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Abstract
The paper is concerned with a model problem arising in the study of the evolution of two viscous
capillary fluids of different types: compressible and incompressible contained in a bounded vessel
and separated by a free interface. The estimates of solution in the Sobolev—Slobodetskii spaces of

functions are obtained that can be useful for the proof of stability of the rest state.
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1 Introduction

Free boundary problem for compressible and incompressible viscous fluids was considered for the
first time by I.V.Denisova [1]. In this paper, local in time solvability of the problem was established
under some additional restrictions on the coefficients of viscosity of both fluids. These results were
obtained as a consequence of a detailed treatment of the model problem in two half-spaces, which
was connected with some technical difficulties in the analysis of the explicit formula of solution of
this problem. It was the motivation of imposing the above-mentioned additional requirements on
the viscosity coefficients. When the surface tension is absent, these requirements were removed by
direct calculations in the papers of I.Denisova [2] and of Prof. Y.Shibata and his colleagues [3,4],
who has used uniqueness of the solution of the model problem (i.e., the Lopatinski condition); see
also the review article [5].

The aim of the present paper is to analyze the model problem for the capillary fluids. We
concentrate on the problem of stability of the rest state and obtain necessary estimates in the
infinite time interval for the solution of the model problem with a small compact support. This
assumption was used also in [5]. Our main attention is given to the problem that arises in estimating
the solution near the interface as the most complicated one.

In Section 1 the statement of the nonlinear problem is given and the linearization procedure
is described. Section 2 is devoted to the construction and estimate of the solution of the model
problem.

We pass to the statement of the free boundary problem. Assume that two fluids, compressible
and incompressible, are contained in a bounded vessel Q = Q;f UT; UQ; C R? with the boundary
> and separated by a free interface I'y, ¢ > 0. It is assumed that the domains Qf and ), are
filled with the compressible and incompressible fluids, respectively, €2, being located inside €2, and
09, = I'; is bounded away from 3. The problem reduces to the determination of I'; for ¢ > 0
together with the velocity vector field v®(z,t), z € QF, of both fluids, the pressure p~ (z,t) of the
incompressible fluid and the density p*(x,t) of the compressible one satisfying the system of the
Navier-Stokes equation, the initial and boundary conditions on ¥ and T'y:

p- (D™ 4 (v - V)o )= V- T (v7)+Vp =p f,

V.v~ =01in Q;,

pH (D™ + (v - V)uh) = V- TH(v") + VpT (p™) = p* f,

Dipt + V- (pTvt) =0 in Qf, (1.1)
vE|imo = v in QF, pt(z,0) =pd(z) in QF,

v =0, [v]=0 V,=v-n,

(=pT(pT) +p )n+ [T*(v)n] = cHn on T.

In these relations, T = T is the viscous part of the stress tensor, i.e.,
T (v )=p Sw™), TH(v") =p"Sw")+pIV- v,

put >0, uf > —2ut/3 are constant viscosity coefficients, S(w) = (Vw) + (Vw)? is the doubled
rate-of-strain tensor, the superscript 7' means transposition, I is the identity matrix, p*(p™ (x,t))
is the pressure function of the density p™ of the compressible fluid that is positive and increasing,
p~ is a constant density of the incompressible fluid, f is the vector field of the mass forces given in
Q, V,, is the velocity of the evolution of the free surface I'; in the direction of the exterior normal
n to I'y. At the initial instant ¢ = 0 the surface I'y is given.



By [u]|r, we mean the jump of the function u(x) given in Q;f UQ; across I'y:

[u] = ut — u |,

We write (1.1) as a non-linear problem in a domain with fixed interface 'y by passing to the
Lagrangian coordinates y € Qf U Ty U Q. They are connected with the Eulerian coordinates
z € Qf UT, UQ; by the equation

r=y+ /0 u(y, 7)dr = X, (y, t), (1.2)

where u(y,7) is the velocity vector field written as a function of the Lagrangian coordinates.
One of the advantages of the transformation (1.2) is that the space derivatives of p™ disappear
from the continuity equation after the change of variables, which is not the case for the Hanzawa
transformation. In this case it is necessary to work in the spaces of somewhat more regular functions
and impose additional compatibility conditions on the data of the problem.

For small [ Ot u d7, the mapping (1.2) establishes one-to-one correspondence between Qar U'huQy
and QF UT; U Q; . In the coordinates (y,t), problem (1.1) takes the form
P Diu” —Vy - Ty(u ) +Vug =p f, Ve -u =0in Qg,
PO’ = Vo - Ty (u®) + Vup™ (p7) =77 f,
Dipt +p Ve -ut =0 in QF, (13)
utlico =ui =ovF in QF, 5t|imo=p in QF,
u g =0, [u]=0,
(—pt(p") + ¢ )n + [TE(u)n] = cHn on Ty,

~

where f(y,t) = f(Xu,t), ¢ = p~ (Xu,t), pT = pT(Xu,t), Voo = LTV, = (L7HTV is the
transformed gradient V., L is the Jacobi matrix of the transformation (1.2), L = LL, L = detL,

T; (u_) = W Sy- (’U,), TZ (u+) = ,U'+Su+ (u+) + N;FHVU ’ u+7

Su(u) = Vu @u+ (Vo ®u)? is the transformed doubled rate-of-strain tensor, H = H(X,,,t). The
kinematic condition V,, = w - n is fulfilled automatically. The normal n(X,,t) to I'; is connected
with the normal ngy to Iy by the formula

n= m. (1.4)
ILTn0(y)|

Since one of the fluids is incompressible, the volumes |QF| of QF are independent of ¢, as well
as the mean value p, = M*t/|Qf| of p*, where M™ is the total mass of the compressible fluid.

We set
4T R} _ _ 20
O, pr=ph 0t =plh) 0T - o
3 Ry
hence fﬂf (pt —pt)de = fQ[)* Lo*(y,t)dy = 0 and the last boundary condition in (1.3) can be

written in the form

9=

(= (o + ) = ¥ () + 07 + [Tulwpn] = o(H + ).



If n-ng > 0, then this condition is equivalent to

[T IS, (w)n]|

FOZO’

20 (1.5)

" (o 0" =" o)+ 0 + - Tuuinl|, = o(H + )]y,

where IIg = g — n(g - n) and Ilpg = g — no(g - no) are projections of g onto the tangential planes
to I't and Iy, respectively.

We also notice that fﬂf V-vt(z,t)de = [,V v(x,t)dz = 0. Since
Hn = A(t) X, (1.6)
where A(t) is the Laplace-Beltrami operator on T, problem (1.3) can be written as follows:
p Diu™—V-T (v )+VO =l (u",07), V-u =l (u") inQy, t>0,
prDut — V- TH(ub) + p VO =1 (ut, 07),

DOt +ph (V-ut — Ve out(z,t)dz) =13 (u",0%) in Qf, t>0,

1
0] Ja,
+ +_ o+ - of _ .
uFlio =ui =vy in QF, O0T—o=0 =pf —pl in QF,

(1.7)
[w]lr, =0, [ ToS(u)no]lr, = I3(u),

t
—p10T +07 +ng- T(u)no]‘ro —ong - / A(0)u(y, T)clT|FD
0

t
2
ly(u) + / (Is(u) + lg(u))dT + o(Hp + R—), uly =0,
0 0
where p; = p'(p;}) > 0,

L (w,0) =V Ty(u )=V - T (u")+(V—Vu)0~ +p f,
lf(ua 9) =V - qu(u—i_) -V T+(’U,+)
+p1(V = V)0t — Vo (plpf, +07) — pi167) — 0 Deut + (p)f, +67)F,

~

I5(u)=(V-=Vy) v =V-Lu"), Lu)=I-Lju",

+
1 (w,0) = p(V = Vo) -ut =07V, - ut — Pm [ (vt LY, ut)ds,
Q] Jaw (1.8)
l3(u) = [,uiHO(HOS(u)nO - HSu(u)n)HFO,

ly(u) = [no - T(u, )no — n - Tu(u, g)n] — (p* (pf, +07) —p* (o) —p167)|p,

Is(u) = 0Dy (nA(1)) / u(y, 7)dr + o(n - At) —no - AO))u(y, ),

, n=Dim, At)=D;A(t).

