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We consider point distributions in compact connected two-point homogeneous spaces
(Riemannian symmetric spaces of rank one). All such spaces are known, they are the
spheres in the Euclidean spaces, the real, complex and quaternionic projective spaces
and the octonionic projective plane. Our concern is with discrepancies of distributions in
metric balls and sums of pairwise distances between points of distributions in such spaces.

Using the geometric features of two-point spaces, we show that Stolarsky’s invariance
principle, well-known for the Euclidean spheres, can be extended to all projective spaces
and the octonionic projective plane (Theorem 2.1 and Corollary 2.1). We obtain the spher-
ical function expansions for discrepancies and sums of distances (Theorem 8.1). Relying
on these expansions, we prove in all such spaces the best possible bounds for quadratic
discrepancies and sums of pairwise distances (Theorem 2.2). Applications to t-designs on
such two-point homogeneous spaces are also considered, and it is shown that the optimal
t-designs, recently constructed in [10,11,19], meet the best possible bounds for quadratic
discrepancies and sums of pairwise distances. (Corollaries 3.1, 3.2).
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I. Main results

1 Discrepancies and metrics

In this section we introduce the basic notation and recall necessary facts from
our previous paper [29] on relationships between discrepancies and metrics
on general compact metric spaces.

Let M be a compact connected metric space with a fixed metric # and a
finite Borel measure p, normalized by

diam(M,0) ==, pM)=1, (1.1)

where diam (&, p) = sup{p(z1,z2) : 1,25 € £} denotes the diameter of a
subset £ C M with respect to a metric p.

We write B, (y) = {z : 0(x,y) < r} for the ball of radius r € R centered
at y € M and of volume v, (y) = p(B,(y)), here R = {r = 0(z1,x3) : 21,25 €



M} is the set of all possible radii. Since the space M is connected, we have
R = [0, 7].

Let Dy C M be a finite subset consisting of N points (not necessary
different). The local discrepancy of the subset Dy in the ball B,(y) is defined
by

A[Br(y)a DN] = #{Br(y) N DN} - er(y) = Z A(Br(y)vx)a (1'2)

r€DN

where
A(Br(y)vx) = X(Br(y)v‘r) - vr(y)a (13)

and x(&,r) denotes the characteristic function of s subset £ C M.
The quadratic discrepancies are defined by

D)= [ABG).DXPdu) = 3 Mlova, (1)
M z1,22€D N

where

M () = / A(B, (), y) A (B, (1), o) dpu(y), (1.5)
M

and
A, D] = / MOy dr = 3 A, m), (1.6)

where
A1, ) = / A (yr, o) (r) . (L.7)

here n(r), r € [0,7], is a non-negative weight function. The quantities
M\ [Dy]Y? and A[n, Dy]'/? are known as Lo-discrepancies. In the present

paper it is more convenient to deal with the quadratic discrepancies (1.4)
and (1.6).
We introduce the following extremal characteristic

An (1) = inf Aln, Dy], (1.8)

where the infimum is taken over all N-point subsets Dy C M.



In what follows, besides the original metric € in the definition of a compact
metric space M, we shall deal with many different metrics on M. For a
metric p on M we define the sum of pairwise distances

Nl = 3 o), (1.9)

z1,22€DN

and introduce the following extremal characteristic

pn = sup p[Dy], (1.10)
Dn

where the supremum is taken over all N-point subsets Dy C M. We also
write (p) for the average value of a metric p,

{p) = // p(y1,y2) dp(yr) dpa(ys). (1.11)

MxM

The study of the characteristics (1.8) and (1.10) falls within the subjects
of the discrepancy theory and geometry of distances. An extensive literature
is devoted to point distributions on spheres in the Euclidean space. Detailed
surveys of the aria can be found in [2,6,12, 14, 28].

It was shown in our recent paper [29] that nontrivial results on the quan-
tities (1.8) and (1.10) can be established for very general metric spaces. Some
of these results are given below in Theorems 1.1 and 1.2 in the form adapted
for use in the present paper.

Introduce the following symmetric difference metrics on the space M

0% (0 11, 1) = / 02 (1, o)) i (1.12)

where

02 2) = n(Br (1) AB, (1))

1

= - (0rlan) + v, (32) = 20(B, () N Bu(w2) ), (1.13)

and B, (y1)AB,(y2) = B.(y1) U B.(y2) \ Ba(y1) N B.(y2) is the symmetric
difference of the balls B, (y1) and B, (y2). We have

X(Br(y1)AB(y2), y) =
1

5 (X(BL(1),9) + (B (32),9) = 2x(B, (1), w)X(Br (1), )

= IX(B:(y1),y) — x(B(32), )1, (1.14)



where we write x(B,(z),y) for the characteristic function of ball B,(z). The
symmetry of the metric # implies the following useful relation

X(B:(y),r) = x(B,(z),y) = x(r — 0(x,y)) = x-(0(z,y)), (1.15)

where x(2), z € R is the characteristic function of the half-axis (0, c0), and
Xr(+) is the characteristic function of the interval [0,7), 0 < r < 7. From
(1.13) and (1.14), we obtain

GA(ylayZ) = %/X(B (y1)AB,(y2)) dpu(y)

l\DI»—t

=5 | (B, + X(Brl2).9) = 2(B2 (00 OX(Bi 32).0) ) dl)

M
/ (B (B, () ) dply) (1.16)

l\DI»—t

With the help of (1.15), we obtain the following formulas for the average
values (1.11) of metrics (1.12) and (1.16)

02 (n)) = / (02 yn(r) dr, (1.17)

R

(02 = // (1, v2) duys) dps(on) = /( () — ) duly)  (118)

MxM

The symmetric difference of any two subsets coincides with the symmetric
difference of their complements, see (1.14). Hence

02 (1, 0) = (B )ABL ()

1
= 5 (vh) + o) — 2Bl ) N BLw))),  (119)
where B/ (y) = M\ B,(y) is the complement of the ball B, (y),

v (y) = u(By(y) =1 —v.(y), (1.20)



and the relation (1.18) takes the form

<9£>:=u/¥»<yﬁ4(y>du<y> (1.21)

M

In (1.16) the balls B,(y) can be also replaced by their complements B.(y).

A metric space M is called distance-invariant, if the volume of any ball
v, = v,(y) is independent of y € M, see [25, p. 504]. For such spaces the
above formulas for the discrepancies and the symmetric difference metrics
can be essentially simplified. Substituting (1.13) into (1.5), we obtain

M@wﬁz/ﬂﬁ@&@ﬂ&@%@@@%ﬂ?

M
= (B (y1) N By (y2) — vy, (1.22)
and correspondingly,
MDy = D w(Be(y1) N Bi(y2)) — vi N7, (1.23)
y1,y2€DN

Similarly, the relations (1.13), (1.19) and (1.18), (1.21) take the form

%@wg:m—/nawmmn&@ﬁwm@>

M
= v — (B (y1) N Br(y2)) = vy — w(BL(y1) N Br(y2)), (1.24)
02) = v, — v = v, (1.25)
and
02 Dx] = 0:N> = Y pu(Br(1) N By(y2)). (1.26)

y1,y2€Dn

Integrating these relations with n(r), » € [0, 7], one can obtain the corre-
sponding formulas for the quantities (1.12) and (1.17).

The typical examples of distance-invariant spaces are homogeneous spaces
M = G/K, where G is a compact group, K C G is a closed subgroup, while 6



and p are G-invariant metric and measure on M. In this case, the quantities
(1.6), (1.7) and (1.12), (1.13) are also G-invariant:

Ae(gy1, 9y2) = A (Y1 y2)s A, 9y1, 9y2) = A0, 91, 172),
02 (

gY1, 9Y2) = (gyl,g?h)a 0> (1, 9y1,9y2):9 (17,91, Y2), (1.27)
1(Br(gy1) N By (gy2)) = w(B:(y1) N By (y2)),

for all yy,y2 € G/K, g € G.
Comparing the relations (1.22)-(1.26), we arrive to the following result.
This result and its generalizations were given in [29, Theorems 2.1, 3.1].

Theorem 1.1. (The Li-invariance principles). Let a compact connected
metric space M with a metric 8 and a measure | be distance-invariant.
Then we have

Ar (Y1, 92) + 9 (y1,92) = <97=A>7 (1.28)
A, y1, 42) + 0% (0, y1, 1) = (02 (n)), (1.29)
A1, Dw) + 6% (n, Dn) = (8% (n)) N? (1.30)
Av(n) + 05 (n) = (62 (n) N? (1.31)

Here r € R = [0,7] and Dy C M is an arbitrary N-point subset. The
equalities (1.29), (1.30) and (1.31) hold with any weight function n such that
the integrals (1.6), (1.7) and (1.12), (1.17) converge.

Obviously, the integrals (1.6), (1.7) and (1.12), (1.17) converge for any
wight function 7 summable on the interval [0, 7]. More general conditions
of convergence of these integrals for two-point homogeneous spaces will be
given in Lemma 2.1 below. Notice that the assumption of connectedness of
the space M in Theorem 1.1 is of no concern, and the measure 7(r) dr in the
definitions (1.7) and (1.12) can be replaced with a measure d¢(r) on the set
of radii R, see [29, Theorems. 2.1]

The Ly-invariance principle, specific for two-point homogeneous spaces,
will be given in the next section, see Theorem 2.1 and Corollary 2.1. Our
terminology of L;- and Ls-invariance principles will be explained in the com-
ments to Corollary 2.1.

To state a further result from [29] we recall the concept of rectifiable
spaces, see [27]. A compact metric space M with a metric § and a measure
i is called d-rectifiable if there exist a measure v on the d-dimensional unit

8



cube 1% = [0,1]¢ absolutely continuous with respect to the d-dimensional
Lebesgue measure on I?% a measurable subset @ C I¢, and an injective
Lipschitz mapping f : O — M, such that u(M \ f(O)) = 0; and p(&) =
v(f~H(E N f(O)) for any p-measurable subset £ C M. Recall that a map
f: O cCR?Y— M is Lipschitz if

0(f(Z1), f(Z2)) < cl|Zi = Zal, Z1,Zy € O, (1.32)

with a positive constant ¢, and the smallest such constant is called the Lips-
chitz constant of f and denoted by Lip(f); in (1.32) ||-|| denotes the Euclidean
norm in R¢,

Notice that any smooth (or piece-wise smooth) compact d-dimensional
manifold is d-rectifiable if in the local coordinates the metric satisfies (1.32),
and the measure is absolutely continuous with respect to the d-dimensional
Lebesgue measure. Particularly, any compact d-dimensional Riemannian
manifold with the geodesic metric # and the Riemannian measure p is d-
rectifiable. In this case, it is known that the condition (1.32) holds; see
[23, Chapter I, Proposition 9.10]. On the other hand, the condition on the
Riemannian measure is obvious because the metric tensor is continuous.

The following result was established in [29, Theorem.4.2]. Notice that
the proof of this result is relying on a probabilistic version of Theorem 1.1,
see [29, Theorem 3.1].

