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1 Introduction

The problem of decomposing representations of symmetric and other classical groups in spaces
of tensors into irreducibles has a long history and is of great importance for applications.
Nevertheless, to the authors’ opinion, this topic, being entirely classical, is not sufficiently
addressed in textbooks, both old and new (see, e.g., [7, 14, 4, 2]).

Our approach is as follows: extending the classical Schur-Weyl duality between the actions
of the general linear group GL(n,C) and the symmetric group &; in the space (C")®*, we
consider the relationship between representations of two symmetric groups, & itself and the
Weyl subgroup &,, in GL(n, C). This leads us to the introduction of the so-called decomposition
tensor of tensor representations.

In more detail, we study the “Schur-Weyl” representation of the group &; in the space
H = (C")®* together with the commuting representation of the group &, C GL(n,C). Then
the space H can be decomposed into (S,, ® &y )-invariant subspaces in two different ways. The
first decomposition, indexed by Young diagrams v F k, is into the subspaces H, of tensors of
different symmetry types (signatures), e.g., symmetric or skew-symmetric. The second one,
indexed by Young diagrams p = k, is into the subspaces H,, of tensors with the same multi-
plicities of the multisets of indices. Thus we can consider the representations p,, of &,, in the
intersections H,,, of these subspaces, and the main result of the paper, Theorem 1, gives a
formula for this representation.

Considering the multiplicities aj] ,, n = n, p,v =k, of irreducible representations , of &,
in this representation, it is easy to see that they are nonzero only for diagrams with at most k
cells in all rows except the first one. Moreover, denoting by (n — |A|, ) the diagram with n
cells obtained from A F [ < k by adding a row of length n — |A|, the multiplicities a,(ﬁ_l’\")‘)
does not depend on n for sufficiently large n (and fixed k). These stable values of coefficients
determine what we have called the decomposition tensor of tensor representations.' It is upper
triangular: p,, is nonzero if and only if &> 4 in the sense of the natural (dominance) ordering
on partitions.

The actual computation of the components of the decomposition tensor, i.e., the multiplic-
ities a}] ,, is a difficult problem which hardly has a good (closed-form) answer, since it involves
the computation of plethysm coefficients, which is well known to be a very hard problem. How-
ever, it is of interest to analyze the decomposition tensor and the representations p,, for small
dimensions, and we do this for £ < 4.

The stability property mentioned above suggests to study the similar problem for tensor
representations of the infinite symmetric group &.,. The answer (Theorem 2) is also similar
to that in the finite case, but, as often happens, the infinite case is simpler than the finite
one, since the involved induced representations become irreducible. In fact, by the well-known
Lieberman theorem, these are exactly the representations of &, extendable to representations
of the complete symmetric group &>. We consider in more detail the case p = (1¥) of purely
off-diagonal tensors, which includes all these representations.

Finally, in the last section we give an interpretation of our results in terms of symmetric
functions. Namely, we present an identity for symmetric functions that corresponds to the de-
composition of the representation of G,, in the Schur—Weyl space (C”)@)k into the sum @, -1y,
of representations in the subspaces H,, , .

!The authors have not been able to find this object in the literature, though it is very natural and even
indispensable for the representation theory of symmetric groups. We also emphasize that the decomposition
tensor under consideration is not the structure tensor of any algebra.



2 The decomposition tensor

For n, k € N, consider the Schur-Weyl space
H = ((Cn>®k’

and denote its natural basis by e;, ;, = €;, ®...®e¢;,, where {e;}i—1,, is the basis of C". Given
a partition A of a positive integer, we denote by 7y the corresponding irreducible representation
of a symmetric group. For convenience, we denote by Id; = m; the identical representation
of &;.

