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1. Introduction

William Thurston proved in 1978 that every non-torus non-satellite knot is a hy-
perbolic knot. Computations show that the overwhelming majority of prime knots
with small crossing number are hyperbolic knots. Table 1 below gives the number
of hyperbolic, prime satellite, and torus knots of n crossings for n = 3, . . . , 16
(see [HTW98] or the sequences A002863, A052408, A051765, and A051764 in the
Sloane’s encyclopedia of integer sequences).

type \ n = 3 4 5 6 7 8 9 10 11 12 13 14 15 16
all prime 1 1 2 3 7 21 49 165 552 2 176 9 988 46 972 253 293 1 388 705
hyperbolic 0 1 1 3 6 20 48 164 551 2 176 9 985 46 969 253 285 1 388 694

prime satellite 0 0 0 0 0 0 0 0 0 0 2 2 6 10
torus 1 0 1 0 1 1 1 1 1 0 1 1 2 1

Table 1. Number of prime knots

(A part of) these data gave rise to the following conjecture (see [Ad94b, p. 119]).

Conjecture 1. The percentage of hyperbolic knots amongst all of the prime knots
of n or fewer crossings approaches 100 as n approaches infinity.

In the present paper, we show that Conjecture 1 contradicts several other long
standing conjectures, including the following one.

Conjecture 2. The crossing number of knots is additive with respect to connected
sum.

See, e. g., [Ad94b, p. 69], [Kir97, Problem 1.65], and [La09] for comments and
related results. Another related conjecture is as follows.

Conjecture 3. The crossing number of a satellite knot is larger (a weaker variant:
not less) than that of its companion.

See [Ad94b, p. 118], [Kir97, Problem 1.67 (attributed to de Souza)], and [La14].
Concerning Conjecture 3, it is noticed in [Kir97, Problem 1.67] that ‘Surely the
answer is yes, so the problem indicates the difficulties of proving statements about
the crossing number’. Since a composite knot is a connected sum of its factors
and, at the same time, is a satellite of each of its factors, the ‘intersection’ of
Conjectures 2 and 3 yields the following.

Conjecture 4. The crossing number of a composite knot is larger (a weaker
variant: not less) than that of each of its factors.

We denote by cr(X) the crossing number of a knotX. If P is a prime knot and λ
is a real number, we say that P is λ-regular if we have cr(K) ≥ λ ·cr(P ) whenever
P is a factor of a knot K. In this terminology, Conjecture 4 says that each prime
knot is 1-regular. Lackenby [La09] proved that each knot is 1

152 -regular. Our
considerations involve the following conjecture.

Conjecture 5. Each prime knot is 2
3 -regular.

We also consider the following weakening of Conjecture 5.

Conjecture 6. There exist ε > 0 and N > 0 such that, for all n > N , the
percentage of 2

3 -regular knots amongst all of the hyperbolic knots of n or fewer
crossings is at least ε.
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We have the following obvious implications.

Conj. 4 =⇒ Conj. 5 =⇒ Conj. 6

Conj. 2
=⇒

Conj. 3
=⇒

The main result of this paper is the following theorem.

Theorem 1. Conjecture 1 contradicts Conjecture 6 and hence it also contradicts
(each of) Conjectures 2, 3, 4, and 5.

The paper is organised as follows. Section 2 contains remarks concerning Con-
jectures 1–6. In Section 3, we present the key idea of the proof of Theorem 1 and
reduce Theorem 1 to Proposition 1 consisting of three assertions. Sections 4–8
contain the proof of Proposition 1. In Sections 4 and 5, we prove the first two
assertions of Proposition 1. Section 6 contains a combinatorial lemma used in the
proof of the last assertion of Proposition 1. Section 7 contains preliminaries on
tangles. In Section 8, we prove the last assertion of Proposition 1. In Section 9,
we introduce a new property of knots (strong property PT) and prove Theorem 3
strengthening Theorem 1. In Section 10, we show that an assumption that Con-
jectures 2–5 has many strong counterexamples contradicts Conjecture 1 as well.
In Section 11, we show that certain assumptions concerning unknotting numbers
of knots contradict Conjecture 1.

The paper should be interpreted as being in either the PL or smooth category.
For standard definitions we mostly use the conventions of [BZ06] and [BZH14].
There will be a certain abuse of language in order to avoid complicating the
notation. In particular, a knot K will be a circle embedded in the 3-sphere S3,
a pair (S3,K), or a class of homeomorhic pairs (cf. [BZ06, p. 1]). No orientations
on knots and spaces are placed if not otherwise stated.

The author is grateful to Sergei Buyalo, Ivan Dynnikov, Evgeny Fominykh,
Aleksandr Gaifullin, Vadim Kaimanovich, Maksim Karev, Paul Kirk, Nikita Nets-
vetaev, Vladimir Nezhinskij, Semën Podkorytov, Józef Przytycki, Alexey Sleptsov,
and Andrei Vesnin for helpful comments and suggestions.

2. Remarks

We list certain results related to Conjectures 1–6.

Predominance of hyperbolic objects. In recent years, a number of results
have been obtained showing the predominance of hyperbolic objects in various
cases. We refer to the works of Ma [Ma14] and Ito [Ito15, Theorem2] for re-
sults concerning genericity of hyperbolic knots and links. See also [Mah10a],
[LMW14, Theorem2], [LusMo12], [Riv14], and [Ito15, Theorem1] for results on
genericity of hyperbolic 3-manifolds. Related results show that pseudo-Anosovs
prevail (in various senses) in mapping class groups of surfaces. We refer to
[Riv08, Riv09, Riv10, Riv12, Riv14], [Kow08], [Mah10b, Mah11, Mah12], [AK10],
[Sis11], [Mal12], [LubMe12], [MS13], and also [Car13, CW13, Wi14] (non-random
approach) for precise statements and detailed discussions. See also [GTT16] for
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the genericity of loxodromic isometries for actions of hyperbolic groups on hy-
perbolic spaces. Other examples of hyperbolicity predominance can be found in
extensive literature on exceptional Dehn fillings (see [Thu79] etc.) and in [Gro87,
0.2.A], [GhH90, p. 20], [Ch91] and [Ch95], [Ols92], [Gro93], [Żuk03], [Oll04],
[Oll05], where viewpoints are given from which it appears that a generic finitely
presented group is word hyperbolic. Apparently, combining approaches developed
by [Ito15] and [Ma14] with results of [Car13, CW13, Wi14] ([LusMo12]) one can
obtain more viewpoints where generic knots will be hyperbolic.