Theorem 1.2. Suppose that a compact metric space M, with a metric 0
and a measure i, is d-rectifiable. Write C' = d241 Lip(f), where Lip(f) is
the Lipschitz constant of the map f in the definition of d-rectifiability of the
space M. Then the following hold:

(i) If a metric p on M satisfies the inequality

p(z1,m9) < oy, o) (1.33)
with a constant cy > 0, then
pn > (p)N? — qqCN'". (1.34)
(ii) If the metric 0°(n) satisfies the inequality
02 (n, 1, 22) < cof(21, 2) (1.35)
with a constant cy > 0, then

O3(1) > (02 (n))N? — ceCN' "4 (1.36)

9



and .
An(n) < cgCN'a. (1.37)

Particularly, the above statements are true for a compact Riemannian
manifold with the geodesic distance 6 and the Riemannian measure .

Under such general assumptions one cannot expect that the bounds (1.36)
and (1.37) are best possible. Consider, for example, the d-dimensional unit
spheres S% = {x € R4*! : ||z]| = 1} with the geodesic (great circle) metric 0
and the standard Lebesgue measure 1 on S¢. In this case, we have

On = (OYN? —en, (0) =7/2, (1.38)

where ey = 0 for even N and ey < 7/2 for odd N.

The appearance of such anomalously small errors in the formula (1.38)
can be easily explained with the help of invariance principle (1.28). We shall
discuss this question in section 11.

In the present paper we shall show that the bounds (1.36) and (1.37) are
best possible for compact connected two-point spaces and general classes of
weight functions 7, see Theorem 2.2 below.

2 Statements of the main results

First of all we recall the definition and some necessary facts on two-point
homogeneous spaces, see [7,23,24,34,35]. Additional facts on the geometry
and harmonic analysis on such spaces will be given in sections 4 and 7. Let
G = G(M) be the group of isometries of a metric space M with a metric
0, i.e. 0(gry,gxe) = 0(x1,29) for all x1, zo € M and g € G. The space
M is called two-point homogeneous, if for any two pairs of points 1, x5 and
Y1, y2 with 6(z1,29) = 0(y1,y2) there exists an isometry g € G, such that
Y1 = gr1, Yo = gro. In this case, the group G is obviously transitive on
M and M = G/K is a homogeneous space, where the subgroup K C G is
the stabilizer of a point xq € M. Furthermore, the homogeneous space M
is symmetric, i.e. for any two points y;, y2 € M there exists an isometry
g € G, such that gy1 = ya, gy» = y1.

We consider compact connected two-point homogeneous spaces M =
G/K. For such spaces G and K C G are Lie groups and M = G/K are
Riemannian symmetric spaces of rank one. This means that all flat totally
geodesic submanifolds in M are one dimensional and coincide with geodesics.

10



This also means that all G-invariant differential operators on M are polyno-
mials of the Laplace-Beltrami operator on M. All such spaces are classified
completely, see, for example, [34, Sec. 8.12]. They are the following:

(i) The d-dimensional Euclidean spheres S? = SO(d + 1)/SO(d) x {1},
d>2 and S' =0(2)/0(1) x {1}.

(ii) The real projective spaces RP™ = O(n +1)/0O(n) x O(1).

(iii) The complex projective spaces CP" = U(n +1)/U(n) x U(1).

(iv) The quaternionic projective spaces HP™ = Sp(n+1)/SP(n) x Sp(1),

(v) The octonionic projective plane OP? = F,/ Spin(9).

Here we use the standard notation from the theory of Lie groups; partic-
ularly, F} is one of the exceptional Lie groups in Cartan’s classification.

The indicated projective spaces FP" as compact Riemannian manifolds
have dimensions d,

d= dlmR FP" = ndo, d[) = dlmR F, (21)

where dy = 1,2,4,8 for F =R, C, H, O, correspondingly.

For spheres S¢ we put dy = d by definition. Projective spaces of di-
mension dy (n = 1) are isomorphic to the spheres S%: RP! ~ S!' CP' ~
S HP! ~ S*, OP! ~ S8 We can conveniently agree that d > dy (n > 2) for
projective spaces, while the equality d = dy holds only for spheres. Under
this convention, the dimensions d = ndy and dy define uniquely (up to iso-
morphism) the corresponding two-point homogeneous space which we denote
by @ = Q(d,dy). We write 6 for the geodesic distance and u for the Rie-
mannian measure on Q(d, dy). The metric § and the measure u are invariant
under the action of the corresponding group of isometries and normalized by
(1.1). In what follows we always assume that n = 2 if F = O, since projective
spaces OP™ do not exist for n > 2. In more detail the geometry of spaces
FP™ will be outlined in section 4.

Any space Q(d,dp) is distance-invariant and the volume of balls is given
by

[ 1
vy = k(d, dy) /(sin iu)d_l(cos iu)“l"_1 du, r€][0,m],
2 (2.2)
_ F(d/2+d0/2)
d,do) = B(d/2,dy/2)" ' = :
H( ) 0) ( / ) 0/ ) F(d/?)F(dO/Q)
Here B(-,) and ['(-) are the beta and gamma functions, and v, =

pu(Q(d, dy)) = 1. Different equivalent forms of the relation (2.2) can be found
in the literature, see [20, pp. 177-178], [24, pp. 165-168], [25, pp. 508-510].

11



From the formula (2.2) we obtain the following two-side bounds

U X~ Td, U; =1-v ~ (ﬂ- - ,r)do, re [077‘-]' (23)

To simplify notation we write in some formulas A < B instead of B =
O(A), A Z B instead of B = 0(A), and A~ Bif A= 0O(B) and B = O(A).
The chordal metric on the spaces Q(d,dy) can be defined by

1
7(21,x9) = sin 59(x1,x2), x1, T2 € Q(d, dy). (2.4)

Notice that the expression (2.4) defines a metric because the function ¢() =
sinf/2, 0 < 0 < 7, is concave, increasing and (0) = 0, that implies the
triangle inequality. For the sphere S¢ = {z € R4 : ||z| = 1} we have

cosO(xq, x2) = (21, 29), 21, T2 € sSe
(2.5)

o1 1
7(21,x9) = sin iﬂ(xl,m) = §||:E1 — o],

where (-, ) is the inner product and || - || is the Euclidean norm in R4+!,
Each projective space FP™ can be canonically imbedded into the unit
sphere

1
M:Q(d,dy) >z — (x) € S™ ' CR™, m = s+ DE+2),  (26)
such that

1
T(fL‘l,fL'Q) = —2”1_[(1'1) — H(ZL'Q)H, T1,T2 € Fpn, (27)

where || - || is the Euclidean norm in R™*!. Hence, the metric 7(xy,z3) coin-
cides with the Euclidean length of a segment joining the corresponding points
[1(x) and II(x5) on the unit sphere and normalized by diam(Q(d, dy), ) = 1.
The imbedding (2.6) will be described explicitly in Section 4.

The chordal metric 7 on the complex projective space CP" is known as
the Fubini-Study metric. In connection with special point configurations in
two-point homogeneous spaces the chordal metric on projective spaces has
been discussed in the papers [15,16], see also the paper [17], where the chordal
metric has been defined for Grassmannian manifolds.

Now we are in position to state our main results. First of all, we consider
the Lo-invariance principles for two-point homogeneous spaces. A careful
analysis of the imbedding (2.6) leads to the following.

12



Theorem 2.1. For any space Q) = Q(d, dy) the chordal metric (2.4) and the
symmetric difference metric (1.12) are related by

7(z1,22) = 7(Q) HA(WH;%,@); T1, T2 € Q, (2.8)
where n°(r) = sinr, r € [0, 7], and

(T) _ diam(Q, 7)
(02(n7)  diam(Q,04(n"))

The proof of Theorem 2.2 is given in Section 5. It is clear that the
equalities (2.9) follow immediately from (2.8). It suffices to calculate the
average values (1.11) of both metrics in (2.8) to obtain the first equality
in (2.9). Similarly, writing (2.8) for any pair of antipodal points x;, x,
0(z1,x2) = m, we obtain the second equality in (2.9). Recall that points
x1, To are antipodal for a metric p if p(z1, x2) = diam(@Q, p). If points z1, o
are antipodal for the metric @, then in view of (2.4) and (2.8) they are also
antipodal for the metrics 7 and 02 (n?).

Comparing Theorems 1.1 and 2.1, we arrive at the following.

7(Q) =

(2.9)

Corollary 2.1. (The Ly-invariance principle). For any space Q@ = Q(d, dy)
we have the relation

Y(Q)Aln', Dy] + 7[Dn] = ()N, (2.10)

where Dy C Q 1s an arbitrary N -point subset.
Particularly, for any N we have the equality

QAN + 75 = (T)N?. (2.11)

Notice that for the sphere S¢ the discrepancy A[n?, Dy| with the special
weight function 7(r) = sinr can be written in the form

A, D] = / - / #{B(y.2) "Dy} — Nu(B(y. )P duly),  (2.12)

-1

where B(y,z) = {z € S%: cosf(z,y) >z}, y € S 2 € [-1,1], is a spherical
cap; in our notation B(y, z) = B,(y), z = cosr.

For spheres the invariance principle (2.10) was established by Sto-
larsky [31], see also the recent papers [8,13], where the original proof of

13



this relation was essentially simplified. Corollary 2.1 can be thought of as an
extension of Stolarsky’s invariance principle to projective spaces.

A metric space M with a metric p is called isometrically L,-embeddable,
if there exists a map ¢ : M > z — ¢(x) € L,, such that p(z,z0) =
lo(z1) — @(x2)]1, for all 21, zo € M. Notice that the Ly-embeddability is
stronger and implies the L;-embeddability, see [18, Sec. 6.3].

A compact metric space M is isometrically L;-embeddable with respect
to any symmetric difference metric 02 and 02 (), see (1.16) and (1.12). At
the same time, the two-point homogeneous space Q(d, dp) is isometrically Lo-
embeddable with respect to the chordal metric 7, see (2.5) and (2.7). This
explains our terminology of L;- and Ls-invariance principles.

It would be interesting to find out whether there are other weight func-
tions 1 # n* for which the spaces Q(d,dy) with the metric 62(n) are also
Ls-embeddable.

Now we consider best possible bounds for the extremal quantities (1.8)
and (1.10). At first, we state in Lemma 2.1 some important auxiliary results.
Introduce the following classes of weight functions n(r), r € [0, 7],

W(CL, b) = {77 >0: ||77||a,b < OO}, a=>b=>1,

™

1 1
ab = /(sin ir)“’l(cos ir)b’ln(r) dr.

0

(2.13)

IE

It is worth noting that weight functions in the classes (2.14) admit rather
large singularities at points r = 0 and r = 7.

