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POINT DISTRIBUTIONS IN TWO-POINTHOMOGENEOUS SPACESM. M. SkriganovSt.Petersburg Department ofSteklov Mathemati
al InstituteRussian A
ademy of S
ien
esE-mail: maksim88138813�mail.ruWe 
onsider point distributions in 
ompa
t 
onne
ted two-point homogeneous spa
es(Riemannian symmetri
 spa
es of rank one). All su
h spa
es are known, they are thespheres in the Eu
lidean spa
es, the real, 
omplex and quaternioni
 proje
tive spa
esand the o
tonioni
 proje
tive plane. Our 
on
ern is with dis
repan
ies of distributions inmetri
 balls and sums of pairwise distan
es between points of distributions in su
h spa
es.Using the geometri
 features of two-point spa
es, we show that Stolarsky's invarian
eprin
iple, well-known for the Eu
lidean spheres, 
an be extended to all proje
tive spa
esand the o
tonioni
 proje
tive plane (Theorem 2.1 and Corollary 2.1). We obtain the spher-i
al fun
tion expansions for dis
repan
ies and sums of distan
es (Theorem 8.1). Relyingon these expansions, we prove in all su
h spa
es the best possible bounds for quadrati
dis
repan
ies and sums of pairwise distan
es (Theorem 2.2). Appli
ations to t-designs onsu
h two-point homogeneous spa
es are also 
onsidered, and it is shown that the optimalt-designs, re
ently 
onstru
ted in [10, 11, 19℄, meet the best possible bounds for quadrati
dis
repan
ies and sums of pairwise distan
es. (Corollaries 3.1, 3.2).Key words and phrases: uniform distributions, geometry of distan
es,t-designs , two-point homogeneous spa
esThe work was supported by the Program of the Presidium of the Rus-sian A
ademy of S
ien
es \Fundamental Problems of Nonlinear Dynami
s inMathemati
al and Physi
al S
ien
es".
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e prin
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tive spa
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s5. Proof of Theorem 2.16. Proof of Lemma 2.1III. Spheri
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tions and bounds for dis
repan
iesand sums of distan
es7. Preliminaries: Commutative spa
es and spheri
al fun
tions8. Spheri
al fun
tion expansions for dis
repan
ies and metri
s9. Bounds for Fourier-Ja
obi 
oeÆ
ients10. Proof of Theorems 2.2 and 3.111. Additional remarksReferen
esI. Main results1 Dis
repan
ies and metri
sIn this se
tion we introdu
e the basi
 notation and re
all ne
essary fa
ts fromour previous paper [29℄ on relationships between dis
repan
ies and metri
son general 
ompa
t metri
 spa
es.Let M be a 
ompa
t 
onne
ted metri
 spa
e with a �xed metri
 � and a�nite Borel measure �, normalized bydiam(M; �) = �; �(M) = 1; (1.1)where diam(E ; �) = sup{�(x1; x2) : x1; x2 ∈ E} denotes the diameter of asubset E ⊆ M with respe
t to a metri
 �.We write Br(y) = {x : �(x; y) < r} for the ball of radius r ∈ R 
enteredat y ∈ M and of volume vr(y) = �(Br(y)), here R = {r = �(x1; x2) : x1; x2 ∈3



M} is the set of all possible radii. Sin
e the spa
e M is 
onne
ted, we have
R = [0; �℄.Let DN ⊂ M be a �nite subset 
onsisting of N points (not ne
essarydi�erent). The lo
al dis
repan
y of the subset DN in the ball Br(y) is de�nedby �[Br(y);DN ℄ = #{Br(y) ∩ DN} −Nvr(y) = ∑x∈DN �(Br(y); x); (1.2)where �(Br(y); x) = �(Br(y); x)− vr(y); (1.3)and �(E ; x) denotes the 
hara
teristi
 fun
tion of s subset E ⊂ M.The quadrati
 dis
repan
ies are de�ned by�r[DN ℄ = ∫

M

�[Br(y);DN ℄2 d�(y) = ∑x1;x2∈DN �r(x1; x2); (1.4)where �r(y1; y2) = ∫
M

�(Br(y); y1)�(Br(y); y2) d�(y); (1.5)and �[�;DN ℄ = ∫
R

�r[DN ℄�(r) dr = ∑x1;x2∈DN �(�; x1; x2); (1.6)where �(�; y1; y2) = ∫
R

�r(y1; y2)�(r) dr; (1.7)here �(r), r ∈ [0; �℄, is a non-negative weight fun
tion. The quantities�r[DN ℄1=2 and �[�;DN ℄1=2 are known as L2-dis
repan
ies. In the presentpaper it is more 
onvenient to deal with the quadrati
 dis
repan
ies (1.4)and (1.6).We introdu
e the following extremal 
hara
teristi
�N(�) = inf
DN �[�;DN ℄; (1.8)where the in�mum is taken over all N -point subsets DN ⊂ M.4



In what follows, besides the original metri
 � in the de�nition of a 
ompa
tmetri
 spa
e M, we shall deal with many di�erent metri
s on M. For ametri
 � on M we de�ne the sum of pairwise distan
es�[DN ℄ = ∑x1;x2∈DN �(x1; x2); (1.9)and introdu
e the following extremal 
hara
teristi
�N = sup
DN �[DN ℄; (1.10)where the supremum is taken over all N -point subsets DN ⊂ M. We alsowrite 〈�〉 for the average value of a metri
 �,

〈�〉 = ∫∫
M×M

�(y1; y2) d�(y1) d�(y2): (1.11)The study of the 
hara
teristi
s (1.8) and (1.10) falls within the subje
tsof the dis
repan
y theory and geometry of distan
es. An extensive literatureis devoted to point distributions on spheres in the Eu
lidean spa
e. Detailedsurveys of the aria 
an be found in [2, 6, 12, 14, 28℄.It was shown in our re
ent paper [29℄ that nontrivial results on the quan-tities (1.8) and (1.10) 
an be established for very general metri
 spa
es. Someof these results are given below in Theorems 1.1 and 1.2 in the form adaptedfor use in the present paper.Introdu
e the following symmetri
 di�eren
e metri
s on the spa
e M��(�; y1; y2) = ∫
R

��r (y1; y2)�(r) dr; (1.12)where ��r (y1; y2) = 12�(Br(y1)�Br(y2))= 12(vr(y1) + vr(y2)− 2�(Br(y1) ∩ Br(y2))); (1.13)and Br(y1)�Br(y2) = Br(y1) ∪ Br(y2) \ B2(y1) ∩ Br(y2) is the symmetri
di�eren
e of the balls Br(y1) and Br(y2). We have�(Br(y1)�Br(y2); y) =12(�(Br(y1); y) + �(Br(y2); y)− 2�(Br(y1); y)�(Br(y2); y)= |�(Br(y1); y)− �(Br(y2); y)|; (1.14)5



where we write �(Br(x); y) for the 
hara
teristi
 fun
tion of ball Br(x). Thesymmetry of the metri
 � implies the following useful relation�(Br(y); x) = �(Br(x); y) = �(r − �(x; y)) = �r(�(x; y)); (1.15)where �(z), z ∈ R is the 
hara
teristi
 fun
tion of the half-axis (0;∞), and�r(·) is the 
hara
teristi
 fun
tion of the interval [0; r), 0 ≤ r ≤ �. From(1.13) and (1.14), we obtain��r (y1; y2) = 12 ∫
M

�(Br(y1)�Br(y2)) d�(y)= 12 ∫
M

(�(Br(y1); y) + �(Br(y2); y)− 2�(Br(y1); y)�(Br(y2); y)) d�(y)= 12 ∫
M

|�(Br(y1); y)− �(Br(y2); y)| d�(y) (1.16)With the help of (1.15), we obtain the following formulas for the averagevalues (1.11) of metri
s (1.12) and (1.16)
〈��(�)〉 = ∫

R

〈��r 〉�(r) dr; (1.17)
〈��r 〉 = ∫∫

M×M

��r (y1; y2) d�(y1) d�(y2) = ∫
M

(vr(y)− vr(y)2) d�(y) (1.18)The symmetri
 di�eren
e of any two subsets 
oin
ides with the symmetri
di�eren
e of their 
omplements, see (1.14). Hen
e��r (y1; y2) = 12�(B′r(y1)�B′r(y2))= 12(v′r(y1) + v′r(y2)− 2�(B′r(y1) ∩ B′r(y2))); (1.19)where B′r(y) = M\Br(y) is the 
omplement of the ball Br(y),v′r(y) = �(B′r(y)) = 1− vr(y); (1.20)6



and the relation (1.18) takes the form
〈��r 〉 = ∫

M

vr(y)v′r(y) d�(y) (1.21)In (1.16) the balls Br(y) 
an be also repla
ed by their 
omplements B′r(y).A metri
 spa
e M is 
alled distan
e-invariant, if the volume of any ballvr = vr(y) is independent of y ∈ M, see [25, p. 504℄. For su
h spa
es theabove formulas for the dis
repan
ies and the symmetri
 di�eren
e metri
s
an be essentially simpli�ed. Substituting (1.13) into (1.5), we obtain�r(y1; y2) = ∫
M

�(Br(y1); y)�(Br(y2); y) d�(y)− v2r= �(Br(y1) ∩Br(y2)− v2r ; (1.22)and 
orrespondingly,�r[DN ℄ = ∑y1;y2∈DN �(Br(y1) ∩Br(y2))− v2rN2: (1.23)Similarly, the relations (1.13), (1.19) and (1.18), (1.21) take the form��r (y1; y2) = vr − ∫
M

�(Br(y1); y)�(Br(y2); y) d�(y)= vr − �(Br(y1) ∩ Br(y2)) = v′r − �(B′r(y1) ∩ B′r(y2)); (1.24)
〈��r 〉 = vr − v2r = vrv′r; (1.25)and ��r [DN ℄ = vrN2 − ∑y1;y2∈DN �(Br(y1) ∩ Br(y2)): (1.26)Integrating these relations with �(r), r ∈ [0; �℄, one 
an obtain the 
orre-sponding formulas for the quantities (1.12) and (1.17).The typi
al examples of distan
e-invariant spa
es are homogeneous spa
es

M = G=K, where G is a 
ompa
t group, K ⊂ G is a 
losed subgroup, while �7



and � are G-invariant metri
 and measure on M. In this 
ase, the quantities(1.6), (1.7) and (1.12), (1.13) are also G-invariant:�r(gy1; gy2)= �r(y1; y2); �(�; gy1; gy2) = �(�; y1; y2);��r (gy1; gy2)=��r (gy1; gy2); ��(�; gy1; gy2)=��(�; y1; y2);�(Br(gy1) ∩Br(gy2))=�(Br(y1) ∩ Br(y2)); 



