cutset of H.

3) Let A ∈ Part(H) be a pendant part. Then H − Int(A) is 2-connected.

Proof. 1) Let x be an inner vertex of a part-cycle of H = G −W . Then
dH(x) = 2. Since G is 3-connected, the vertex x must be adjacent in G to
the set W .

2) Since W is maximal, the graph H is not 3-connected. Since H is not
a cycle, by Lemma 4 this graph has single cutsets. Hence, the tree BT(H)
has at least two leaves, which correspond to pendant parts of Part(H). The
boundary of a pendant part is a single cutset of the graph H.

Assume that a pendant part A ∈ Part(H) is a block and Bound(A) = S.
If W is not adjacent to Int(A), then a 2-vertex cutset S separates Int(A) in a
3-connected graph G. Since this is impossible, there exists a vertex x ∈ Int(A)
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adjacent to W in G. By item 3 of Lemma 2, no cutset of R2(H) contains
an inner vertex of a part-block. Hence, H − x is a 2-connected graph. This
contradicts maximality of W .

3) Let Bound(A) = {x, x′}. By item 2, vertices of the set Int(A) form
a simple xx′-path in H. Assume, that the graph H ′ = H − Int(A) is not
2-connected. Since H ′ becomes 2-connected after adding an xx′-path, there
is a cutvertex in H ′, which separates x from x′.

On the other side, Bound(A) = {x, x′} is a single cutset in H. Therefore,
no cutset of R2(H) separates x from x′. By Menger’s theorem there exist
three independent xx′-paths in H. At most one of these paths intersects the
xx′-path formed by vertices of Int(A). Thus there are two disjoint xx′-paths
in H ′, i.e. no cutvertex separates x from x′ in H − Int(A). The contradiction
obtained shows that H ′ is a 2-connected graph.

Theorem 1 is a consequence of the following lemma.

Lemma 5. Let a 3-connected graph G on n vertices have a contractible set
of m ≥ 4 vertices, and n ≥ 2m + 3. Then G has a contractible set of m′
vertices, where m+ 1 ≤ m′ ≤ 2m− 2.

The proof of Lemma 5 is rather complicated. We start with several claims,
considering cases of the proof. In all these claims let G satisfy the condition of
Lemma 5, i.e. let G be a 3-connected graph with v(G) ≥ 2m+3. We assume
that G has a contractible set of m ≥ 4 vertices. Each such set is maximal,
otherwise, Theorem is proved. We try to find in the graph G a suitable vertex
set W ′, i.e. a contractible set of size m+ 1 ≤ |W ′| ≤ 2m− 2.

Claim 1. Let W ⊂ V (G) be a maximal contractible set of m vertices.
Assume, that the graph G − W is not a cycle and has a pendant part D
with |Int(D)| ≤ m− 2. Then the assertion of Lemma 5 holds.

Proof. Consider the set W ′ = W ∪ Int(D). By item 1 of Lemma 4 the
graph G(W ′) is connected. By item 3 of Lemma 4 the graph G − W ′ =
(G − W ) − Int(D) is 2-connected. Since m = |W | < |W ′| ≤ 2m − 2, the
set W ′ is suitable.

Claim 2. Let M ⊂ V (G) be a maximal contractible set of at most m vertices
with |NG(M)| = p ≤ m + 2. Then the graph G −M is not a cycle and has
pendant parts D1, . . . , Dk, such that

k∑
i=1

|Int(Di)| ≤ p.
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Proof. Let G′ = G − M . If G′ is a cycle, then all vertices of this
cycle are adjacent to M in G. Therefore, V (G) ⊂ M ∪ NG(M),
whence v(G) ≤ |M |+ |NG(M)| ≤ 2m+ 2. This contradicts the condition of
Theorem.

Thus, G′ is not a cycle. Then the graph G and the set M satisfy the
condition of Lemma 4, therefore, the graph G′ has at least two pendant
parts D1, . . . , Dk, which interiors are disjoint. By item 1 of Lemma 4 we
have ∪ki=1Int(Di) ⊂ NG(M), whence our Claim follows.

Claim 3. Let M,W ⊂ V (G) be two maximal contractible sets, such that
|M | = m, |W | ≤ m and |NG(M) \W | ≤ 2. Then the assertion of Lemma 5
holds.