Lemma 2.1. For any space Q(d,dy) the following hold :
(i) The kernel (1.5) and the metric (1.13) satisfy the bounds

1 1
|)‘T(y17 y2)| < C(Sin QT)d(COS §T)d07

1 1
grA(yla y2) < C(Sin ir)d(COS 5T)do'

(2.14)

If n e W(d+1,dy + 1), then the kernel (1.8) and the metric (1.13) satisfy

the bounds
A0, g1, 2)] < cunudﬂ,dw} (2.15)

9A(77;y1;y2) < C'Hﬁ”dﬂ,doﬂ-

14



(ii) The metric (1.13) satisfies the bound

Hf(yl, y2) < C(sin %T)dl(cos %T)dolﬁ(yl, Ya). (2.16)

If n € W(d,dy), then the metric (1.12) satisfies the bound

0% (0, y1,y2) < C|In| d,do 0 (Y1, y2).- (2.17)

Constants in the bounds (2.14) — (2.17) depend only on d and dy.

The proof of Lemma 2.1 is given in Section 6. It follows from Lemma 2.1
that the Li-invariance principles (1.29) — (1.31) hold for the spaces Q(d, do)
with weight functions n € W(d+1,dy + 1).

Our result on the extremal quantities(1.8) and (1.10) can be stated as
follows.

Theorem 2.2. For any space Q(d,dy) the following hold :
If n e W(d,dy), n # 0, then for any N we have

O ())N? — c(n)N'"1 > 05 (n) > (9> (n))N> — C(N'"2,  (2.18)
(N1 < Ax(n) < Ci(n) N4 (2.19)

with positive constants independent of N. Particularly, for the chordal metric
T on Q(d, dy), we have

(T)N? — eN'"id >y > (T)N? — CN'"i (2.20)
with the constants ¢ = c(n*) and C = C(nf).

For the chordal metric 7 on the sphere S¢ the bounds (2.20) were known
earlier. The right bound in (2.20) was established by Alexander [1] and the
left by Beck [5], see also [6,9]. Theorem 2.2 can be thought of as an extension
of the results of these authors to projective spaces. However, it should be
pointed out that the bounds (2.18) and (2.19) are new even in the case of
sphere S¢.

The proof of Theorem 2.2 is given in Section 10. It is clear that the
right bounds in (2.18) and (2.19) follow immediately from Theorem 1.2(ii)
and Lemma 2.1(ii). In Section 10 we shall prove the left bound in (2.19).
By the invariance principle (1.31) this will immediately imply the left bound
in (2.18). The proof of the left bound in (2.19) is relying on the theory of
spherical functions on homogeneous spaces Q(d, dp).
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3 Applications to t-designs

Many specific point configurations on spheres and other two-point homoge-
neous spaces are described in the literature, see, for example, [4,10-12, 14—
17,19, 25,28]. One can ask whether the points of such specific configura-
tions are distributed uniformly in the corresponding spaces, and whether the
quadratic discrepancies (1.6) and the sums of pairwise distances (1.9) can be
estimated precisely for such point subsets.

In the present paper we consider these questions for ¢-designs. Consider
a smooth compact connected d-dimensional manifold M in R™ equipped
with a smooth Riemannian sructure, so that the geodesic distance # and the
Riemanniam measure p normalized by (1.1) are defined on M. An N-point
subset Dy C M is called a t-design, if the exact quadrature formula

> F@) =N [ P duty) (3.1)
M

r€DN

holds for all polynomials F'(z), x € R™ of total degree not exceeding ¢.

It is known, see, for example, [19], that any N-point ¢-design Dy C M
satisfies the bound N > t¢ with a constant independent of N and ¢. An
N-point t-design Dy C M is called optimal, if

it >N >c t? (3.2)

with some positive constants ¢, and ¢_ independent of NV and ¢. Actually, in
this definition we deal with sequences of N-point ¢-designs Dy as N — oo.

As we mentioned earlier, the two-point homogeneous spaces Q(d, dy) can
be canonically imbedded into R™, see the comments to (2.6), Hence, the
above definitions can be used for Q(d, do).

Since the spaces Q(d,dy) are homogeneous, an equivalent definition of
t-designs can be given in the following invariant form, see [4,25]. An N-
point subset Dy C Q(d, dy) is a t-design, if and only if the exact quadrature
formula

S fleostan) = N [ [ fleosdn ) dutw) dntee) (33

r1,x2€DN QxQ

holds for all polynomials f(z), z € C, of degree not exceeding ¢. The formula
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(3.3) is equivalent to the following quadrature formulas

> fleost(a, 1) =N [ Fleosba.9)) dufa), (3.4
Q

z€DN

which holds identically for all ¥ € ). Another equivalent definition of -
designs can be given in terms of spherical functions on the spaces Q(d, dp),
see [4,25]. We shall return to these questions in Section 7, see (7.32).

For any N-point subset Dy C M we put

v[Dy,r] = rileaéc #{B,(y) NDy}, re€l0,n], (3.5)

and v[Dy,r] = N if r > 7.
Our result on ¢-designs can be stated as follows.

Theorem 3.1. Let the weight function n € W(d, dy), then the following hold:
(i) There ezists a constant L > 1 depending only on d and dy, such that
for any N-point t-design Dy C Q(d,dy) with t > 2L/7 we have

An, D] < Ct*H(v[Dy, Lt71])2. (3.6)

(ii) For optimal N-point t-designs Dy C Q(d,dy) the bound (3.6) takes
the form .
A, Dy] < CN'=# (v[Dy, ¢; /LN =192, (3.7)

where ¢y is the constant in the definition (3.6).
The constants C' in the bounds (3.6) and (3.7) depend only on d, dy and

n.

The inequality (3.7) follows immediately from (3.6) and the definition
(3.2). The proof of the bound (3.6) is given in Section 10. The proof is
relying on the theory of spherical functions on homogeneous spaces Q(d, d).

We are interested whether the factor in (3.7) with the function v can be
bounded from above by a constant independent of N. In this case, the order
of bound (3.7) would be the best possible. Two simple sufficient conditions
for this are given below in Lemma 3.1.

Introduce some definitions. For an arbitrary N-point subset Dy C M,
we put

1 .
d[Dn| = 5 min{f(z1,xs) : 1,29 € Dy, 1 # To} (3.8)

17



The balls Bs(x), § = §[Dy], z € Dy, do not overlap. Therefore, § < N~/
since the volume of balls v,(z) ~ r¢ uniformly for r € [0,7] and x € M. An
N-point subset Dy C M is called well-separated, if 5[Dy] > ¢N~Y¢ with a
constant ¢ > 0 independent of N.

Consider an equal-measure partition Py = {P;} of the manifold M,

N
M =P, wPnP)=0, i#j pu(P)=1/N,
=1

and put
Diam(Py, #) = max diam(P;, ).

1<i<N

We say that an equal-measure partition Py is of small diameter, if
Diam(Py, ) < cgN~1/¢ (3.9)

with a constant ¢y > 0 independent of N. Constructions of equal-measure
partitions of small diameter are known for a large class of smooth compact
manifolds in R™, see [21] and references therein.

We also say that an N-point subset Dy = {z;}Y € M is subordinated to
a partition Py = {P;}Y of M, ifx; € P,i=1...N.

We conveniently agree that for > 7 the ball B,(x) = M and v,(z) = 1.
With these convention and definitions the following result is true.

Lemma 3.1. Suppose that an N-point subset Dy C M satisfies one of the
following conditions:
(i) Dy is well-separated,
(ii) Dy is subordinated to an equal-measure partition of small diameter.
Then, for any constant ¢ > 0 there exists a constant C' = C(c) indepen-
dent of N such that
v[Dy,cN~H) < C. (3.10)

Proof. For brevity, we write a = ¢N~/¢. Consider the ball B,(y) centered
at an arbitrary point y € @ and put & = B,(y) N Dy, K = #{E}. Assume
also that points of Dy = {z;})¥ are enumerated such that & = {z;}F.

(i) By the definition of a well-separated subset Dy , the balls B;(z),
§ = 0[Dy], z € &€, do not overlap and all these balls are contained in the
ball B,.s(y). Therefore, > ;.5 vs(®;) < vays. Since v,(z) ~ r?
K < vgy5/vs ~ (1 +C/e)?, and (3.10) follows.

, we have
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(ii) By the definition of a subset Dy subordinated to an equal-measure
partition Py = {P;}Y of small diameter b = ¢, N~'/?¢, each part P;,1 <
i < K is contained in the ball B,,,(y). Therefore, N"'K < v,.4(y), and
K < Nvgyp(y) =~ (c+ 1), that proves (3.10). O

Comparing Theorem 3.1 with Lemma 3.1, and taking into account the
left bounds of Theorem 2.2, we arrive at the following.

Corollary 3.1. Let the weight function n € W(d,dy), n # 0. Suppose that
an N-point subset Dy C Q(d,dy) is an optimal t-design and satisfies one of
the conditions (i) or (ii) of Lemma 3.1. Then, for all sufficiently large N we
have

(02 ())N? — cN'"i > 0”[n, Dy] > (6°(n))N*> — CN'" 4, (3.11)
¢N'"1 < Ay, Dy] < CN'"a (3.12)

Particularly, for the chordal metric T on Q(d, dy) we have
(rYN® — ¢N'"i > 7[Dy] > (r)N?> — CN'" i (3.13)
The positive constants in (3.11) — (3.13) are independent of N.

The existence of optimal ¢-designs was a long standing open problem
known as the Korevaar-Meyers conjecture. In the papers [10,11] by Bon-
darenko, Radchenko and Viazovska a breakthrough on the problem was
obtained for spherical ¢-designs. In [10] the existence of optimal ¢-designs
Dy € S? was proved for all sufficiently large N, and it was proved in [11]
that such optimal ¢-designs can be chosen as well-separated subsets on the
spheres S?. Hence, Corollary 3.1 is applicable for the spheres S¢.

Using optimal spherical ¢-designs Dy one can easily construct optimal
[t/2]-designs D3, on the real projective space RPY = @Q(d,1). Furthermore,
if Dy is well-separated on S¢, then DY, satisfies the relation (3.10) on RP¢,
see [30, Sec.3]. Hence, Corollary 3.1 is also applicable for the real projective
spaces RP?.

The corresponding generalizations to the projective spaces CP", HP" and
QP? are not so straightforward. In the recent paper [19] by Etayo, Marzo and
Ortega—Cerda the results of the paper [10] were extended to smooth compact
connected algebraic manifolds M = {z € R™ : fi(z) = --- = f,(z) = 0},
where f1,..., f, are polynomials with real coefficients. We state results from
[19] in the following form.
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Theorem 3.2. Let M be a smooth compact connected d-dimensional affine
algebraic manifold in R™ equipped with a smooth Riemannian structure.
Then there exist the positive constants c_, cy and ¢y depending only on M,
such that the following s true.

(i) For all sufficiently large N there exist N-point optimal t-designs Dy C
M satisfying (3.2).

(ii) Each of these optimal t-designs Dy is subordinated to an equal-
measure partition Py of small diameter on M satisfying (3.9).