(1.27)for all y1; y2 ∈ G=K, g ∈ G.Comparing the relations (1.22){(1.26), we arrive to the following result.This result and its generalizations were given in [29, Theorems 2.1, 3.1℄.Theorem 1.1. (The L1-invarian
e prin
iples). Let a 
ompa
t 
onne
tedmetri
 spa
e M with a metri
 � and a measure � be distan
e-invariant.Then we have �r(y1; y2) + ��r (y1; y2) = 〈��r 〉; (1.28)�(�; y1; y2) + ��(�; y1; y2) = 〈��(�)〉; (1.29)�(�;DN) + ��(�;DN) = 〈��(�)〉N2; (1.30)�N (�) + ��N (�) = 〈��(�)〉N2: (1.31)Here r ∈ R = [0; �℄ and DN ⊂ M is an arbitrary N-point subset. Theequalities (1.29), (1.30) and (1.31) hold with any weight fun
tion � su
h thatthe integrals (1.6), (1.7) and (1.12), (1.17) 
onverge.Obviously, the integrals (1.6), (1.7) and (1.12), (1.17) 
onverge for anywight fun
tion � summable on the interval [0; �℄. More general 
onditionsof 
onvergen
e of these integrals for two-point homogeneous spa
es will begiven in Lemma 2.1 below. Noti
e that the assumption of 
onne
tedness ofthe spa
e M in Theorem 1.1 is of no 
on
ern, and the measure �(r) dr in thede�nitions (1.7) and (1.12) 
an be repla
ed with a measure d�(r) on the setof radii R, see [29, Theorems. 2.1℄The L2-invarian
e prin
iple, spe
i�
 for two-point homogeneous spa
es,will be given in the next se
tion, see Theorem 2.1 and Corollary 2.1. Ourterminology of L1- and L2-invarian
e prin
iples will be explained in the 
om-ments to Corollary 2.1.To state a further result from [29℄ we re
all the 
on
ept of re
ti�ablespa
es, see [27℄. A 
ompa
t metri
 spa
e M with a metri
 � and a measure� is 
alled d-re
ti�able if there exist a measure � on the d-dimensional unit8




ube Id = [0; 1℄d absolutely 
ontinuous with respe
t to the d-dimensionalLebesgue measure on Id, a measurable subset O ⊂ Id, and an inje
tiveLips
hitz mapping f : O → M, su
h that �(M \ f(O)) = 0; and �(E) =�(f−1(E ∩ f(O)) for any �-measurable subset E ⊂ M. Re
all that a mapf : O ⊂ Rd → M is Lips
hitz if�(f(Z1); f(Z2)) ≤ 
‖Z1 − Z2‖; Z1; Z2 ∈ O; (1.32)with a positive 
onstant 
, and the smallest su
h 
onstant is 
alled the Lips-
hitz 
onstant of f and denoted by Lip(f); in (1.32) ‖·‖ denotes the Eu
lideannorm in Rd.Noti
e that any smooth (or pie
e-wise smooth) 
ompa
t d-dimensionalmanifold is d-re
ti�able if in the lo
al 
oordinates the metri
 satis�es (1.32),and the measure is absolutely 
ontinuous with respe
t to the d-dimensionalLebesgue measure. Parti
ularly, any 
ompa
t d-dimensional Riemannianmanifold with the geodesi
 metri
 � and the Riemannian measure � is d-re
ti�able. In this 
ase, it is known that the 
ondition (1.32) holds; see[23, Chapter I, Proposition 9.10℄. On the other hand, the 
ondition on theRiemannian measure is obvious be
ause the metri
 tensor is 
ontinuous.The following result was established in [29, Theorem.4.2℄. Noti
e thatthe proof of this result is relying on a probabilisti
 version of Theorem 1.1,see [29, Theorem 3.1℄.Theorem 1.2. Suppose that a 
ompa
t metri
 spa
e M, with a metri
 �and a measure �, is d-re
ti�able. Write C = d2d−1 Lip(f), where Lip(f) isthe Lips
hitz 
onstant of the map f in the de�nition of d-re
ti�ability of thespa
e M. Then the following hold:(i) If a metri
 � on M satis�es the inequality�(x1; x2) ≤ 
0�(x1; x2) (1.33)with a 
onstant 
0 > 0, then�N ≥ 〈�〉N2 − 
0CN1− 1d : (1.34)(ii) If the metri
 ��(�) satis�es the inequality��(�; x1; x2) ≤ 
0�(x1; x2) (1.35)with a 
onstant 
0 > 0, then��N(�) ≥ 〈��(�)〉N2 − 
0CN1− 1d (1.36)9



and �N(�) ≤ 
0CN1− 1d : (1.37)Parti
ularly, the above statements are true for a 
ompa
t Riemannianmanifold with the geodesi
 distan
e � and the Riemannian measure �.Under su
h general assumptions one 
annot expe
t that the bounds (1.36)and (1.37) are best possible. Consider, for example, the d-dimensional unitspheres Sd = {x ∈ Rd+1 : ‖x‖ = 1} with the geodesi
 (great 
ir
le) metri
 �and the standard Lebesgue measure � on Sd. In this 
ase, we have�N = 〈�〉N2 − "N ; 〈�〉 = �=2; (1.38)where "N = 0 for even N and "N ≤ �=2 for odd N .The appearan
e of su
h anomalously small errors in the formula (1.38)
an be easily explained with the help of invarian
e prin
iple (1.28). We shalldis
uss this question in se
tion 11.In the present paper we shall show that the bounds (1.36) and (1.37) arebest possible for 
ompa
t 
onne
ted two-point spa
es and general 
lasses ofweight fun
tions �, see Theorem 2.2 below.2 Statements of the main resultsFirst of all we re
all the de�nition and some ne
essary fa
ts on two-pointhomogeneous spa
es, see [7, 23, 24, 34, 35℄. Additional fa
ts on the geometryand harmoni
 analysis on su
h spa
es will be given in se
tions 4 and 7. LetG = G(M) be the group of isometries of a metri
 spa
e M with a metri
�, i.e. �(gx1; gx2) = �(x1; x2) for all x1, x2 ∈ M and g ∈ G. The spa
e
M is 
alled two-point homogeneous, if for any two pairs of points x1, x2 andy1, y2 with �(x1; x2) = �(y1; y2) there exists an isometry g ∈ G, su
h thaty1 = gx1, y2 = gx2. In this 
ase, the group G is obviously transitive on
M and M = G=K is a homogeneous spa
e, where the subgroup K ⊂ G isthe stabilizer of a point x0 ∈ M. Furthermore, the homogeneous spa
e Mis symmetri
, i.e. for any two points y1, y2 ∈ M there exists an isometryg ∈ G, su
h that gy1 = y2, gy2 = y1.We 
onsider 
ompa
t 
onne
ted two-point homogeneous spa
es M =G=K. For su
h spa
es G and K ⊂ G are Lie groups and M = G=K areRiemannian symmetri
 spa
es of rank one. This means that all 
at totallygeodesi
 submanifolds inM are one dimensional and 
oin
ide with geodesi
s.10



This also means that all G-invariant di�erential operators on M are polyno-mials of the Lapla
e-Beltrami operator on M. All su
h spa
es are 
lassi�ed
ompletely, see, for example, [34, Se
. 8.12℄. They are the following:(i) The d-dimensional Eu
lidean spheres Sd = SO(d + 1)=SO(d)× {1},d ≥ 2, and S1 = O(2)=O(1)× {1}.(ii) The real proje
tive spa
es RP n = O(n+ 1)=O(n)×O(1).(iii) The 
omplex proje
tive spa
es CP n = U(n + 1)=U(n)× U(1).(iv) The quaternioni
 proje
tive spa
es HP n = Sp(n+1)=SP (n)×Sp(1),(v) The o
tonioni
 proje
tive plane OP 2 = F4= Spin(9).Here we use the standard notation from the theory of Lie groups; parti
-ularly, F4 is one of the ex
eptional Lie groups in Cartan's 
lassi�
ation.The indi
ated proje
tive spa
es FP n as 
ompa
t Riemannian manifoldshave dimensions d, d = dimR FP n = nd0; d0 = dimR F; (2.1)where d0 = 1; 2; 4; 8 for F = R, C, H, O, 
orrespondingly.For spheres Sd we put d0 = d by de�nition. Proje
tive spa
es of di-mension d0 (n = 1) are isomorphi
 to the spheres Sd0 : RP 1 ≈ S1;CP 1 ≈S2;HP 1 ≈ S4;OP 1 ≈ S8. We 
an 
onveniently agree that d > d0 (n ≥ 2) forproje
tive spa
es, while the equality d = d0 holds only for spheres. Underthis 
onvention, the dimensions d = nd0 and d0 de�ne uniquely (up to iso-morphism) the 
orresponding two-point homogeneous spa
e whi
h we denoteby Q = Q(d; d0). We write � for the geodesi
 distan
e and � for the Rie-mannian measure on Q(d; d0). The metri
 � and the measure � are invariantunder the a
tion of the 
orresponding group of isometries and normalized by(1.1). In what follows we always assume that n = 2 if F = O, sin
e proje
tivespa
es OP n do not exist for n > 2. In more detail the geometry of spa
es
FP n will be outlined in se
tion 4.Any spa
e Q(d; d0) is distan
e-invariant and the volume of balls is givenby vr = �(d; d0) r∫0 (sin 12u)d−1(
os 12u)d0−1 du; r ∈ [0; �℄;�(d; d0) = B(d=2; d0=2)−1 = �(d=2 + d0=2)�(d=2)�(d0=2) :





(2.2)Here B(·; ·) and �(·) are the beta and gamma fun
tions, and v� =�(Q(d; d0)) = 1. Di�erent equivalent forms of the relation (2.2) 
an be foundin the literature, see [20, pp. 177{178℄, [24, pp. 165{168℄, [25, pp. 508{510℄.11