Proof. The contractible set M satisfies the condition of Claim 2. Let
D1, . . . , Dk be pendant parts of the graph G − M and D = ∪k

i=1Int(Di).
If W 6⊂ D, then

|D| ≤ |W | − 1 + 2 = m+ 1,

whence by k ≥ 2 the graph G′ has a pendant part, which interior contains at
most m+1

2
< m−1 vertices. In this case, by Claim 1 the assertion of Lemma 5

holds.
Now let W ⊂ D. By Lemma 4, Int(D1), . . . , Int(Dk) are connected

components of the graph G(D). Since the graph G(W ) is connected, we have
W ⊂ Int(Di) for a certain i. Hence, the union of all other interiors consists
of at most 2 vertices. Therefore, G′ has a pendant part, which interior has at
most 2 ≤ m− 2 vertices and by Claim 1 the assertion of Lemma 5 holds.

Claim 4. Let W ⊂ V (G) be a maximal contractible set of at most m vertices
and the graph H = G−W be a cycle. Then the assertion of Lemma 5 holds.

Proof. Let H be a cycle h1h2 . . . hk, where k ≥ m+ 3 (numeration is cyclic
modulo k). Since G is a 3-connected graph, dG(hi) ≥ 3. Hence, all vertices
of H are adjacent in G to the set W . Recall, that the graph F = G(W ) is
connected

Consider vertices hi and hi+m+1, let they be adjacent to vertices x, y ∈ W ,
respectively. Let L = {hi+1, hi+2 . . . , hi+m} and P be a xy-path in the
graph F . Then, in the graph G′ = G − L, all vertices of the path P and
the set V (H) \L lie on a cycle (see figure 1a). Hence, these vertices lie in the
same block B of the graph G′.

Let U be the set of all vertices of G′ which don’t belong to B. Then
U ⊂ W \ {x, y}. If U 6= ∅, then every connected component of G(U) is
separated in the graph G′ from B by a cutpoint and, therefore, is adjacent
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Рис. 1: H is a cycle

to L (since the graph G is 3-connected). Hence, for a set W ′ = L ∪ U the
graph G(W ′) is connected. The graph G−W ′ = B is 2-connected. Moreover,

m ≤ |L| ≤ |W ′| = |L|+ |U | ≤ |L|+ |W \ {x, y}| ≤ 2m− 1. (1)

Let |W ′| = m. Then W ′ = L is a contractible set in G. If the assertion of
Lemma 5 does not hold, L is a maximal contractible set. Note, that NG(L) ⊂
{hi, hi+m+1} ∪W . Then the assertion of Lemma 5 holds by Claim 3, applied
to the set L.

In what follows let |W ′| ≥ m + 1. If the last inequality in (1) is strict,
then the set W ′ is suitable. The case where this inequality turns to equality
remains. Then |U | = m−1 = |W |−1, whence, x = y and U = W \{x}. Thus,
either Lemma 5 is proved, or vertices x and y cannot be chosen distinct, i.e.,
each of the vertices hi and hi+m+1 is adjacent in W to exactly one vertex —
to the vertex x (see figure 1b). Assume, that a vertex h of the set V (H) \ L
is adjacent to a vertex z ∈ W different from x. Consider a zx-path Q in the
connected graph F . Since h, x ∈ V (B), all vertices of the path Q belong to
B. In particular, z ∈ B, hence, U ⊂ W \ {x, z} and |U | ≤ m − 2. Then the
set W ′ is suitable.

The only case remaining is where all vertices hi+m+1, hi+m+2 . . . , hi (their
number is at least 3) are adjacent in W only to x. Then we consider vertices
hi−1 and hi+m instead of hi and hi+m+1 and by the same reasoning as above
obtain, that hi+m is adjacent in W only to x. Similarly, we assure that all
vertices of the cycleH are adjacent inW only to x. However, this is impossible
for a 3-connected graph G. Claim is proved.

Claim 5. Let W ⊂ V (G) be a maximal contractible set. Assume, that
|W | ≤ m and the graph H = G − W is not a cycle. Let A ∈ Part(H) be
a pendant part, such that |Int(A)| ≥ m. Then the assertion of Lemma 5
holds.
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Proof. Recall, that the graph F = G(W ) is connected. By item 2 of
Lemma 4, the pendant part A is a cycle and Bound(A) = {s, t} is a single
cutset of H. Let vertices of Int(A) follow a1, . . . , ak in cyclic order from s to
t.