Predominance of non-hyperbolic objects. As for natural models where it is
proved that hyperbolic objects are rare, we have standard methods of generating
knots as polygons in R3. Under this approach, composite knots prevail and prime
knots (including hyperbolic ones) are asymptotically scarce. See Sumners and
Whittington [SW88], Pippenger [Pip89], and also Soteros, Sumners, and Whit-
tington [SSW92] for the case of self-avoiding random polygons on the simple cubic
lattice; see [Oetal94] and [Sot98] for such polygons in specific subsets of the lattice;
see [DPS94] and [Jun94] for local and global knotting in Gaussian random poly-
gons; see [Di95] and [DNS01] for local and global knotting in equilateral random
polygons; see also [Ken79] for knotting of Brownian motion and [Sum09, MMO11]
for more references. An interesting idea appeared in [Ad05, p. 4] and [Cr04, p. 95]
that prime satellite knots should prevail over hyperbolic ones when we consider
Gaussian random polygons. However, in both [Ad05] and [Cr04], the idea was
apparently inspired by a misinterpretation of results in [Jun94].

Crossing number additivity. Murasugi [Mur87, Corollary 6] proved that Con-
jecture 2 holds for alternating knots. (This follows from the proof of the Tait
conjecture stating that reduced alternating projections are minimal; this Tait
conjecture was also proved, independently, by Kauffman [Kau87] and Thistleth-
waite [Thi87].) Conjecture 2 is valid for adequate knots (see [LT88]). Diao [Di04]
and Gruber [Gru03] independently proved that Conjecture 2 holds for torus knots
and certain other special classes of knots. Results of [Mur87, Kau87, Thi87] im-
ply that alternating knots are 1-regular.1 Diao [Di04, Theorem 3.8] showed that
torus knots are 1-regular. In [PZ15], the authors introduce a telescopic family
of conjectures concerning monotonic simplification of link diagrams and provide
supporting evidence for (the strongest of) these conjectures.2 Each of Petronio–
Zanellati conjectures implies Conjecture 2.

Torus knots. Murasugi [Mur91, Proposition 7.5] proved that the torus link of
type (p, q) with 2 ≤ p ≤ q has crossing number (p−1)q. Taking into account that
the number of all prime knots of n crossings grows exponentially in n (see [ES87,
Wel92]), we see that the percentage of torus knots amongst all of the prime knots

1In [Mur87, Kau87, Thi87], it is shown that (i) for each knot K we have spanVK(t) ≤ cr(K),
and (ii) for alternating K we have spanVK(t) = cr(K), where VK(t) is the Jones polynomial
of K and spanVK(t) is the difference between the maximal and minimal degrees of VK(t). (It is
known that VK(t) 6= 0, so that spanVK(t) is well-defined. See [Jon85, Theorem 15].) Then the
1-regularity of alternating knots follows because, for any two knots K1 and K2, we have [Jon85,
Theorem 6]

spanVK1]K2(t) = spanVK1(t) + spanVK1(t).

2Ivan Dynnikov found a counterexample to Petronio–Zanellati conjectures (a private
communication).
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of n or fewer crossings approaches 0 as n approaches infinity. Thus, only satellite
knots ‘pose a danger’ to Conjecture 1.

Hyperbolic knots. Several interesting classes of knots consist of hyperbolic and
torus knots only. In particular, amongst these classes are:

– prime alternating knots, including 2-bridge knots (see [Men84]),
– prime almost alternating knots (see [Aetal92]),
– prime toroidally alternating knots (see [Ad94a]),
– arborescent knots, including 2-bridge knots, pretzel knots, and Montesinos

knots (see [BS10], Theorem 1.5 and subsequent discussion in [FG09]).
More families of hyperbolic knots, links, and tangles are listed in [Ad05]. See

[Ito11], [IK12, Theorems 8.3, 8.4] for new examples of huge classes of hyberbolic
knots, links, and 3-manifolds.

3. The idea of the proof of Theorem 1

Our proof of Theorem 1 involves a specific way of constructing satellite knots.
For brevity, we use the term γ-knots for the satellite knots constructed in this
way.

Definition. γ-Knots. Let K be a knot in the 3-sphere S3, and let V be an
unknotted solid torus in S3 such that K is contained in the interior of V . Let
ψ : V → W ⊂ S3 be a homeomorphism onto a tubular neighbourhood W of a
hyperbolic knot. We recall that the winding number of K in V is the absolute
value of the algebraic intersection number of K with a meridional disk in V . We
assume that the winding number of K in V is at least 2 and that ψ maps a
longitude3 of V to a longitude of W . Then we say that the knot ψ(K) ⊂ S3 is a
γ-knot over K.

A method of constructing a γ-knot is presented in Fig. 1. We assume that a
diagram D′ of a knot K ′ is obtained from a diagram D of a knot K by a local
move as in Fig. 1. (See Fig. 2 for an example.) Our definitions imply that if the
two arrows on arcs in Fig. 1(a) determine the same orientation on K, then K ′ is
a γ-knot over K. Here, the winding number is 2 while the companion hyperbolic
knot is the figure-eight knot. (In order to check that the condition on longitudes
is also fulfilled, we observe that each arc in Fig. 1 has zero total curvature.)

We deduce Theorem 1 from the following proposition on γ-knots.

Proposition 1. (i) Each γ-knot is a satellite knot.
(ii) The sets of γ-knots over distinct non-satellite knots are disjoint.
(iii) If P is a 2

3 -regular prime knot, then there exists a prime γ-knot P ′ over P
with cr(P ′) ≤ cr(P ) + 17.

Remark. Assertion (iii) of Proposition 1 is not obvious because a γ-knot over a
prime knot is not necessarily prime (see Fig. 2).

Proposition 1 implies Theorem 1. We introduce the following notation. Let pn
(resp., hn, sn) denote the number of prime (resp., hyperbolic, prime satellite)
knots with crossing number n. We set Pn =

∑n
k=1 pk, Hn =

∑n
k=1 hk, and

Sn =
∑n

k=1 sk.

3If a solid torus U is embedded in the 3-sphere S3, then there exists an essential curve in ∂U
that bounds a 2-sided surface in S3 \ int(U) (a Seifert surface). This curve is unique up to
isotopy on ∂U and is called a longitude of U in S3 (see, e. g., [BZ06, Theorem 3.1]).
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(a) (b)

Figure 1. Double figure-eight move

Figure 2. A composite γ-knot over the trefoil

Since each of Conjectures 2, 3, 4, and 5 implies Conjecture 6 (see the diagram
before Theorem 1), it suffices to prove only that Conjectures 6 and 1 are incom-
patible. If Conjecture 6 is true, then there exist ε0 > 0 and N0 > 0 such that, for
all n > N0, the number of 2

3 -regular hyperbolic knots of n or fewer crossings is at
least ε0Hn. Obviously, in this case assertions (i), (ii), and (iii) of Proposition 1
imply that (for all n > N0) we have

Sn+17 ≥ ε0Hn.

Therefore, we have
Pn+17 ≥ Hn+17 + ε0Hn.

This is equivalent to the following inequality

(1) 1 ≥ Hn+17

Pn+17
+ ε0

Hn

Pn

Pn
Pn+17

.

If Conjecture 1 is true, then both sequences Hn+17

Pn+17
and Hn

Pn
tend to 1. In this case,

Eq. (1) implies that
Pn+17

Pn

n→+∞−−−−−→ +∞.