0

lo(u) =co(nA(t) + nA(t)) Yy

By replacing the expressions (1.8) in (1.7) with some given functions, we arrive at the linear
problem



prDevt = pt V2 — (u + p)V(V - 0") + i VO = T
1
DO + pit V-'erf—/ V-vtdz) =h" in QF,
7+ o 51 Jog ) ‘
p D —p Vo +VO =f, V-v  =h" in Q,
Vo =vo in QT UQy, 0F|—o =07 in QF,

vHe =0, [vllr, =0, [#*TeS(v)nolr, = b,

¢
—p10T + 07 + [ng - T(v)ng] — ong - / A(0)v(y, 7)dT|p, = b.
0

We recall the definition of the Sobolev—Slobodetskii spaces. The isotropic space W3 (§2), Q C R™,
is the space with the norm

sy = 3 1Dl q= 3 / (DIu(e)? da,

(UNFIESS o<lil<r

if r = [r], i.e. r is an integral number, and

dzr dy
Iz = )+ 0 [ [ PP DIt

l71=[r]

alily

—“ Y __ where
Ozt ..oz

if = [r] + p, p € (0,1). As usual, D/u denotes a (generalized) partial derivative

Jj = (j1,72,---Jn) and |j| = j1 + ... + jn. The anisotropic space W;’T/Q(QT), Qr =Qx(0,T), can
be defined as )
L((0,7), W5 () N W3 /2((0,T), La(2)

and supplied with the norm

lull

2 nian = | g @5 [ e R 1 0 (110)

There exist many other equivalent norms in W, /2 (Qr); some of them will be used below. Sobolev
spaces of functions given on smooth surfaces, in particular, on I'g and on T'g x (0, T"), are introduced
in a standard way, i.e., with the help of local maps and partition of unity. We find it convenient to
introduce the spaces

W3 (Qr) = Lo((0,T); W5 (), Wy *(Qr) = W3/?((0,T); Ls(2));

the squares of norms in these spaces coincide, respectively, with the first and the second term in
(1.10). We also introduce the notation

(r1,1/2) _
|u | = llullyg+iogm + H“le/z (0,7); W3 (2))’ (1.11)

lullwy ey = llullwy @y + lullwr@-),

if u(x) can be discontinuous on O+ N Q~. The norm | +, is defined in a similar way.

‘UHW;Z/?(UQT)



It is well known that the norms [Jully: gy and ( fp. (1 + [€[*)[a(€) d€) Y2 are equivalent, in
view of the Parceval identity (by @(£) we mean the Fourier transform of u(x)). In what follows we
deal with the functions wu(x,t) from the Sobolev spaces with the exponential weight e, 3 > 0,
and the following lemma will be useful.

Proposition 1. Let e’y € W3\(R) with A € (0,1), and u(t) =0 for t < 0. Then

sihiee 2 ~roN2 028t o dr
cl/ (Is|** + 1)]u(s)] d52§/ B dt/ lu(t — 1) — u(t)] “ir
S

1 oo , (1.12)
00 s1+100
+/ et u(t)|? dt < 02/ (|s|** + 1)]7(s)|? dsa,
0 S$1—100
S1+100 dT
o [P D) dse < / dat / Pt —7) — Pu(t)
S1—100
- . (1.13)
+/ e2ﬁt|u(t)|2dt<c4/ (15 + D)fa(s)[? dss,
0 $1—100
where
oo
ii(s) = / e=stu(t) dt
0
is the Laplace transform of u(t), s = s1 + ise, s1 = —f.
Proof. Clearly,
1 B—+ico
u(t) —u(t—7) = — / u(s)(1 — e °")e dss.
2 —fB—ioco
By the Parceval identity
00 —B+ico
27r/ |u(t)|262ﬁtdt:/ [u(s)|* dsa,
0 —B—ico
we have
d —B+ioco _ 1 e dT
27r/ 2Pt dt/ lu(t) — u(t — 1) =+ o = /ﬁm |u(s)|2d52/0 le™sT — 1|271+2A' (1.14)
Since T
le ™™ — 12 = (75" — 1) + 4e~*'" sin? 72,

there holds
_ T8y dr
/ |€ - 1|2 1+2)\ X C(|51|2)\ +/O Sln2 Tm) < C|S|2)\a

1 [e%s} [e%s}
_ dr . o TSy dT . o TSy dT
/o le™*T — 1|2—71+2k > c(|s1]? +/O sin? 5 i 7/1 sin? - —7-1+2/\) > c(]s|? = 1).

These inequalities and (1.14) imply (1.12). Since e Peft < 7)< €8 for 7 € (0, 1), estimates
(1.13) can be easily deduced from (1.12) and the relation

Pyt — 1) — ePlu(t) = LT (u(t — 1) — u(t)) + u(t) (BT — B,




The proposition is proved.

Proposition 1 extends in an obvious way to the spaces Wi(R) with [ = [I] + A, [I] > 0 and to
anisotropic spaces.

In what follows we set

oo o0 dr oo
ull3y gy :/O dt/o |u(t) fu(t77)|2m+/0 lu(t)? dt (1.15)
and take the expression
(/000 dt /OOO A Du(t —7) — eﬁtu(t)F% + /OOO eQﬁt|u(t)|2dt)1/2 = [l ullyp zy
as the norm in the corresponding weighted space. Since
/OOO dt/ooo Pyt — 1) — eﬁtu(t)ﬁ% < /OOO dt/ol Pyt — 1) — eﬁtu(t)|2%
+ C/OOO ePtlu(t)|* dt
and
/000 dt /000 Byt — 1) — eﬁtu(t)|2% > /000 dt /01 Byt — 1) — eﬁtu(t)|2%
- C/OOO e u(t)|? dt,

the norm ||eﬁtu||W;(R) is equivalent to

(/:IHOO(|3|2)\+1)|a(s)|2d82)1/2.

1—100

In the case s; =« > 0 this equivalence is established in [6].

2 Linear model problems

The study of the linear problem (1.9) is based on the analysis of the model problem in the domain
Rﬁ_ UR?2, in which the interface is fixed and coincides with the plane y3 = 0. Assuming that the



compressible fluid is located in Ri, we write this problem in the form
— R 1 — — — - . — 3
Dw™ —v Vv~ +—VO0 =f", V-v-=h" in R;=R>x(0,T),
p
Dyt — vVt — (v +u)V(V ot + p—iV@* =ft,
DOt +ph Vvt =kt in RE=RY x(0,7),

v[,_,=0 in R}UR®, 6F|_ =0inR}, v——0, §——0,

lys|—oo lys|—o0
ov Ov:
B +( Y% | OUs
[v”y3=0 =0, ['u <8y3 + 8ya)]

t
—p10t + 0 +uf Vot + |:2,Lti%:|+O'A// vy dr
Y3 0

2.1)
= ba(ylat)a a = 172a
y3=0

y3=0

t
:b3+/B(y','r)dT, t<T
0

Here, T € (0,00], R} = {Fa3 > 0}, v~ = pu/p~, vt = put/pt, vii = uf/ot, p=, 0t =
const > 0, A" = 0%/0y? + 0%/0y3, v = (y1,y=2). Our goal is to obtain estimates of solutions of
(2.1) that are compactly supported in the Sobolev spaces with exponential weight eft B> 0. To
this end, we extend the solutions periodically with respect to ¥’ = (y1,%2) into R? and expand into
the Fourier series

n o_ 1 ~(¢ i€y /71/ /_
u(y)——(mo)2 k%%u(f Jelé v’ =k k = (k1, k2), (2.2)

(cf. [5,7]), where
i) = [ )y, o = (),

are the Fourier coefficients and Q' = {|yo| < do, a =1,2,} is a periodic cell. Problem (2.1) will
be treated separately in the spaces of function satisfying the condition

//udy’ =0 (2.3)

and of functions of the type (2do)~1%(0) (i.e., independent of y; and y2). We introduce the notation
Ii = {:l:yS S (Oadl)}a Di = {y/ € D/ay3 S Ii}a Qi = {y/ S Qlaiy3 = 0}; Q/T = D/ X (OaT)a
Q% = Q* x (0,T) VYT < oo and prove the following propositions.

Theorem 1. Assume that ePt f € Wé’l/Q(UQi), ePtat e witTH0(QF)n W2((0,T); WH(Q™T)),
PVh € WETHETY2(Qr), hm = V- H + Hy, ¢®H, P Hy € W' ™2(Q7), ePby €
Wyt ) = 12, @y e WRTYPN@n) 0 WP(0.1) @), B e
W2l_1/2’l/2_1/4(Q’T), where B and dy are certain positive numbers, do is small and 1 € (1/2,1).
Assume also that these functions satisfy the compatibility conditions

h_|t:O = 07 H|t:0 = 07 H0|t:0 = 0; ba|t:0 = 07 a = ]-7 2;

and the orthogonality condition (2.3). Then problem (2.1) has a unique solution also satisfying (2.3)
and such that ePtv € W22+l’1+l/2(UQ$), eftve— € WQI’Z/Q(Q;), efth— ¢ WQZ/Q((O,T);WQI/Q(Q')),



ePtot ePtDo+ € WITRO(QF) n WP (0, T); WH(QH)). It is subject to the inequality
_ —(141/2,1/2 1+1,1/2
||€ﬁt’v||W22+z,1+z/2(uQ¥) + ||€ﬁtv9 HWQ“/Q(Q;) + |€ﬁt9 |§2,T /2:1/2) + |€ﬁt9+|22; /2)

1,1 —
+ 1D < el Fllyrarn gz + €70 lwiroggry + €7 Hllyoasre

(LUQRE)

(+1,1/2)
+ ||€BtHO||W20,1+L/2(Q;) + |€ﬁth+|Q; + Z ||€6tba||W21+1/2,z/2+1/4
a=1,2

(Q@r)

(@)

(1+1/2,1/2)
+ |eﬁtb3|Q/T + ||eBtB||W2171/2,z/271/4(Q,T))
with the constant independent of T
We also consider one-dimensional problems