Set L = {a1, . . . , am}, G′ = G − L. If k = m, set t′ = t. If k > m, set
t′ = am+1. Consider two cases.

1. The graph G′ is 2-connected.
Then L is a contractible set of m vertices. The set L is maximal, otherwise
Lemma 5 is proved. The neighbourhood NG(L) can include the set W and
two other vertices: s and t′. Then the assertion of Lemma 5 is proved by
Claim 3, applied to the set L.

2. The graph G′ is not 2-connected.
By item 3 of Lemma 4 the graph H−Int(A) is 2-connected, hence, all vertices
of this graph lie in the same block B of the graph G′. Let N = V (H)\L. The
graph H has a pendant part A′ 6= A, all vertices of the set Int(A′) ⊂ N are
adjacent to W . Thus, N contains two vertices adjacent to W . Let d, d′ ∈ N
be vertices adjacent to x, x′ ∈ W , respectively (see figure 2a). If it is possible,
choose d and d′ such that x 6= x′. There is an xx′-path P in the connected
graph F . Since ends of the path P ′ = dxPx′d′ are two distinct vertices of the
block B, we have x, x′ ∈ V (B).

Let k > m and none of the vertices d, d′ coincide with am+1. Then there
exists a vertex y ∈ W adjacent to am+1 ∈ Int(A). There is an xy-path Q in
the connected graph F (see figure 2a). One may assume that d 6= t. (If d = t,
then d′ 6= t. In this case, we exchange pairs d, x and d′, x′). Then the ends
of the path Q′ = dxQyam+1 . . . akt are distinct vertices of B, hence, all inner
vertices of Q′ lie in B.

L
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Рис. 2: |Int(A)| ≥ m

Thus, all vertices of the graph G′, which do not lie in B, belong to a
nonempty set U ⊂ W \ {x, x′}. Every connected component of G(U) is
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separated in the graph G′ from B by a cutpoint and, therefore, is adjacent to
L (since the graph G is 3-connected). Hence, for a set W ′ = L∪U the graph
G(W ′) is connected. The graph G −W ′ = B is 2-connected. Let’s estimate
the number of vertices in U and W ′:

|U | ≤ |W \ {x, x′}| ≤ m− 1 and m = |L| < |L|+ |U | = |W ′| ≤ 2m− 1.

Thus, the set W ′ is suitable, except for the case |U | = m − 1, which can
occur only if x = x′. By the construction, then no vertex of the set W \ {x}
is adjacent to N .

Consider two cases.
2.1. There exist two distinct vertices u, v ∈ W , such that

ua1, vam ∈ E(G).
If one of the vertices u, v coincides with x, let it be u. If none of the vertices
u, v coincides with x, we can assume, that there is an ux-path R in F , which
does not contain v. (Otherwise, v separates u from x in F . Hence, u does not
separate v from x in F and there is a vx-path in F , which does not contain u.
In this case, we exchange pairs u, a1 and v, am and obtain a similar case.) Let
M = {a2, . . . , am, v} (see figure 2b). Clearly, the graph G(M) is connected.

Let G1 = G−M . Consider two cases.
2.1.1. The graph G1 is 2-connected.

ThenM is a contractible set ofm vertices. We may assume thatM is maximal
(otherwise, Theorem is proved). Recall, that v is not adjacent to the set N .
Therefore, NG(M) \W can contain two vertices: a1 and t′. Then Lemma 5
follows from Claim 3.

2.1.2. The graph G1 is not 2-connected.
In the graph G1, all vertices of the set N ∪{x} lie in the same block, say B′.
Since there is a path sa1uRx in G1, which ends are distinct vertices of B′
(see figure 2b), the vertex u lie in B′. Let U ′ be the set of all vertices of G1

which do not belong to B′ and W ′′ = M ∪ U ′. Then U ′ ⊂ W \ {x, u, v} and
m + 1 ≤ |W ′′| ≤ 2m − 2. Any connected component of the graph F (U ′) is
separated in G1 from B′ by a cutpoint, therefore, it is adjacent to M . Hence,
the graph G(W ′′) is connected and the graph G −W ′′ = B′ is 2-connected.
Thus, the set W ′′ is suitable.