In H we have commuting actions of &,, and &;. Namely, &,, acts as a subgroup of GL(n, C):

and & acts by permutations of factors:
ole, ®...®e€;) = €i,y @ B €y, o€ G,

On the one hand, we have the natural Schur—Weyl “symmetry type’ decomposition into
(6,, ® G)-invariant subspaces
H=> H", (1)

vk

where H5W is the isotypic component of the irreducible representation g, of GL(n, C) with sig-
nature v. Denoting by £, the representation of &,, obtained by restricting o, to &,, C GL(n,C),
we have that the representation of &, in H5W is isomorphic to dimv-&,. A (not quite explicit)
formula for the characteristics of &, is given in [10] (see also [11, Ex. 7.74]).

On the other hand, we have the “type of tensors’ decomposition into (&,, ® &j)-invariant

subspaces
AEDILA ®
ukk
where Hﬁ“lt is the subspace spanned by all e;, ;, such that the multiset of indices {4y, ...,7,}
is of type p = (1"™2™2...), i.e., has m; elements of multiplicity j for j = 1,2,.... It is not
difficult to see that the representation of &,, in Hﬁ“ﬂt is isomorphic to
k! S
‘Indgl s, (Reg x 1d,), (3)

[L;(@)mem;!
where [ = > m; = [(u) is the length of 1 and Reg; is the regular representation of &;.
Thus we also have the “double” decomposition into (&,, ® &y)-invariant subspaces

H=> Huw (4)

w,v-k

where 'H,,, = H/rj“ﬂt N H3W. Denote by p,, = p,.,, the representation of &,, in H,, = Hj .
A natural question is to find this representation.

Remark 1. We can restate the classical Schur—-Weyl duality as follows: if we start with the
commuting actions of &, and & in H = (C")®* and want to maximize the first factor pre-
serving the commutation property, what we get is the action of GL(n,C) x & in H. If we
maximize the second factor instead, we get the action of &,, x Part(k), where Part(k) is the
partition algebra (see, for example, [8]). Thus we can regard the action under consideration
also as a restriction of the action of &,, x Part(k).

4



Let p = (1"™2m2 . ) F k,i.e, > im; =k, and denote by [ = > m; the length (total number
of nonzero parts) of p. We introduce the following representations labeled by collections of
partitions A = (A1, Ag,...), where \; = mq, Ay = mao, .. .

— S
Ry = Ind6m1><6m2><...(ﬂ->\1 X Tay X o.)

and
Qn =Indg e s xem, (T [Idi] X Mg [Ida] X ox oy [Idi] x .0,

where .
mldi] = Indg g, (Idiemy,)
is the representation of &,,,, induced from the representation Id;¢m,, of the wreath product

Gil G, C Gip,.
Given v I k, denote

(p,v) =dimv Z (1, Qr) Ry, (5)

AbEma,Aabma,...

where (m,, Q) is the multiplicity of the irreducible representation m, in Q5. Thus II(u, v) is a
representation of &;. Now the representation p,,,,, which corresponds to type of tensors p and
symmetry type v, is essentially a representation induced from II(u, v).

Theorem 1. Gwen p,v = k, the representation p,, of &, in the space H,, of tensors of
type 1 and symmetry v is given by the formula

p“v” = Indg;LXGn_l (H(ILL7 V) X Idnfl)7 (6)
where | is the length of .

Proof. For simplicity, first assume that u = (p?), so k = pq, | = ¢, and in (5) we have A = A\ F g,
Ry = my, Qa = my[Id,).

Fix the natural embedding (&,)? < &j. The normalizer of (&,)? in & is exactly the
wreath product 6,1 &,. Observe that an element of &, &, can be identified with a tuple
(91,-.-,94,0), where gq,...,9, € 6,, 0 € G,.

Now consider the space

K={f:6r—C[&]:VYg=(g1,...,90,0) € 6,18, f(gh) = Regy*" (o) f ()},

where Regf;ght

representation

is the right regular representation of &, in C[&,]. Thus K is the space of the
117" — Ind" o, (Id, 1 Regy®™).