From the formula (2.2) we obtain the following two-side boundsvr ≃ rd; v′r = 1− vr ≃ (� − r)d0; r ∈ [0; �℄: (2.3)To simplify notation we write in some formulas A . B instead of B =O(A), A & B instead of B = O(A), and A ≃ B if A = O(B) and B = O(A).The 
hordal metri
 on the spa
es Q(d; d0) 
an be de�ned by�(x1; x2) = sin 12�(x1; x2); x1; x2 ∈ Q(d; d0): (2.4)Noti
e that the expression (2.4) de�nes a metri
 be
ause the fun
tion '(�) =sin �=2, 0 ≤ � ≤ �, is 
on
ave, in
reasing and '(0) = 0, that implies thetriangle inequality. For the sphere Sd = {x ∈ Rd+1 : ‖x‖ = 1} we have
os �(x1; x2) = (x1; x2); x1; x2 ∈ Sd;�(x1; x2) = sin 12�(x1; x2) = 12‖x1 − x2‖; (2.5)where (·; ·) is the inner produ
t and ‖ · ‖ is the Eu
lidean norm in Rd+1.Ea
h proje
tive spa
e FP n 
an be 
anoni
ally imbedded into the unitsphere� : Q(d; d0) ∋ x → �(x) ∈ Sm−1 ⊂ Rm; m = 12(n+ 1)(d+ 2); (2.6)su
h that �(x1; x2) = 1√2‖�(x1)− �(x2)‖; x1; x2 ∈ FP n; (2.7)where ‖ · ‖ is the Eu
lidean norm in Rm+1. Hen
e, the metri
 �(x1; x2) 
oin-
ides with the Eu
lidean length of a segment joining the 
orresponding points�(x1) and �(x2) on the unit sphere and normalized by diam(Q(d; d0); �) = 1.The imbedding (2.6) will be des
ribed expli
itly in Se
tion 4.The 
hordal metri
 � on the 
omplex proje
tive spa
e CP n is known asthe Fubini{Study metri
. In 
onne
tion with spe
ial point 
on�gurations intwo-point homogeneous spa
es the 
hordal metri
 on proje
tive spa
es hasbeen dis
ussed in the papers [15,16℄, see also the paper [17℄, where the 
hordalmetri
 has been de�ned for Grassmannian manifolds.Now we are in position to state our main results. First of all, we 
onsiderthe L2-invarian
e prin
iples for two-point homogeneous spa
es. A 
arefulanalysis of the imbedding (2.6) leads to the following.12



Theorem 2.1. For any spa
e Q = Q(d; d0) the 
hordal metri
 (2.4) and thesymmetri
 di�eren
e metri
 (1.12) are related by�(x1; x2) = 
(Q) ��(�\; x1; x2); x1; x2 ∈ Q; (2.8)where �\(r) = sin r, r ∈ [0; �℄, and
(Q) = 〈�〉
〈��(�\)〉 = diam(Q; �)diam(Q; ��(�\)) : (2.9)The proof of Theorem 2.2 is given in Se
tion 5. It is 
lear that theequalities (2.9) follow immediately from (2.8). It suÆ
es to 
al
ulate theaverage values (1.11) of both metri
s in (2.8) to obtain the �rst equalityin (2.9). Similarly, writing (2.8) for any pair of antipodal points x1, x2,�(x1; x2) = �, we obtain the se
ond equality in (2.9). Re
all that pointsx1; x2 are antipodal for a metri
 � if �(x1; x2) = diam(Q; �). If points x1; x2are antipodal for the metri
 �, then in view of (2.4) and (2.8) they are alsoantipodal for the metri
s � and ��(�\).Comparing Theorems 1.1 and 2.1, we arrive at the following.Corollary 2.1. (The L2-invarian
e prin
iple). For any spa
e Q = Q(d; d0)we have the relation 
(Q)�[�\;DN ℄ + � [DN ℄ = 〈�〉N2; (2.10)where DN ⊂ Q is an arbitrary N-point subset.Parti
ularly, for any N we have the equality
(Q)�N(�\) + �N = 〈�〉N2: (2.11)Noti
e that for the sphere Sd the dis
repan
y �[�\;DN ℄ with the spe
ialweight fun
tion �\(r) = sin r 
an be written in the form�[�\;DN ℄ = 1∫

−1 dz ∫Sd [#{B(y; z) ∩ DN} −N�(B(y; z))℄2 d�(y); (2.12)where B(y; z) = {x ∈ Sd : 
os �(x; y) ≥ z}; y ∈ Sd; z ∈ [−1; 1℄; is a spheri
al
ap; in our notation B(y; z) = Br(y), z = 
os r.For spheres the invarian
e prin
iple (2.10) was established by Sto-larsky [31℄, see also the re
ent papers [8, 13℄, where the original proof of13



this relation was essentially simpli�ed. Corollary 2.1 
an be thought of as anextension of Stolarsky's invarian
e prin
iple to proje
tive spa
es.A metri
 spa
e M with a metri
 � is 
alled isometri
ally Lq-embeddable,if there exists a map ' : M ∋ x → '(x) ∈ Lq, su
h that �(x1; x2) =
‖'(x1) − '(x2)‖Lq for all x1, x2 ∈ M. Noti
e that the L2-embeddability isstronger and implies the L1-embeddability, see [18, Se
. 6.3℄.A 
ompa
t metri
 spa
e M is isometri
ally L1-embeddable with respe
tto any symmetri
 di�eren
e metri
 ��r and ��(�), see (1.16) and (1.12). Atthe same time, the two-point homogeneous spa
e Q(d; d0) is isometri
ally L2-embeddable with respe
t to the 
hordal metri
 � , see (2.5) and (2.7). Thisexplains our terminology of L1- and L2-invarian
e prin
iples.It would be interesting to �nd out whether there are other weight fun
-tions � 6= �\ for whi
h the spa
es Q(d; d0) with the metri
 ��(�) are alsoL2-embeddable.Now we 
onsider best possible bounds for the extremal quantities (1.8)and (1.10). At �rst, we state in Lemma 2.1 some important auxiliary results.Introdu
e the following 
lasses of weight fun
tions �(r), r ∈ [0; �℄,W (a; b) = {� ≥ 0 : ‖�‖a;b < ∞}; a ≥ b ≥ 1;

‖�‖a;b = �∫0 (sin 12r)a−1(
os 12r)b−1�(r) dr:  (2.13)It is worth noting that weight fun
tions in the 
lasses (2.14) admit ratherlarge singularities at points r = 0 and r = �.Lemma 2.1. For any spa
e Q(d; d0) the following hold :(i) The kernel (1.5) and the metri
 (1.13) satisfy the bounds
|�r(y1; y2)| ≤ C(sin 12r)d(
os 12r)d0 ;��r (y1; y2) ≤ C(sin 12r)d(
os 12r)d0 : (2.14)If � ∈ W (d + 1; d0 + 1), then the kernel (1.8) and the metri
 (1.13) satisfythe bounds

|�(�; y1; y2)| ≤ C‖�‖d+1;d0+1;��(�; y1; y2) ≤ C‖�‖d+1;d0+1:} (2.15)14



(ii) The metri
 (1.13) satis�es the bound��r (y1; y2) ≤ C(sin 12r)d−1(
os 12r)d0−1�(y1; y2): (2.16)If � ∈ W (d; d0), then the metri
 (1.12) satis�es the bound��(�; y1; y2) ≤ C‖�‖d;d0�(y1; y2): (2.17)Constants in the bounds (2.14) { (2.17) depend only on d and d0.The proof of Lemma 2.1 is given in Se
tion 6. It follows from Lemma 2.1that the L1-invarian
e prin
iples (1.29) { (1.31) hold for the spa
es Q(d; d0)with weight fun
tions � ∈ W (d+ 1; d0 + 1).Our result on the extremal quantities(1.8) and (1.10) 
an be stated asfollows.Theorem 2.2. For any spa
e Q(d; d0) the following hold :If � ∈ W (d; d0), � 6= 0, then for any N we have
〈��(�)〉N2 − 
(�)N1− 1d > ��N (�) > 〈��(�)〉N2 − C(�)N1− 1d ; (2.18)
1(�)N1− 1d < �N(�) < C1(�)N1− 1d (2.19)with positive 
onstants independent of N . Parti
ularly, for the 
hordal metri
� on Q(d; d0), we have

〈�〉N2 − 
N1− 1d > �N > 〈�〉N2 − CN1− 1d (2.20)with the 
onstants 
 = 
(�\) and C = C(�\).For the 
hordal metri
 � on the sphere Sd the bounds (2.20) were knownearlier. The right bound in (2.20) was established by Alexander [1℄ and theleft by Be
k [5℄, see also [6,9℄. Theorem 2.2 
an be thought of as an extensionof the results of these authors to proje
tive spa
es. However, it should bepointed out that the bounds (2.18) and (2.19) are new even in the 
ase ofsphere Sd.The proof of Theorem 2.2 is given in Se
tion 10. It is 
lear that theright bounds in (2.18) and (2.19) follow immediately from Theorem 1.2(ii)and Lemma 2.1(ii). In Se
tion 10 we shall prove the left bound in (2.19).By the invarian
e prin
iple (1.31) this will immediately imply the left boundin (2.18). The proof of the left bound in (2.19) is relying on the theory ofspheri
al fun
tions on homogeneous spa
es Q(d; d0).15



3 Appli
ations to t-designsMany spe
i�
 point 
on�gurations on spheres and other two-point homoge-neous spa
es are des
ribed in the literature, see, for example, [4, 10{12, 14{17, 19, 25, 28℄. One 
an ask whether the points of su
h spe
i�
 
on�gura-tions are distributed uniformly in the 
orresponding spa
es, and whether thequadrati
 dis
repan
ies (1.6) and the sums of pairwise distan
es (1.9) 
an beestimated pre
isely for su
h point subsets.In the present paper we 
onsider these questions for t-designs. Considera smooth 
ompa
t 
onne
ted d-dimensional manifold M in Rm equippedwith a smooth Riemannian sru
ture, so that the geodesi
 distan
e � and theRiemanniam measure � normalized by (1.1) are de�ned on M. An N -pointsubset DN ⊂ M is 
alled a t-design, if the exa
t quadrature formula
∑x∈DN F (x) = N ∫

M

F (y) d�(y) (3.1)holds for all polynomials F (x); x ∈ Rm of total degree not ex
eeding t.It is known, see, for example, [19℄, that any N -point t-design DN ⊂ Msatis�es the bound N & td with a 
onstant independent of N and t. AnN -point t-design DN ⊂ M is 
alled optimal, if
+td ≥ N ≥ 
−td (3.2)with some positive 
onstants 
+ and 
− independent of N and t. A
tually, inthis de�nition we deal with sequen
es of N -point t-designs DN as N → ∞.As we mentioned earlier, the two-point homogeneous spa
es Q(d; d0) 
anbe 
anoni
ally imbedded into Rm, see the 
omments to (2.6), Hen
e, theabove de�nitions 
an be used for Q(d; d0).Sin
e the spa
es Q(d; d0) are homogeneous, an equivalent de�nition oft-designs 
an be given in the following invariant form, see [4, 25℄. An N -point subset DN ⊂ Q(d; d0) is a t-design, if and only if the exa
t quadratureformula
∑x1;x2∈DN f(
os �(x1; x2)) = N2 ∫∫Q×Q f(
os �(y1; y2)) d�(y1) d�(y2) (3.3)holds for all polynomials f(z); z ∈ C, of degree not ex
eeding t. The formula16