Dtvf — ViDigva = ff in I;[,

Valt=0 =0, Valys=+a, =0, (2.5)

dv,,
[Ua”yz:O =0, [Md—yg] |y3:0 =ba(t), a=1,2,

Dtv; —(2vt + Vf)D§3U3 + f:—}rDySH"' = f;, D6t + p;;D%Ug =hT in I;f,
m

1
Dy —v D2 vy +—D,, 0" =f;, Dyuvs=h" in I
tV3 y3 Y3 P Y3 3 Y3 T (2.6)

[1)3” 0, v3|y3:ﬂ:d1 =0,

y3=0

—p10t +607 + (2M+ + NT)D%U; —2p" Dy,vg 0 = b3(1),
Ys=
Theorem 2. 1.If Pt f£ ¢ WEV/2(UIF), ePth, € WY*T4((0,T)), and do,dy are sufficiently
small, then problem (2.5) has a unique solution such that e5tv, € W22+l’1+l/2 (UI%), where a = 1,2,
I;E = I x (0,T), and the solution satisfies the inequality

2 2
Z ||€ﬁtva||w22+z,1+z/2(ul%) < CZ (Heﬁtfo:thW;f’lﬂ(uI%) + ||€ﬁtba||W2l/2+l/4(0,T))' (2.7)

a=1 a=1
2. If PtfF e WEHRWUILE), eftht e WITYOIE) n WY ((0,T), Wi(IY)), ePtDy,hm €
Wéyl/Q(IE)a h= = Dy3ﬁ3 + 9o, eﬁtﬁ&eﬁtﬁo € W2071+l/2(1;)7 eﬁtb?) € W21/2+1/4((07T))7
then problem (2.6) has a unique solution such that e’tvz € W22+l’1+l/2(ul%), eP'D,, 0t €
Wy 2(LE), 2Dt € Wy () N0, Ty WHIT)), 7Dy 0 € Wy (1), 07|y €

W2l/2+1/4(0,T), and the solution satisfies the inequality
1+1,1/2
”eﬁtvanwf“’l“”(ulqi:) + ||eﬁtDy39+||Wé,z/z(IT) + |e»3tDt9+|§; /2)

+ ||eﬁt’Dy39_||W21,z/2(I;) + ||eﬁt9_|y3:0||W21/2+1/4(0,T) < c(||eﬁtf3||w2l’1/2(ufi) (2 8)
1D oy + 1€ Dallyorsirz ) + 1€ Dollyorsirz - '

1,1
+ |eﬁth+|(llf /2 4 ||b3||W;f/2+1/4(0 T)).
pn ;

10



The constants in (2.7) and (2.8) are independent of T
Theorem 3. The solution (v*,0%) of problem (2.1) supported in Q% and such that e’'v €

W2 (unE), eftve- € WA (Q5), P9~ € WY2((0,T): Wh/A(Q")), eftvet e WA (9F),
PD,O+ € WELO(QE) nWY2((0,T); WH(Q™T)), satisfies the inequality
_ _y(1+1/2,0/2
le® vy zens1r2 ) + 167 V0 [yyrirz g +1e0 [ 1%V 0 |72

1+1,1/2 _
+|eﬁtDt9+|£2; />gc(||eﬁtf|\wzl,l/2(m¥)+||eﬁth lwirrocaz) + 1€ Hll oz g

)
T
(1+1,1/2) (2.9)
+ ||eﬁtH0||W2o,1+z/2(Q;) + |eﬁth+|g; + 721 . HeﬁtbaHW21+1/2,1/2+1/4(Q/T)
(1+1/2,1/2)
+ |6ﬁt53|Q/T + HeﬁtB||W2zf1/2,z/271/4(Q,T))

with the constant independent of T, provided that fQ, Bdy' =0.
Proof. We extend v*, #F periodically with respect to (y1,y2) into R? and expand in the series
(2.2). Tt is easily seen that (2.1) is decomposed into two problems: the first one for the projection

1 1
'v’:'vf—/ vdy, 9’:07—/ 0 dy’
(2d0)2 QI y (2d0)2 QI y

of (v, ) onto the space of functions satisfying (2.3) and another one, of the type (2.5), (2.6), for

124 ]_ 1" ].
v = — vd,9:—/9df
(2do)? /Q Ys (2do)? Jo %

(it is obtained by integration of (2.1) over ', taking account of fQ, Bdy' = 0). Clearly, 93 =
fo Hidy', $Ho = fQ' Hydy'. Applying Theorems 1 and 2, we obtain the desired estimate.
Btxyg+
Remark. The norm [e”*V@ ||W2z,1/2(g;)
|eﬁtDt9+|gjl’l/2), if the condition [, 67 dy’ = 0 is satisfied. This can be achieved by the con-
T

struction of a special decomposition of 7 in (1.9) (as in [9]).
The proof of theorems 1 and 2 is given in the rest of the section.

in (2.9) can be replaced by a stronger norm

2.1. Homogeneous Lamé-Stokes problem.

We proceed with the proof of Theorem 1 for T' = co. We start with analysis of the homogeneous
problem

1

Dw~ —v Vv +-—VO =0, V-v- =0 in R =R> x(0,00)
Po

Dt — vVt — (v + 1 )V(V-vT) =0 in RE =R} x (0,00),

v[,_,=0 in RZUR’, v——0, 0~ 0,
- lys|—o0 Yz——00

ov ov
— +( L | T3
ol =0 (G 52

t
0" 4+ pfV-vt+ {Quig—zﬂJraA’/vng
3
0

(2.10)
=bo (Y1), a=1,2;
y3=0

t
:b3+0/BdTEb’3,
0

y3=0

11



assuming that b and B are 2dy-periodic functions of y; and yo decaying exponentially as t — oc.
We expand the data (b, B) in the Fourier series (2.2) and take the Fourier-Laplace transform in
(2.2), which converts this problem into a system of ordinary differential equations and some jump

conditions for the functions v, 6, namely,

~ d?o ~ =

(s+vT|EP)ot — vt d;)Q — (T + v HV(V-07) =0 for y3 >0,
3

~ d?v- 1 =~ =

(s+u_|£'|2)'u_—V_—v2+TV9_=0, V-v~ =0 for y3 <0,
dy; p
~ dva .. - = 2.11
oo =00 (2 + i€aTallymo = bor 0= 1.2, 20
~ dos ~ "2 ~ o~ ~
9 2 + + . — - = b —B = /
+ 21 dy3]+u1V V-0 v3y3:o 3t 35

v — 0, 6—0 as lys| — oo,

where V = (i&1,1&2, dl%)
As above, this system is studied separately for & = (F-ki, I-k2) with [K'| = [k1] + |k2| > 0
and k' = 0, but for the time being it is assumed that ¢ € R2. The general form of the solution of

(2.11) is
rt . 0 . 251 .
(¢, 5,y3) = CF 0 eV L CF | rt e Vs 4 C'g—,|r 1€ e~ T1Y3
i1 €2 —rf
Cirt + i€1C§:— . &1 . .
= | Grtriec® oot [ ig | (e - e for gy >0,
(CJF — TIFC3 —’I“i’_
- _ 0 _ &1 )
O s ys)=Cr | 0 e Oy [ T fen Oy | i [t
i&1 i&s ¢/|
—Cirt +i6Cy ) it / .
= | —Cyr +i&C; |e" v +C5 | ik (e|5 lys _ or v3),
C+lgles €]
6 = — B—po—se\ﬁ'\ys for y3 < 0,

where 7% (s,&') = \/s/vE + |2, rf = \/s/(21/++1/f')+ |€]2, |arg/z| < m/2 for arbitrary

complex-valued z, C* = Zi:l 1€y Cy.
The coefficients C;* are found from the jump conditions in (2.11). Since

Wl oy eroy, | —e0r vieelop

dy3 y3=0 o a1 ¥30 dy3 y3=0 a [} 3
dLN;r = —rtCt + 20 —d%— =r C™ + |€/|2C_ 01 ys=0 = 0 |ys=0
dys lys=0 ! 3 dys lys=0 3 Yz= y3=0>

12



these conditions reduce to
T ((—rT2CF —igor CF) +in (CT — 1 CF))
— (=120 +i&al'|Cy) +i€a(CT + |€]C8)) = ba, a=1,2,
@t + D) (=rtCr 2O + uf D ig (rt O +ig,CF)

=, (2.12)
=207 (r"CT + [EPC) — Cypg s — %'QW —rfCF) =1,
Chrt +ig,Cf = -Clr™ +i6,C;, a=1,2, Ct—rfCH =C™ +|¢|C5.
From (2.12) it follows that
pt (=P P CF — [ (CT =1 CF))
— /[(—r_Q(C_ — |§'|3C3 - |€/|2(C_ +1€'1Cy)) = B= Z i‘f’vgva (2.13)

y=1,2

CHr —Jg')PC3 = -C7r™ — [€']C5.