2.2. There exists a vertex v ∈ W , such that a1 and am are not adjacent
to W \ {x, v} (the vertex v can coincide with x).
By Lemma 4, then a1v, amv ∈ E(G). Set M = {a2, . . . , am−1} ∪ (W \ {x, v})
(see figure 2c). Let’s prove, that the graph G1 = G − M is 2-connected.
Recall, that V (G1) = N ∪ {x, v, a1, am}. By proved above, all vertices of the
set N ∪ {x} lie in the same block of G1, say B′. In the graph G1, there is
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a path sa1vamt
′, which ends are distinct vertices of the block B′. Therefore,

a1, v, am ∈ B′, i.e. G1 = B′ is a 2-connected graph.
Consider a connected component U of the graph F − {x, v}. Since G is

3-connected, U is adjacent in G to N ∪L. In the case we consider, U can be
adjacent neither to N nor to {a1, am}. Hence, U is adjacent to {a2, . . . , am−1}.
Therefore, the graph G(M) is connected.

If v = x, then |M | = 2m− 3 and this set is suitable. Assume, that v 6= x.
Then |M | = 2m − 4. If m > 4, this set is suitable. Consider the last case
m = 4. Then M is a maximal contractible set. Since (W \ {x, v}) is not
adjacent to N , we have NG(M) ⊂ W ∪ {a1, am} and Lemma 5 follows from
Claim 3.

Proof of Lemma 5. Let W ⊂ V (G) be a contractible set of m vertices in
a 3-connected graph G and H = G−W . We can assume that W is maximal,
otherwise Theorem is proved. Recall, that the graph F = G(W ) is connected.

If H is a cycle, apply Claim 4. In what follows, H is not a cycle and by
Lemma 4 has at least two pendant part-cycles. The interior of any pendant
part of H consists of m−1 vertices, otherwise one can apply Claims 1 and 5.
Let A,A′ ∈ Part(H) be two pendant parts,

Bound(A) = {s, t}, L = Int(A) = {a1, . . . , am−1},
Bound(A′) = {s′, t′}, L′ = Int(A′) = {a′1, . . . , a′m−1},

where vertices of L are enumerated in cyclic order from s to t and vertices
of L′ are enumerated in cyclic order from s′ to t′. Set the notation N =
V (H) \ (L ∪ L′).

Consider several cases.
1. For any vertex w ∈ W and any part B ∈ Part(H), there is at most

one edge from w to Int(B).
For each vertex a ∈ L ∪ L′ we choose one edge from a to W . The chosen
edges are called good. Then exactly one vertex z ∈ W is not an end of a good
edge incident to L and exactly one vertex z′ ∈ W is not an end of a good
edge incident to L′.

1.1. There exist two adjacent vertices x, y ∈ W , different from z′.
Consider the set W ′ = L∪ (W \ {x, y}) (see figure 3a). Then |W ′| = 2m− 3.
The graph G−W ′ is 2-connected, since it can be obtained from a 2-connected
(by item 3 of Lemma 4) graphH−L upon adding adjacent vertices x, y, which
are adjacent to different vertices of the set L′ ⊂ V (H−L). If the graph G(W ′)
is connected, the set W ′ is suitable.

Let the graph G(W ′) be disconnected. Then the only vertex of the set W
not adjacent to L — the vertex z — is separated in the graph F by the
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Рис. 3: Case 1.1

set {y, x} from all other vertices. The vertex z is adjacent in the connected
graph F to at least one of the vertices x and y — say, to y. Since G is a
3-connected graph, dG(z) ≥ 3. Thus, z is adjacent to L′ ∪N . If z is adjacent
to N (see figure 3b), the graph G(N ∪ L′ ∪ {z, y}) is 2-connected. In the
remaining case, z is not adjacent to N . Then z is adjacent to exactly one
vertex of the set N ∪ L′ — a certain vertex a′i ∈ L′, whence zy, zx ∈ E(G).
One of the vertices x and y (say, y) is adjacent to a vertex of the set L′,
different from a′i (see figure 3c). Then the graph G(N ∪ L′ ∪ {z, y}) is again
2-connected. In both cases, the setW ′′ = L∪(W \{z, y}) is suitable: the graph
G−W ′′ = G(N ∪L′ ∪ {z, y}) is 2-connected, the graph G(W ′′) is connected
(all vertices of the set W \ {z, y} are adjacent to L) and |W ′′| = 2m− 3.