Consequently, for each B > 0 we have Pn > Bn for all sufficiently large n. (We
consider subsequences of the form Pn0+17i, i ∈ N.) In other words, we have

(2) P 1/n
n

n→+∞−−−−−→ +∞.
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However, it is shown in [Wel92] that

lim sup
n→∞

p1/nn < +∞,

which implies that there exists B > 0 such that pn < Bn for all n ∈ N. Then, for
each n ∈ N we have Pn < (B + 1)n whence it follows that

lim sup
n→∞

P 1/n
n ≤ B + 1 < +∞.

This contradicts (2). The obtained contradiction completes the proof. �

4. Proof of assertion (i) of Proposition 1

We recall definitions of satellite knots. A knot K in S3 is a satellite knot if
S3 contains a non-trivial knot C such that K lies in the interior of a regular
neighbourhood V of C, V does not contain a 3-ball containing K, and K is not
a core curve of the solid torus V . The knot K is a satellite knot if and only if K
contains an incompressible, non-boundary parallel torus in its complement. (For
a proof, see [BZH14, Remark 16.1, p. 335].)

Let K be a γ-knot in S3. Then the definition of γ-knots implies that K lies
in a knotted solid torus W ⊂ S3 such that the winding number of K in W is at
least 2. Since the winding number of K in W is at least 2, it follows that W does
not contain a 3-ball containing K, and K is not a core curve of V . This means
by the above definition that K is a satellite knot.

5. Proof of assertion (ii) of Proposition 1

We show that the sets of γ-knots over distinct non-satellite knots are disjoint.
Suppose to the contrary that there exist a knot K and two distinct non-satellite
knots H1 and H2 such that K is a γ-knot both over H1 and over H2. By the
definition of γ-knots, this means that there exist embedded solid tori V1 and V2
in S3 and re-embeddings φ1 : V1 → S3 and φ2 : V2 → S3 such that, for each
i ∈ {1, 2}, the following conditions hold:

– Vi is a tubular neighbourhood of a hyperbolic knot,
– K lies in the interior of Vi and the winding number of K in Vi is at least 2,
– the solid torus φi(Vi) is unknotted,
– φi maps a longitude of Vi to a longitude of φi(Vi),
– we have φi(K) = Hi.

Claim 1. The tori ∂V1 and ∂V2 are both incompressible in S3 \K.

Since the winding number of K in Vi is non-zero, it follows that no 3-ball in Vi
contains K. If a knotted solid torus U in the 3-sphere S3 contains a knot L in its
interior while no 3-ball in U contains L, then ∂U is sometimes called a companion
torus of L. It is well known that, in this case, ∂U is incompressible in S3 \ L.
(See, e. g., [BZH14, Propositions 3.10 and 3.12, and E 2.9].) This implies Claim 1.

Claim 2. There exists an isotopy of ∂V1 in S3 \K that moves ∂V1 to a position
where ∂V1 ∩ ∂V2 = ∅.

It may be assumed that ∂V1 intersects ∂V2 transversely in simple closed curves.
If the intersection ∂V1 ∩ ∂V2 contains a curve that is inessential in ∂V2, let C be
an innermost of such curves and let d be the open disk in ∂V2\∂V1 bounded by C.
Then C is inessential in ∂V1 because ∂V1 is incompressible in S3\K (Claim 1). Let
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δ be the open disk in ∂V1 bounded by C (δ may intersect ∂V2). Then the sphere
d ∪ δ ∪C bounds a ball (say, B) in S3 \K. We have B ∩ ∂V1 = δ ∪C. It follows
that we can eliminate C (together with δ∩∂V2, if nonempty) by an isotopy of ∂V1
in a neighborhood of B. Therefore, we can eliminate all components of ∂V1 ∩∂V2
that are inessential in ∂V2. The remaining curves of ∂V1∩∂V2 are essential in ∂V1
as well. (For if C is an innermost of inessential curves from ∂V1 ∩ ∂V2 on ∂V1,
then C is inessential in ∂V2 because ∂V2 is incompressible in S3 \K by Claim 1.)
Now, if ∂V1 ∩ ∂V2 is still nonempty, the space ∂V1 \ ∂V2 is a collection of annuli.
It is known that every incompressible properly embedded annulus in the closure
of the complement of a hyperbolic knot is boundary parallel (see, e. g., [BZ06,
Lemma15.26]). Applying this to the space S3 \ int(V2), we see that there exists
an isotopy of ∂V1 in S3 \K moving ∂V1 in S3 \ ∂V2. Claim 2 is proved.

The classical Isotopy Extension Theorem (for smooth manifolds) says that if A
is a compact submanifold of a manifold M and F : A× I →M is an isotopy of A
with F (A× I) ⊂ int(M), then F extends to an ambient isotopy (i. e., a diffeotopy
of M) having compact support (see, e. g., [Hir76, p. 179]). Applying this theorem
to the isotopy of ∂V1 in S3 \K from Claim 2 yields the following.

Claim 3. There exists an ambient isotopy of S3, fixing K pointwise, that moves
V1 to a position in which ∂V1 ∩ ∂V2 = ∅.

Thus, we can assume without loss of generality that ∂V1 ∩ ∂V2 = ∅ (while V1
and V2 satisfy all properties listed at the beginning of the proof). Now, let M1

and M2 denote the closures of the complements S3 \ V1 and S3 \ V2 respectively.

Claim 4. M1 and M2 are disjoint.

In order to prove Claim 4, we need the following assertion.

Claim 5. There is no isotopy between ∂V1 and ∂V2 in S3 \K.

Suppose to the contrary that such an isotopy exists. Then the Isotopy Ex-
tension Theorem (see above) implies that there exists an ambient isotopy of S3,
fixing K pointwise, that moves ∂V1 to ∂V2. This yields an isotopy between V1
and V2 that fixes K pointwise. Then the triples (V1,K, `1) and (V2,K, `2), where
`i is a longitude of Vi, i = 1, 2, are homeomorphic, i. e., there exists a homeo-
morphism τ : V1 → V2 such that τ(K) = K and τ(`1) = `2. This implies that
the pairs (S3, φ1(K)) and (S3, φ2(K)) are homeomorphic. Indeed, we observe
that (S3, φi(K)) is obtained from (Vi,K) by a Dehn filling along `i, that is,
(S3, φi(K)) is obtained by attaching a solid torus V to Vi by a gluing homeomor-
phism σi : ∂V → ∂Vi such that σ−1i (`i) bounds a meridional disk of V . Thus, the
homeomorphism τ : V1 → V2 extends to a homeomorphism S3 → S3 that maps
φ1(K) to φ2(K). This means that the knots H1 and H2 are equivalent because
we have φi(K) = Hi by construction. This contradicts the assumption that H1

and H2 are distinct. Claim 5 is proved.
Now, we pass to the proof of Claim 4. Observe that neitherM1 contains ∂M2 =

∂V2 nor M2 contains ∂M1 = ∂V1 because an incompressible torus in a hyperbolic
knot complement is boundary parallel by Thurston’s hyperbolization theorem,
while ∂M1 = ∂V1 and ∂M2 = ∂V2 are not parallel by Claim 5. Obviously, this
implies that M1 and M2 are disjoint.