We transform (2.12), (2.13) into an algebraic system with respect to C5* and Ct — ] Cf. We
replace C* with (Ct — r]C5") + 7 Cf, C~ with (C~ + |¢/|C5) — |¢/|C5 and make use of the
formulas
i+ trt s

= 7 pt
T o= V+R (2.14)

+

+
£2_1er)2 = yii - _’/’; and it —|¢)? =

where 3 = v+ /(207 + v}"). This leads to

AL(CY —rFCH) —rfptsCf — |€'|p~sCq =B,

(Ao — ZEB o+ — by 4 prs1 - 2r0 )0 — s — —2EL oo
5 1 &3 3 r+ g ’ (2.15)
R . jglcy
As(CH — 1 CF) 4 prs——Cf —p-s— 123,
I e e T

where
Ay = —p 2 1)+ (2P, Ay = —2uTrT —2ur, Az =1t 4.

In order to write (2.15) in a uniform way, we set r; = || and R~ = [¢'|/(r~ +|¢’|); then (2.15)
takes the form

AL(CH —rFCH) —rfptsC — 17 p~sCy =B,
0|€'|2

(A — )(CF =1 CF) +pFs(1—2RN)CF — p~s(1 - 2R7)Cy = by, (2.16)

R-
As(CT —rfFCH) +p 5—C+ —p s—C5 =0,
1
We see that (p+50;’, p~sCy ) satisfy the equation
M(p-"_scgr,p_SCg)T = (ﬁagg)Tv

13



where

_AVRY b ALRD - 02
M= A23+ 1+ ARA# 17 , A’2:A2—U|§|.
~AE L 1-2RY LR (1-2R) s
Hence ) . .
Cy = W{(Alz—, — As(1 = 2R7)B — (A1 —— — Agry )by},
r X - ) ‘;ﬁ . (2.17)
Cy = p= ——pil —r e *A3(1*2R+)}B*(A1M—_+A3T1+) 5t
where
442 2 (2 /2 R~ o, BT
P=Asdet M = (—p"(r™ + [']7) + p~ (r " + [P (= = —(1 2R)+M—(1*2R )
bR RE (e - - +
+2(ptrt +pur )(M—_+M—+)+(r +r7)rf(1=2R7)+r; (1 —2R")) (2.18)

al¢'? i R*
s (u‘(r‘ FIen u+)'

Following [2], we write the solution of (2.11) in the form convenient for the forthcoming esti-
mates:

v WeE(y3) + VEeL (y3), if +y3 >0, (2.19)
é'_

—Cgp_se‘gl‘%7 if y3 <0,
where C’; are given by (2.17),

e U3 _ ol€'lys e~ _ o ys

S L S i S (S 2.20
€o € » €1 __|§/| 6 TJF?TIF ) ( : )
w1 i& i
W=|w | V=-C0 )| i& |, Vi=-C("-r)| i&
w3 '] —rf
In view of (2.12) and (2.16)
_ bo ia(pt —pJws | ia(ut Ot =)+ Cy (r” —1y))
Wa - _ + _ + )
putrt +pur putrt +pur ptrt +p—r- (2.21)
w *—i( +SC+R_+ - 750_5)
3= As P 8+ P 8 =
Now, we simplify the function
2 2 — (2 2 R~ +, RT _
M= (=p (" + 1)+~ (7 + [ (=—=0 =2R7) + —(1 - 2R"))
B a a (2.22)
T A + 4\ (Tt 4 +
2T 4T ) (—— u—+)+(r +r7)(r7 (1—2R7)+r  (1-2R"))
that is the principal part of P. We write it as the sum
M =p?EY + y2E~ + ptp Ep. (2.23)

14



It is easily seen that

Et = ﬁ(r” +E'HR™(1 —2RY) + 2rfrtR™
_ ;ﬁlpr (R (1= 2R") + 2 R R* + 20 PR™(1 - 2R%) + 206/ PR7)
_ u+1u‘ (Bt aepr-( - RY),
B = u+1u‘ (Sf; +AEPRY (1= ),
Ey = ﬁ(*(fr2 +IEP)RT(1—2R7) = (r 2+ [€'))R™(1 - 2RT))
+2(rtr R +r 7 RT)+ (vt + 7)) (1 —2R7) +r{ (1 —2R™T))
_ u*lxr (- 2Rt -2R") = R (1-2R") + 2L R*R; + =R RY)

S pt 5 pry _op- S =1 5 pyg _opt
+(V+R +er*)(1 2R )+(V+R++;rR )(1—2R™)
—2¢'2(RY(1—2R™) + R~ (1 — 2R™)) + 2|€2(RT + R™) + 2J¢|2((1 — 2R™) + (1 — 2R+))),
where N
ri e _ 1€’ v
Rt="t1"=  pr=—>5l " 4t_-_ - 2.24
T e T T T gy (2.24)

Easy calculation shows that

1 s s __ _ -
By = (=RE+ ZRD+ 4P — R (1 - RY) = R(1-R"))),

=
hence
1 4o SR™ _5SRT . _,sRY sRY
Mﬁu*u‘(ﬂ il e SV (A (V_ +— )+
FAEPR (1 RY) £ p 2R R bt (- R-(1 - RY) ~ RY(1 - RO)), (225)
ol¢'’ i RT
P=M+ , g=— 1
R S

Remark. Formula (2.25) for M coincides, up to a factor, with the expression given (without
extended proof) in the paper [5] by 1.V.Denisova; it has the following form in our notation:

sR™ _ _sRT _ sRT  sR}
M=ptpt——tpp——+pt T (= + =)
14 14 14

14
112
Faptu e - - ) S - Rt - BYR).

We pass to the estimates of M and P. The estimate of M (2.26) obtained below is proved in
the papers [2] and [3] for Res > 0; we need it also for negative (small) Res.
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Proposition 2. If Res = s; > 0 or 0 > Res = 51 > —6|¢/|? with small 6 > 0 and s1 < 0, then
cr(|s| + 1€'17) < IM| < ea]s] + [€'°). (2.26)

Proof. Let Ims = s5 > 0, for definiteness (the case Ims = s < 0 is treated in a similar way).
‘We notice that for small §

es(ls] 4+ 1€'F)Y2 < Rer® < |r| < ealls] + [€1%)1/2,

cs < ReR* < |R*| < g, (2.27)
and similar inequalities hold for RT, R . This can be proved by elementary calculations. In addi-
tion, R* and RT possess the following properties:

(i) arg R~ ,arg R} € (—7/4,0];

(ii) there exists w € (0,7/4) such that arg R*, arg RT € (—w,0), arg(1 — R*) € (0,w);

(iii) arg RT € (—w,0) both for »" = v~ /(2vF +v]") > 1 and for »" < 1.

The statements (i) are obvious; (ii) follow from inequality v+ < 2% + v;, that implies 0 <
»T < 1; moreover, the relations

limarg RY, limargR', limarg(l —RY)=0 as sy — o0

should be taken into account. They do not allow to RT, R™, (1 — R*) to reach the limiting value
of arg R = —7/4 as s3 — oo. The simplest way to verify (i) and (iii) is to represent R* and R
as vectors on the complex plane s.

The value of w is different for RT, RT and 1 — R*; we shall choose as w the maximal of these
numbers.

Assume that Res > 0, u™ > p~ and write M in the form M = sM, + |¢'|> M, where

M. :££+£R_++R_t+£
opm vt optve vt

- u+4u (pr—p )wtRA1-R") +p*RT1—-R ) +pTp (1-R" + R*R’))).

M

In view of (i) and (ii), we have: arg sM; € (—7/4,7/2), arg|¢'|* M € (—n/4 — w,w), which implies
|arg sMy — |€/|?Me| < 3n/d+w) <

and
|M| > (||| M| + [€']7|Me]) = e(|s] + [€']%), (2.28)

because |Ms| > ReM; > ¢ > 0, |M¢| > ReM¢ > ¢ > 0. The case p* < p~ is treated in a similar
way. If Res = s1 < 0 and s1, § are small, then, in view of homogeneity and boundedness of the
functions R, we have

|M(57§I) - M(i52a51)| < |81||MS(87§I)| + |82||M5(Sa€l) - MS(iSQaéJH + |€I|2|ME(Sa€I) - Mg(iSQ,fI”

1 1
<aBleP + fsalsr] [ [DuMfise +as )] dat [¢/Plsa| | [DuMelisa +asu, [€)] da
0 0

|52 + €'

g(&)‘ 12+c
< |s2] + [£']?

[s1] < 81" + e/[sa] + [€'2V/dls111€'] < als] + 1€1%)
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with o < 1. Together with (2.28) (for s = is2) this proves (2.23) also for small s; = Res < 0. The
inverse inequality is obvious.

Proposition 3. If the assumptions of Proposition 2 are satisfied and, in addition, |&'| > Ag >
1, then

cr(Isl(Isl + 1€'1%) + ol€'IP) < [sl| P < es([sl(|s] + [€'1%) + ol€']). (2.29)
Proof. Assume that |s| > 0 A1|¢'| with A; so large that |s||M| > c1]s||¢/|? = 20|¢|?|g|. Then
|sP| > |sM| = ol¢'Plg] > cls|(|s] + €'1*) < eollsl([s] +€'%) + al€'). (2.30)

Before treating the case |s| < 0A1|¢’|, we consider the function Py = |£'|>?M¢ + o|¢'|3g/s. Since
|arg g] < w < w/4, we have (assuming again that Ims > 0):

arg(ol¢'°g/s) € (~1/2 —w,w), arg|¢/|PM¢ € (-1/4 - w,w),

which implies | arg(o]¢'[Pg/s) — arg|€/2Me| < 7/2+ 2 < 7, |Pi| > (1€ |Me| + ol€|Plg/s) and
Is||P1| = c(]s]|€'|? + o|¢’]?) for arbitrary ¢’ and s satisfying the assumptions of Proposition 2.