On the other hand, there is also a representation I of &, in K, given by the formula

I (7) f(h) = Reg'*™*(7) f(h), T € G,

q

left
q

the representation of G,, in H,(f) is isomorphic to

where Reg,”" is the left regular representation of &, in C[&,], and it is not difficult to see that

M7 = Indg, o, (T x Id, ).
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Now we have the decomposition

cle,) = P H" @ H = P Ko, (7)

Akq Akq

where H and H)r\ight are the spaces of the irreducible representation m, for the left and
right regular representations of &,, respectively, and K, = HE ® H/r\ight. It follows that
K=>\ . K, where the subspaces ) of K consisting of the functions with values in K are
(It @ T1¥ieht) invariant, and

By the Schur-Weyl duality, H = >, , HSY = >, (0, x m,). It follows that if Qx =

d,m,, then the contribution to p,, coming from /C, is equal to
vk Pu, g q
dimm, - d,R) = dimv - (m,, Q) R),

and (6) follows.
It is easy to see that the desired result for an arbitrary partition u = & can be obtained by
similar arguments with obvious modifications. O

Proposition 1 (upper triangularity). The representation p,,, is nonzero if and only if v > p
in the sense of the natural (dominance) ordering on partitions.

Proof. Consider the decomposition C[&;] =) ., K, of the semisimple algebra C[&] into the
direct sum of simple ideals analogous to (7). Then the subspaces H>"W in (1) can be written as
HSW = H - K, and in the same way

Hyw = HM™M - K. (8)

We use the following well-known description of K, in terms of Young symmetrizers cr (see [3,

Chap. 7, Ex. 9 and 18]):
K, =Y erCl6.) =) ClS,ler, (9)

Tev Tev
where the sum is over all standard tableaux of shape v.

Now we will describe the subspace Hﬁ“ﬂt, for any p, as a space of tabloids. For any tableau T,
we denote the corresponding tabloid by {7}, and the row and column stabilizers by R(T')
and C(T'). It is easy to see that Hffu“ is isomorphic as a &,,-module to the space spanned by
the pairs ({T'}, f) where {T'} is a tabloid of shape u (we take one representative for each class
of tabloids that differ only by a permutation of rows) and f is a function from {1,2,...,n} to
itself such that f(v) = f(w) if and only if there exists o € R(T) such that v = cw.

By (8) and (9), we must check when H,,, = H™*- 3", crC[&,] = 0. We will show that if
the condition v is not satisfied, then ({T"}, f)-cp = 0 for any basis element ({T"}, f) € H™".
First, it obviously suffices to prove that {T"}- ¢y = 0 for any {7"} of shape p. Second, we recall
that ¢y = by - ar, where ap = deR(T) o and by = ZUGC(T) sgn(o)o. Now, by the definition of
the dominance order, there exist two numbers that lie in the same row of 7" and in the same
column of 7', whence {T"} - by = 0.

Vice versa, if v > pu, then there exist tabloids {7"} such that {T"} - by # 0 (for example, we
can consider the “natural filling” in which the rows are filled successively from left to right and
from top to bottom). O



Given 1t n, denote by a]l, = (T, pu,v) the multiplicity of the irreducible representation ,
of &, in p,,, so that

Puy = Z al,m. (10)

nkn

Also, denote by 77 the diagram obtained from 7 by removing the first row. Conversely, given
a diagram A = (A, Ag,...) and n > |A| + Ay, denote by (n — |A|,\) = (n — ||, A1, A, . ..) the
diagram with n cells obtained from A by adding a row of length n — |A|.

Corollary 1 (stability). It follows from (6) that a}, = 0 unless |fj| < I = I(u). Moreover,

for every diagram X\ with at most | cells, the coefficient agfl’\")‘) does not depend on n for

sufficiently large n.

Definition 1. Given p,v = k and A F | with 0 < [ < k, denote by T/f‘l, the stable value of

afﬁ,_‘)‘l”\) for sufficiently large n. We call Tﬁ\y the decomposition tensor of tensor representations.

It follows from (5) that Tﬁ\V is an integer multiple of dim v, so it is convenient to write the
decomposition tensor Tﬁ\V as the symbol

1
T = T, - . 11
a dim v Z m (11)
X<k
Having T},,, we can recover the corresponding stable form for the decomposition of p,,, as
A
Puy = Z T/u/ " Tn—|ALA)-
X<k
3 Examples

We start with two obvious examples, just to illustrate our formulas.