Another fact that we need is implied by the following proposition.
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Proposition 2. Let C1, C2, . . . , Cn be n disjoint submanifolds of S3 such that
for all i ∈ {1, 2, . . . , n}, Ki = clos(S3 \Ci) is a non-trivially embedded solid-torus
in S3. Then there exists n disjointly embedded 3-balls B1, B2, . . . , Bn ⊂ S3 such
that Ci ⊂ Bi for all i ∈ {1, 2, . . . , n}. Moreover, each Bi can be chosen to be Ci
union a 2-handle which is a tubular neighbourhood of a meridional disk for Ki.

Proof. See [Bud06, Proposition 2.1] and references therein for earlier proofs. �

Applying Proposition 2 to M1 and M2, we obtain the following claim.

Claim 6. There exists a meridional disk D2 for V2 such that D2 ⊂ V1.

Now, since we have M2 ⊂ V1 (Claim 4), the image φ1(M2) is well defined. We
consider the complement W := S3 \ φ1(int(M2)). Due to Alexander’s theorem
on embedded torus in S3, we observe that W is a knotted solid torus because we
know that the boundary ∂W = ∂φ1(M2) = φ1(∂M2) = φ1(∂V2) is a torus, while
the complement S3 \W = φ1(int(M2)) is homeomorphic to int(M2), which is the
complement of the knotted solid torus V2. (Of course, by the Gordon–Luecke
theorem we know, moreover, that W is a tubular neighbourhood of a hyperbolic
knot.) We see that W contains φ1(K) by construction. Finally, we see that
the winding number of φ1(K) in W is equal to the winding number of K in V2
because there exists a meridional disk D2 for V2 such that D2 ⊂ V1, so that φ1
maps D2 to a meridional disk of W . Therefore, φ1(K) is contained in a knotted
solid torus W and the winding number of φ1(K) in W is at least 2. This means
that φ1(K) is a satellite knot. Since we have H1 = φ1(K), this contradicts the
assumption that H1 is not a satellite knot. This contradiction completes the proof
of assertion (ii) of Proposition 1.

6. A combinatorial lemma

The present section contains a lemma which is used in the proof of assertion
(iii) of Proposition 1.

Definitions. Let K be a knot in the 3-sphere S3 = R3 ∪ {∞}, and let D ⊂ S2

be a projection of K on the 2-sphere S2 = R2 ∪ {∞} in S3. A knot projection
is said to be regular if its only singularities are transversal double points. If D is
a regular knot projection, an edge in D is the closure of a component of the set
D \ V , where V is the set of double points of D. We say that two edges I and J
of D are neighboring edges or neighbors if there exists a component Q of S2 \D
such that the boundary ∂Q contains both I and J . We say that two edges I and
J of D are consecutive if the union I ∪ J is the image of a (connected) arc of the
knot. We will denote by ρ the maximal metric on the set E(D) of edges of D in
the class of metrics satisfying the condition

ρ(I, J) = 1 if I and J are consecutive edges of D.

Lemma 1. Any regular knot projection with n > 0 double points has a pair of
neighboring edges I and J with ρ(I, J) ≥ 2n/3.

Proof. LetD ⊂ S2 be a regular knot projection with n double points. We consider
the case with n ≥ 2 (the case n = 1 is obvious). Observe that D has 2n edges.
Put k := b2n/3c, the largest integer not greater than 2n/3, and split the set E(D)
of edges of D in three parts, E1, E2, and E3, such that each part is a chain of
consecutive edges, two parts consist of k edges each, and the third part consists
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of 2n − 2k edges. (Note that 2n − 2k ∈ {k, k + 1, k + 2}; in particular, we have
2n − 2k ≥ k, that is, each part consists of at least k edges. No part is empty
since we assume n ≥ 2.) Let Di ⊂ D, i = 1, 2, 3, be the union of edges from Ei.
Observe that each Di is compact and connected and D = D1 ∪D2 ∪D3. Let us
smoothly embed S2 in R3 as a sphere of radius 1 and let dist denote the metric
on S2 induced by the euclidean metric in R3. For each i ∈ {1, 2, 3} we set

Ri := {x ∈ S2 : dist(x,Di) = dist(x,D)}.

Observe that R1∪R2∪R3 = S2 because D = D1∪D2∪D3. We see that for each
i ∈ {1, 2, 3} the set Ri is closed because Di is compact (consider a convergent
sequence of points in Ri). Also, we see that for each i ∈ {1, 2, 3} the set Ri is
connected. Indeed, if p ∈ Ri, then due to compactness of Di there exists a point
q ∈ Di such that dist(p, q) = dist(p,D). Then the geodesic segment between p
and q is in Ri by the triangle inequality. Therefore, Ri is connected because Di is
connected. Finally, we see that for any {i, j} ⊂ {1, 2, 3} the intersection Ri ∩ Rj
is not empty because Di ⊂ Ri and Dj ⊂ Rj , while Di ∩Dj is not empty.

Thus, the sets R1, R2, and R3 satisfy assumptions of Lemma 2 below. Lemma 2
implies that R1, R2, and R3 have a common point x. Clearly, x is not an inner
point of an edge of D, so we have two possible cases:

1) x is a double point of D,
2) x /∈ D.
Suppose x is a double point of D. Then there exists a triple {J1, J2, J3} of

edges of D incident to x such that Ji ∈ Ei for all i ∈ {1, 2, 3}. Without loss of
generality we can and will assume that J1 and J3 are consecutive. Then J1 and
J2 are neighbors, and J2 and J3 are neighbors. It is easily seen that we have
ρ(J1, J2) ≥ k and if ρ(J1, J2) = k then ρ(J2, J3) = k+1, and the theorem follows.

Suppose x ∈ S2 \D. Let Q be the component of S2 \D containing x. Observe
that the set

{y ∈ D : dist(x, y) = dist(x,D)}

is contained in ∂Q ⊂ D and contains no double points of D (due to smoothness
of embedding S2 → R3). Therefore, since x ∈ R1 ∩R2 ∩R3, for each i ∈ {1, 2, 3}
the set ∂Q ∩Di contains at least one edge of D. This means that there exists a
triple {J1, J2, J3} of pairwise neighboring edges of D such that we have Ji ∈ Ei
for all i ∈ {1, 2, 3}. It is an easy exercise to check that this triple contains a pair
{I, J} with4

ρ(I, J) ≥ d2n/3e ≥ 2n/3. �

Lemma 2. If a triple of pairwise intersecting closed connected sets cover a simply
connected space, then these three sets have a common point.

Proof. This follows, e. g., from Theorem 5 of [Bog02] in the case m = 1. �

7. Tangles

Our proof of assertion (iii) of Proposition 1 uses tangles. The present section
contains some preliminaries on tangles.