Now we consider the case |s| < 0A;|¢| assuming |¢/| to be so large that |s| < «f¢/|>/? with a
small . We have

|sP| > |s||P1] = [sI*IMs] > c(ls[IE']? + ol€']®) — o€ = e(|sl(Is] + I€'*) + al¢'),

which completes the proof of the proposition.
Remark. Inequality (2.29) holds, if the assumption |£/| > Ajg is replaced with Res > v > 1.
Indeed, we have (2.30) for |s| > 0 A;|¢'| and, in the case |s| < 0A;|¢'|, there holds

|sP| > [s||Pr] — |s]?|Ms] = e(ls[|€']> + al€']) = ea|€'|* = e(|s|(Is| + [€'*) + ol€']P),
if v is large (see also [5], Lemma 10).
2.2 Proof of Theorem 1.
We proceed with analysis of a model problem (2.1), where f* = 0, h* = 0 and b and B are
periodic and satisfy the condition (2.3):

1
D~ —v Vo + p—_V@f =0, V.-v7 =0, for y3<0,

Dt — vVt — (v V(Y o) + p—iVG* =0,
Pm
DOt +pf V- v =0, for y3>0,

v|t=0:0, 9*‘t=0:0, v——0, Gi—>0,

lys|—o0 lys|—o0 (2.31)
ov Ous
=0 =+ = =ba(y',t), a=1,2;
)], = 0. V(@Ja%ﬂ%ﬁ .0, a
5 ¢ ¢
— 10T+ 0 Voot £ [2uia—zg] + UA'/U3|er dr =bs + O‘/BdT.
31 lys=0 B
0 0

17



The Fourier-Laplace transform in (y1,ya2,t) converts (2.31) into

2
dy3
d_25* + i dg_ =0
dy3 °  p~ dys
~ dz _ ~ ~
(s+ v ot —vT—=ot — (vt +u)iE, Vo + p—ii§a9+ =0,
Pm

- 1 ~
(s+v|€)P)o, —v U, +—ilb =0, a=1,2,
p

(s+ v |€))og —v™ V-9~ =0 for y3 <0,

dy3
a=1,2, ( |
2.32
az de . p d=
VAP Ay S S N V.ot 4+ L~ gt =9
(s+vT|¢'|F)og —v dy%vS (1/1+1/1)dy3 v +p$ i ,
s0 +pt Vot =0 for ys >0,
dvo, .. - ~
W|y3:0 = Oa |:Ni (i + ZgaUS)] = ba; a = ].; 27
dy3 y3=0

€'

S

— 0
y3=0

~ o~ ~ dw
—p10T + 0 + Vot + [miﬁ}
dys

~ -~ o
U3‘y3:0= bs + EB

By eliminating the function 6% we reduce (2.32) to the system (2.11) with the parameter v
replaced by the function v;"(s) = ;" + p1/s. With this replacement, the expressions 1/(2v + v;")
and r{ go over into s/(as+p1) and r]; = 1/(s2/(as + p1) + €2, respectively, where a = 2v+ +v{" >

0, R™, R} remain invariant and Rt RT are transformed into

+
RY = ri A+t (s)rt with s+ (s) = vts _ vt s ,
rfl 4t as + p1 a s+pi/a (2.33)
+ + - - - '
r{, + ' (s)r .
Rf =1 =7 - () with st (s) = rs v 5
rh 4+ as+pi  a s+pi/a

The solution of the problem obtained is given by (2.19), (2.20),(2.21) with v~ substituted by
viF (s), which converts M and P into

M(s, &) = sM(s, &) + [€'[PMe (s, &), P =sM+ol¢'|’q(s,¢), (2.34)
where ¢ = (F-k1, g-k2),  [K'| >0,

_ptR-  p Rf R R}

Moz mor Tt T
4 _ _ _ _ _ _
Mg = = (¢ R (1= RE) o+ RE(U= RO) b (1= R (1= RY) = RE(L= RO))),
+ +
s, €)= —Tb oy M

p(rm 1) et
(2.35)
Proposition 4. If the assumptions of Proposition 8 are satisfied (maybe with greater Ap),
then M and P satisfy inequalities (2.26) and (2.29). The condition |'| > Ao can be replaced with
Res>~vy> 1.
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Proof. We start with auxiliary estimates of the function rf‘l( ,&') the square of which is given

by
7,+2 _ s |§ |2 81a|5|2+p1(8%783) is2a|s|2+2p151 +|§-/|2
" as+py las + p1|? las + p1|? ’
2
where s; = Res, s3 = Ims > 0. The expressions “Sals_t;f |1251 and ]D\Zi-ipljg) are bounded from above
and from below uniformly with respect to s. Hence for large |¢| and for s; > 0 or for small
12 ,
negative s1 (or in the case s1 > v > 1) inequality Rerff > 0 holds. The expression % is

positive and bounded for sy > 0, but it takes small negative values for small negative s; such that
2p151 < —als|?. Hence it can be assumed that argr]; = argr]?/2 > —wq, wo < /4. Thus,

cr(ls| +[€'17) < [rf?| < ea(ls] + [€'),
cs(ls] + 1€'*)"? < Rerfy < Irfy| < ealls] + [€'1%)Y2.

Moreover, the differences 7, — ] and " (s) — s+ satisfy

1 52 s cls s| + |€2)1/?
I =1 < | -2 < ||+ +<(|| 3 (2.36)
iy +rilas+pia " fas+pa[ry + 7| |as + p1|
vts vt c v c
|57 (s) = 5| = | | < () | <
as+p1 a las + p1] a las + p1]
which implies
Rf —RY|+|Rf —RY < —" .
| 1 | | 1— | = |as +p1|
As a consequence, we obtain after elementary calculations:
c(|s| + 1€ c
IM—M|<7(|| |§|), lg—g| < —,
|as + p1] |as + p1]
which proves (2.26) and (2.29) for M and P in the case of large s: |s| >
Now, we treat the case |s| < H. We assume that |£’| is so large that | | al¢’|? with small a.
We have
+ / ot 72 + 1/2 + +(5)
r=(s,8") = (€1 (s/1E P D, ri(s,€) = 1€ (—mm +|€,|2 st (s)+ 1) = e/t (2 G 1),

which implies

o T IR 4 s e IR
R 8) = o) e ) 4 e B L)
v (55t (8)/J€12,1) ot () (/€12 1)
@) EP D)+ (L)
1 I 1
FEer DT e = SEE D T

75~ Clearly, these functions are uniformly bounded for |s| < H < af¢’ 2. It

Rii_— (57 5/) =

R (Sa 51) =

where st (s) = L2
follows that

5+p1

IMi(s, €")] > [¢']7 M| — [s]IML| > cl¢']* > e(ls| + [€')
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To estimate P, we compute q(s, &) replacing s/|¢'|? with zero, which yields
14 37 (s)

1
|Q‘S/|§/|2:0| - |2M—_ + 2/J/+ | Z c.

It is easily seen that
11 (s () /1617, 1) = 1 + | (s/1€*,1) = 1| < ca,

which implies
1+ 57 (s)
2
Other terms in the expression for sP are estimated as follows:

|sIl€'PMe| < ev/Hale'PIE PIMe| < evale']®, | IM| < ca® (¢,

|Ri‘r(s7§/) | g COL, |q(87§/) - Q‘S/|§I‘2:0| < ca.

Hence
|sP(s,&")| = ol€'Plal — o'|E']P = cl€'P = e(|sl(Is] + 1€7) + al¢'[?),

where o < cy/a < 1. This completes the proof of Proposition 4.
Proposition 5. The solution of Problem (2.11) with parameters v and ui replaced by v (s) =
vt +p1/s and pit vl (s), respectively, satisfies the inequality

2

ZZ ||D§31~’i||2L2<Ri)t2(2+l_j) + Z ””i”i@“(m) T ”W_H%va)tm
j=0 =+ +

+ |97|l2j3=0|£/|1/2tl < C(|b|2t2l+1 + |b3|2t21|§-/| + |B|2t2171)7

(2.37)

where V = (21,162, Dy,).
Proof. As shown above, the solution (v, 67) of the problem we are treating is given by formulas
(2.19), where

Av=—p (P2 EPP T T IEP) Ar = 2ty - 2pTrT, As =0T 4T

o ba L alu = pTws (Wt Oyt —rf) +u= G5 (r” —1€])
A Vo e N Vit prrt 4 pmr ’
1 R R~
w3 = ——(pTsCF— — p~sCi —),
3 A, (p 8 T P 3 #7)
1 R~ o R _
Cys= P (Alzu—, —As(1 —2R7))B - (Alu_’ — Azl b3}, (2.38)
_ 1 R ~ Rt -
Cy's = 2 (Alzu—}r — A3(1 - 2R{)}B — (Alu% + Aarf)bs},
st Rf ol¢'?
P=M+ol¢Pq/s, ¢g=—2L _ + L A=A, 1
e e = T A A

and P, M, ¢ are given in (2.34), (2.35).
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Let v = (|s| 4+ |¢/|?)Y/2. If the parameter dy is sufficiently small, then |¢’| is large and M, P
satisfy (2.26), (2.29). By (2.38),