Example 1 (diagonal tensors). Let u = (k) (i.e., we consider “diagonal” tensors of the form
Yo e ). Then my =1, m; =0for i # k, I =1, Quy = 7y, Ry = ™), and we have

7T(1), vV = (k),

11 , V) = dim v Ty, T T =
(1, v) ( (0))T(1) {07 otherwise,

so that (using Pieri’s formula)

Pt = IS s, (1) X Idn_1) = T(n) + T(n-11),

and pgy,, = 0 for v # (k). Thus Tiym =0+ (1).

Example 2 (purely off-diagonal tensors). Let u = (1*) (i.e., we consider tensors of the
form > ay, 4, €i,..i, where the sum is over pairwise distinct 4y, ...,4;). Then m; =k, m; =0
fori £ 1,l=k, Qy= Ry =m) for A\ k, and we have

I1((1%),v) = dim v Z(m, Ty = dimv - 7,
AFk



so that
pary,, = dimwv - Indgzxgn_k(m x Id,—)-

Again using Pieri’s formula, we get
Pak)w = T(n—fv) T >, T (n—|AlA)- (12)
v/A is a horizontal strip, A#v

The sum (12) has the “highest” term 7(,_j,|,) (as we will see in Sec. 4, it is the only term that
survives as n — 00), all other terms being of the form 7(,_y,\) With A strictly contained in v.

Example 3 (tensors of valence k£ = 2). From Examples 1, 2, we have (omitting the zero
values and using (12))

P(2),2) = T(n) + T(n-1,1);
Pa2),2) = Indg;xen_2(1d2 X Idp_2) = Ty + Tn-1,1) + T(n—2,2),
Pa2),12) = Indg;xenfg (7T(12) X Idn_g) = M(n-1,1) + M(n—2,12)-

For clarity, we describe the corresponding invariant subspaces (see [9], and also [12], for
details in the symmetric case for any k). In this case, ?{Sﬂt = H12),2) ® H(12),12) is the
standard decomposition of the space of zero-diagonal matrices M = {(a;;)} into symmetric
and skew-symmetric parts: Hj2y o) = M, H(12) q2) = MY Then it is easy to see that
MY = MF & MP™ @ MJ™, where

MP™ = {cE,c e C}, where E = (1 — d;j),
MP" = {(ayy) : aij = i + oy for (o) € C", Zozj =0},
M = {(ay) : aij = aji, Zaij =0 for every i}
J
are the invariant subspaces corresponding to the irreducible representations m(,), m,—1,1), and

T(n—2,2), respectively.
Similarly, we have MW = MEIS’W D M;‘;§§V, where

M?ll{sgw - {(aij) : aij = Qy — Oéj fOI‘ (Oéj) - Rn, Zaj = O},
M?Ifgsv = {(aij) D Qg = Ay, Z a;j = 0 for every i}

J

are the invariant subspaces corresponding to the irreducible representations 7,1 1y and 7, _2 12),
respectively.

Example 4 (tensors of valence k = 3). Once again, from Examples 1, 2, we obtain

P(3),3) = T(n) T T(n-1,1),
pazy, =dimv-Indg, o (m, xId,—3),  vF 3.

Again we use (12) to rewrite the last formula in the form
P(13),3) = T(n) T T(n-1,1) T T(n-2,2) T T(n-33),
P(13),(21) = 2 (W(nl,l) + M(n—22) + Tn—212) + 7T(n37271)),

P13),(13) = T(n—2,12) T M(n—3,13)-



Now let 1 = (21). Then my = my = 1, m; = 0 for i # 1,2, Qu),1) = Indggxgl(IdQ x 1dy),

Ray,q) = Ind& g (Id; x 1dy), and we have

I((21),v) = dimv - (7, m3) + T(21)) Regy,
so that
Indgr, s, (Regy x Id,_»), v=(3),
PRl = 2- Indggxgn_Q(Reg2 x1d,—2), v=(21),
07 vV = (13)

Thus we can summarize the information on the decomposition tensor Tﬁ\V for £ = 3 in the
following Table 1.