1.2. All edges of the graph F are incident to the vertex z′.
Similarly, we may assume that all edges of F are incident to z. Thus, z = z′

and F is a star with the center z (see figure 4a). In this case, consider a
vertex y ∈ W , adjacent to a′2 and the set M = L ∪ {y}. Let’s prove, that
the graph G1 = G − M is 2-connected. By Lemma 4, vertices of the set
N ∪L′ = V (H−L) lie in the same block B of G1. Recall, that F −y is a star,
all its leaves are incident to good edges, and other ends of these edges are
distinct vertices of the set L′ ⊂ V (B). Therefore, we have W \ {y} ⊂ V (B).
Hence, G1 = B is a 2-connected graph.

Note, that |M | = m, the graph G(M) is connected and

NG(M) ⊂ (W \ {y}) ∪ {a′2, s, t}.

Thus, M is a maximal contractible set. By Claim 2, the graph G−M is not
a cycle and has pendant parts D1, . . . , Dk, where k ≥ 2 and

∑k
i=1 |Int(Di)| ≤

m + 2. The interior of each of these pendant parts must contain exactly
m− 1 vertices, since all other cases are analysed above. This is possible only
if m = 4 and k = 2. Then the graph G(NG(M)) must have two connected
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components Int(D1) and Int(D2), such that |Int(D1)| = |Int(D2)| = m − 1.
However, the graph G(W \ {y}) = F − y is connected and has exactly m− 1
vertices, and the vertex a′2 can be adjacent only to a′1, a′3 and vertices of W .
Hence, a′2 is not adjacent to {s, t}. Therefore, G(NG(M)) has a connected
component of at most 2 vertices, that contradicts proved above. The case is
analysed.

L

W

b

s′ s

am−1

a1
b b

b

bb t′ tb

b

L′

a′1

a′m−1

b

b
y

b
z

b

b

b

b

b

b

b

a′2
M

LW

b

s′ s

am−1

a1
b b

b

bb t′ tb

b

L′

a′1

a′m−1

b

b

y

b

b

b
U1

b
b

b
b

bU2

b

L

W

b

s′ s

am−1

a1
b b

b

bb t′ tb

b

L′

a′1

a′m−1

b

b

y

b

b

b
U1

b
b

bU2

bW ′

W ′

a b c

Рис. 4: Cases 1.2 and 2.1

2. A vertex y ∈ W is adjacent to two vertices of the set Int(A).
Recall, that the graph H − L′ = G(N ∪ L) is 2-connected by Lemma 4.
Consider two cases.

2.1. The graph F − y is disconnected.
Let U1, . . . , Up be all connected components of F − y.

Assume, that the component U1 is not adjacent to L′ (see figure 4b).
Since the graph G− y is 2-connected, for every block B′ of the graph G(U1)
by Menger’s Theorem in G − y there exist two disjoint paths from B′ to
N ∪ L. Moreover, none of these two paths contains vertices of L′ and other
connected components of F − y. Therefore, the graph G′ = G(N ∪ L ∪ U1)
is 2-connected. Then set W ′ = L′ ∪ (W \ U1). The graph G −W ′ = G′ is
2-connected, the graph G(W ′) is connected (all components U2,. . . , Uk are
adjacent to y, the set W \U1 is adjacent to L′) and m+ 1 ≤ |W ′| ≤ 2m− 2.
Hence, the set W ′ is suitable.

The only case remaining is where all components U1, . . . , Uk are adjacent
to L′ (see figure 4c). Then set W ′ = L′ ∪ (W \ {y}). The graph G−W ′ =
G(N ∪ L ∪ {y}) is 2-connected, the graph G(W ′) is connected and |W ′| =
2m− 2. Hence, the set W ′ is suitable.