(3.3) is equivalent to the following quadrature formulas
∑x∈DN f(
os �(x; y)) = N ∫Q f(
os �(x; y)) d�(x); (3.4)whi
h holds identi
ally for all y ∈ Q. Another equivalent de�nition of t-designs 
an be given in terms of spheri
al fun
tions on the spa
es Q(d; d0),see [4, 25℄. We shall return to these questions in Se
tion 7, see (7.32).For any N -point subset DN ⊂ M we put�[DN ; r℄ = maxy∈Q #{Br(y) ∩ DN}; r ∈ [0; �℄; (3.5)and �[DN ; r℄ = N if r > �.Our result on t-designs 
an be stated as follows.Theorem 3.1. Let the weight fun
tion � ∈ W (d; d0), then the following hold:(i) There exists a 
onstant L ≥ 1 depending only on d and d0, su
h thatfor any N-point t-design DN ⊂ Q(d; d0) with t ≥ 2L=� we have�[�;DN ℄ < Ctd−1(�[DN ; Lt−1℄)2: (3.6)(ii) For optimal N-point t-designs DN ⊂ Q(d; d0) the bound (3.6) takesthe form �[�;DN ℄ < CN1− 1d (�[DN ; 
−1=d+ LN−1=d℄)2; (3.7)where 
+ is the 
onstant in the de�nition (3.6).The 
onstants C in the bounds (3.6) and (3.7) depend only on d, d0 and�. The inequality (3.7) follows immediately from (3.6) and the de�nition(3.2). The proof of the bound (3.6) is given in Se
tion 10. The proof isrelying on the theory of spheri
al fun
tions on homogeneous spa
es Q(d; d0).We are interested whether the fa
tor in (3.7) with the fun
tion � 
an bebounded from above by a 
onstant independent of N . In this 
ase, the orderof bound (3.7) would be the best possible. Two simple suÆ
ient 
onditionsfor this are given below in Lemma 3.1.Introdu
e some de�nitions. For an arbitrary N -point subset DN ⊂ M,we put Æ[DN ℄ = 12 min{�(x1; x2) : x1; x2 ∈ DN ; x1 6= x2} (3.8)17



The balls BÆ(x), Æ = Æ[DN ℄, x ∈ DN , do not overlap. Therefore, Æ . N−1=d,sin
e the volume of balls vr(x) ≃ rd uniformly for r ∈ [0; �℄ and x ∈ M. AnN -point subset DN ⊂ M is 
alled well-separated, if Æ[DN ℄ ≥ 
N−1=d with a
onstant 
 > 0 independent of N .Consider an equal-measure partition PN = {Pi}N1 of the manifold M,
M = N⋃i=1Pi; �(Pi ∩ Pj) = 0; i 6= j; �(Pi) = 1=N;and put Diam(PN ; �) = max1≤i≤N diam(Pi; �):We say that an equal-measure partition PN is of small diameter, ifDiam(PN ; �) ≤ 
0N−1=d (3.9)with a 
onstant 
0 > 0 independent of N . Constru
tions of equal-measurepartitions of small diameter are known for a large 
lass of smooth 
ompa
tmanifolds in Rm, see [21℄ and referen
es therein.We also say that an N -point subset DN = {xi}N1 ∈ M is subordinated toa partition PN = {Pi}N1 of M, if xi ∈ Pi; i = 1 : : : N .We 
onveniently agree that for r > � the ball Br(x) = M and vr(x) = 1.With these 
onvention and de�nitions the following result is true.Lemma 3.1. Suppose that an N-point subset DN ⊂ M satis�es one of thefollowing 
onditions:(i) DN is well-separated,(ii) DN is subordinated to an equal-measure partition of small diameter.Then, for any 
onstant 
 > 0 there exists a 
onstant C = C(
) indepen-dent of N su
h that �[DN ; 
N−1=d℄ ≤ C: (3.10)Proof. For brevity, we write a = 
N−1=d. Consider the ball Ba(y) 
enteredat an arbitrary point y ∈ Q and put E = Ba(y) ∩ DN , K = #{E}. Assumealso that points of DN = {xi}N1 are enumerated su
h that E = {xi}K1 .(i) By the de�nition of a well-separated subset DN , the balls BÆ(x),Æ = Æ[DN ℄, x ∈ E , do not overlap and all these balls are 
ontained in theball Ba+Æ(y). Therefore, ∑1≤i≤K vÆ(xi) ≤ va+Æ. Sin
e vr(x) ≃ rd; we haveK . va+Æ=vÆ ≃ (1 + C=
)d; and (3.10) follows.18



(ii) By the de�nition of a subset DN subordinated to an equal-measurepartition PN = {Pi}N1 of small diameter b = 
1N−1=d, ea
h part Pi; 1 ≤i ≤ K is 
ontained in the ball Ba+b(y). Therefore, N−1K ≤ va+b(y), andK ≤ Nva+b(y) ≃ (
+ 
1)d, that proves (3.10).Comparing Theorem 3.1 with Lemma 3.1, and taking into a

ount theleft bounds of Theorem 2.2, we arrive at the following.Corollary 3.1. Let the weight fun
tion � ∈ W (d; d0), � 6= 0. Suppose thatan N-point subset DN ⊂ Q(d; d0) is an optimal t-design and satis�es one ofthe 
onditions (i) or (ii) of Lemma 3.1. Then, for all suÆ
iently large N wehave
〈��(�)〉N2 − 
N1− 1d > ��[�;DN ℄ > 〈��(�)〉N2 − CN1− 1d ; (3.11)
N1− 1d < �[�;DN ℄ < CN1− 1d (3.12)Parti
ularly, for the 
hordal metri
 � on Q(d; d0) we have

〈r〉N2 − 
N1− 1d > � [DN ℄ > 〈r〉N2 − CN1− 1d (3.13)The positive 
onstants in (3.11) { (3.13) are independent of N .The existen
e of optimal t-designs was a long standing open problemknown as the Korevaar{Meyers 
onje
ture. In the papers [10, 11℄ by Bon-darenko, Rad
henko and Viazovska a breakthrough on the problem wasobtained for spheri
al t-designs. In [10℄ the existen
e of optimal t-designs
DN ∈ Sd was proved for all suÆ
iently large N , and it was proved in [11℄that su
h optimal t-designs 
an be 
hosen as well-separated subsets on thespheres Sd. Hen
e, Corollary 3.1 is appli
able for the spheres Sd.Using optimal spheri
al t-designs DN one 
an easily 
onstru
t optimal[t=2℄-designs D◦N on the real proje
tive spa
e RP d = Q(d; 1). Furthermore,if DN is well-separated on Sd, then D◦N satis�es the relation (3.10) on RP d,see [30, Se
.3℄. Hen
e, Corollary 3.1 is also appli
able for the real proje
tivespa
es RP d.The 
orresponding generalizations to the proje
tive spa
es CP n, HP n and
QP 2 are not so straightforward. In the re
ent paper [19℄ by Etayo, Marzo andOrtega{Cerd�a the results of the paper [10℄ were extended to smooth 
ompa
t
onne
ted algebrai
 manifolds M = {x ∈ Rm : f1(x) = · · · = fr(x) = 0},where f1; : : : ; fr are polynomials with real 
oeÆ
ients. We state results from[19℄ in the following form. 19



Theorem 3.2. Let M be a smooth 
ompa
t 
onne
ted d-dimensional aÆnealgebrai
 manifold in Rm equipped with a smooth Riemannian stru
ture.Then there exist the positive 
onstants 
−; 
+ and 
0 depending only on M,su
h that the following is true.(i) For all suÆ
iently large N there exist N-point optimal t-designs DN ⊂
M satisfying (3.2).(ii) Ea
h of these optimal t-designs DN is subordinated to an equal-measure partition PN of small diameter on M satisfying (3.9).In fa
t, the statement (i) of Theorem 3.2 is 
ontained in Theorem 2.2 in[19℄, while the statement (ii) follows immediately from the proof of Theorem2.2 in [19℄.The two-point homogeneous spa
es Q(d; d0) 
an be realized as smooth
ompa
t 
onne
ted aÆne algebrai
 manifold. For the spheres Sd this is ob-vious, while for the proje
tive spa
es RP n;CP n;HP n and the proje
tiveo
tonioni
 plane OP 2 this follows immediately from expli
it formulas (4.13)and (4.14).Comparing Theorem 3.2 and Corollary 3.1, we arrive at the following.Corollary 3.2. On ea
h spa
e Q(d; d0) for all suÆ
iently large N there existN-point optimal t-designs DN ⊂ Q(d; d0), whi
h satisfy the relations (3.11),(3.12), (3.13) of Corollary 3.1.II. Geometry of two-point homogeneous spa
esandthe L2-invarian
e prin
iples4 Preliminaries: Models of proje
tive spa
esand 
hordal metri
sIn this se
tion we de�ne the 
hordal metri
s on the proje
tive spa
es FP n,
F = R, C; H, n ≥ 2, and the o
tonioni
 proje
tive plane OP 2 in terms ofspe
ial models for these spa
es. For the sake of 
onvenien
e, we des
ribe su
hmodels in suÆ
ient detail and give the ne
essary referen
es.Re
all the general fa
ts on the algebras R;C;H;O over the �eld of realnumbers. We have the natural in
lusions R ⊂ C ⊂ H ⊂ O: where the o
-tonions O are a nonasso
iative and non
ommutative algebra of dimension 820



with a basis 1; e1; e2; e3; e4; e5; e6; e7 (their multipli
ation table 
an be foundin [3, p. 150℄ and [7, p. 90℄), the quaternions H are an asso
iative but non-
ommutative subalgebra of dimension 4 spanned by 1; e1; e2; e3, �nally, Cand R are asso
iative and 
ommutative subalgebras of dimensions 2 and 1spanned by 1; e1 and 1, 
orrespondingly. From the multipli
ation table one
an easily see that for any two indexes 1 ≤ i; j ≤ 7; i 6= j; there exists anindex 1 ≤ k ≤ 7, su
h thateiej = −ejei = ek; i 6= j; e2i = −1: (4.1)Let a = �0 +∑7i=1 �iei ∈ O, �i ∈ R, 0 ≤ i ≤ 7, be a typi
al o
tonion. Wewrite Re a = �0 for the real part, �a = �0 −∑7i=1 �iei for the 
onjugation,
|a| = (�20 +∑7i−1 �2i )1=2 fot the norm. Using (4.1), one 
an easily 
he
k thatRe ab = Re ba; ab = ba; |a|2 = a�a = �aa; |ab| = |a| |b|: (4.2)The last equality in (4.2) implies that all algebras R;C;H;O are divisionalgebras. Noti
e also that by a theorem of Artin a subalgebra in O generatedby any two o
tonions is asso
iative and isomorphi
 to one of the algebras H,
C, or R, see [3℄.The standard model of proje
tive spa
es over the asso
iative algebras
F = R, C, H is well known, see, for example, [3, 7, 22, 34℄. Let Fn+1 be alinear spa
e of ve
tors a = (a0; : : : ; an), ai ∈ F, 1 ≤ i ≤ n with the rightmultipli
ation by s
alars a ∈ F, the Hermitian inner produ
t(a;b) = n∑i=0 �aibi; a;b ∈ Fn+1; (4.3)and the norm |a|,