Table 1: T, for k = 3.

p\v (3) (21) (1)
(3) 0+ (1)

L[ 0+2-(1)+@2)+ 1% | 0+2-(1)+(2) + (1%

)] 0+M+@+B) [ MH+@)+03)+(2,1) | (%) +0%

In this case, the structure of the invariant subspaces is also easy to describe. Namely,
H?i}),ﬂ)t = H13),3y® H13),2,1) ® H(13),(13 is the decomposition of the space of tensors 7 = {(aijr)}
with pairwise distinct indices into the symmetric part Hsy sy = 75", skew-symmetric part

H13),13) = 755V and the “symmetry (2,1)” part Hsy,21) = T 2D of the form

T — {(air) : (air) € T, aijr + ajr; + ag;; = 0 for any 4, 5, k}.

As in the previous example, 7™

_ ,Zz)sym D ,]-lsym ® ,]-25ym D ,Zésym’ where

7" = {(aijk) : aijr = a for a € C},
T = {(ayr) : aijr = o5 + aj + oy, for (o) € C, Z a; =0},
T = {(agk) : aijr = O‘ZJ + O‘Jk + Qg (Oq]) € My™},
T = {(ag) : (age) € T, Y agy = 0 for any 4, j},
k

the invariant subspace 7;*™ corresponding to the irreducible representation 7(,_;;, 0 <7 < 3.
In the skew-symmetric case, we have 75KV = ’Z?f;‘iw &) TSkeW where

skew
7(12)

skew
713

{(aijk> D Qi = QG + Ak + g, for (aij) c MzkeW}’

{(aijr) : (aijp) € T, Zaijk =0 for any 7,5}
k

are the invariant subspaces corresponding to the irreducible representations 7,5 12) and 7(,_313),
respectively.

The structure of the invariant subspaces for 73 is slightly more complicated; it will be
more natural to use the decompositions (8) and (9) and to describe the subspaces corresponding
to particular Young symmetrizers. We have

T(2,1) — T(2,1)CT fan T(z’l)CT/,



where T, T" are the two standart tableau of shape (2, 1), so that
or = (e+(12)) - (e — (13)), o =(e+(13))- (e — (12)).

The description of the subspaces is quite similar for 7®VYep and T3Ver, so we give it
for 7@V eq:

(2,1) 1 2,1 (2,1) (2,1) ,1)
T =T @ Ty © T @ Tih),

where

=
N3
~=

(aijk) © aijr = 0 — oy, for (a;) € C", ZQJ—O}
(aijk) + @igr = aig — e, (ig) € Mg™},

127)1) {( ) Qi = Q5 + Qg — 200, (Oéij) c M%keW}’

T(gil)) { aijr) © (aijr) € M ey, Zaz‘jk = Zaz‘kj = 0 for any Z',J},
k k

NN N
ORI
=
=
—_

each subspace 7;(2’1) corresponding to the irreducible representation m,_jx»). In particular,
we have a nice description for the invariant subspace corresponding to the primary compo-
nent 271'(”_3’271)2

{(aijk) :(aik) € 7(2’1), Z Qij = Zaikj = 0 for any i,j},
k k

but for other primary subspaces, the description is more complicated.
As to the subspaces H(y1),, it is easy to check that the subspace of H?;ull; with any fixed
order of indices (say, spanned by the basis vectors of the form e; ® e; ® e; with different i, j)

mult

is naturally isomorphic to H(12 (for example, in the above case, an isomorphism is given by

Z#J aje;Qe; — ZZ#] a;;e;®e;®e;). Thus we can easily deduce the structure of the subspaces

of H3 1), corresponding to irreducible representations from that for H (“1151)“ (see Example 3), both

in the symmetric and skew-symmetric cases.