2.2. The graph F − y is connected.
Assume, that the sets W \ {y} and L′ are adjacent (see figure 5a). Then set
W ′ = L′∪(W \{y}). The graph G−W ′ = G(N ∪L∪{y}) is 2-connected, the
graph G(W ′) is connected and |W ′| = 2m− 2. Hence, the set W ′ is suitable.
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In what follows the sets L′ and W \ {y} are not adjacent. Then every
vertex of the set L′ is adjacent to the only vertex of the set W — to the
vertex y. Let us exchange the sets L and L′ and with the help of similar
reasoning assure, that all vertices of the set L are adjacent to the only vertex
of the set W , and this vertex is also y (see figure 5b). The same statement
holds for the interior of any other pendant part of Part(H), if such a part
exists.
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Рис. 5: Case 2.2

Since G − y is a 2-connected graph and the set L ∪ L′ is not adjacent
to W \ {y}, the graph G(N ∪ (W \ {y})) is also 2-connected. Thus for a set
M = L∪{y} the graph G−M is 2-connected. Since |M | = m and the graph
G(M) is connected, M is a maximal contractible set. Let us perform the
same reasoning for the graph G−M . We either prove the theorem, or assure,
that all pendant parts of the graph G−M have m− 1 inner vertices, and all
these vertices are adjacent to y. The interior of one of these pendant parts
is W \ {y}, other parts are different from A parts of the graph H = G−W .
Thus, (see figure 5b)

the graph F = G(W ) contains a path of m− 1 vertices, all vertices of which
are adjacent to a certain vertex y ∈ W . (∗)

Now consider the set T = {a2, . . . , am−1, t} ofm−1 vertices (see figure 5c).
The graph G(T ) is connected. Prove, that the graph G − T is 2-connected.
Indeed, this graph is obtained from a 2-connected graph G− t upon deleting
vertices of the set T ′ = T \ {t}, adjacent in the graph G− t only to y and a1.
In the 2-connected graph H ′ = H − L, there are two disjoint a′1s-paths
and at most one of them contains t. Thus, in the graph H ′ − t there is an
a′1s-path P , which forms together with the path sa1ya

′
1 a cycle Z. Thus,

in the graph G− T there is a cycle Z, which contains a1 and y. Therefore,
vertices a1 and y belong to a certain block B of the graph G − T . If G − T
is not 2-connected, it has a cutpoint x, separating B from another block B′.
Since vertices of the set T ′ are adjacent in G−T = G− t−T ′ only to vertices
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of the block B, the vertex x also separates B from B′ in the 2-connected
graph G − t. This is impossible. The contradiction obtained shows us that
the graph G− T is 2-connected.

Thus, the set T of m− 1 vertices is contractible. At the end of the proof
consider two cases.

2.2.1. The set T is not maximal.
Then there exists a vertex u adjacent to T , such that the graph G−T −u is
2-connected. Note, that u 6= y, since dG−T−y(a1) = 1. But any other vertex u
is adjacent to none of the vertices a3, . . . , am−1. Since a2t /∈ E(G), the graph
G(T ∪ {u}) has no vertex adjacent to all other vertices. Therefore condition
(∗) fails for G(T ∪{u}). Thus, if we consider T ∪{u} instead of W and repeat
above reasoning, we will prove our Theorem.

2.2.2. The set T is maximal.
The graph H0 = G−T is 2-connected. If H0 is a cycle, apply Claim 4. Let H0

be not a cycle. Consider a pendant part D ∈ Part(H). If |Int(D)| ≤ m − 1,
consider a setW ′ = T∪Int(D). By Lemma 4 the graph G−W ′ = H0−Int(D)
is 2-connected and the graph G(W ′) is connected. Since 2 ≤ |Int(D)| ≤ m−1,
we have m+ 1 ≤ |W ′| ≤ 2m− 2, i.e. the set W ′ is suitable. If |Int(D)| ≥ m,
our Theorem is proved by Claim 5.

Proof of Theorem 1. Consider the maximal s ≤ m, such that the graph
G has a contractible set U of s vertices. If s = m we are done. Assume that
s ≤ m− 1. By Lemma 5, there exists another contractible set U ′, such that
s+ 1 ≤ |U ′| ≤ 2s− 2 ≤ 2m− 4. By the maximality of s, we have |U ′| > m.
Thus, the set U ′ is suitable for Theorem 1.
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