|a|2 = (a; a) = n∑i=0 |ai|2: (4.4)In this 
ase, in view of asso
iativity of the algebras F = R, C;H, aproje
tive spa
e FP n 
an be de�ned as a set of one-dimensional (over F)subspa
es in Fn+1:
FP n = {p(a) = aF : a ∈ Fn+1; |a| = 1}: (4.5)The metri
 � on FP n is de�ned by
os 12�(a;b)= |(a;b)|; a;b ∈ Fn+1; |a|= |b|=1; 0 ≤ �(a;b) ≤ �; (4.6)21



i.e. 12�(a;b) is the angle between the subspa
es p(a) and p(b). The transitivegroup of isometries U(n + 1;F) for the metri
 � 
onsists of nondegeneratelinear transformations of the spa
e Fn+1, preserving the inner produ
t (4.3),and the stabilizer of a point is isomorphi
 to the subgroup U(n;F)×U(1;F).Hen
e,
FP n = U(n + 1;F)=U(n;F)× U(1;F): (4.7)The groups U(n + 1;F) 
an be easily determined (they have been indi
atedin se
tion 2 in the list of 
ompa
t 
onne
ted two-point homogeneous spa
es).A Riemannian U(n+1;F)-invariant stru
ture 
orresponding to the metri
 �
an be also de�ned on the proje
tive spa
e (4.5), and one 
an easily 
he
kthat these spa
es are two-point homogeneous spa
es.There is another model where a proje
tive spa
e FP n, F = R;C;H, isidenti�ed with the set of orthogonal proje
tors onto the one-dimensionalsubspa
es in Fn+1. This model admits a generalization to the o
tonioni
proje
tive plane OP 2 and in its terms the 
hordal metri
 
an be naturallyde�ned for all proje
tive spa
es.Let H(Fn+1) denote the set of all Hermitian (n + 1) × (n + 1) matri
eswith the entries in F, F = R, C;H;O,

H(Fn+1) = {A = ((aij)) : aij = aji; aij ∈ F; 0 ≤ i; j ≤ n} (4.8)with n = 2 if F = O. It is 
lear that H(Fn+1) is a linear spa
e over R ofdimension m = dimR H(Fn+1) = 12(n+ 1)(d+ 2); d = nd0: (4.9)The linear spa
e H(Fn+1) is equipped with the symmetri
 real-valuedinner produ
t
〈A;B〉 = 12 Tr(AB +BA) = ReTrAB = Re n∑i;j=0aijbij (4.10)and the norm

‖A‖ = (TrA2)1=2 = ( n∑i;j=0 |aij|2)1=2 ; (4.11)here TrA = ∑ni=0 aii denotes the tra
e of a matrix A. For the distan
e
‖A−B‖ between matri
es A;B ∈ H(Fn+1), we have

‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2〈A;B〉: (4.12)22



Thus, H(Fn+1) 
an be thought of as the m-dimensional Eu
lidean spa
e.If F 6= O, the orthogonal proje
tor �a ∈ H(Fn+1) onto a one-dimensionalsubspa
e p(a) = aF, a = (a0; : : : ; an) ∈ Fn+1, |a| = 1, 
an be given by�a = a(a; ·) or in the matrix form �a = [ai�aj℄, 0 ≤ i; j ≤ n. Therefore, theproje
tive spa
e (4.5) 
an be written as follows
FP n = {� ∈ H(Fn+1) : �2 = �; Tr� = 1}: (4.13)The group of isometries U(n + 1;F) a
ts on su
h proje
tors by the formulag(�) = g�g−1, g ∈ U(n + 1;F).For the o
tonioni
 proje
tive plane OP 2 the similar model is also known.A detailed dis
ussion of this model 
an be found in [3, 7, 22℄ in
luding anexplanation why o
tonioni
 proje
tive spa
es OP n do not exist if n > 2. Inthis model one puts by de�nition
OP 2 = {� ∈ H(O3) : �2 = �; Tr� = 1}: (4.14)Thus, the formulas (4.13) and (4.14) are quite similar. One 
an 
he
kthat ea
h matrix in (4.14) 
an be written as �a ∈ OP 2 for a ve
tor a =(a0; a1; a2) ∈ O3, where �a = [ai�aj℄, 0 ≤ i; j ≤ 2, |a|2 = |a0|2+ |a1|2+ |a2|2 =1, and additionally (a0a1)a2 = a0(a1a2), see [22, Lemma 14.90℄. The addi-tional 
ondition means that the subalgebra in O generated by the 
oordinatesa0; a1; a2 is asso
iative. Using this fa
t, one 
an easily show that OP 2 is a16-dimensional 
ompa
t 
onne
ted Riemannian manifold, see [3, 7, 22℄.The group of nondegenerate linear transformations g of the spa
e H(O3)preserving the squares g(A2) = g(A)2, A ∈ H(O3), is isomorphi
 to the 52-dimensional ex
eptional Lie group F4. This group also preserves the tra
e,inner produ
t (4.10) and norm (4.11) of matri
es A ∈ H(O3). The groupF4 is transitive on OP 2, and the stabilizer of a point is isomorphi
 to thespinor group Spin(9), see [22, Lemma 14.96 and Theorem 14.99℄. Hen
e,

OP 2 = F4= Spin(9) is a homogeneous spa
e, and one 
an prove that OP 2 isa two-point homogeneous spa
e.Noti
e that the relations �2 = �; Tr� = 1 in (4.13) and (4.14) arepolynomial equations in the 
orresponding m-dimensional Eu
lidean spa
e
H(Fn+1). Hen
e, the proje
tive spa
es RP n;CP n;HP n and the o
tonioni
proje
tive plane OP 2 
an be thought of as aÆne algebrai
 manifolds in Rm.For our dis
ussion we need to des
ribe the stru
ture of geodesi
s in pro-je
tive spa
es. Su
h a des
ription 
an be easily done in terms of models (4.13)23



and (4.14). It is known, see [7,23,34℄, that all geodesi
s on a two-point homo-geneous spa
e Q(d; d0) are 
losed and homeomorphi
 to the unit 
ir
le. Thegroup of isometries is transitive on the set of geodesi
s and the the stabilizerof a point is transitive on the set of geodesi
s passing through this point.Therefore, all geodesi
s have the same length 2� (under the normalization(1.1) for the invariant Riemannian distan
e).The in
lusions R ⊂ C ⊂ H ⊂ O indu
e the following in
lusions of the
orresponding proje
tive spa
es
F1P n1 ⊆ FP n; F1 ⊆ F; n1 ≤ n; (4.15)moreover, the subspa
e F1P n1 is a geodesi
 submanifold in FP n, see [7,Se
. 3.24℄. Parti
ularly, the real proje
tive line RP 1, homeomorphi
 to theunit 
ir
le S1, is embedded as a geodesi
 into all proje
tive spa
es FP n,S1 ≈ RP 1 ⊂ FP n; (4.16)see [7, Proposition 3.32℄. In (4.16) n = 2 if F = O. These fa
ts 
an also beimmediately derived from a general des
ription of geodesi
 submanifolds inRiemannian symmetri
 spa
es, see [23, Chap. VII, Corollary 10.5℄.Using the models (4.13) and (4.14), we 
an write the real proje
tive line

RP 1 as the following set of 2× 2 matri
es:
RP 1 = {�(u); u ∈ R=�Z}; (4.17)where�(u)=( 
os2 u sinu 
osusin u 
osu sin2 u ) =(
os u − sin usinu 
os u )(1 00 0)(
os u sinusinu 
os u) :For ea
h u ∈ R the matrix �(u) is an orthogonal proje
tor onto the one-dimensional subspa
e xR, x = (
os u; sinu) ∈ S1. The embedding RP 1 into

FP n 
an be written as the following set of (n+ 1)× (n + 1) matri
es:Z = {Z(u); u ∈ R=�Z} ⊂ FP n; (4.18)where Z(u) = ( �(u) 0n−1;202;n−1 0n−1;n−1) ;where 0k;l denotes the zero matrix of size k× l. The set of matri
es (4.18) isa geodesi
 in FP n. All other geodesi
s are of the form g(Z), where g ∈ G is24



an isometry of the spa
e FP n. The parameter u in (4.18) and the geodesi
distan
e � on the spa
e FP n are related by�(Z(u); Z(0)) = 2|u|; −�=2 < u ≤ �=2; (4.19)and for all u ∈ R this formula 
an be extended by periodi
ity. Parti
ularly,we have�(Z(u=2); Z(−u=2)) = {2min{u; � − u} if 0 ≤ u ≤ �;2u if 0 ≤ u ≤ �=2:Therefore, �(Z(v); Z(−v)) = 4v; 0 ≤ v ≤ �=4: (4.20)The relation (4.20) will be needed in the next se
tion.Now, we de�ne the 
hordal distan
e on proje
tive spa
es. The formulas(4.13), (4.14) and (4.11) imply
‖�‖2 = Tr�2 = Tr� = 1: (4.21)for any � ∈ FP n. Therefore, the proje
tive spa
es FP n, de�ned by (4.13)and (4.14), are submanifolds in the unit sphere