Example 5 (tensors of valence k£ = 4). As in the previous examples, we have

p(4),(4) - 7T(n) + 7T(nfl,l)7
pay,y = dim v - Indgzxgn%(ﬂy x 1d,,_4), vk 4,
Indgr, s, (Regy x Id,_»), v=(4),

PELy = § 3- Indggxgn_Q(Reg2 x1d,—2), v =(31),
otherwise.

For p = (22), we have mg = 2, m; = 0 for i # 2, [ = 2 and

I1((2%),v) = dimv - Z<7TV, ma[Ida]) - 7y

A2

It is well known (see, e.g., [6, Ex. 1.8.6]) that

Ty [Ida] = Z T

TH2r, T is even

10



and
1'r Idg Z 7T

where the sum is over the partitions 7 with Frobenius coordinates (a1 —1,..., ap,—1|ag, ..., ap)
with a; > ... > o, > 0 and a; + ... + @, = r. Thus we have m(y)[ldy] = 7y + 7(22) and
T(12y[Ida] = m(31), so that we obtain

T2), v =(4),

2 = (22
11((2).) = 4 7 v=(2),

7T(12), UV = (31),

0, otherwise,

and the corresponding formulas for p(s2), follow.

Finally, if g = (212), then my =2, my = 1, m; = 0 for i # 1,2, [ = 3; for A 2, we have
Ryay = Indg;‘x% (mx x Idg) and Qy ) = Indggx% (ma[Ids] x Idy) and we have, using known
formulas,

(73 + Ta), v=(4),
3(m@) + 2m1) + masy), v =(31),
I1((21%),v) = < 2(7(3) + 7)), v =(2%),
3(71’(21) + 13)) V= (212),
\0’ V= (14)a

and the corresponding formulas for p(s;2), follow.
Now we can summarize the information on the decomposition tensor Tﬁ\u for k = 4 in the
following Table 2

Table 2: T, for k = 4.

w\v 4) (31) 23 (21?) (1%
(4) P+ (1)
B [0+2-(H+(2+01?) P+2-(H+(2)+01%
(2% P+ (1) +(2) O+03» P+ (1) +(2)
(21%) 0+2-(1)+2-(2) P+3-M+3-@+3- 1D [ 0+2-M+2-2 | MH+2)+2-(1?
+(12) + (3) + (21) +(3)+2-(21) +(1%) +(12) + (3) + (21) +(21) 4+ (13)
an 0+ (1) +(2) 0+ + 12 (2) + (21) + (29) (1*) + (21 13+ (%
+(3) + (4 +(3) + (21) + (31) +(1%) + (212)

4 The infinite case

Now, in the spirit of asymptotic representation theory, it is natural to consider n = co. Namely,
in this case we have

H — (62)®k’

with the kth tensor power of the unitary action of the infinite symmetric group &, (the
inductive limit of the groups &,, with the natural embeddings, i.e., the group of all finitely
supported permutations of N) in /.

It is easy to see that in this case we can reproduce the arguments and notation from Sec. 2
with obvious modifications. In particular, we have decomposition (1), in which we now should

11



regard H5W as the isotypic component of the irreducible representation 7, of &y, and decom-
position (2) defined in the same way as in Sec. 2. Thus we obtain decomposition (4) and denote
by pi, the representation of G4 in H,,,, which corresponds to type of tensors p and symmetry
type v. It turns out that the structure of p%°, is the same as in the finite case (see Theorem 1),
namely, it is essentially a representation induced from the same representation II(u, v) from (5).

Theorem 2. Given u,v & k,

p;cfy = Indg;’;ewm(ﬂ(ﬂa V) X Id)a

where | = () is the length of u, the representation I1(p, v) of &, is given by (5), and Sl] is
the subgroup in S, consisting of the permutations that fix the elements 1,... 1.