In fact, the statement (i) of Theorem 3.2 is contained in Theorem 2.2 in
[19], while the statement (ii) follows immediately from the proof of Theorem
2.2 in [19].

The two-point homogeneous spaces Q(d,dy) can be realized as smooth
compact connected affine algebraic manifold. For the spheres S? this is ob-
vious, while for the projective spaces RP™, CP" HP™ and the projective
octonionic plane QP? this follows immediately from explicit formulas (4.13)
and (4.14).

Comparing Theorem 3.2 and Corollary 3.1, we arrive at the following.

Corollary 3.2. On each space Q(d,dy) for all sufficiently large N there exist
N-point optimal t-designs Dy C Q(d, dy), which satisfy the relations (3.11),
(3.12), (3.13) of Corollary 3.1.

I1. Geometry of two-point homogeneous spaces
and
the Lo-invariance principles

4 Preliminaries: Models of projective spaces
and chordal metrics

In this section we define the chordal metrics on the projective spaces FP",
F =R, C, H, n > 2, and the octonionic projective plane QP2 in terms of
special models for these spaces. For the sake of convenience, we describe such
models in sufficient detail and give the necessary references.

Recall the general facts on the algebras R, C,H, O over the field of real
numbers. We have the natural inclusions R C C C H C O. where the oc-
tonions O are a nonassociative and noncommutative algebra of dimension 8
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with a basis 1, e, ey, €3, €4, €5, €5, €7 (their multiplication table can be found
in [3, p. 150] and [7, p. 90]), the quaternions H are an associative but non-
commutative subalgebra of dimension 4 spanned by 1,eq,es,e3, finally, C
and R are associative and commutative subalgebras of dimensions 2 and 1
spanned by 1,e; and 1, correspondingly. From the multiplication table one
can easily see that for any two indexes 1 < 7,7 < 7,7 # j, there exists an
index 1 < k < 7, such that

eie; = —eje; =e, i#7j, e =—1. (4.1)

1
Let a = ag + 23:1 a;e; € 0, a; € R, 0 <4 <7, be a typical octonion. We
write Rea = aq for the real part, a = oy — ZZZI a;e; for the conjugation,
la| = (af + ST a?)l/2 fot the norm. Using (4.1), one can easily check that

Reab = Reba, ab=ba, |a|*=ad=aa, |ab|= |a||b|. (4.2)

The last equality in (4.2) implies that all algebras R, C,H, Q are division
algebras. Notice also that by a theorem of Artin a subalgebra in O generated
by any two octonions is associative and isomorphic to one of the algebras H,
C, or R, see [3].

The standard model of projective spaces over the associative algebras
F = R, C, H is well known, see, for example, [3,7,22,34]. Let F"*! be a
linear space of vectors a = (ag,...,a,), a; € F, 1 < i < n with the right
multiplication by scalars a € IF, the Hermitian inner product

(a,b) => @b, abeF (4.3)
=0

and the norm |a],
a® = (a,2) = ) |aif. (4.4)
i=0

In this case, in view of associativity of the algebras F = R, C,H, a
projective space FP" can be defined as a set of one-dimensional (over F)
subspaces in F"+1:

FP" = {p(a) = aF : a € "' |a| = 1}. (4.5)
The metric @ on FP" is defined by

1
cosiﬁ(a, b)=|(a,b)|, a,becF"™, |a|=|b|=1, 0<f(a,b) <7, (4.6)
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i.e. 10(a,b) is the angle between the subspaces p(a) and p(b). The transitive
group of isometries U(n + 1,F) for the metric 6 consists of nondegenerate
linear transformations of the space F"*!, preserving the inner product (4.3),
and the stabilizer of a point is isomorphic to the subgroup U(n,F) x U(1,F).
Hence,

FP"=U(n+1,F)/U(n,F) x U(1,F). (4.7)
The groups U(n + 1,F) can be easily determined (they have been indicated
in section 2 in the list of compact connected two-point homogeneous spaces).
A Riemannian U(n + 1,F)-invariant structure corresponding to the metric 6
can be also defined on the projective space (4.5), and one can easily check
that these spaces are two-point homogeneous spaces.

There is another model where a projective space FP", F = R,C, H, is
identified with the set of orthogonal projectors onto the one-dimensional
subspaces in F"*!. This model admits a generalization to the octonionic
projective plane @P? and in its terms the chordal metric can be naturally
defined for all projective spaces.

Let H(F™*!) denote the set of all Hermitian (n + 1) x (n + 1) matrices
with the entries in F, F = R, C, H, O,

HE) = {A = ((a)) : aij = Tyi, 0 €F, 0< 4,5 <n}  (48)

with n = 2 if F = Q. It is clear that H(F"*") is a linear space over R of
dimension

m = dimg H(F™) = %(n F1)(d+2), d=nd,. (4.9)

The linear space H(F"™') is equipped with the symmetric real-valued
inner product

1 n,o_
(4,B) = 5 Te(AB + BA) = ReTr AB = Re > by (4.10)
i,j=0
and the norm
n 1/2
|A| = (Tr A%)Y/? = <Z \aijP) , (4.11)
i,j=0

here TrA = > "  a; denotes the trace of a matrix A. For the distance
|A — BJ| between matrices A, B € H(F**!), we have

|4 = BI* = | A" + | BII* — 2(4, B). (4.12)
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Thus, H(F"™) can be thought of as the m-dimensional Euclidean space.

If F # O, the orthogonal projector I, € H(F"*!) onto a one-dimensional
subspace p(a) = aF, a = (ag,...,a,) € F*" |a] = 1, can be given by
II, = a(a, ) or in the matrix form II, = [a;a;], 0 < i,j < n. Therefore, the
projective space (4.5) can be written as follows

FP™ = {Il € H(F"*") : 11> =11, TrIl = 1}. (4.13)

The group of isometries U(n + 1,F) acts on such projectors by the formula
g(I) = gllg~", g € U(n + 1, ).

For the octonionic projective plane QP? the similar model is also known.
A detailed discussion of this model can be found in [3,7,22] including an
explanation why octonionic projective spaces QP"™ do not exist if n > 2. In
this model one puts by definition

OP? = {Il € H(Q?) : IT?> =11, TrIl = 1}. (4.14)

Thus, the formulas (4.13) and (4.14) are quite similar. One can check
that each matrix in (4.14) can be written as II, € OP? for a vector a =
(ag, a1, az) € O3, where I1, = [a;a;], 0 < 14,7 < 2, |a|* = |ao|> +|a1|* +|az|* =
1, and additionally (agai)as = ag(aias), see [22, Lemma 14.90]. The addi-
tional condition means that the subalgebra in O generated by the coordinates
ag, ar, as is associative. Using this fact, one can easily show that QP2 is a
16-dimensional compact connected Riemannian manifold, see [3,7,22].

The group of nondegenerate linear transformations g of the space H(0?)
preserving the squares g(A?) = g(A)?, A € H(Q?), is isomorphic to the 52-
dimensional exceptional Lie group Fj. This group also preserves the trace,
inner product (4.10) and norm (4.11) of matrices A € H(Q?). The group
F, is transitive on OP2, and the stabilizer of a point is isomorphic to the
spinor group Spin(9), see [22, Lemma 14.96 and Theorem 14.99]. Hence,
OP? = F;/ Spin(9) is a homogeneous space, and one can prove that QP? is
a two-point homogeneous space.

Notice that the relations IT1? = II, TrII = 1 in (4.13) and (4.14) are
polynomial equations in the corresponding m-dimensional Euclidean space
H(F"*!). Hence, the projective spaces RP", CP™ HP™ and the octonionic
projective plane QP2 can be thought of as affine algebraic manifolds in R™.

For our discussion we need to describe the structure of geodesics in pro-
jective spaces. Such a description can be easily done in terms of models (4.13)
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and (4.14). It is known, see [7,23,34], that all geodesics on a two-point homo-
geneous space Q(d, dy) are closed and homeomorphic to the unit circle. The
group of isometries is transitive on the set of geodesics and the the stabilizer
of a point is transitive on the set of geodesics passing through this point.
Therefore, all geodesics have the same length 27 (under the normalization
(1.1) for the invariant Riemannian distance).

The inclusions R € C C H C O induce the following inclusions of the
corresponding projective spaces

Flpﬂl g FP”, Fl g F, ni S n, (415)

moreover, the subspace F;P™ is a geodesic submanifold in FP", see [7,
Sec. 3.24]. Particularly, the real projective line RP', homeomorphic to the
unit circle S', is embedded as a geodesic into all projective spaces FP",

S'~RP!' C FP", (4.16)

see [7, Proposition 3.32]. In (4.16) n = 2 if F = @. These facts can also be
immediately derived from a general description of geodesic submanifolds in
Riemannian symmetric spaces, see [23, Chap. VII, Corollary 10.5].

Using the models (4.13) and (4.14), we can write the real projective line
RP! as the following set of 2 x 2 matrices:

RP' = {((u),u € R/7Z}, (4.17)

cos’u sin u cos u cosu —sinu 1 0 cosu sinu
SIn 1 Cos U sin” u sinu  cosu 0 0 silnu cosu
For each u € R the matrix ((u) is an orthogonal projector onto the one-

dimensional subspace TR, z = (cosu,sinu) € S'. The embedding RP' into
FP™ can be written as the following set of (n + 1) x (n + 1) matrices:

Z ={Z(u),u € R/7Z} C FP", (4.18)

Z(u) = <C(U) 0n 12 )

02,n—1 On—l,n—l

where

where 0, denotes the zero matrix of size k x [. The set of matrices (4.18) is
a geodesic in FP™. All other geodesics are of the form ¢g(7), where g € G is

24



an isometry of the space FP". The parameter u in (4.18) and the geodesic
distance # on the space FP™ are related by

0(Z(u), Z(0)) = 2Jul, —7/2 <u <7/, (4.19)

and for all u € R this formula can be extended by periodicity. Particularly,
we have

2min{u, 7 —u} if 0<wu<m,
2u if 0<u<m/2.

0(Z(u/2), Z(~u/2)) = {

Therefore,
0(Z(v), Z(—v)) =4v, 0<v<m/4 (4.20)
The relation (4.20) will be needed in the next section.

Now, we define the chordal distance on projective spaces. The formulas
(4.13), (4.14) and (4.11) imply

TT||? = TrI1? = Tr I = 1. (4.21)

for any IT € FP™. Therefore, the projective spaces FP", defined by (4.13)
and (4.14), are submanifolds in the unit sphere

FP" C S™ ' ={A e HE"™): ||4] =1} C H(F"*!) ~ R™. (4.22)

It fact, this is an embedding of FP™ into the (m — 2)-dimensional sphere, the
intersection of the sphere S™~! with the hyperplane in H(F"!') defined by
TrA=1,see (4.21).