FP n ⊂ Sm−1 = {A ∈ H(Fn+1) : ‖A‖ = 1} ⊂ H(Fn+1) ≈ Rm: (4.22)It fa
t, this is an embedding of FP n into the (m−2)-dimensional sphere, theinterse
tion of the sphere Sm−1 with the hyperplane in H(Fn+1) de�ned byTrA = 1, see (4.21).The 
hordal distan
e �(�1;�2) between �1;�2 ∈ FP n is de�ned as theEu
lidean distan
e (4.12):�(�1;�2) = 1√2‖�1 − �2‖ = (1− 〈�1;�2〉)1=2: (4.23)The 
oeÆ
ient 1=√2 is 
hosen to satisfy diam(FP n; �) = 1.It is 
lear from (4.23) that �(g(�1), g(�2)) = �(�1;�2) for all isometriesg ∈ G of the spa
e FP n. Sin
e FP n is a two-point homogeneous spa
e, forany �1;�2 ∈ FP n with �(�1;�2) = 2u, 0 ≤ u ≤ 12�, there exists g ∈ G, su
hthat g(�1) = Z(u), g(�2) = Z(0). From (4.23), (4.18) and (4.17), we obtain�(Z(u); Z(0)) = sinu = sin 12�(�(u);�(0)): Therefore,�(�1;�2) = sin 12�(�1;�2); (4.24)25



as it was de�ned before in (2.4).Noti
e also that antipodal points �+;�− ∈ FP n, i.e. �(�+;�−) = �and �(�+;�−) = 1, 
an be 
hara
terized by the orthogonality 
ondition
〈�+;�−〉 = 0, see (4.23), (4.24).5 Proof of Theorem 2.1The proof of Theorem 2.1 is relying on the following spe
ial representation ofthe symmetri
 di�eren
e metri
 (1.12), given earlier in see [29, Lemma 2.1℄.Here this representation is given in a form adapted to the 
hordal metri
(4.23).Lemma 5.1. Let the weight fun
tion � be summarized on the interval [0; �℄,then ��(�; y1; y2) = 12 ∫

M

|�(�(y1; y))− �(�(y2; y))| d�(y) (5.1)with the nonin
reasing fun
tion�(r) = �∫r �(u) du: (5.2)Parti
ularly, if M is a two-point homogeneous spa
e Q = Q(d; d0) andthe weight fun
tion �\(r) = sin r, then��(�\; y1; y2) = ∫Q |�(y1; y)2 − �(y2; y)2| d�(y); (5.3)where �(·; ·) is the 
hordal metri
 (5.23) on Q(d; d0).Proof. For brevity, we write �(y1; y) = �1 and �(y2; y) = �2. Using (1.12),(1.15) and (1.16), we obtain��(�; y1; y2)= 12 ∫
M




�∫0 (�(r − �1) + �(r − �2)− 2�(r − �1)�(r − �2))�(r) dr d�(y)= 12 ∫
M

(�(�1) + �(�2)− 2�(max{�1; �2})) d�(y): (5.4)26



Sin
e � is a nonin
reasing fun
tion, we have2�(max{�1; �2})=2min{�(�1); �(�2)}=�(�1)+�(�2)−|�(�1)−�(�2)|: (5.5)Substituting (5.5) into (5.4), we obtain (5.1).If �\(r) = sin r, then �\(r) = 2 − 2 sin2 r=2. Substituting this expressioninto (5.1) and using the de�nition (4.24), we obtain (5.3).For 
ompleteness, we give in the beginning a very short proof of Theo-rem 2.1 in the 
ase of spheres.Proof of Theorem 2.1 for spheres. For the sphere Sd the 
hordal metri
 � isde�ned (2.5). We have�(y1; y)2 − �(y2; y)2 = 14(‖y1 − y‖2 − ‖y2 − y‖2)= −12(y1 − y2; y) = −�(y1; y2)(x; y); y1; y2 ∈ Sd; (5.6)where x = ‖y1−y2‖−1(y1−y2) ∈ Sd. Substituting (5.6) into (5.3), we obtain��(�\; y1; y2) = �(y1; y2) ∫Sd |(x; y)| d�(y): (5.7)It is 
lear that the integral in (5.7) is independent of x ∈ Sd. This proves theequality (2.8) for Sd with the 
onstant 
(Sd) = (∫Sd |(x; y)| d�(y))−1 :Proof of Theorem 2.1 for proje
tive spa
es. We write �1;�2;� for points inthe models of proje
tive spa
es (4.13) and (4.14). With this notation, therelation (5.3) takes the form��(�\;�1;�2) = ∫

FPn |�(�1;�)2 − �(�2;�)2| d�(�): (5.8)Sin
e FP n is a two-point homogeneous spa
e, for �1;�2 ∈ FP n with�(�1;�2) = 4v, 0 ≤ v ≤ �=4, there exists an isometry g ∈ G, su
h thatg(�1) = Z(v), g(�2) = Z(−v), see (4.20). Therefore,
∫

FPn |�(�1;�)2 − �(�2;�)2| d�(�) = ∫

FPn |�(Z(v);�)2 − �(Z(−v);�)2| d�(�):(5.9)27



From the de�nition (4.23), we obtain�(Z(v);�)2−�(Z(−v);�)2= 12(‖Z(v)−�‖2−‖Z(−v)−�‖2)= 〈Z(v)− Z(−v);�〉: (5.10)The formulas (4.17) and (4.18) implyZ(v)− Z(−v) = (�(v)− �(−v) 0n−1;202;n−1 0n−1;n−1)and �(v)− �(−v) = ( 0 sin 2usin 2u 0 ) = sin 2u(�+ − �−);where �+ = 12 (1 11 1) ; �− = 12 ( 1 −1
−1 1 ) :Therefore, Z(v)− Z(−v) = sin 2v(Z+ − Z−); (5.11)where Z± = ( �± 0n−1;202;n−1 0n−1;n−1) :We have Z∗

± = Z±, Z2
± = Z±, TrZ± = 1, i.e. Z± ∈ FP n, and 〈Z+; Z−〉 = 0,i.e. Z+ and Z− are antipodal points. Using (4.24), we 
an write�(�1;�2) = �(Z(v); Z(−v)) = sin 2v;and the equality (5.11) takes the formZ(v)− Z(−v) = �(�1;�2)(Z+ − Z−): (5.12)Substituting (5.12) into (5.10), we �nd that�(Z(v);�)2 − �(Z(−v);�)2 = �(�1;�2)〈Z+ − Z−;�〉: (5.13)Substituting (5.13) into (5.9) and using (5.8), we obtain��(�\;�1;�2) = �(�1;�2)��(�\; Z+; Z−); (5.14)28



where ��(�\; Z+; Z−) = ∫

FPn |〈Z+ − Z−;�〉| d�(�): (5.15)The integral (5.15) is independent of �1;�2, This proves the equality (2.8)for FP n with the 
onstant 
(FP n) = (∫
FPn |〈Z+ − Z−;�〉| d�(�))−1. Noti
ethat in this formula any pair of antipodal points in FP n 
an be taken insteadof Z+; Z−. The proof of Theorem 2.1 is 
omplete.6 Proof of Lemma 2.1(i) In (1.22) we put y1 = y2 = y to obtain�r(y; y) = vr − v2r = vrv′r: (6.1)Applying the Cau
hy{S
hwarz inequality to (1.5), we obtain

|�r(y1; y2)| ≤ (�r(y1; y2)�r(y2; y2))1=2 = vrv′r: (6.2)Using the weak invarian
e prin
iple (1.28), the formula (1.25) and the bound(6.2), we obtain ��r (y1; y2) ≤ 2vrv′r: (6.3)For r ∈ [0; �℄, we have sin 12r ≃ r; 
os 12r ≃ � − r: (6.4)Substituting the bounds (2.3) for the volumes vr and v′r into (6.2) and (6.3)and using (6.4), we obtain (2.14). Integrating (2.14) with � ∈ W (d+1; d0+1),we obtain (2.15).(ii) We 
an assume that 0 < r < �, sin
e ��r (y1; y2) = 0 identi
ally, ifr = 0 or r = �. For brevity, we write Æ = �(y1; y2)=2. The parameters r andÆ vary in the region 0 < r < �, 0 ≤ Æ ≤ �=2. This re
tangular region 
an berepresented as a disjoint union of three triangular regions:(a) 0 < r < Æ, 0 ≤ Æ ≤ �=2,(b) � > r ≥ � − Æ, 0 ≤ Æ ≤ �=2,(
) r > Æ, 0 < r < � − Æ, 0 ≤ Æ < �=2.In ea
h of these regions we shall prove the bound (2.16). Noti
e that forr ∈ [0; �℄, the fun
tion sin r=2 is in
reasing while 
os r=2 is de
reasing.29



Case (a). Using the relations (1.24), (2.2), (2.3) and (6.4), we obtain��r (y1; y2) ≤ vr ≃ r∫0 (sin 12u)d−1(
os 12u)d0−1 du
.

r∫0 (sin 12u)d−1 du ≃ (sin 12r)d−1r
. (sin 12r)d−1(
os 12r)d0−1Æ: (6.5)Case (b). Similarly, from (1.24), (2.2), (2.3) and (6.4), we obtain��r (y1; y2) ≤ v′r ≃ �∫r (sin 12u)d−1(
os 12u)d0−1 du

.

�∫r (
os 12u)d0−1 du ≃ (
os 12r)d0−1(� − r)
. (sin 12r)d−1(
os 12r)d0−1Æ (6.6)Case (
). Sin
e 0 < �(y1; y2) < �, there exists the unique geodesi
 
 ⊂Q(d; d0) of shortest length �(y1; y2) joining points y1; y2, see [23, Chap. VII,Se
. 10℄. Let y0 denote its midpoint, i.e. y0 ∈ 
, �(y1; y0) = �(y2; y0) = Æ.The triangle inequality for the metri
 � implies that the ball Br−Æ(y0) is
ontained in the interse
tion Br(y1) ∩Br(y2). Hen
e�(Br(y1) ∩ Br(y2)) ≥ vr−Æ: (6.7)Using again the relations (1.24), (2.2), (2.3) together with (6.7), we obtain��r (y1; y2) ≤ vr − vr−Æ ≃ r∫r−Æ (sin 12u)d−1(
os 12u)d0−1 du

. (sin 12r)d−1(
os 12(r − Æ))d0−1 ≃ (sin 12r)d−1(� − r + Æ)d0−1
≃ (sin 12r)d−1(� − r)d0−1(1 + Æ� − r)d0−1