2 ! !
bt < oo TRy e K B e € 5
sl < e+ 7 |19>|' 1oy sl + 1 B) < e8]+ S|+ o ||]P)|| ),

Cy sl < e 1'] + [bs] + —=| B
’ ( |s IIPI )

B €/ €/ . B €/
B < S+ Sl SIB). o<l 1vol< i

where b’ = (51,52). Making use of

oo 0
/l%@ﬂ%m+/ e (ys)P? dys < e,
0

oo

oo 0
/|mmm%@ﬁ,/|mwm%@ﬁMﬂ
0

o0

we obtain
1/2
(/ |’U+| dy ) t2+l < C(|w|t3/2+l + |V+|tl+1/2)
0

gC(tl+1/2|g/|+tl|§/|1/2|g3|+ |£ |t |B|'Cl 1/2 <C( l+1/2|b/|+tl|§ |1/2|b3|+|B|tl 1/2)

[sP|
0 1/2
([ 15 Paum) e < elule> 4 v e g ) (2:39)
—00
_ . 111/2,.5/2
gc(tl+1/2|b/| +‘Cl|€/|1/2|b3| + |§ ||S]P)T |B|t171/2

< (V2B 4 o€ ] + | B2,

because

€1 < IslIE'| + |€'° < cls| [P,

2.40)
5/8 3/8 (
2002 < elsPE MR < e(ls1)T(E )T < el [P
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Moreover, by using the inequalities

J J
/ ’7(1 o Y3 ‘ dys < clrt P71, / ‘7(1 1 Y3 ’ dys < clrt P73,
0

dy? dy?
/ / d]e (s +2) _ deg (,yg) ‘2 dys dz < cfrtPUHD-t
dy3 dyé Z1+21 )
/ / d]el ystz) djef(,yg) ‘2 dys dz CelrtPUHD=3 j =12
dy3 dyé Zl+2l ’ ) 4y
ds 3) |2 ) 0 e (ya) 12 2j—1 112j—1
/ ‘760 (yS)‘ dy3 < C|7"7|2]71a / ‘ ! (_yS)‘ dys <c |T. | +2|§ | )
dy3 —so ! dyy r=|
dJeo ys —2)  deg (ys) ‘2 dys dz < o [26D-1
dy3 dy% Zl+2l )
/ / dJe1 ys—2)  deg(ys )‘2 dysdz _ [r”PURDTL 4 gPORD7L
dy3 dy% L1420 S |7,7|2 y J =14

we estimate in a similar way the sum
oF 2@H=1) 4 15E |2
M R P R Ly

and the norms of §— = —Cgp*5e|§'\y3_

As for the function 1 that was eliminated from (2.32), it can be estimated by using the third,
fourth and fifth lines in (2.32). Taking also (2.3) into account we prove that

107117, ey e (14 [s[*) + [VOF 117, eyt (1 + [s[?) (2.41)
< C(|E|2‘C2l+1 + |53|2t2l|€l| + |§|2t2l_1).

Together with (2.37), this inequality implies estimate (2.4) in the case f*, h* =0, T = oo, in
view of Proposition 1 and the Parceval identity

S1+100
/ Z [a(¢', )| dsg = 2m(2dp) / / eXPtu(y )2 dy’ dt, B=—

11100 k' €72

Proposition 5 is proved.
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2.2. On non-homogeneous problem (2.1) with T = occ.

We reduce non-homogeneous problem (2.1) to a similar problem with f = 0, h = 0 by con-
structing auxiliary functions (u®, %) such that

1
Diu~ —v Vu +—Vo =f, V-u =h" inQg,
P

(2.42)
u_|t=0 = 0) u ,0 0) / u- dyl = 0)
Yz ——00 ’
Diut — v V2 — (T N V(V-uT) + DLyt = Ft,
Dot +pt V- ut =ht inQL, / utdy =0, / ot dy =0, (2.43)
Ql !

u+|y3:0 = u7|y3:0a u+|t:0 = 07 U+|t:0 = 0’ qu’ 0+ Y3 ——400 0.

We recall that f* and h™ satisfy the condition (2.3). We set u' = V® where ® is a periodic
solution of the problem

o
Vo =h i Q, @u0=0 &0, / 2 4/ =0
Yz——00 sl 6:{}3

It is clear that V-u' = h™, fQ, u~ dy’ = 0. Taking the Fourier-Laplace transform, we obtain

d2o

25 _T— . = =z
dy§ - |€/| (I) = h m D/, q)lygzo = 0, (I) yg,—>——oo>0, (244)
hence 0
B¢, = [ Gl zh (¢, 9)dza
where

1

G . e|§,|(23+y3) — 67“5/‘(Z37y3) for 23 < Y3,
(y37Z3) - 2|§/| e+‘§l‘(Z3+y3) — e_|€/|(23_y3) for 23 > Y3

is the Green function for problem (2.44), ¢’ = k', [k'| > 0.
Since |¢/] > ¢ > 0, the function ® satisfies the inequalities
|§/|2||®||L2(]R*) <cllh ,m-ys

and
V@l 21y + 1€ PVl Loy < b llypaee -y + €T @),

where V = (i&1,1&2, diyd) In addition, since h~ = VH + Hy, we have
2

0 . _ %S _ _
@:/ G(yg,Z3)(V~H+H0)d23:/ (Glys, 23)( D i€aHa + Ho) —

— 00

aG(y37 Z3) o
623 H3) dZ3

a=1
L+ s/ )Vl 1y < e(L+ s/ ) (1H | Loy + [ Holl Lo )-
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It follows that
e wlyyaeavuz ooy < el lwprtoign) + 1€ Hllyorrz g + €7 Hollyyossra g )
(2.45)
and V- u' — h(y,0) as t — 0.
For the functions w = u~ — 4’ and o~ we obtain the relations
1
Daw—v Vw+ —Vo =f —Dw' +v V' =f, V-w=0, wl—=0
P
in Q7. We extend f; from Q) into Q) so that

oo

Heﬁtfl*HWé’L/z(Qoo) < c||eﬁt-f1HW21’l/2(Q ) /Q, fik dyl =0

(ff is the extension of f;) and then take the Fourier-Laplace transform in all the variables
(ylayQa ySat) given by

u(g,t) = / e dt/ Ca dys/ eV u(y, tydy', € = _ £ R,
0 0 : do
Res = s is a small negative number and |k’| > 0. We seek (w,5 ™) as the solution of the system

(s + v |12y + pi_is&* —Fr i@ =0,

so that _ _
s P& fT o fT i€ /o
[ s+v[g?
Hence
Heﬁtw||W22+l’l+L/2(Qo¢) + ”eﬁtvg_HW;f’l”(Qx) + ||eﬁtg_||W21+1,0(Qm)
<ele® il gy < elle” fillyve g,
and

€7 lyzraasu g + 1€V lyra g + €70 Iygeroqg

< P Nygoraigry + 167 sz + 1 il yaoris gy + 1 Hollygovos )
(2.46)
The functions ut, o™ satisfying (2.43) are sought in the form ut = uy + ug, 07 = 01 + 02

with (w;, 0;) defined as solutions of

Deuy — v V2uy — (U + 07 )V(V - ug) + ;’—Wol = f,

(2.47)
Dior + pV-ur =h) in Quo, Uilt—o =0, o1li=0=0
and »
Diug — v V2uy — (v + v )V(V - up) + p—1V02 =0,
Dios+piV-uz =0 in QL (2.48)

Ulys=0 = (U~ —w1)|ys=0 =@,  uift=0 =0, 01]i=0 =0,
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where £ and h] are extensions of £ and h™, respectively, into Q = Q' x R with preservation of
class; it is assumed that [ f7dy’ =0, [ hifdy =0.
Q' jall

The Fourier-Laplace transform with respect to (y1,y2,ys,t) converts (2.47) into the algebraic
system

(s v H el + 0+ vEE T) + ige =

so1+ € w) =hE, (6P =€ + &,
where & = (nk1/do, ko /do), |k1] + |k2| = 1, & € R. Elimination of 1 leads to the equation for
1]12

(s le)a + (o + o (9)e(e ) = - P = (2.49)
m
where vi (s) = vi" + p1/s. The solution of (2.49) is given by
a =H"g/(s+v|¢?), (2.50)
where HT is the matrix with the elements
HY = 650 — (v + 17 (5) &k b — &k
7 s+ (@t +uf())IER T (s rTIER) + 1€
b=vt + v >0. From (2.50) it follows that
e~ i€-g s i€-g
T (2V+iygl+(s))|g|2 " st (s+€y+g|’g|2) Tep X @8
We notice that the expression
P+(§’ 5) = bs JSrp1 (s * V+|€|2) * |§|2 - Sb||bss|2+—i;?111)|1252 + bsSlJ/r+p1 |§|2 * |€|2
is an analytic function of s if Res > —p;/b and satisfies the inequality
[PF] = clls] + [€*), (2.52)

since |£| > m/dp with small dy. Hence formulas (2.51) and (2.50) imply
IV - @l g + 151V - @l o)
< cllff lwy@ + sl E M o) + IR e ) + 18 1R lwi @),