The chordal distance 7(IT;,115) between Iy, 11, € FP™ is defined as the
Euclidean distance (4.12):

1
(I, 1,) = —2||H1 —I,|| = (1 — (I, IL,)) /2. (4.23)

The coefficient 1/+/2 is chosen to satisfy diam(FP",7) = 1.

It is clear from (4.23) that 7(g(II), g(Ily)) = 7(II;, II5) for all isometries
g € G of the space FP". Since FP" is a two-point homogeneous space, for
any Iy, II, € FP"™ with §(I1;, 1) = 2u, 0 < u < %ﬂ', there exists ¢ € G, such
that ¢(I1;) = Z(u), g(IIy) = Z(0). From (4.23), (4.18) and (4.17), we obtain
7(Z(u), Z(0)) = sinu = sin $6(II(u), T1(0)). Therefore,

1
T(Hl,Hg) = sin 50(1_[1,1_[2), (424)
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as it was defined before in (2.4).

Notice also that antipodal points IT,,I11_ € FP™ ie. O(I1,,11_) = =
and 7(IT,,I1_) = 1, can be characterized by the orthogonality condition
(I1,,I1_) = 0, see (4.23), (4.24).

5 Proof of Theorem 2.1

The proof of Theorem 2.1 is relying on the following special representation of
the symmetric difference metric (1.12), given earlier in see [29, Lemma 2.1].
Here this representation is given in a form adapted to the chordal metric
(4.23).

Lemma 5.1. Let the weight function n be summarized on the interval [0, 7],
then

0% (1, y1,y2) = %/|a(9(y1,y)) —o(0(y2,y))| du(y) (5.1)
M

with the nonincreasing function
o(r)= /n(u) du. (5.2)

Particularly, if M is a two-point homogeneous space Q@ = Q(d,dy) and
the weight function n*(r) = sinr, then

02 (0 1, ) = / (1, 9)° — 7 (92, 9)?| dia(y), (5.3)
Q

where (-, -) is the chordal metric (5.23) on Q(d,dy).

Proof. For brevity, we write 6(y;,y) = 0; and 6(y,,y) = 05. Using (1.12),
(1.15) and (1.16), we obtain

GA(naylayZ)

B ;/ / (X(r = 61) + X(r = 62) = 2x(r — 01)x(r = 62))u(r) dr | dps(y)
M 0

— %/(a(el) + 0(0y) — 20(max{6;,0:})) du(y). (5.4)
M
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Since ¢ is a nonincreasing function, we have
20(max{6b,0:})=2min{o(6,),0(0:)} =0c(01)+0(0s)—|o(61)—0c(62)]. (5.5)

Substituting (5.5) into (5.4), we obtain (5.1).
If n*(r) = sinr, then of(r) = 2 — 2sin®r/2. Substituting this expression
into (5.1) and using the definition (4.24), we obtain (5.3). O

For completeness, we give in the beginning a very short proof of Theo-
rem 2.1 in the case of spheres.

Proof of Theorem 2.1 for spheres. For the sphere S? the chordal metric 7 is
defined (2.5). We have

1
Ty, ) — (Y2, y)? = 7y = yl? =y — ylI*)
1

= _§(y1 - y27y) = _T(ylayQ)(xay)a Y1, Y2 S Sda (56)

where 7 = ||y1 — yo|| " (y1 — y2) € S Substituting (5.6) into (5.3), we obtain

02 (0 s o) = (31, 2) / ()| du(y). (5.7)

It is clear that the integral in (5.7) is independent of z € S¢. This proves the

equality (2.8) for S with the constant v(S?) = (o |(z,y)| du(y))_1 . O

Proof of Theorem 2.1 for projective spaces. We write 11y, I, IT for points in
the models of projective spaces (4.13) and (4.14). With this notation, the
relation (5.3) takes the form

02 (nf, Ty, T1y) = / |7(My, )2 — 7(Iy, TT)?| dp(TT). (5.8)

FP™

Since FP™ is a two-point homogeneous space, for I1;,Il, € FP" with
O(I1;,11,) = 4v, 0 < v < 7/4, there exists an isometry ¢ € G, such that
g(Ily) = Z(v), g(Ily) = Z(—v), see (4.20). Therefore,

/ (I T1)? — 7 (T, TO)?| dpa (11 / (2 — r(Z(—). )| dpu(IT).

(5.9)
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From the definition (4.23), we obtain
T(Z(v)aH)Z—T(Z(—v)aH)ZZ%(HZ(U) = T|* =12 (=v) -T0*)
= (Z(v) — Z(—v),TI). (5.10)

The formulas (4.17) and (4.18) imply

Z(v) — Z(—v) = (C(v) —((=0) O )

02,77,71 Onfl,nfl
and
0 sin 2u .
0(0) = 60 = (g, ") =sin2u(ce — ),
where . .
11 1 -1

C+_§(1 1)’ C_5(—1 1)'

Therefore,
Z(w) = Z(—v) =sin2v(Zy — Z_), (5.11)

where

Ci Onfl 2
Ly = ’ .
* (02,n1 Onfl,nfl

We have Z% = Zy, Z2 = Zy, Tt Zo = 1, ie. Zo € FP", and (Z,,7_) = 0,
i.e. Z, and Z_ are antipodal points. Using (4.24), we can write

(I, ;) = 7(Z(v), Z(—v)) = sin 2v,
and the equality (5.11) takes the form
Z() = Z(—v) = 7(I}, ) (Z, — Z_). (5.12)
Substituting (5.12) into (5.10), we find that
7(Z(),)? — 7(Z(~v),N)? = 7(I1y, ){Z, — Z_,TI). (5.13)
Substituting (5.13) into (5.9) and using (5.8), we obtain

HA(ﬁuaHhHﬂ :T(HI;H2)9A(77H72+72*)7 (5-14)
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where

007 20,2 = [ 1020~ 22, 10) dum), (5.15)

FPn
The integral (5.15) is independent of II, Ty, This proves the equality (2.8)
for FP™ with the constant y(FP") = ([epn [(Z4 — Z_,1T)| du(H))_l. Notice

that in this formula any pair of antipodal points in FP™ can be taken instead
of Z,,Z_. The proof of Theorem 2.1 is complete. O

6 Proof of Lemma 2.1
(i) In (1.22) we put y; = y2 = y to obtain
My, y) = v — 02 = vl (6.1)
Applying the Cauchy—Schwarz inequality to (1.5), we obtain

A (1, ¥2) | < O (1, 92) A (42, 12)) 2 = 0,00 (6.2)

Using the weak invariance principle (1.28), the formula (1.25) and the bound
(6.2), we obtain

02 (y1,112) < 20,0 (6.3)
For r € [0, 7], we have
1 1 (6.4)
Sin g7 T, CoSor T T :

Substituting the bounds (2.3) for the volumes v, and v/ into (6.2) and (6.3)
and using (6.4), we obtain (2.14). Integrating (2.14) with n € W (d+1, dp+1),
we obtain (2.15).

(ii) We can assume that 0 < r < 7, since 02(y;,y2) = 0 identically, if
r =0 or r = m. For brevity, we write 0 = 0(y1,y2)/2. The parameters r and
d vary in the region 0 < r < m, 0 < § < 7/2. This rectangular region can be
represented as a disjoint union of three triangular regions:

(a) 0<r<d,0<d<m/2,

(b)yr>r>m—6,0<§<7/2,

(c)r>6,0<r<m—0,0<d<7/2.

In each of these regions we shall prove the bound (2.16). Notice that for
r € [0, 7], the function sinr/2 is increasing while cosr/2 is decreasing.
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Case (a). Using the relations (1.24), (2.2), (2.3) and (6.4), we obtain

r ) .
02 (y1, y2) < vp = /(sin iu)d_l(cos 5u)alo_l s

0
r

1 1
/(sin §u)d’1 du ~ (sin 57’)‘[’17“

0

AN

1 1
< (sin 57’)‘[’1(008 ir)do’lé. (6.5)

Case (b). Similarly, from (1.24), (2.2), (2.3) and (6.4), we obtain

™ . ,
HrA(ylayZ) < U;, ~ /(Sin §U)d71(cos §U)d071 Ju

r
™

1 1
/(cos iu)“l"_1 du =~ (cos ir)do_l(ﬂ —)

r

N

< (sin %r)d_l(cos %r)do_lé (6.6)

Case (c). Since 0 < 0(y1,y2) < 7, there exists the unique geodesic v C

Q(d, dy) of shortest length 6(y1,y>) joining points y, y2, see [23, Chap. VII,

Sec. 10]. Let yo denote its midpoint, i.e. yo € 7, 0(y1,y0) = 0(y2,y0) = 0.

The triangle inequality for the metric # implies that the ball B, _s(yo) is
contained in the intersection B, (y;) N B,(y2). Hence

p(Br(y1) N Br(y2)) = vrs. (6.7)
Using again the relations (1.24), (2.2), (2.3) together with (6.7), we obtain

r

1 1
02 (y1, y2) < vp — Vg = /(sin iu)d_l(cos iu)do—l g

r—a§

1 1 1
< (sin ir)d_l(cos 5(7“ — )%~ ~ (sin ir)d_l(ﬂ )

1 5\ 1
~ ] _ d—1 _ dofl < : - d—1 _ dofl
~ (sin 27“) (m—r) <1 + — r) < (sin 27“) (m—r)®=¢

1 1
~ (sin §r)d’1(cos 57’)‘[0’15. (6.8)
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Now, the bound (2.16) follows from the bounds (6.6) — (6.8). Integrat-
ing (2.16) with n € W(d,dy), we obtain the bound (2.17). The proof of
Lemma 2.1 is complete.

III. Spherical functions and bounds for dis-
crepancies and sums of distances

7 Preliminaries: Commutative spaces and
spherical functions

In this section we outline general facts on harmonic analysis on the two-
point homogeneous spaces Q(d, dy). The spaces Q(d, dy) belong to a specific
and very important class of commutative spaces. The general theory of
commutative spaces can be found in [35], see also [24] and [33, vol. III,
Chap. 17]. For compact groups this theory is rather simple. We outline the
necessary facts in the form convenient in the subsequent calculations.

Let G be a compact group and K C G a closed subgroup. Denote by ua
and py Haar measures on the groups G and K, correspondingly, ug(G) =
pr(K) =1. As before, u denotes the invariant measure on the homogeneous
space Q = G/K, and pg = pg x p. We write L,(G), ¢ = 1,2, for the space of
functions on G integrable with the power ¢ with respect to the Haar measure,
L,(G/K) and L,(K\G/K) for the subspaces of functions in L,(G) satisfying
f(gk) = f(g), k € K, and, correspondingly, f(kigks) = f(g9), k1, ks € K.
Obviously, functions in these subspaces can be thought of as functions on
Q@ = G/K. The spaces Li(K \ G/K) C Li(G/K) C Li(G) are associative
Banach algebras with the convolution product

fi* fa(g) = /fl(ghl)ﬁ(h) dpc(h). (7.1)

If the algebra L(K \ G/K) is commutative, the pair of groups K C G is
called a Gelfand pair and the corresponding homogeneous space @) = G/K
is called a commutative space, see [35]. Two large classes of commutative

spaces are Riemannian symmetric spaces and two-point homogeneous spaces,
see [24,35]. The spaces Q(d, dy) belong to both of these classes.