4We use notation d2n/3e for the smallest integer not less than 2n/3.
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Definitions. A k-string tangle, where k ∈ N, is a pair (B, t) where B is a 3-ball
and t is the union of k disjoint arcs in B with t∩ ∂B = ∂t. We mostly interested
in the cases where k ∈ {1, 2}. Two tangles, (B, t) and (A, s), are equivalent if
there is a homeomorphism of pairs from (B, t) to (A, s). A tangle (B, t) is trivial
if B contains a properly embedded disk containing t. A tangle (B, t) is locally
knotted if B contains a ball B′ such that (B′, B′∩t) is a nontrivial 1-string tangle.
A 2-string tangle (B, t) is prime if it is neither locally knotted nor trivial. If (B, t)
and (A, s) are k-string tangles and f : (∂B, ∂t)→ (∂A, ∂s) is a homeomorphism,
a link in S3 can be obtained by identifying the boundaries of the tangles using f .
The result, (B, t)∪f (A, s), is referred to as a sum of the two tangles. If (B, t) is a
1-string tangle and (A, s) is the trivial 1-string tangle, then there is a unique (up
to a homeomorphism of pairs) knot which is a sum of (B, t) and (A, s). This knot
is called the closure of (B, t). We say that a 2-string tangle (B, t) is a cable tangle
if there exists an embedding f : I × I → B such that f(I × I)∩ ∂B = I × ∂I and
t = f(∂I × I), where I := [0, 1]. (We treat the trivial 2-string tangle as a cable
tangle.) Clearly, each tangle (B, t) can be embedded in R3 in such a way that
B becomes a Euclidean ball while the endpoints ∂t lie on a great circle of this
ball and t is in general position with respect to the projection onto the flat disc
bounded by the great circle. The projection, with additional information of over-
and undercrossings, then gives us a tangle diagram. Examples of tangle diagrams
are given in Figs. 1, 2, and 4.

Theorem 2 ([Lick81, Theorem1]). A sum of two 2-string prime tangles is a
prime link.

Lemma 3. Each nontrivial cable 2-string tangle is prime.

Proof. (See [Lick81, Examples (a) and (b)].) It is enough to observe that we can,
in an obvious manner, add the trivial 2-string tangle to any cable 2-string tangle so
as to create the trivial knot, which proves that the initial tangle has no local knots
(this follows by the Unique Factorization Theorem by Schubert [Schu49]). �

Lemma 4. No composite knot is a sum of a nontrivial cable 2-string tangle with
the trivial 2-string tangle.

Proof. Suppose that a knot K in S3 is presented as a sum

(S3,K) = (B, t) ∪f (A, s), f : (∂A, ∂s)→ (∂B, ∂t),

of a nontrivial cable 2-string tangle (B, t) with a trivial 2-string tangle (A, s). Let

f0 : (∂A, ∂s)→ (∂B, ∂t)

yields an obvious ‘trivializing’ sum for (B, t), that is, the sum (B, t) ∪f0 (A, s)

is the trivial knot.5 (See left side of Fig. 3.) Let M0 denote the double cover
of the 3-sphere B ∪f0 A branched over the trivial knot t ∪f0 s, and let M1 be
the double cover of the 3-sphere B ∪f A branched over the knot t ∪f s = K.
Then M0 is homeomorphic to the 3-sphere, while M0 and M1 are related by a
Dehn surgery along the solid torus covering (A, s). We observe that the solid
torus VA ⊂ M0 = S3 that covers (A, s) is knotted as a composite knot. Indeed,

5In fact, the results of [BS86, BS88] imply that there is essentially unique way to create the
trivial knot as a sum of a given prime 2-string tangle and a trivial 2-string tangle. In particular,
if φ : (∂A, ∂s)→ (∂B, ∂t) is a homeomorphism such that (B, t)∪φ (A, s) is the trivial knot then
the map f−1

0 ◦ φ : (∂A, ∂s)→ (∂A, ∂s) extends to a map F : (A, s)→ (A, s) such that F (s) = s.
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the definition of cable tangles imply that there is an obvious ambient isotopy of
B ∪f0 A that moves t ∪f0 s and A to a position in which t ∪f0 s is a geometric
circle and A is a closed regular neigborhood of a ‘knotted diameter’ of this circle.
See Fig. 3.

A
A

A

Figure 3. For the proof of Lemma 4

This clearly implies that VA is a regular neigborhood of a composite knot. (This
composite knot is a sum of two copies of the 1-string tangle (B, t1), where t1 is a
component of t.) It is known that a nontrivial Dehn surgery on a composite knot
in S3 yields an irreducible (hence prime) manifold (see [Gor83, Theorem 7.1]). It
is known that if the double cover of S3 branched over a knot R is prime then R
is prime (see [Wal69]; see also [KT80, Corollary 4] for the inverse implication).
Consequently, K is a prime knot if nontrivial. �

Remarks. 1. Lemma 4 also follows from results of [E-M86] (see also [E-M88,
Theorem 6]) or equivalently from the fact that only integral Dehn surgeries can
yield reducible manifolds [GL87]. This way of proof uses the fact that cable knots
are prime (see [Schu53, p. 250, Satz 4], [Gra91, Cor. 2]).

2. Lemma 4 is used in the proof of Proposition 4 (which in its turn is used in the
proof of assertion (iii) of Proposition 1), where it covers the case of 2-bridge knots.
It is known (see [Wel92]) that the percentage of 2-bridge knots amongst all of the
prime knots of n or fewer crossings approaches 0 as n approaches infinity. Thus,
in the proof of Theorem 1, we can discard 2-bridge knots together with Lemma 4.
Nevertheless, we use Lemma 4 for the sake of completeness of Propositions 4
and 1.

Corollary 1. No composite knot is a sum of two cable 2-string tangles.

Proof. A cable 2-string tangle is either prime or trivial (Lemma 3). A sum of two
prime 2-string tangles is a prime link by Theorem 2. No composite knot is a sum
of a nontrivial cable 2-string tangle with the trivial 2-string tangle by Lemma 4.
If a knot K is a sum of two trivial 2-string tangles, then the bridge number b(K)
of K is at most 2. If b(K) = 1 then K is a trivial knot. If b(K) = 2 then K a
prime knot by [Schu54]. �

8. Proof of assertion (iii) of Proposition 1

Definition. Weak property PT. Let D be a knot diagram on the 2-sphere
S2 = R2 ∪ {∞}. We say that D has weak property PT (PT stands for ‘tangle
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primeness’) if D is obtained by adding ears to a diagram of a tangle that is not
locally knotted (that is, the tangle is either prime or trivial). In other words, D
has weak property PT if there exists a 2-disk d ⊂ S2 such that

– the boundary ∂d intersects D transversely in four points;
– the intersection d∩D consists of two simple non-intersecting arcs (as on the

left side of Fig. 1);
– the complementary disk δ := S2 \ int(d) with the diagram δ ∩D represents a

2-string tangle (B, t) which is not locally knotted (that is, (B, t) is either prime
or trivial).