Proof. 1t is easy to see that for fixed k € N and p, v b k, the representations pj; , of &, in H}; ,
form an inductive chain and py’°, = lim, . pj, ,. Now the claim follows from Theorem 1 and
the properties of induced representations. O

Let

M) = P, - m (13)

AF
be the decomposition of II(x, v) into irreducible representations of &;. Then

00 A Soo _ A 0o
Py = @du’y . Indelxemm (my x Id) = @du,v ST,
AHL M-

where, in contrast to the case of finite n, the representation
T = Indgf;&)o[z](ﬁ/\ x 1d)

of & is irreducible (see [1], and also [13]). Thus in the infinite case the decomposition tensor
is much simpler than in the finite case:

T;;vA = dfw. (14)

While in the case of finite n, to obtain the coefficients 7}, of the decomposition tensor, one
should rewrite (6) as

puy =IdS s, <(@ - m) X Idnl> - @ dy, - Indgs <7TA X Idnl>,

AL AL

and then use the Pieri rule to decompose the induced representations on the right-hand side
into irreducible representations.

For tensors of type = (1%), in the infinite case we can give the following complete descrip-
tion. We consider the subspace 7T = Hﬁ‘,jl)t of purely off-diagonal tensors of valence k, and

we have the following decomposition of the corresponding representation P2 into irreducible
components for the action of G, X Gy:

Pt = Z 0 ® . (15)

vk

Denote the corresponding irreducible subspaces by 77, so that 7°" = @, , 7". Thus the
algebra generated by the operators of p((fk) , is always a type I factor and

Pliry,, = dimv - e,

12



Remark 2. We see from (15) that on Z°T we have an analog of the Schur-Weyl duality: the
actions of G, and G commute and generate the commutants of each other. In particular, the
commutant of the primary component dim v - p>° coincides with the simple ideal K, (see the
beginning of the proof of Proposition 1). In other words, we can characterize the subspaces 7"

as follows:
T'={TecT:T-(1-P,) =0},

where P, € C[G;] is the orthogonal projection onto K,.

Example 6. Let us consider the first nontrivial case, tensors of valence 3. For k = 3, we have
off 00 00 [e'9)
Pe. =70 + 27050 + T,
/]éoff = Tm g T(Z,l) D Tskew'

The subspaces of symmetric tensors 73 = 7™ and skew-symmetric tensors T = Tskew are
irreducible, and the “symmetry (2,1)” part 7", which has the form

TEY = {(ayp) : (agr) € T, aijr + ajpi + apyy; = 0 for any i, j, k},

corresponds to the primary component 2150 with the commutant equal to Ko 1).
Comparing this with the case of finite n, we see that in the infinite case the “highest”
subspaces T(?)’m, 72(223), and ’]ﬁ%‘;w are dense in 7™, 71 and 75%% respectively.

Remark 3. The action in ‘H of the infinite symmetric group &, can be extended to an action
of the complete symmetric group &*°, which is the group of all permutations of N. Here the
corresponding representation p,,, is given by

_ o A _
Puv = @du,v T
AL

where d , are from (13) and
'ﬁ'io = Indgigo@[l] (7T/\ X Id)

(with &*[l] being the subgroup in &> consisting of the permutations that fix the elements
1,...,1) are irreducible representations of &> by the well-known Lieberman theorem [5].

5 Symmetric functions formulation

Denote by X, the character of p, ,, and let ¢, , = ch x,,,, be its image under the characteristic
map. Since induction from Young subgroups correspond to multiplication of Schur functions
and induction from wreath products correspond to plethysm, we obtain the following.

Corollary 2. In the above notation,

Yy, = dimv Z (Su, Sag[ha]Saglha) - ) Sa Sag - - - - P, (16)

A1Fmy,Aabma,...

where sy are Schur functions, h, are complete symmetric functions, and f[g] denotes the
plethysm of symmetric functions.
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Corollary 3. For = (1"™2™2...) F k, we have

k! g
Z <h]1€, Sx [hl]S)\Q [hz] .. .>3)\13)\2 L. = Whlz: . (17)
A1bEmy,Aabma,... 7
Proof. Take the sum of (16) over v F k and use (3). O