. (sin 12r)d−1(� − r)d0−1Æ
≃ (sin 12r)d−1(
os 12r)d0−1Æ: (6.8)30



Now, the bound (2.16) follows from the bounds (6.6) { (6.8). Integrat-ing (2.16) with � ∈ W (d; d0), we obtain the bound (2.17). The proof ofLemma 2.1 is 
omplete.III. Spheri
al fun
tions and bounds for dis-
repan
ies and sums of distan
es7 Preliminaries: Commutative spa
es andspheri
al fun
tionsIn this se
tion we outline general fa
ts on harmoni
 analysis on the two-point homogeneous spa
es Q(d; d0). The spa
es Q(d; d0) belong to a spe
i�
and very important 
lass of 
ommutative spa
es. The general theory of
ommutative spa
es 
an be found in [35℄, see also [24℄ and [33, vol. III,Chap. 17℄. For 
ompa
t groups this theory is rather simple. We outline thene
essary fa
ts in the form 
onvenient in the subsequent 
al
ulations.Let G be a 
ompa
t group and K ⊂ G a 
losed subgroup. Denote by �Gand �K Haar measures on the groups G and K, 
orrespondingly, �G(G) =�K(K) = 1. As before, � denotes the invariant measure on the homogeneousspa
e Q = G=K, and �G = �K×�. We write Lq(G), q = 1; 2, for the spa
e offun
tions on G integrable with the power q with respe
t to the Haar measure,Lq(G=K) and Lq(K \G=K) for the subspa
es of fun
tions in Lq(G) satisfyingf(gk) = f(g), k ∈ K, and, 
orrespondingly, f(k1gk2) = f(g); k1; k2 ∈ K.Obviously, fun
tions in these subspa
es 
an be thought of as fun
tions onQ = G=K. The spa
es L1(K \ G=K) ⊂ L1(G=K) ⊂ L1(G) are asso
iativeBana
h algebras with the 
onvolution produ
tf1 ∗ f2(g) = ∫G f1(gh−1)f2(h) d�G(h): (7.1)If the algebra L1(K \ G=K) is 
ommutative, the pair of groups K ⊂ G is
alled a Gelfand pair and the 
orresponding homogeneous spa
e Q = G=Kis 
alled a 
ommutative spa
e, see [35℄. Two large 
lasses of 
ommutativespa
es are Riemannian symmetri
 spa
es and two-point homogeneous spa
es,see [24, 35℄. The spa
es Q(d; d0) belong to both of these 
lasses.31



Consider the following unitary representation of a group G in the spa
eL2(G=K) T (g)f(h) = f(g−1h); f ∈ L2(G=K); g; h ∈ G: (7.2)and its de
omposition into the orthogonal sumT = ⊕̂l≥0 Tl; L2(G=K) = ⊕̂l≥0 Vl (7.3)of unitary irredu
ible representations Tl in �nite-dimensional spa
es Vl. Letml = dimVl, and (·; ·) denote the inner produ
t in Vl.If Q = G=K is a 
ommutative spa
e, then the irredu
ible representationsTl o

urring in (8.3) are pair-wise nonequivalent and ea
h subspa
e Vl in(7.3) 
ontains a single K-invariant unit ve
tor e(l), i.e. Tl(k)e(l) = e(l) for allk ∈ K.Fix an orthonormal basis e1; : : : ; eml in the spa
e Vl, su
h that e1 = e(l)and de�ne the matrix elements t(l)ij (g) = (Tl(g)ei; ej). Then, we havet(l)ij (g1g2) = ml∑p=1 t(l)ip (g1)t(l)pj (g2) and t(l)ij (g−1) = t(l)ji (g): (7.4)We also have the orthogonality relations
∫G t(l)ij (g)t(l′)ij (g)d�G(g) = m−1l Æll′Æii′Æjj′; (7.5)where Æab is Krone
ker's symbol. The sets of fun
tions {m1=2l t(l)1j (g), j =1; : : : ; ml, l ≥ 0} and {m1=2l t(l)11 (g); l ≥ 0} are orthonormal bases in the spa
esL2(G=K) and L2(K \G=K), 
orrespondingly, see [33, vol. I, Se
. 2.3℄ ( noti
ethat in [33℄ the subgroup K in a Gelfand pair K ⊂ G is 
alled massive ).The matrix elements 'l(g) = t(l)11(g) are 
alled zonal spheri
al fun
tionsor simply spheri
al fun
tions (the matrix elements t(l)1j (g), j = 2; : : : ; ml are
alled asso
iated spheri
al fun
tions). The de�nition of 'l(g) and the formula(7.4) immediately imply that all spheri
al fun
tions are 
ontinuous, 'l(e) = 1,where e is the unit element in G, |'l(g)| ≤ 1 for all g ∈ G,'l(g1g−12 ) = ml∑j=1 t(l)1j (g1)t(l)1j (g2); and 'l(g) = 'l(g−1): (7.6)32



It follows from (7.6) that 'l is positive de�nite:
∑1≤i;j≤N 
i
j'l(g−1i gj) ≥ 0 (7.7)for any g1; : : : ; gN ∈ G and any 
omplex numbers 
1; : : : ; 
N .From (7.1), (7.5) and (7.6), we obtain the following relation for the 
on-volution of two spheri
al fun
tions('l ∗ 'l′)(g) = Æll′m−1l 'l(g): (7.8)Putting g = e in (7.8), we obtain the following formula for the dimensionsml of irredu
ible representations in (7.3)ml = ∫G |'l(g)|2 d�G(g)−1 : (7.9)Fun
tions f ∈ L2(K \G=K) have the following expansionsf(g) ∼∑l≥0 ml
l(f)'l(g); (7.10)where ∼ denotes the L2-
onvergen
e, Fourier 
oeÆ
ients are given by
l(f) = ∫G f(g)'l(g) d�G(g); (7.11)and Parseval's equality has the form ∫G |f(g)|2 d�G(g) = ∑l≥0ml |
l(f)|2:A
tually, this is the Peter{Weyl theorem written for the spa
e L2(K \G=K),see [33, vol. I, Chap. 2℄Substituting the expansion (7.9) for two fun
tions f1; f2 ∈ L2(K \G=K)into (7.1) and using the relation (7.8), we obtainf1 ∗ f2(g) =∑l≥0 ml 
l(f1) 
l(f2)'l(g): (7.12)Applying the Cau
hy{S
hwarz inequality to (7.12), we observe that the series(7.12) 
onverges absolutely. Sin
e the spheri
al fun
tions 'l are 
ontinuousand |'l(g)| ≤ 1, we 
on
lude that the 
onvolution f1 ∗ f2 is a 
ontinuousfun
tion. 33



The fa
ts listed above are true for all 
ompa
t 
ommutative spa
es. Nowwe wish to spe
ify these fa
ts for two-point homogeneous spa
es.Let K ⊂ G be 
ompa
t groups and Q = G=K a two-point homogeneousspa
e with a G-invariant metri
 �. Suppose that K is the stabilizer of a �xedpoint y0 ∈ Q. It follows from the de�nition, see se
tion 2, that the subgroupK is transitive on ea
h sphere �r(y0) = {y : �(y; y0) = r} ⊂ Q, r ∈ R.Thus, any fun
tion f ∈ Lq(K \ G=K), as a fun
tion on Q, is 
onstant onea
h sphere �r(y0), and we 
an writef(g) = F (�(gy0; y0)) (7.13)with a fun
tion F (r), r ∈ R. In other words, the set of double 
osets K\G=Kis in one-to-one 
orresponden
e with the set of radii R.Using (7.13), the 
onvolution (7.1) 
an be written in the form(f1 ∗ f2)(g−11 g2) = ∫G F1(�(g1y0; gy0))F2(�(gy0; g2y0)) d�(g)= ∫Q F1(�(y1; y))F2(�(y; y2)) d�(y); (7.14)where y1 = g1y0, y2 = g2y0.For a fun
tion of the form (7.13) we have
∫G |f(g)|2 d�G(g) = ∫Q |F (�(y; y0))|2 d�(y) = ∫

R

|F (r)|2 dvr; (7.15)where the last integral is thought of as a Stieltjes integral with the non-de
reasing fun
tion vr = �(Br(y0)), r ∈ R. It follows from (7.13) and(7.15) that the mapping f → F is an isometry of the spa
e L2(K \ G=K)onto the spa
e L2(R; vr) of fun
tions F (r), r ∈ R, with the norm ‖F‖ =(∫
R
|F (r)|2 dvr)1=2:Sin
e the spheri
al fun
tions 'l ∈ L2(K \ G=K), they 
an be written inthe form (7.13): 'l(g) = �l(�(gy0; y0)); (7.16)where �l ∈ L2(R; vr), and putting y1 = g1y0, y2 = g2y2, g1; g2 ∈ G, we 
anwrite 'l(g−11 g2) = �l(�(g1y0; g2y0)) = �l(�(y1; y2)): (7.17)34



It follows from the properties of 'l that �l are 
ontinuous and real-valued,�l(0) = 1, |�l(r)| ≤ 1, r ∈ R. The set of fun
tions {m1=2l �l; l ≥ 0} isan orthonormal basis in the spa
e L2(R; vr) and the expansion (7.10) forF ∈ L2(R; vr) takes the formF (r) ∼∑l≥0 ml
l(F ) �l(r) (7.18)with the Fourier 
oeÆ
ients
l(F ) = ∫
R

F (r)�l(r) dvr (7.19)and Parseval's equality ∫
R
|F (r)|2 dvr =∑l≥0ml |
l(F )|2:Comparing the relations (7.12) and (7.14), we arrive at the followingformula

∫Q F1(�(y1; y))F2(�(y; y2)) d�(y) =∑l≥0 ml
l(F1)
l(F2)�l(�(y1; y2)): (7.20)For the spa
es Q = Q(d; d0) the matrix elements t(l)1j (g) are eigenfun
tionsof the Lapla
e{Beltrami operator on Q and the spheri
al fun
tions 'l(g) =t(l)11(g) are eigenfun
tions of the radial part of this operator and 
an be foundexpli
itly, see [20, p. 178℄, [24, Chap. V, Theorem. 4.5℄, [25, pp. 514{512,543{544℄, [35, Theorem. 11.4.21℄. For the fun
tions �l in (7.16), we have�l(r) = �(�;�)l (r) = P (�;�)l (
os r)P (�;�)l (1) ; r ∈ R = [0; �℄; (7.21)where P (�;�)l (z) are the standard Ja
obi polynomials of degree l normalizedby P (�;�)l (1) = (� + ll ) = (� + 1) : : : (�+ l)l! ≃ l�; (7.22)see [32℄. The parameters �; � in (7.22) and the dimensions d, d0 in Q(d; d0)are related by � = 12d− 1; � = 12d0 − 1 (7.23)In what follows, we use the parameters �; � along with the dimensions d,d0, assuming they are related by (7.23). With this assumption we have35



� ≥ � ≥ −1=2 always, sin
e d and d0 ≥ 1. Noti
e that |P (�;�)l (z)| ≤ P (�;�)l (1)for z ∈ [−1; 1℄ and � ≥ � ≥ −1=2.We have the following orthogonality relations for Ja
obi polynomials,see [32, Eq. (4.3.3)℄,�∫0 P (�;�)l (
os u)P (�;�)l′ (
os u)(sin 12u)d−1(
os 12u)d0−1 du= (12)�+�+1 1∫
−1 P (�;�)l (z)P (�;�)l′ (z)(1− z)�(1 + z)� dz =M−1l Æll′ ; (7.24)where M0 = �(d; d0) andMl = (2l + � + � + 1)�(l + 1)�(l + � + � + 1)�(l + � + 1)�(l + � + 1) ≃ l; l ≥ 1: (7.25)Substituting the expressions for spheri
al fun
tions (7.16), (7.21) into theformula (7.9) and using (7.24), we obtain the following expli
it formula forthe dimensions ml of irredu
ible representations in (7.3):ml =MlB(d=2; d0=2)(� + ll )2