We say that a knot has weak property PT if it has a minimal diagram with
weak property PT.

Proposition 3. Each minimal diagram of each 2
3 -regular prime knot has weak

property PT. In particular, each 2
3 -regular prime knot has weak property PT.

Proof. Let DP be a minimal diagram, on the 2-sphere S2 = R2 ∪ {∞}, of a 2
3 -

regular prime knot P . By Lemma 1, DP has a pair of neighboring edges I and
J with ρ(I, J) ≥ 2 cr(P )

3 . Since I and J are neighbors, there exists a disk d ⊂ S2

such that the intersection d∩DP consists of a subarc of I and a subarc of J , while
∂d intersects DP transversely in four points. Let δ denote the disk S2\ int(d), and
let (B, t) be the 2-string tangle represented by the diagram δ ∩DP . Let t1 and t2
be the components of t, and let K1 and K2 be the knots that are the closures of
the 1-string tangles (B, t1) and (B, t2).

Claim 7. We have cr(Ki) ≤ 2
3 cr(P )− 1 for i ∈ {1, 2}.

Proof. The diagram δ∩DP of the tangle (B, t) is formed by two curves, c1 and c2
say, corresponding to the components t1 and t2, respectively, of t. We denote by
cr(ci) the number of double points of ci. Since a diagram of K1 can be obtained
from c1 by adding a simple arc in d, it follows that we have

(3) cr(K1) ≤ cr(c1).

Observe that by construction we have

(4) cr(P ) = cr(DP ) = cr(c1) + cr(c2) + card(c1 ∩ c2).
By the definition of ρ (this definition is given at the beginning of Sec. 6) we have

(5) ρ(I, J) = min{2 cr(c1) + card(c1 ∩ c2), 2 cr(c2) + card(c1 ∩ c2)}.

Since ρ(I, J) ≥ 2 cr(P )
3 , it follows from (3), (4), and (5) that

cr(K1) ≤ cr(c1) ≤
2

3
cr(P )− card(c1 ∩ c2)

2
.

Since DP is a minimal diagram of a prime knot and I 6= J , it follows that
c1 ∩ c2 6= ∅. Assuming that c1 intersects c2 in a unique point (q, say) implies that
q is a cutpoint6 of DP . However, no minimal diagram of a knot has a cutpoint.
This implies that card(c1 ∩ c2) ≥ 2 and cr(K1) ≤ 2

3 cr(P ) − 1, as required. The
case of K2 is analogous. �

Claim 8. The 2-string tangle (B, t) represented by the diagram δ ∩DP is either
prime or trivial.

6A point x of a connected topological space X is a cutpoint if the set X \{x} is not connected.
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Proof. Suppose on the contrary that (B, t) is neither prime nor trivial. Then
(B, t) is locally knotted, that is, B contains a ball A such that the pair (A,A∩ t)
is a nontrivial 1-string tangle. Let ti with i ∈ {1, 2} be the component of t that
meets A. We denote by L the knot that is the closure of the 1-string tangle
(A,A ∩ t). Then L is a factor of P . Since P is prime and L is nontrivial, it
follows that L and P are equivalent. At the same time, L is a factor of Ki (as
defined above, Ki is the closure of the 1-string tangle (B, ti)). Since L and P are
equivalent, while P is assumed to be 2

3 -regular, we have cr(Ki) ≥ 2
3 cr(P ), which

contradicts Claim 7. The obtained contradiction proves that (B, t) is either prime
or trivial. �

Thus, all requirements from the definition of weak property PT are fulfilled.
Consequently, DP has weak property PT. Proposition 3 is proved. �

Proposition 4. If P is a knot with weak property PT, then there exists a prime
γ-knot P ′ over P with cr(P ′) ≤ cr(P ) + 17.

Proof. By definition, P has a minimal crossing diagram DP with weak prop-
erty PT. This means that there exists a disk d ⊂ S2 such that

– the boundary ∂d intersects DP transversely in four points;
– the intersection d ∩DP consists of two simple non-intersecting arcs;
– the tangle diagram δ ∩DP , where δ := S2 \ int(d), represents either prime or

trivial 2-string tangle (B, t).
Without loss of generality we can identify the pair (d, d ∩DP ) with the tangle

diagram in Fig. 1(a). We have the following two cases:
(α) the two arrows on the arcs in Fig. 1(a) induce the same orientation on P ,
(β) the two arrows on the arcs in Fig. 1(a) induce opposite orientations on P .
In case (α), let Dα be the diagram obtained from DP by a local move as in

Fig. 1 and let Pα be the knot represented by Dα. Since the figure-eight knot is
hyperbolic, an easy argument shows that Pα is a γ-knot over P . We check that
Pα has all of the desired properties. First, the obtained diagram Dα of Pα has
cr(P ) + 16 crossings. This means that cr(Pα) ≤ cr(P ) + 16. Next, we prove that
Pα is prime. We observe that, by construction, Pα is a sum of the cable tangle
of Fig. 1(b) and the tangle (B, t), which is prime or trivial. Each nontrivial cable
tangle is prime (see Lemma 3). If (B, t) is prime then Pα is prime by Theorem 2.
If (B, t) is trivial then Pα is prime by Lemma 4 and assertion (i) of Proposition 1
(Lemma 4 implies that Pα is either prime or trivial if (B, t) is trivial; assertion (i)
implies that Pα is a satellite knot and hence nontrivial). Thus, Pα is a prime
γ-knot over P with cr(Pα) ≤ cr(P ) + 16, as required.

In case (β), let Dβ be the diagram obtained from DP by a local move as in
Fig. 4 and let Pβ be the knot represented by Dβ .

The local move in Fig. 4 is the composition of a type I Reidemeister move and
the move shown in Fig. 1. This implies that Pβ is a γ-knot over P . Obviously,
Dβ has cr(P ) + 1 + 16 crossings. This means that cr(Pβ) ≤ cr(P ) + 17. The
primeness of Pβ follows by the same argument as in case (α) because Pβ is a sum
of a nontrivial cable tangle and the tangle (B, t). Thus, Pβ is a prime γ-knot over
P with cr(Pβ) ≤ cr(P ) + 17, as required. �

Assertion (iii) of Proposition 1 readily follows from Proposition 4 by Proposi-
tion 3.
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Figure 4. Type I Reidemeister move plus double figure-eight move

9. Addendum I: Strong property PT

In addition to weak property PT defined in Sec. 8, we introduce strong prop-
erty PT.

Definition. Strong property PT. Let D be a knot diagram on the 2-sphere
S2 = R2 ∪ {∞}. We say that a tangle (B, t) is represented by a connected sub-
diagram of D if there exists a 2-disk δ ⊂ S2 such that the intersection δ ∩ D is
connected and the pair (δ, δ ∩ D), with information of under- and overcrossings
inherited from D, is a diagram of (B, t). We say that D has strong property PT if
every 2-string tangle represented by a connected subdiagram of D is either prime
or trivial. We say that a knot has strong property PT if all of its minimal diagrams
have strong property PT.