31



Consider the following unitary representation of a group G in the space

Ly(G/K)
T(g)f(h) = f(g~'h), f € L(G/K), g,heQG. (7.2)

and its decomposition into the orthogonal sum

T = @Tl Ly(G/K) = EBV (7.3)

1>0 >0

of unitary irreducible representations 7; in finite-dimensional spaces V;. Let
my; = dim V}, and (-, ) denote the inner product in Vj.

If @ = G/K is a commutative space, then the irreducible representations
T, occurring in (8.3) are pair-wise nonequivalent and each subspace V; in
(7.3) contains a single K-invariant unit vector e, i.e. Tj(k)e") = e for all
ke K.

Fix an orthonormal basis e, ..., e,, in the space V;, such that e; = e

and define the matrix elements tg.) (9) = (Ti(g)ei, e;). Then, we have

z n, — I
(9192) th 9)ty)(92) and 1) (g7") = 1) (9). (7.4)
We also have the orthogonality relations

[0 @) dncts) = mi dwsicty 7

where d,, is Kronecker’s symbol The sets of functions {ml1 /2 5? (9), J =

1,...,my, 1 >0} and {ml/2 1(g),1 > 0} are orthonormal bases in the spaces
LZ(G/K) and Ly(K \ G/K), correspondingly, see [33, vol. I, Sec. 2.3] ( notice
that in [33] the subgroup K in a Gelfand pair K C G is called massive ).

The matrix elements ¢;(g) = tﬁ? (g) are called zonal spherical functions
or simply spherical functions (the matrix elements t%) (9), 7 =2,...,my are
called associated spherical functions). The definition of ¢;(g) and the formula
(7.4) immediately imply that all spherical functions are continuous, ¢;(e) = 1,
where e is the unit element in G, |¢;(g)] <1 for all g € G,

my -
o5 =Y 1) (911 (g2), and @i(g) = @i(g~). (7.6)
j=1
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It follows from (7.6) that ¢; is positive definite:
> aeioilgg) =0 (7.7)
1<i,j<N

for any ¢1,...,gny € G and any complex numbers ¢y, ..., cy.
From (7.1), (7.5) and (7.6), we obtain the following relation for the con-
volution of two spherical functions

(o0 * o) (g) = durm; " @i(g)- (7.8)
Putting ¢ = e in (7.8), we obtain the following formula for the dimensions
my of irreducible representations in (7.3)

—1

i = / o) Pducle) | (7.9)

Functions f € Ly(K \ G/K) have the following expansions

F9) ~ Y ma(feg), (7.10)

>0

where ~ denotes the Ly-convergence, Fourier coefficients are given by

a(f) = /f(g)mdua(g), (7.11)

and Parseval’s equality has the form [, |f(g)]> duc(g) = > 50 mula(f)].
Actually, this is the Peter-Weyl theorem written for the space Ly(K \ G/K),
see [33, vol. I, Chap. 2]

Substituting the expansion (7.9) for two functions fi, fo € Ly(K \ G/K)
into (7.1) and using the relation (7.8), we obtain

fie falg) =D mialfi) alf2) ailg). (7.12)

>0

Applying the Cauchy—Schwarz inequality to (7.12), we observe that the series
(7.12) converges absolutely. Since the spherical functions ¢; are continuous
and |g;(g)] < 1, we conclude that the convolution f; * f, is a continuous
function.
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The facts listed above are true for all compact commutative spaces. Now
we wish to specify these facts for two-point homogeneous spaces.

Let K C G be compact groups and Q = G/K a two-point homogeneous
space with a G-invariant metric #. Suppose that K is the stabilizer of a fixed
point yo € Q. It follows from the definition, see section 2, that the subgroup
K is transitive on each sphere ¥,.(yo) = {y : 0(y,y0) = r} C Q, r € R.
Thus, any function f € L,(K \ G/K), as a function on (), is constant on
each sphere X, (yp), and we can write

f(g) = F(0(gy0, y0)) (7.13)

with a function F'(r), 7 € R. In other words, the set of double cosets K\G/K
is in one-to-one correspondence with the set of radii R.
Using (7.13), the convolution (7.1) can be written in the form

(f1* f2)(91_192) = /Fl(g(glyo, 9Y0)) F2(0(gy0, g210)) dpe(g)

_ / (001, 9)) Fa(0(y, 1)) da(v), (7.14)
Q

where y1 = g1%0, Y2 = 92Yo.
For a function of the form (7.13) we have

/ @) dpiclg) = / F Oy, 30)) duly) = / F(r)2ds,  (715)
G Q R

where the last integral is thought of as a Stieltjes integral with the non-
decreasing function v, = p(B.(y)), r € R. It follows from (7.13) and
(7.15) that the mapping f — F' is an isometry of the space Lo(K \ G/K)
onto the space Ly(R,v,) of functions F(r), r € R, with the norm ||F| =
(fR |F(T)|2dv,.)1/2.

Since the spherical functions ¢; € Ly(K \ G/K), they can be written in
the form (7.13):

vi(g) = ®u(0(gy0, vo)), (7.16)

where @, € Ly(R,v,), and putting y1 = g1yo, Y2 = 92¥2, 91,92 € G, we can
write
©i1(97 g2) = 1(0(g190, go0)) = Pi(0(y1,y2))- (7.17)
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It follows from the properties of ¢, that ®; are continuous and real-valued,
®,(0) = 1, |P(r)] < 1, r € R. The set of functions {mll/Z(In,l > 0} is
an orthonormal basis in the space Ly(R,v,) and the expansion (7.10) for
F € Ly(R,v,) takes the form

F(r) ~ Y me(F) ®(r) (7.18)

mm:/Fm@mm, (7.19)

and Parseval’s equality [, [F(r)* dv, = >, mula(F)[.
Comparing the relations (7.12) and (7.14), we arrive at the following
formula

/Fl(ﬂ(yl,y))Fz(Q(y,yg))du(y) =Y mia(R)a(F)®(0(y,y)).  (7.20)
Q >0

For the spaces Q = Q(d, dy) the matrix elements t%) (g) are eigenfunctions

of the Laplace—Beltrami operator on () and the spherical functions ¢;(g) =
t%’ (g) are eigenfunctions of the radial part of this operator and can be found
explicitly, see [20, p. 178], [24, Chap. V, Theorem. 4.5], [25, pp. 514-512,

543-544], [35, Theorem. 11.4.21]. For the functions ®; in (7.16), we have

P (cos r)
®y(r) =\ (r) = L —— reR=[0,7], (7.21)
P(1)
where Pl(a’ﬁ )(z) are the standard Jacobi polynomials of degree [ normalized
by
N 1)... [

see [32]. The parameters «,  in (7.22) and the dimensions d, dy in Q(d, do)
are related by

1 1

In what follows, we use the parameters «, f along with the dimensions d,
do, assuming they are related by (7.23). With this assumption we have
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a > > —1/2 always, since d and dy > 1. Notice that [P (2)| < P[*?(1)
for z € [-1,1] and a > § > —1/2.

We have the following orthogonality relations for Jacobi polynomials,
see [32, Eq. (4.3.3)],

™

1 1
/ P (cos u) PP (cos u) (sin §u)d_1(cos §u)"l°_1 du
0

1
]- @ « % —
=5 / PP )P (@) (1= )" (14 2) de = M 6w, (724)

“1
where My = k(d,dy) and

Fi+)rl+a+8+1)

M‘:(2l+a+5+1)F(l+a+1)1“(l+5+1) -

L, 1>1. (7.2

Substituting the expressions for spherical functions (7.16), (7.21) into the
formula (7.9) and using (7.24), we obtain the following explicit formula for
the dimensions m; of irreducible representations in (7.3):

my; = M, B(d/2,dy/2) (O‘ zr l>2 ~ 41 (7.26)

For functions F' € Ly([0, 7], v,) the expansion (7.18) takes the form

F(r) ~ Y M C(F) P (cos ), (7.27)

1>0
with the Fourier-Jacobi coefficients
(a,B) N S L a1
Ci(F)= [ F(u)P,""(cosu) (sin iu) (cos iu) 07" du. (7.28)
0

and Parseval’s equality [ |F(r)]*dv, = k(d,do) > o M |Ci(F)[>. The
Fourier—Jacobi coefficients (7.28) and Fourier coefficients (7.19) are related
by

Iﬁ)(d, d[))

a(F) = Cl(F)P(T)(l)’

1> 0. (7.29)
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Using the relations (7.21) and (7.29), we can write the formula (7.20) in
the form

/ Fi(0(y1. ) Fa(0(y, 1)) dpu(y)

Q

P (cos Oy, y
= k(d, do) > M, Cy(Fy) Ci(Fy) ng,m (11 2))
>0 [ ( )

(7.30)

This formula will be used in the next section to obtain spherical function
expansions for discrepancies and metrics .

The condition of positive definiteness (7.7) for the spherical functions
(7.16), (7.22) will be used in section 10 in the following special form

P (cos (1, 22))
oDy = Y >0, (7.31)
J?l,QTQEDN IDZ( ’ )(1)
where Dy C Q(d, dp) is an arbitrary N-point subset. Obviously, the condi-
tions (3.3), (3.4) in the definition of ¢-designs Dy C Q(d, dy) are equivalent
to the following equalities

o[Dx] =0, [=0,1,...,t, (7.32)

see also [4,25]. The relations (7.32) can be used as an alternative to the
definition of ¢-designs given before in section 3, see [4,25].

8 Spherical function expansions for discrep-
ancies and metrics

In this section we obtain explicit spherical function expansions for the kernels
(1.5), (1.7) and the symmetric difference metrics (1.12), (1.13) on the spaces
Q(d,dy). The coefficients of these expansions will be estimated in the next
section.

First of all, we recall the main facts on Jacobi polynomials Pl(a’ﬁ)(z),
zel[-1,1,a>—-1/2,8 > —1/2,as] — oo. It is known, see [32], that Jacobi
polynomials are behaved extremely irregularly on the interval z € [—1,1]:
inside the interval they oscillate and are of order {~'/2, while in neighborhoods
of the end points z = 1 and z = —1 they increase rapidly up to the quantities
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of order [* and [?, correspondingly. It is convenient to introduce the following
function to describe such a behavior of Jacobi polynomials:

1 1 1 1
J9(r) = (sin §T)a+5(CoS §T)ﬁ+§]31(a’6)(005 r), rel0,n]. (8.1)

We have the following two bounds.
(a) In the interval r € [col™ !, m — ¢ol™t], where ¢y > 0 is an arbitrary
constant, we have the asymptotic formula

T (r) = (xl) M {eos[(1 4 lo)r + o] + O((Usinr) )}, (82)

where [y = (o + 8+ 1)/2, 1o = —7(2ac + 1) /4, see [32, Theorem. 8.21.3].