Now let us denote by Z,, 5, the characteristics of the action of G,, in the whole space (C”)@)k
and consider the generating function

o o 1 _
n=0 k=0
On the one hand, using decomposition (2) and formula (3), we have

= 1 k! m;

n=0 k=0  pu=(1m12m2..)k

where we have denoted h = hg + hy + ho + . . ..
On the other hand, by the Schur-Weyl duality we have

Enk = Z dim \ - ch f/(\"),

Ak

where §/(\") is the representation of &,, obtained by restricting to &,, C GL(n,C) of the irre-
ducible representation of GL(n, C) with signature A. By a formula proved in [10] (see also |11,
Ex. 7.74]), we have

chel = Z(S)\, sy[h])s,, whence Z,; = Z(hlf, su[h]) s

vkn vkn

Thus
F =350 S sulilyse = 300 sl
n=0 k=0  vkn v

where the last sum ranges over all partitions v of nonnegative integers. So, the two decompo-
sitions (1) and (2) of the space (C")®* into invariant subspaces of &,, ® &}, correspond to the
following identity for symmetric functions:

h- el — Z(ehl, syh])s,. (19)

v
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Now let us use the Cauchy identity to write the right-hand side of (19) as

<ehl<y>,;syw<y>sy<x>> - <ehl<y>,exp (ifw»

By the properties of plethysm, we have p,[h] = h[p,] = > hjlps] = > palhj], where p,[ho] =
so that the exponential factor in the right-hand side equals

exp(iiw) HeXp(an )Pnlh )>

= h(x) - []D_ sn @sn, [il(w) = h(z) - > T snRl@) [ sn (@)
J=1 X AL A2, j=1 §=0

Thus we have

A1,A2 j=1 7j=1
Since
o0 o0
ehl:E h—lfzg ig dimv-s
' k! 28]
k=0 k=0 " vk

i
Eal
|
o
E
N
S
S(‘IJ
8
§f
\/
=8
™~
>
]
&

DD DIND DI 2 <sm13 >H =

vk p=("9 Yk Atbma,Aekma, .. J=1

and, comparing with (16), we see that this is exactly the decomposition corresponding to (4).

References

[1] M. W. Binder, Irreducible induced representations of ICC-groups, Math. Ann. 294 (1992),
37-47.

[2] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Representation Theory of the Sym-
metric Groups. The Okounkov—Vershik Approach, Character Formulas, and Partition Al-
gebras, Cambridge Univ. Press, Cambridge, 2010.

[3] W. Fulton, Young Tableauz, with Applications to Representation Theory and Geometry,
Cambridge Univ. Press, 1997.

[4] W. Fulton and J. Harris, Representation Theory. A First Course, Springer-Verlag, New
York, 1991.

[5] A. Lieberman, The structure of certain unitary representations of infinite symmetric
groups, Trans. Amer. Math. Soc. 164 (1972), 189-198.

15



(6]

17l
18]
19]
[10]
[11]

[12]

[13]

[14]

I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, New
York, 1995.

F. D. Murnaghan, The Theory of Group Representations, Dover, New York, 1963.
T. Halverson and A. Ram, Partition algebras, Furopean J. Combin. 26 (2005), 869-921.

P. P. Nikitin, A realization of the irreducible representations of \S,, corresponding to 2-row
diagrams in square-free symmetric multilinear forms, J. Math. Sci. (N. Y.) 129, No. 2
(2005), 3796-3799.

T. Scharf and J.-Y. Thibon, A Hopf algebra approach to inner plethysm, Adv. Math. 104
(1994), 30-58.

R. P. Stanley, Fnumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge,
1999.

N. V. Tsilevich and A. M. Vershik, Markov measures on Young tableaux and induced
representations of the infinite symmetric group Prob. Theory Appl. 51, No. 1 (2006), 211—
223.

N. V. Tsilevich and A. M. Vershik, Induced representations of the infinite symmetric group,
Pure Appl. Math. Quart. 3, No. 4 (2007), 1005-1026.

H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton Univ.
Press, Princeton, N.J., 1939.

16