Proposition 5. 1. Each minimal diagram of each 1-regular prime knot has strong
property PT. In particular, each 1-regular prime knot has strong property PT.

2. Each minimal diagram with strong property PT has weak property PT.
In particular, each knot with strong property PT has weak property PT.

Proof. 1. Assume to the contrary that a non-prime non-trivial 2-string tangle
(B, t) is represented by a connected subdiagram δ ∩ DP in a minimal diagram
DP of a 1-regular prime knot P . This implies in particular that (B, t) is locally
knotted, that is, B contains a ball B′ such that (B′, B′∩ t) is a nontrivial 1-string
tangle. Let K1 denote the knot obtained by the closure of (B′, B′ ∩ t). Then K1

is a factor of P , which is a prime knot, so that we have K1 = P . (This follows by
the Unique Factorization Theorem by Schubert [Schu49].) On the other hand, the
knot K1 = P is a factor of the knot K2 obtained as the closure of (B, t1), where
t1 is the component of t that meets B′. Observe that we have cr(K2) ≤ cr(P )− 1
because, since the diagram δ∩DP representing (B, t) is connected, the projection
of t1 has at least one crossing with the projection of the second component of t.
The inequality cr(K2) ≤ cr(P ) − 1 implies that K2 6= P . Therefore, K2 is a
composite knot, P is a factor of K2, and cr(K2) ≤ cr(P ) − 1. This contradicts
the assumption that P is a 1-regular knot.

2. Let D be a minimal diagram with strong property PT. If D is a circle with
no double points then D has weak property PT (obvious). We assume that D
has double points. We take a double point x of D and consider a disk d ⊂ S2

in a small neighborhood of x such that the intersection d ∩ D consists of two
non-intersecting arcs (as on the left side of Fig. 1). Since D is a minimal diagram,
x is not a cutpoint of D. This easily implies that the intersection δ ∩ D, where
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δ := S2 \ int(d), is connected. Since D has strong property PT, it follows that the
2-string tangle represented by the connected subdiagram δ ∩D is either prime or
trivial. This means that D has weak property PT. �

Propositions 5 and 3 give the following dependence for properties of prime
knots.

1-regularity =⇒ 2
3 -regularity⇒ ⇒

strong property PT =⇒ weak property PT

This implications can be treated in terms of conjectures. We consider the
following conjectures.

Conjecture 7. Each prime knot has strong property PT.

Conjecture 8. Each prime knot has weak property PT.

Conjecture 9. There exist ε > 0 and N > 0 such that, for all n > N , the
percentage of knots with weak property PT amongst all of the hyperbolic knots
of n or fewer crossings is at least ε.

We have the following implications.

Conj. 4 =⇒ Conj. 5 =⇒ Conj. 6

Conj. 2
=⇒

Conj. 3
=⇒

Conj. 7 =⇒ Conj. 8 =⇒ Conj. 9

=⇒ =⇒ =⇒

The implication Conj. 4 ⇒ Conj. 7 follows from assertion 1 of Proposition 5.
The implication Conj. 7⇒ Conj. 8 follows from assertion 2 of Proposition 5. The
implications Conj. 5⇒ Conj. 8 and Conj. 6⇒ Conj. 9 follow from Proposition 3.
The implication Conj. 8 ⇒ Conj. 9 is obvious.

Theorem 1 can be strengthened in the following way.

Theorem 3. Conjecture 1 contradicts (each of) Conjectures 2–9.

Proof. Since each of Conjectures 2–8 implies Conjecture 9 (see the system of im-
plications before Theorem 3), it suffices to show that Conjecture 1 contradicts
Conjecture 9. In order to prove this, we repeat verbatim the reduction of Theo-
rem 1 to Proposition 1 up to replacing 2

3 -regularity with weak property PT and
assertion (iii) of Proposition 1 with Proposition 4. �

10. Addendum II: Non-14-regular knots

The main theorem of the present paper states that Conjecture 1 concerning
predominance of hyperbolic knots contradicts the conjecture on additivity of the
crossing number (of knots under connected sum) as well as several weaker conjec-
tures. In this section, we show that Conjecture 1 also contradicts an assumption
that the conjecture on additivity has many strong counterexamples.

We say that a knot P is non-λ-regular, λ ∈ R, if there exists a knot K such
that P is a factor of K while cr(K) < λ · cr(P ). In this section, we prove the
following theorem.



18

Theorem 4. If there exist ε0 > 0 and N0 > 0 such that, for all n > N0, the
number of non-14 -regular knots of n or fewer crossings is at least ε0Hn, where Hn

is the number of hyperbolic knots of n or fewer crossings, then Conjecture 1 does
not hold.

Proof. Suppose that the assumption of the theorem holds true, denote by M 1
4

the set of all non-14 -regular knots, and let f be a map with domain M 1
4
sending

K ∈M 1
4
to a composite knot f(K) with factor K such that

(6) cr(f(K)) <
1

4
cr(K).

Then the result of Lackenby [La09] stating that for any knots K1, . . . , Kn in the
3-sphere we have

(7)
cr(K1) + · · ·+ cr(Kn)

152
≤ cr(K1] . . . ]Kn)

implies that for each knot L in the codomain f(M 1
4
) we have

(8) card(f−1(L)) < 152/4 = 38.

Indeed, let K be a knot with f(K) = L having the smallest crossing number
among the elements of f−1(L). Then (7) implies that

(9)
card(f−1(L)) cr(K)

152
≤ cr(L).

Obviously, (6) and (9) imply (8).
Since all of the knots in f(M 1

4
) are composite, it follows by (6) and (8) that

for all n ∈ N we have

(10)
card{K ∈M 1

4
: cr(K) ≤ 4n}

38
< card{L ∈ f(M 1

4
) : cr(L) ≤ n} ≤ Cn,

where Cn is the number of composite knots of n or fewer crossings. At the other
hand, by the assumption of the theorem, for all m > N0 we have

(11) Hmε0 ≤ card{K ∈M 1
4
: cr(K) ≤ m}.

Then (10) and (11) imply that for all n > N0/4 we have

(12)
ε0
38
H4n < Cn.

Now, we observe that each knot K in the 3-sphere obviously has a two-strand
cable knot JK with cr(JK) ≤ 4 cr(K) + 1. Since a cable knot over a nontrivial
knot is a prime satellite knot (see [Schu53, p. 250, Satz 4], [Gra91, Cor. 2]), while
cable knots over distinct knots are distinct (Lemma 5 below), it follows by (12)
that for all n > N0/4 we have

ε0
38
H4n < Cn < S4n+1,

where Sm denotes the number of all prime satellite knots of m or fewer cross-
ings. Consequently, since the sequences (Hi)i∈N and (Si)i∈N are monotonically
increasing, for all m > N0 we have

ε0
38
Hm < Sm+4.
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As is shown in Section 3 (see deduction of Theorem 1 from Proposition 1), con-
ditions of this kind contradict Conjecture 1. �

Lemma 5. Cable knots over distinct knots are distinct.