(b) In the intervals r € [0, ¢l '] and r € [r — ol ™', 7], we have the bound
TP (r) = O(17Y/2), see [32, Theorem. 7.32.2]. This bound together with
(8.2) implies the following bound

1P @) < el +1)72, 1>, (8.3)

which holds uniformly for all r € [0, 7] with the constant ¢ depending only
on «,  and ¢y.

Consider the measure of the intersection of two balls B,(y;) and B, (y2)
in the space @ = Q(d, dy)

(51, 92) = 1By (1) A B () = / o (0 ) (009, 32)) duly),  (8.4)
Q

where y,(-) is the characteristic function of the interval [0,r], 0 < r <, see
(1.15).

Lemma 8.1. The kernel (8.4) has the following spherical function expansion

P9 (cos 0(y1, y2))

pr (Y1, 92) = 07 + k(d, do) > 17> Myay(r) o , (8.5)
=1 P
where v, = u(B,(y)) and
I P L o, (a+1,8+1) 2
a(r) = (sin 5r)*(cos 57) {pl_1 (cosr)}
1 1 2
= (sin57)* " (cos )~ {T ) | (8.6)
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The coefficients in (8.5) satisfy

1 1
Myay(r) < c(sin 57’)‘[*1(008 574)110—1 (8.7)

with a constant depending only on d and dy. Furthermore, we have the equal-
ity
k(d, dy) Z [72Myay(r) = v, — v2 = v, (8.8)

I>1
Proof. Applying the expansion (7.30) to the integral (8.4), we obtain

(,8)
!

(Y1, y2) = k(d, dp) Z Ml{cz(xr)}Q P, (cos O(y1,y2))

a . (8.9)
= P?(1)

where Cj(x;) are Fourier-Jacobi coefficients (7.28) of the characteristic func-
tion x,. We have

r . ,
Ci(xr) :/Pl(o"ﬁ)(cosu)(sin iu)dfl(cos 5u)do—l du

0

1.d4-1, dg—
= () /(1_z)a(a+z)ﬂa<aﬁ>(z) az. (8.10)

In view of (2.2), we have Cy(x,) = £(d, dy) 'v,. For [ > 1 we use Rodrigues’
formula for Jacobi polynomials, see [32, Eq. (4.3.1)],

a, (-1 o
PP (z) = g (1= 2) (1 +2)” dl{ (14 2) L (8.11)

Substituting (8.11) into (8.10), we obtain

1

/ (1= 2)%(1 + 2)’ PO (2) dz

cosr

= (2071 (1 = cosT)*T (1 + cos )P TIPTHY (cos )

1 1
= 20HF 11 (sin 57“)2‘”2(008 §T)2’8+2Pl(_afrl’ﬂ+1) (cosr).
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In view of the definitions (8.1) and (7.23), we have

1 1 .
Ci(xr) = l’l(sin ir)d(cos ir)dOPl(_frl’ﬁﬂ)(cos r)

= ['(sin %r)% (cos %T)@%Jl(afl’ﬁﬂ)(r). (8.12)
Substituting (8.12) into (8.9), we obtain the formulas (8.5) and (8.6).
The bound (8.7) follows from (8.6), since M; ~ [, see (7.25), and
Jl(f;rl’ﬁﬂ)(r) <1712 see (8.3).
From (8.4), we obtain u,(y,y) = v.. Putting y; = y» = y in (8.5), we
obtain (8.8). In fact, the formula (8.8) is Parseval’s equality for the expansion
(7.27) of the characteristic function .. O

An immediate corollary of Lemma 3.1 is the following.

Theorem 8.1. For any space Q(d,dy) the following spherical function ex-
pansions hold:

(i) For the kernels \,.(y1,y2), see (1.5), and the metrics 62 (y1,1s), see
(1.13), we have

P (cos (y1, y2))

)‘r(yl, y2) - l{(d’ do) Z liZMlal (’I“) (a,8) ) (813)
21 ()
PP (cos ,
02 (y1,y2) = (02) — s(d, do) Y 17> Myay(r)=! ((a,ﬁ) (y1 yZ)),
21 B (1)
P(O"/B) 9
= k(d, do) ZFZM;GZ(T) 1— = (cos O(y1, y2)) , (8.14)

= PP(1)
where (62) = v,v,
coefficients a;(r) are defined in (8.6).
(i) If the weight function n € W (d,dy), then for the kernels A(n, y1,y2),
see (1.7), and the metrics 0°(n,y1, y2), see (1.12), we have

ro

is the average value of metric 02, see (1.25), and the

P (cos ,
A, y1,y2) = k(d, do) Z 172 M, Ay () ((a . (Y1, 92))
21 B (1)

: (8.15)
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P (cos (y1, 1))

02 (n, 91, 92) = (0°(n)) — K(d, do) ZFZM!A!(W)

= P2 (1)
P (cos Oy,
= /i(d, dO) Z li2MlAl(77) 1 - l ((a,ﬁ) (yl yQ)) ) (816)
=1 P()

where (02(n)) is the average value of metric 0°(n), see (1.17), and the coef-
ficients A;(n) are defined by

An) = / n(a)ar(u) du. (8.17)

Proof. (i) Substituting the expansion (8.5) into (1.22) and (1.24), we obtain
the expansions (8.13) and (8.14). Notice that in the second equality in (8.14)
the formula (8.8) has been taken into account.

(ii) In view of the bound (8.7), the series (8.13) and (8.14) can be inte-
grated term by term with n € W(d,dy). This gives the expansions (8.15)
and (8.16). 0

Notice that by Theorem 2.1 the chordal metric 7 is a symmetric difference
metric (1.12) with the weight function 5" and, therefore, it has the expansion
(8.16). At the same time, the chordal metric can be written as follows

1/2

P(o‘aﬁ)
: (8.18)

L (cos Oy, y2))
P7(1)

T(yla y?) = C(Oj, 5)

with the constant c(a, 8) = (o + 1/a+ B+ 2)/* = (d/d + do)"'*.

Indeed, by Rodrigues’ formula (8.11) P{*(z) = s(a+B+2)z+5(a—p),
and
P (2)

1— PfT)(l)] . (8.19)

On the other hand, by the definitions (2.4) and (4.24)

a+1

1
2 =05

2

1 1 1/2
T(y1,y2) = sin 59(%, Y2) = {5 (1 —cos O(y, y2))] - (8.20)
Comparing (8.19) and (8.20), we obtain (8.18).
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9 Bounds for Fourier-Jacobi coefficients

In this section we estimate the following coefficients

a;(r) = (sin %r)dl(cos %T)dol {Jl(ffl’ﬁﬂ)(r)}Z, (9.1)
o) = [ () du, (9.2)
Alxr) = /X,(u)al(u) du = /al(u) du, (9.3)

where Jl(a”g)(-) is defined in (8.1). In fact, we prove special weighted bounds

for Jacobi polynomials.

Lemma 9.1. Let the weight function n € W(d, dy), n # 0, then the following
bounds hold:
(i) For0 <r <m andl > 1, we have

Ay(n) > er~ay(r). (9.4)

(ii) There exists a constant L > 1, depending only on « and (3, such that
for 0 <r <7/2 and lr > L, we have

AZ(T]) < CTidAl(Xr). (95)

The positive constants ¢ and C' in (9.4) and (9.5) depend only on o, B
and 7.

Proof. The asymptotic formula (8.2) implies the following relations
T () = (D)~ {sin[(1 4 lo)r + o) + O((Isinr) ™M}, (9.6)

{Jl(frrl,ﬁJrl)(T)}Z _ {% _ %cos 2[(L + lop)r + ro] + Rl(r)} , (9.7)

where the error term R,(r) satisfies

oIt for 0<cy<r<m—qc,
le:{ ‘) pSrEToG 0.9

[
O((lr)™Y)y  for "' <r<m/2,
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where 0 < ¢y < 7/2 is arbitrary fixed.
(i) Since n € W(d,dy), n # 0, a sufficiently small constant 0 < ¢y < 7/2
can be chosen to satisfy

1 1 1
[ ntu)sin gy cos Sy du = Slallag, > 0. (9:9)

Using (9.9), (9.7) and the first bound in (9.8), we obtain
T—co

2
o) = [ au)fsin gu)*eos 5y (A5 w)} du

co

2(7rl)1{1”77”d"10_l / W(U)(Sinlu)d’l(coslu)dO’IcosQ[(l+l0)u+T0]du
4 2 2 2
+0(™) | = (47) " nllag, + o1), (9.10)

where in the last equality the Riemann-Lebesgue lemma has been used.
Hence

Au(n) = 870 Ml o (9.11)
for all sufficiently large [ > [;. We have
min [Ai(n) > 0, (9.12)

since, A;(n) > 0 for all [ > 1. From (9.11) and (9.12), we conclude that the
bound

Ay(n) >0t (9.13)

holds for all [ > 1 with a constant ¢; > 0 depending only on «, 8 and 7.
From the other hand, the bound (8.3) implies

1 1 2
r= gy (r) = r~ % (sin ir)d_l(cos 57“)‘10_1 {Jl(ffl”ﬂl)(r)} <l (9.14)

Comparing the bounds (9.13) and (9.14), we obtain the bound (9.4) with
—1
c=cicy
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(ii) Let 0 < r < 7/2 and lr > L, where L > 1 is a constant which will be
fixed later. From the definition (9.3), we obtain

r

Ay () > 1 / ae(u) du

r/2
r

1 1 2
> r~4(sin Zr)d_l(cos 57“)‘10_1 / {Jl(f‘fl’ﬁﬂ)(u)} du

r/2
r

2
>017“_1/{Jl(a;r1’6+1)} du, (9.15)

r/2

where one can put ¢; = (1/8)%"1(1/2)%~1. Using the asymptotic formula
(9.7) and the second bound in (9.8), we obtain

2
r_l/{Jl(af—l”BH)(u)} du

r/2
11,
= (rl)! vim 57“_1 /cos 2[(I + lo)u + o] du + O(L™") & . (9.16)
r/2

The integral on the right-hand side in (9.16) is of order O((rl)~") S O(L™Y).
Substituting (9.16) into (9.15), we obtain

r A (x,) > ei(drl) T {1+ 0L} . (9.17)

Now, in view of (9.17), we can fix a sufficiently large constant L, depending
only on av and f3, to satisfy

= A (x,) > e (87l) T = el (9.18)

From the other hand, using the bound (8.3) and the definitions (9.2) and
(2.13), we obtain
Ai(n) < Coellnllaal™ = Csl™. (9.19)

Comparing (9.18) and (9.19), we obtain the bound (9.5) with C = Csc;'. O
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10 Proof of Theorems 2.2 and 3.1

Theorems 2.2 and 3.1 are immediate corollaries of bounds on discrepancies
given below in Theorem 10.1.