[slll@llwy @) + IsI' 1]l 22@) < Ul lwe)

+ s 1 £ o) + VR lwigq) + 11 1IVES | a@):

(2.53)

where @ denotes the Laplace transform of w.
Now, we consider u; as the solution of the transformed Stokes system

v |e[a + f—iig&l — f sty — (vt uEE @) = £,

m

ig'ﬁ1:Xa
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that is given explicitly by

~_@ + _ig'.fS ~:_i§l
= ) T

From these representation formulas, as well as from so; = Ej — ptx and inequalities (2.53) we
easily deduce

1@l + 812111l @) + (L + [sDIITL w1 () + 8121151 Iz @)
< el fsllwy) + Is 15l Lo + IVRE lwyi@) + IsI'IVAT [ 22(@))s

which implies

141,1/2 141,1/2
e uillyyzrnerz ey + el + e Dol 7 (2.50)

1+1,1/2
<c(le”f e Pt

Myt

in view of Proposition 1 and condition (2.3) for u; and o;.
The estimate of solution of (2.48) is preceded by the analysis of a similar problem for the
transformed Lamé system:

(s +vHEP)T - (v +v))V(V-8) =0, in QF,

where £ = dlok’, |k’| > 0. The solution of this problem is given by

&1
v=aef(ys) +C' (T —r) | ik | ef(v3),
rF
ot —rFys vty T4t A—rta 1
where eo(ys) = ¢, ealys) = SEESL Ot ) = e dirae A =

2221 i€gag. By the same argument as in the proof of Proposition 5 it can be shown that
HeﬁtngW22+l,l+l/2(Q;,o) < C||€ﬁtaHW;/z+z,3/4+z/2(Q, ) (2.55)

By replacing v, with v (s) we arrive at the solution of the transformed problem (2.48):

S —rtys —rfys
. - ’ . e —e 1
d=ae OG- | i | e
_TE 11
where
b A—rta +
Ot — ) =~ EPOAZTTE) L VS,
(as +p1)(rfy + =t (s)rt) as +p1

The function r{; 4 3" (s)r" is analytic with respect to s if Res > — min{Z2, ’%}; let us show that

Irf, + st (s)rT| = et
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If 51 > 0, so > 0,then arg »*(s) € (0,7/2], and the angle between the vectors ), and »* (s)r* on
the complex plane is less than 37/4, hence, inequality

[y + 2 ()t = ey + |se(s)r™]) > e

holds.
Now let s1 < 0. Since
vt s1 +is is vt s
%+(S)_%+(132):_< %Jr 2 - 2 )2—2 - 1P
a \s1+isa+pi/a isa+pi/a a? (s1+1is2 + p1/a)(is2 + p1/a)

and s1 +p1/a > 0, it is clear that |5(s) — s(is2)| < c¢1]s1|. Hence
[y 4 3e(s)r™ | > |y + se(isa)r| — [3(s) — s(is2)|Ir| > car,

if 51 is small.
From this estimate and (2.55) it follows that

141/2,1/2 141/2,1/2
||eﬁtu2||w22+m+l/2(Q;) Jrleﬁt@l(Q+ /2,1/ )+|€ﬁtDtU2|ég+ /2,1/2) 250
< c||eﬁt(u7 — U1)||W23/2+L,3/4+l/2(Q,00).

Thus, we have constructed periodic functions (u®,oT) satisfying equations (2.42), (2.43). Col-
lecting estimates (2.45), (2.47), (2.54), (2.56), we obtain

_ —(141/2,0/2 1+1,1/2
||eﬁt”||w22“f1“/2(uQ$) + ||eBtV9 ||W21,L/2(Q;) +|eﬁt9 I(Q'T /2,1/2) +|eﬁt9+|ég; /2)

141,1/2 _
+|eBtDt9+|22; /><c(||eﬁtf||wzl,l/2(uQ¥)+||eﬁth lwirroggmy + €7 Hllyorsiz g (257)

T
1+1,0/2
) | }3th+|( / ))

+ ||€ﬁtH0 Q;

w2 gy

For v/ = v — u, § = 0 — o we have the relations (2.1) with the data f =0, h =0,

b =by — [T (=2 + =— ., a=1,2,

“ b (8y3 Yo" lys=0
8 t ’

by = bs +p10+—a_—[2ui£]—ufv-u+—a/ Viu(y,7)dr| .
8y3 0 y3=0

These functions satisfy inequality (2.37), hence (v, 0) satisfy (2.4), q.e.d.
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2.3. Proof of Theorem 2 for T' = ooc.
Taking the Laplace transformation, we convert problems (2.5) and (2.6) into

d?v,
$Vq — T dU;: o, Yz €17,
Ys - (2.58)
~ Vo o B
[va”y3=0 = 07 |:Md—y3i| ys=0 - ba; Ve ys==xd; — 0; o = ]-7 2;
and
A2wf  p A+ ~ doi  ~
~4 + + 3 1 _ 7+ + + 4V _ 7+ +
sv; — (2T + v — =f, s +pT—=—=h"T, ysel
5 — ( 1) dy? ok dys f3 p dys 3
2o 1 do- . diy
SU3 — VT ——5- — 7. = _a :hia Y: EI?;
’ dy "o dys  PT dys ’ (2.59)
[03]])— = 0, Tslys=ta, =0,
~ o~ dot dog ~
— P10+ 07 + 2T+ )= -2 =2 = bs,
P1 2p" + ) Tl B

respectively. The solution of (2.58) can be estimated by the energy methods (the existence of the
solution is evident). We multiply the first equation by piﬁai, integrate over IT U~ and take the
real part, which leads to

~ 2
~ d’l)a v = I~
Res| v pi”aHQLQ(HuI*) + v ﬂi—H%Q(HUI*) = Re Pifava dys + Re Z baa(0).
dys I+tur- a—1
After easy calculations we obtain
(Res + N[VallZ,r+ur-) + 1Walliyy gror-y < ellfallugror-) + [ballPa(0)])
with v > 0; we assume that Res > —vy.
Multiplying the same equation by 5p*7, and integrating, we obtain
- 2
~ dv _ ¥ = _ T =
BE /PanH%Q(HUI*) + ResH\/,ui_dy‘; H%Q(HUI*) = Re(5 /HUI? P fola dys + 5 Z bava(0)).
a=1
From this and preceding relation we deduce

|51l 2, r+0r-) + 1Ballfzrory < elfallZuarory + L+ [s12)[bal?), (2.60)

because _ _ )
(1 + [s])[bal [T (0)] < (1 + [s])/*[bal (1 + [s])*/*[5a (0)]

< e+ IsD) ool (1118l Lacrror-) + Pallwz (r+or-)-
Next, we multiply (2.60) by |s|', estimate the W} (1T UI~)-norm of the second derivative of 7,:

d2v, N ~
H—;HWL(HUF) < C(|5|||’UaHWl(1+u107) + ”faHWL(IJrUI*))
dy3 2 2 2
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and make use of the interpolation inequality

~ d?v, ~
|S|||U@||Wé(1+u1*) < 6||d—2a||wzl(1+ulf) + C(€)|5|1+l/2||Ua||L2(I+qu)
3

with small e. Collecting the above estimates, we arrive at

1alllzreor- < el falllreor + (141D [bal), (2.61)

where
|||U|||l1,wi = ||u||W2ll(U]i) + |5|l1/2||u||L2(UIi)-

This inequality implies (2.7).
Now we turn to the problem (2.59). Since h™ (ys3, s) = %%53 + 90, 93lys=—a, = 0, we have

Ys Y3
5g<y3>=/d W (o9)de = P, + [ oles)dz,

from which it follows that
195 llwzeiery < elblrer oy 812005 oy < els™ 2193l Lo + 190l o),
15 larors < (R lhaes oy + 152980 army + 190lacy). (2:62)
The functions vy, g+ are found as a solution to the problem

A2 | po df*

~+ + 4t _ 7t
svs — (2vT +v — = f3,
3 ( 1) dy% p+ dy3 fS
_ a5t - 2.63
59++p22%=h+ in It (2.63)
Y3
5;_|y3=dl =0, 5;_ - 53_|y3=0 =0,
By eliminating 9+ we obtain a problem for U5 :
Ao S ~ p1 dht
R(s)v5§ — — = S -t ——)=gsin I,
()73 dy?  as+m (/s spt dyg) 93 (2.64)
5:;r|y3=dl =0, 5:;r|ya=0 = 537|ya=07
82
where R(s) = 5.
We set U7 = w3 + 0 where ¥_ = U3 (—y3, s) and reduce problem (2.64) to
~ d?ws - v
R(s)g — —— =g3 — R(s)1_ + —— =g in IT,
(=) dy3 (#) dy3

’LA&3|y3=d1 = Oa ’LA&3|y3=O =0.