Proof. By Corollary 2 of [FW78], the group of a cable knot J(p, q;K) determines
the numbers |p| and |q| and the topological type of K’s complement. By the
Gordon–Luecke theorem [GL89], the knot complement determines the knot. �

11. Addendum III: Weak property PT and unknotting numbers

This section deals with a relation between weak property PT and the unknot-
ting number of knots. The unknotting number of a knot K is denoted by u(K).

Definitions. Let us say that a knot P is weakly U-regular if we have u(P ) ≤ u(K)
whenever P is a factor of a knot K. We say that a knot P is strictly U-regular
if we have u(P ) < u(K) whenever P is a factor of a knot K 6= P . We say that
a knot P has weak BJ-property if by altering one of the crossings in a minimal
diagram of P we obtain a knot J 6= P with u(J) ≤ u(P ). We say that a knot P
has strict BJ-property if by altering one of the crossings in a minimal diagram
of P we obtain a knot J with u(J) < u(P ).

Remarks. 1. The conjecture that all knots are strictly U-regular is weaker than
the old conjecture on additivity of the unknotting number of knots under con-
nected sum (see, e. g., [Ad94b, p. 61], [Kir97, Problem 1.69]). At the moment, no
counterexample seems to be known to the latter conjecture. Thus, no examples of
non-U-regular knots are known up to now. The theorem of Scharlemann [Scha85]
saying that unknotting number one knots are prime (together with the Unique
Factorization Theorem by Schubert [Schu49]) implies that all knots with unknot-
ting number one are strictly U-regular, while all knots with unknotting number
two are weakly U-regular.

2. The so-called Bernhard–Jablan conjecture (see [Be94], [Ja98], and [JS07]) is
equivalent to the conjecture that all knots have strict BJ-property. Kohn’s con-
jecture [Koh91, Conjecture 12] (which can be viewed as a particular case of the
Bernhard–Jablan conjecture) is equivalent to the conjecture that all knots with
unknotting number one have strict BJ-property. The set of knots with strict BJ-
property contains the set of knots satisfying the Bernhard–Jablan conjecture. At
the moment, no counterexample seems to be known to the Bernhard–Jablan con-
jecture. Available results concerning unknotting number shows that many small
knots and some specific classes of knots satisfy the Bernhard–Jablan conjecture,
hence have strict BJ-property. For example, results of [KrM93] and [Mur91] imply
that all torus knots have strict BJ-property. Results of McCoy [McC13] imply
that alternating knots with unknotting number one have strict BJ-property.

Proposition 6. 1. Each weakly U-regular prime knot with strict BJ-property has
weak property PT.

2. Each strictly U-regular prime knot with weak BJ-property has weak prop-
erty PT.

Proof. If P is a weakly [resp., strictly] U-regular prime knot with strict [resp.,
weak] BJ-property, then there exists a minimal diagram DP of P (on the 2-
sphere S2 = R2 ∪ {∞}) with a crossing X1 such that the change of the crossing
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yields a diagram of a knot J with u(J) = u(P ) − 1 [resp., a knot J 6= P with
u(J) ≤ u(P )]. Let d be a disk in S2 containing x1 such that the intersection
d∩DP is homeomorphic to × while ∂d intersects DP transversally in four points.
Let δ denote the disk S2 \ int(d), and let (B, t) be the 2-string tangle represented
by the diagram δ ∩DP .

We show that (B, t) has no local knots. Suppose on the contrary that (B, t)
is locally knotted, that is, B contains a ball A such that the pair (A,A ∩ t) is
a nontrivial 1-string tangle. We denote by L the knot that is the closure of the
1-string tangle (A,A ∩ t). Then L is a factor of P . Since P is prime and L is
nontrivial, it follows that L and P are equivalent. At the same time, L(= P )
is a factor of J . Then we have u(P ) ≤ u(J) because P is weakly U-regular
[resp., u(P ) < u(J) because P is strictly U-regular while J 6= P ]. However,
u(J) = u(P ) − 1 [resp., u(J) ≤ u(P )]. The obtained contradiction proves that
(B, t) has no local knots.

Now, we take a subdisk d′ in d such that the intersection d′∩DP consists of two
subarcs on two distinct legs of × = d ∩DP (while ∂d′ intersects DP transversely
in four points):

d′

Let δ′ denote the disk S2 \ int(d′). Obviously, the diagram δ′ ∩DP represents
the same 2-string tangle (B, t), which has no local knots. Thus, the requirements
from the definition of weak property PT are fulfilled. Consequently, P has weak
property PT. �

Corollary 2. If there exist ε > 0 and N > 0 such that, for all n > N , the
percentage of weakly U-regular knots with strict BJ-property amongst all of the
hyperbolic knots of n or fewer crossings is at least ε, then Conjecture 1 does not
hold.

Proof. By Proposition 6, the assumption of the corollary implies Conjecture 9
(which concerns the set of knots having weak property PT). By Theorem 3, Con-
jecture 9 contradicts Conjecture 1. �

Corollary 3. If there exist ε > 0 and N > 0 such that, for all n > N , the
percentage of strictly U-regular knots with weak BJ-property amongst all of the
hyperbolic knots of n or fewer crossings is at least ε, then Conjecture 1 does not
hold.

Proof. See the proof of Corollary 2. �

References

[Ad94a] C.C. Adams, Toroidally alternating knots and links, Topology 33:2 (1994), 353–369.
[Ad94b] C.C. Adams, The Knot Book: An Elementary Introduction to the Mathematical

Theory of Knots, New York: W. H. Freeman, 1994.
[Ad05] C.C. Adams, Hyperbolic knots, in: Handbook of knot theory, eds. W. Menasco et

al., Elsevier, Amsterdam, 2005, pp. 1–18.



21

[Aetal92] C. Adams, J. Brock, J. Bugbee, T. Comar, K. Faigin, A. Huston, A. Joseph, D. Pe-
sikoff, Almost alternating links, Topology Appl. 46:2 (1992), 151–165.

[AK10] F. Atalan and M. Korkmaz, Number of pseudo-Anosov elements in the mapping
class group of a four-holed sphere, Turkish J. Math. 34 (2010), 585–592.

[Be94] J. A. Bernhard, Unknotting numbers and their minimal knot diagrams, J. Knot
Theory Ramifications 3(1) (1994), 1–5.

[BS86] S. Bleiler, M. Scharlemann, Tangles, Property P, and a problem of J. Martin, Math.
Ann. 273 (1986), 215–225.

[BS88] S. Bleiler, M. Scharlemann, A projective plane in R4 with three critical points is
standard. Strongly invertible knots have property P, Topology 127 (1988), 519–540.

[Bog02] S.A. Bogatyi, Topological Helly theorem, Fund. Prikl. Mat. 8(2) (2002), 365–405 (in
Russian).

[BS10] F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the
classification and symmetries of arborescent knots, 2010.

[Bud06] R. Budney, JSJ-decompositions of knot and link complements in S3, L’Enseignement
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