By Theorem 9.1 we can write the discrepancies (1.4) and (1.6) in the
following form

M[Dy] = k(d, do) Y 17> Myay(r)pi[ D], (10.1)
Ay D] = w(d; do) S 12 MiA ()i D), (102)
Axr Dy| = k(d, dy) ilZMlAl(Xr)cpl[DN], (10.3)

here Dy C Q(d,dy) is an arbitrary N-point subset, and the quantities
©i[Dn] > 0 are defined in (7.31). The series (10.1) — (10.3) converge and
all their terms are nonnegative.

Theorem 10.1. Let the weight function n € W(d,dy), n # 0, then the
following bounds hold:
(i) For any N-point subset Dy C Q(d,dy) and an arbitrary r, 0 < r <,
we have
An, Dy > er '\, [Dy], (10.4)

(ii) There exists a constant L > 1, depending only d and dy, such that for
any N-point t-design Dy C Q(d,dy) with t > 2L/m, we have

An, Dy] < Cr~*Ax,, Dy], 7= Lt " (10.5)

The positive constants ¢ and C in (10.4) and (10.5) depend only on d, dy
and 1.

Proof. (i) Applying the bound (9.4) to the series (10.1) and (10.2), we obtain
the bound (10.4).
(i) If Dy C Q(d, dy) is a t-design, then ¢[Dy] =0 for [ =0,1,...,t, see
(7.32). Hence, the summation in all series (10.1) — (10.3) is taken over [ > ¢.
Let L be chosen as the constant indicated in Lemma 9.1(ii). If r = Lt !,
then we have 0 < r < /2 for ¢t > 2L/m and Ir > L for [ > t. Applying the
bound (9.5) to the series (10.2) and (10.3), we obtain the bound (10.5). O
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Now we are in position to prove Theorems 2.2 and 3.1.

Proof of Theorem 2.2. As it was explained in comments to Theorem 2.2
we have to prove only the left bound in (2.19). From the definitions of
discrepancies (1.2), (1.4), we conclude that A\, [Dy] > (Nwv,)?, where (z) =
min{|z —n|,n € Z} is the distance of z € R from the nearest integer. Define
r by Nv, = 1/2, then \,[Dy] > 1/2. In view of (2.3), 7 ~ N~'/¢ and the
bound (10.4) implies the left bound in (2.19). O

Proof of Theorem 3.1. First of all, we notice that

/(#{Br(y)ﬂDw})zdu(y)Z/ ( > X(Br(y),y1)> dp(y)

) Q y1€DN
=/<Z X(Br(yl),y)> du(y) = Y u(Be(y1) N B,(ya)), (10.6)
Q y1€Dn y1,y2€DnN

here the formula (1.15) has been used. Comparing (10.6) with (1.23), we
obtain

Ar[Dn] < /(#{Br(y) NDy})*duly) < (v[Dw,7])?, (10.7)
Q
where v[Dy,r] is defined in (3.5). Therefore

r

Ale, D] = /)\U[DN] du < r(v[Dy, 1)), (10.8)

since v[Dy, r| is a nondecreasing function of r. Substituting (10.8) into (10.5),
we obtain

An, Dy] < Cr= 4 (v[Dy, 7])2 (10.9)
If r = Lt~', then the bound (10.9) coincides with the bound (3.6). O

11 Additional remarks

In this section we discuss very briefly some questions related with the matter
of the present paper.

46



(i) First of all we explain the appearance of anomalously small errors in
the formula (1.38). Tt is known that for the sphere S? the geodesic metric 0
can be written as follows

0(y1,y2) = WM(BW/Q(yl)ABnﬂ(?h)); Y1, 52 € 59, (11.1)

where B, j(y) = {z € S : O(z,y) < n/2} = {z € S%: (z,y) > 0} is
the hemisphere centered at y € S¢ and p the standard Lebesgue measure
normalized by (1.1), see [18, Sec. 6.4]. Using (1.13), we can write (11.1) in
the form

0(y1,y2) = 7(1 = 2u(Br/2(y1) N Brya(y2)) (11.2)

Notice that in this form, the equality (11.2) is obvious: it suffers to notice
that the measure of the intersection of two hemispheres in (11.2) is a linear
function of 0(y1,y2). Comparing (11.2) and (1.24) and taking into account
that v,/o = 1/2, we can write

0(y1, y2) = 27025 (41, 2)- (11.3)

Hence, the geodesic metric  on the sphere S¢ is a symmetric difference
metric.

Using the formula (11.3) and the invariance principle (1.28) for the sphere
S? we find that

0[Dn] = ()N — 27\ /o[Dn],
where
AealDy] = [ AlB (). D duy)
Sd

where A[B/2(y), Dn] = #{Bx/2(y) "Dy} —Nuvgo. and (§) = 7/2, see (1.25).

An N-point subset Dy C S¢ can be represented as a disjoint union of two
subsets Dy = Dég) U DISI),N = 2a + b, where Dég) = {x € Dy : —x € Dy}
and DIEI) ={zr € Dy : —x ¢ Dy}. We have

A[Bro(y), Dn] = A[Bya(y), D] + A[Byo(y), D).

It is clear that A[Bﬂ/z(y),Dé?l)] = 0 for all y € S? except the hyperplanes
(y,x) =0,z € Dég). Hence, \;/2[Dy] = )\W/Q[Dgl)].

Let N = 2a be even and Dy = Dé?l), then A;/o[Dy] =0. Let N =2a+1
be odd and Dy = Dég) U DP, where DEI) = {x0} is a one-point subset. A
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simple calculation shows that A;/o[{zo}] = 7/2. Therefore, \z/3[Dn] = 7/2,
and the relation (1.38) follows.

A similar proof of the relation (1.38) was recently given in [8, Theorem
3.5]. Additionally, these authors established the exact value ey = 7/2 for
odd N.

The relation (1.38) can be also derived from the spherical function expan-
sion (8.14) for the geodesic distance on S?. For the sphere S?, we have dy = d,
f=a=4d/2—1, and Jacobi polynomials Pl(O"O‘)(z) coincide, up to constant
factors, with Gegenbauer polynomials. Furthermore, Pl(a’a)(z) for even and
odd [ are, correspondingly, even and odd functions of z, see [32, Sec. 4.7].
Comparing the formula (11.3) and the expansion (8.14) for r = 7/2, we
obtain the following expansion for the geodesic distance on S¢

9(y1,yg) =
(c.0)
B I 1y 2 (a+1,0+1) 2 5" (cos B(yr, 92))
=27 | 1= () k(d,do) Y Ml{Pl_l (0)} P )
odd(>1 [
1 2 P (cos 0(ys, 1))

= 2n() ld,do) 3 M { PV (0)) |1 - P2l

7(4) e 0>oddl>1 e o) Pl(a’a)(l)

(11.4)

The expansion contains spherical functions only with odd indexes. For odd
[ for the sums (7.31), we have cpl[Dég)] = 0 and gol[Déo) U DEI)] = 1, where

a

the subsets Dgi) and Dgi) U DEI) are defined as above. Substituting these
equalities into (11.4), we obtain the relation (1.38).
(ii) The Lévi-Schoenberg kernel on an arbitrary metric space M with a

metric p is defined by

k(P; Y1, y2) = p(yla yo) + P(y2; yo) - P(yh y2)a (11-5)

where yo € M is a fixed point, see [20] The metric p can be recovered from
the kernel k& by p(y1,y2) = 2(k(p, y1, y1) + k(p, yo, y2) — 2k(p, y1,42))-

If the kernel (11.5) is positive definite, i.e. Zlgi,jgN cicik(p,yi,y;) > 0
for any points yi,...,yny € M and any complex numbers ¢y, ..., cy, then it
can be thought of as a covariance of a Gaussian process (a random field) on
M. The standard methods of probability theory enable one to construct such
random field as a mapping W : M >y — W(y) = W(y,w) € Ly(Q, dw), such
that W(yo) = 0,EW (y1) = 0, EW (y1)W (y2) = k(p, 1, y2) and E(W (y;) —
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W (y2))? = p(y1,y2), for all y1,y, € M. Here Ly(Q, dw) is the Hilbert space
of real-valued square-integrable random variables on a probability space (2
with a probability measure dw and E denotes the expectation on Lo (€2, dw).
Furthermore, if M is a Riemannian manifold and p is Holder continuous
with respect to the geodesic distance 0, i.e. p(y1,y2) < cf(y1,y2)? with some
constants ¢ and [ > 0, then for almost all w € Q trajectories of the random
field W (y,w) are continuous functions of y € M. For more details we refer
to [20].
Comparing the definitions (1.12) and (1.13) with (11.5), we obtain

E(0(n), y1,92) Z/k(@«A,yhyz)n(T) dr, (11.6)
where
k(02 y1,y) = /Fr(ylay)Fr(y2,y) du(y), (11.7)
M

where F,(x,y) = x(By(x),y) — x(B:(v0),y). This proves that the Lévi-
Schoenberg kernels for all symmetric difference metrics are positive definite.
Particularly, in view of (11.3), for the geodesic metric on the sphere S¢ the
formula (11.7) can be written as

k(97 Y1, y2) =27 / Fn/?(yla y)Fﬂ/2(y27 y) dlu’(y) (118)
Sd

Therefore, the kernel 6(y1, yo) + 0(y2, ¥o) — 0(y1, y2) is positive definite. This
is a well-known theorem of Lévy, see [26] and [20]. Originally, its proof
was obtained in terms of 'white noise’ integrals for random fields on S¢,
see [26, Chap. 3 in Appendix]. A direct proof was given in [20, Sec. 4] in
terms of an expansion of the metric § by Gegenbauer polynomials. The proof
of Lévy’s theorem given above is likely to be the simplest.

Notice that in contrast to the spheres S¢, the geodesic metrics § on the
projective spaces CP", HP™ and QP? are not symmetric difference metrics
and for projective spaces analogs of Lévy’s theorem are not true. This follows
from the results of the paper [20, Sec. 4, pp. 225-226]. At the same time,
the Lévi-Schoenberg kernel k(7,yi,y2) for the chordal metric 7 is positive
definite for all two-point homogeneous spaces Q(d,dy). This follows from
Theorems 2.1.
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A general theory of random fields on two-point homogeneous spaces has
been developed in [20]. It should be interesting to study in more details
random fields on Q(d,dy) with the covariances (11.6) and (11.7). Notice
that Lemma 2.1 contains, in fact, conditions under which trajectories of such
random field are continuous almost surely.

(iii) Finally, we notice that noncompact connected two-point homoge-
neous spaces G/K are also classified completely as hyperbolic spaces over
algebras F = R, C, H, O, see [34, Sec. 8.12], and one can consider the spaces
of double cosets M =T\ Q =T\ G/K, where I' C G is a discrete subgroup
in the group of isomerties of @, such that the invariant measure (M) < oco.
In this case, discrepancies of distributions and sums of pairwise distances for
the symmetry difference metrics can be defined and their study should be of
much interest, especially for non-compact M of finite measure.
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