We expand ¢ into the Fourier series g(ys,s) = > pey 9(&3, s) sin&zys, where &3 = Z—T. Then the
Fourier coefficients of ws are given by

g(fia S)

065 = Rio) e

(2.65)
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Since the difference R(s)—s/a = — a(a’;fpl) is bounded by a constant independent of s (if as; +p; >

0), we have
c1(Js| + ag3) < [R(s) + &3] < calls| + ag?),
provided d; is small; hence (2.65) implies |||ws]|[; 1+ < ¢[||g][|;, 7+ and
115 241+ < c(llgsllle,r+ + 1175 lli4z,r-)- (2.66)

Taking (2.66) and (2.61) into account, we obtain

||eﬁt””W§“*””2(u1£> < C(||eﬁtf||vvé*”2(u1£> + Heﬁt%”Wé’l“(@ (2.67)
+ ||€6th_||w2l+1v0(1;o) + ||553||W20,1+l/2(1;) + ||550||W20,1+z/2(1;))-
Using the first two equations in (2.6) we estimate 6% as follows:
Ieﬁtpt9+|§g1,l/2) < C(Iegthﬂ%:rl,zm) n ||€ﬁt’U;_||W22+l,l+l/2(Q;ro))’ (2.68)
g 4O Bt, +
I G gy < clle e lyznamvagre (2:69)

(if 6 satisfies the condition fodl 67 (ys,t) dys = 0, then a better estimate
Bo+(U+11/2) i Bt +
|€ 0 II;E X C||€ Vg HWQZH’IH/Z(I;)

holds).
Finally, the function 6~ defined by the second and the fourth lines in (2.59), satisfies the
inequality

0 ey 1T o <Oy
+ Heﬁte—i_|y3=0||W21/4+l/2(0,00) + ||€Btf?:||wzl’l/2(Q;o) + ||€Btb3||W21/4+l/2(0’00))-

Inequalities (2.68),(2.69),(2.70) yield (2.8). Theorem 2 is proved.
To treat the case of finite T', we construct extension of the data of problems (2.1), (2.5), (2.6)
into the half-axis ¢ > T by using a standard formula

uw(T+71)= Z Muw(T —kr), 7>0, m>1 (2.71)
k=1

with 7 > 0, u(t) = 0 for ¢ < 0 and with )y satisfying the equations

This formula is applied to the functions of the form f(t) = e”*u(t) which yields

f(r+7)= Z Ape PEDT £ — k7).
k=1
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According to [10], formula (2.71) yields the extension of functions from Wi(—o00,T), | < m + 1/2
into R with preservation of class. Hence the solutions of problems (2.1), (2.5), (2.6) can be defined
as restrictions to the interval ¢ € (0,T) of solutions of the same problems with the data extended
as indicated above. Uniqueness of these solution follows from the energy relation for the difference
of two possible solutions. For instance, in the case of Theorem 1 this relation has the form

sVl + [ T Vo |

Qt

t
xt o+ g dr)” dy’ T(v) : Vody = 0.
= 5 (Woivlio + 2 on + 5 [ (f vman?ay)+ [ m): vway=0

Since the form qui T(v) : Vo dy is positive, we conclude, upon integrating this relation over the

t
OtV vt dy + a/ (V'vs - V’/ v3]ys=0 d7) dy/’
' 0

interval ¢ € (0,7”) that v = 0 and §* = 0, but then also §~ = 0, q.e.d. The same arguments apply
to problems (2.5), (2.6).

3 Appendix.

We need to mention model problems arising in the analysis of the solution of Problem (1.9) near
the exterior boundary ¥, namely,

Dot — v V2t — (T 4 )V(V ot + ZLvet = ) Dot 4 ph Vvt = it
pm
0y =0 6%, =0 i @ [ wrdy—o / o dy =0, (3.1)
Ql 7
v ym0 =0, vt 0, @ 0,
Y3 —00 lys|—o0

Dyt — 1/+D2, vo = fF, a=1,2,

Divi — vt + v )D2 o + 2D, 0% = £, D6 +phDy v =0t i 2t (3.2)
pm

Vo =0, 0Ti=o=0 in QF, |04 =0.

These problems are treated in the same way as problems (2.1), (2.5), (2.6) above, and details
are omitted. Estimates of solutions analogous to (2.4), (2.8), (2.9) have the form

141,1/2
Heﬁt ﬁt9+|22; /2)

’U+HW22H’1+Z/2(Q¥) + |@

3.3)
1+1,0/2 (+1,1/2) (
F1P DG < ellle® £ sy + 1€ lgr ),
Bt + Bt +(1+8,1/2)
Ile 'U||W22+L,1+l/2(l;) + || Dy, 0 szl’l/Q(IT) + 7" D,6 |I; 5.4

141,1/2
(I llyzarz ey + IRH1)

Another addition that we would like to make concerns the solvability of Problem (2.1) in
weighted Sobolev spaces with the exponential weight e=7%, 4 > 1 in the domains R3 . The following
theorem holds true.
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Theorem 4. Assume that e V'f ¢ Wé’l/Q(URi), e vtht e WHYYRE) N
W2 ((0,T); WE(R2)), e "Vh~ e Wy P V2(RD) b= = V. H + Hy, #'H, e H, €
WQO’IH/Q(R;), h=,H,Hy are compactly supported, e Vb, € W21+1/2’l/2+1/4(R2T), a = 1,2,
e by € WiT2OR2) N WY2((0,7); Wy 2 (R2)), e B € WL 22 YAR2) where v > 1,
R%Z =R? x (0,T). Assume also that these functions satisfy the compatibility conditions

hlt=0 =0, Hl|i=0=0, Holt=0=0, balt=0=0, a=1,2.

Then problem (2.1) has a wunique solution such that e v € WQQH’IH/Q(R%),
PtVe- € WEHA(Ry), et~ € WA((0,T); Wy 2(R2)), e 0+, e~ 1D+ € WITO(RE) N
WQI/Q((O, T); W3 (RY)). It is subject to the inequality

_ _ _ oty (141/2,0)2 _ 141,12
||e Vtv||W22+z,1+1/2(R¥)+||e RAv/’] ||W2L’l/2(Q;)+|e vtg |]§Q% / /)+|e 7t9+|]%% /2)

_ 141,1/2 _ e _
—|—|€ ’thDte-i-l;; /)<C(||€ ’thHqu/z(UR%)—i—He 1t HW;*LO(R;) +||e 7tH||W20,1+L/2(R;)

_ _ 141,0/2 _
+ Jle WHO||W;,1+1/2(R;) +e WthlSqJTr /2) 4 Z lle ’Ytba||W2l+1/2’l/2+l/4(]R%~)
a=1,2

+ ||€7th3||Wé+1/2'°(]R§) + ”67th3”W;/?((O,T);W;/?(R?) + ||efvtB||W;71/2,L/271/4(R%))

(3.5)
with the constant independent of T .
By ||“||W21(R2) we mean the norm equivalent to |||¢'|'T| 1, (rz2).
As above, it is enough to consider the case T' = co. The Fourier-laplace transform
o0 L ’
ug',s,ys) = / e dt/ eV u(y, 1) dy’
0 R2
where Res = v, ¢’ € R?, converts (2.1) into
(s € PYTs — v <y i = Fr. o= 1,2
s+ v v, —V —50, +—1 =f,, a=1,2,
dy3 p= "
d? 1 do~  ~ ~
s+vT|E Py — v =505 + ——=fs, V-0 =h" for y3 <0,
( | | 3 dy% 3 o dy3 3
~ d? _ ~ ~ ~
(s +vHEPvg - zﬁd—va; — )iV wt + Blic 0t = T, a=1,2,
3 Pm
_ dz _ d ~ pd ~ ~ (3.6)
s+y+§’2v+71/+—0371/+1/+ —V"U++——9+:f:+, .
( | | ) 3 dy% ( 1 1 ) dy3 p:,;l dy3 3
sOF +p;;§ ot =ht for yz >0,
~ dv, e~ =
[”]|y3=0 =0, |:Mi (d_a + Z&aUS):| =ba, a=12,
Ys y3=0
~ ~ ~ do- "2 ~ 0=
p19++9+ufv-v++[2uid—3] —0|£| 3| _,=bs+—B.
Y3 y3=0 S LE S

If f =0, h =0, then, as shown in Sec. 2, the solution is given by (2.19), (2.20), (2.21), with v
replaced by 1/§s). the functions M and P satisfy (2.26), (2.29) and the solution satisfies inequalities
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(2.17) and (2.41). In construction of auxiliary functions u* and o, as in subsection 2.2, the vector
field u~ satisfying the relation V-4~ = h™, should be taken in the form u~ = V® where ® solves
the problem

V2@ =h"=V-H+Hy,, in R} &, =0.

It satisfies inequality (2.46) in R?, if h=, H, Hy are compactly supported. Moreover, since the
inequality (2.52) holds, if Res > v > 1, the formula (2.50) for w; and equation (2.52) for & yield
estimate (2.54) in the domain R}, and wus, o satisfy (2.55) in this domain (the proof is the same
as that of (2.55)). Putting the above estimates together we obtain (3.5).

It is convenient to use Theorem 4 for the proof of solvability of the problem (1.1) in a finite

time interval.
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