≃ ld−1: (7.26)For fun
tions F ∈ L2([0; �℄; vr) the expansion (7.18) takes the formF (r) ∼∑l≥0 Ml Cl(F )P (�;�)l (
os r); (7.27)with the Fourier-Ja
obi 
oeÆ
ientsCl(F ) = �∫0 F (u)P (�;�)l (
os u) (sin 12u)d−1 (
os 12u)d0−1 du: (7.28)and Parseval's equality ∫
R
|F (r)|2 dvr = �(d; d0)∑l≥0Ml |Cl(F )|2: TheFourier{Ja
obi 
oeÆ
ients (7.28) and Fourier 
oeÆ
ients (7.19) are relatedby 
l(F ) = Cl(F ) �(d; d0)P (�;�)l (1) ; l ≥ 0: (7.29)36



Using the relations (7.21) and (7.29), we 
an write the formula (7.20) inthe form
∫Q F1(�(y1; y))F2(�(y; y2)) d�(y)= �(d; d0)∑l≥0 Ml Cl(F1)Cl(F2) P (�;�)l (
os �(y1; y2))P (�;�)l (1) : (7.30)This formula will be used in the next se
tion to obtain spheri
al fun
tionexpansions for dis
repan
ies and metri
s .The 
ondition of positive de�niteness (7.7) for the spheri
al fun
tions(7.16), (7.22) will be used in se
tion 10 in the following spe
ial form'l[DN ℄ = ∑x1;x2∈DN P (�;�)l (
os �(x1; x2))P (�;�)l (1) ≥ 0; (7.31)where DN ⊂ Q(d; d0) is an arbitrary N -point subset. Obviously, the 
ondi-tions (3.3), (3.4) in the de�nition of t-designs DN ⊂ Q(d; d0) are equivalentto the following equalities'l[DN ℄ = 0; l = 0; 1; : : : ; t; (7.32)see also [4, 25℄. The relations (7.32) 
an be used as an alternative to thede�nition of t-designs given before in se
tion 3, see [4, 25℄.8 Spheri
al fun
tion expansions for dis
rep-an
ies and metri
sIn this se
tion we obtain expli
it spheri
al fun
tion expansions for the kernels(1.5), (1.7) and the symmetri
 di�eren
e metri
s (1.12), (1.13) on the spa
esQ(d; d0). The 
oeÆ
ients of these expansions will be estimated in the nextse
tion.First of all, we re
all the main fa
ts on Ja
obi polynomials P (�;�)l (z),z ∈ [−1; 1℄, � ≥ −1=2, � ≥ −1=2, as l → ∞. It is known, see [32℄, that Ja
obipolynomials are behaved extremely irregularly on the interval z ∈ [−1; 1℄:inside the interval they os
illate and are of order l−1=2, while in neighborhoodsof the end points z = 1 and z = −1 they in
rease rapidly up to the quantities37



of order l� and l�, 
orrespondingly. It is 
onvenient to introdu
e the followingfun
tion to des
ribe su
h a behavior of Ja
obi polynomials:J (�;�)l (r) = (sin 12r)�+ 12 (
os 12r)�+ 12P (�;�)l (
os r); r ∈ [0; �℄: (8.1)We have the following two bounds.(a) In the interval r ∈ [
0l−1; � − 
0l−1℄, where 
0 > 0 is an arbitrary
onstant, we have the asymptoti
 formulaJ (�;�)l (r) = (�l)−1=2{
os[(l + l0)r + r0℄ +O((l sin r)−1)}; (8.2)where l0 = (� + � + 1)=2, r0 = −�(2� + 1)=4, see [32, Theorem. 8.21.3℄.(b) In the intervals r ∈ [0; 
0l−1℄ and r ∈ [�−
0l−1; �℄, we have the boundJ (�;�)l (r) = O(l−1=2), see [32, Theorem. 7.32.2℄. This bound together with(8.2) implies the following bound
|J (�;�)l (r)| < 
(l + 1)−1=2; l ≥ 0; (8.3)whi
h holds uniformly for all r ∈ [0; �℄ with the 
onstant 
 depending onlyon �; � and 
0.Consider the measure of the interse
tion of two balls Br(y1) and Br(y2)in the spa
e Q = Q(d; d0)�r(y1; y2) = �(Br(y1) ∩Br(y2)) = ∫Q �r(�(y1; y))�r(�(y; y2)) d�(y); (8.4)where �r(·) is the 
hara
teristi
 fun
tion of the interval [0; r℄, 0 ≤ r ≤ �, see(1.15).Lemma 8.1. The kernel (8.4) has the following spheri
al fun
tion expansion�r(y1; y2) = v2r + �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)(
os �(y1; y2))P (�;�)l (1) ; (8.5)where vr = �(Br(y)) andal(r) = (sin 12r)2d(
os 12r)2d0 {P (�+1;�+1)l−1 (
os r)}2= (sin 12r)d−1(
os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 : (8.6)38



The 
oeÆ
ients in (8.5) satisfyMlal(r) ≤ 
(sin 12r)d−1(
os 12r)d0−1 (8.7)with a 
onstant depending only on d and d0. Furthermore, we have the equal-ity �(d; d0)∑l≥1 l−2Mlal(r) = vr − v2r = vrv′r: (8.8)Proof. Applying the expansion (7.30) to the integral (8.4), we obtain�r(y1; y2) = �(d; d0)∑l≥0 Ml{Cl(�r)}2 P (�;�)l (
os �(y1; y2))P (�;�)l (1) ; (8.9)where Cl(�l) are Fourier-Ja
obi 
oeÆ
ients (7.28) of the 
hara
teristi
 fun
-tion �r. We haveCl(�r) = r∫0 P (�;�)l (
os u)(sin 12u)d−1(
os 12u)d0−1 du= (12) d−12 + d0−12 1∫
os r (1− z)�(a+ z)�P (�;�)l (z) dz: (8.10)In view of (2.2), we have C0(�r) = �(d; d0)−1vr. For l ≥ 1 we use Rodrigues'formula for Ja
obi polynomials, see [32, Eq. (4.3.1)℄,P (�;�)l (z) = (−1)l2ll! (1− z)−�(1 + z)−� dldzl {(1− z)l+�(1 + z)l+�} : (8.11)Substituting (8.11) into (8.10), we obtain1∫
os r (1− z)�(1 + z)�P (�;�)l (z) dz= (2l)−1(1− 
os r)�+1(1 + 
os r)�+1P (�+1;�+1)l−1 (
os r)= 2�+�+1l−1(sin 12r)2�+2(
os 12r)2�+2P (�+1;�+1)l−1 (
os r):39



In view of the de�nitions (8.1) and (7.23), we haveCl(�r) = l−1(sin 12r)d(
os 12r)d0P (�+1;�+1)l−1 (
os r)= l−1(sin 12r) d−12 (
os 12r) d0−12 J (�+1;�+1)l−1 (r): (8.12)Substituting (8.12) into (8.9), we obtain the formulas (8.5) and (8.6).The bound (8.7) follows from (8.6), sin
e Ml ≃ l, see (7.25), andJ (�+1;�+1)l−1 (r) . l−1=2, see (8.3).From (8.4), we obtain �r(y; y) = vr. Putting y1 = y2 = y in (8.5), weobtain (8.8). In fa
t, the formula (8.8) is Parseval's equality for the expansion(7.27) of the 
hara
teristi
 fun
tion �r.An immediate 
orollary of Lemma 3.1 is the following.Theorem 8.1. For any spa
e Q(d; d0) the following spheri
al fun
tion ex-pansions hold:(i) For the kernels �r(y1; y2), see (1.5), and the metri
s ��r (y1; y2), see(1.13), we have�r(y1; y2) = �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)l (
os �(y1; y2))P (�;�)l (1) ; (8.13)
��r (y1; y2) = 〈��r 〉 − �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)l (
os �(y1; y2))P (�;�)l (1) ;= �(d; d0)∑l≥1 l−2Mlal(r)[1− P (�;�)l (
os �(y1; y2))P (�;�)l (1) ] ; (8.14)where 〈��r 〉 = vrv′r is the average value of metri
 ��r , see (1.25), and the
oeÆ
ients al(r) are de�ned in (8.6).(ii) If the weight fun
tion � ∈ W (d; d0), then for the kernels �(�; y1; y2),see (1.7), and the metri
s ��(�; y1; y2), see (1.12), we have�(�; y1; y2) = �(d; d0)∑l≥1 l−2MlAl(�)P (�;�)l (
os �(y1; y2))P (�;�)l (1) ; (8.15)40



��(�; y1; y2) = 〈��(�)〉 − �(d; d0)∑l≥1 l−2MlAl(�)P (�;�)l (
os �(y1; y2))P (�;�)l (1) ;= �(d; d0)∑l≥1 l−2MlAl(�)[1− P (�;�)l (
os �(y1; y2))P (�;�)l (1) ] ; (8.16)where 〈��(�)〉 is the average value of metri
 ��(�), see (1.17), and the 
oef-�
ients Al(�) are de�ned byAl(�) = �∫0 �(a)al(u) du: (8.17)Proof. (i) Substituting the expansion (8.5) into (1.22) and (1.24), we obtainthe expansions (8.13) and (8.14). Noti
e that in the se
ond equality in (8.14)the formula (8.8) has been taken into a

ount.(ii) In view of the bound (8.7), the series (8.13) and (8.14) 
an be inte-grated term by term with � ∈ W (d; d0). This gives the expansions (8.15)and (8.16).Noti
e that by Theorem 2.1 the 
hordal metri
 � is a symmetri
 di�eren
emetri
 (1.12) with the weight fun
tion �\ and, therefore, it has the expansion(8.16). At the same time, the 
hordal metri
 
an be written as follows�(y1; y2) = 
(�; �)[1− P (�;�)1 (
os �(y1; y2))P (�;�)1 (1) ]1=2 ; (8.18)with the 
onstant 
(�; �) = (� + 1=� + � + 2)1=2 = (d=d+ d0)1=2 :Indeed, by Rodrigues' formula (8.11) P (�;�)1 (z) = 12(�+�+2)z+ 12(�−�),and 12(1− z) = � + 1�+ � + 2 [1− P (�;�)1 (z)P (�;�)1 (1)] : (8.19)On the other hand, by the de�nitions (2.4) and (4.24)�(y1; y2) = sin 12�(y1; y2) = [12 (1− 
os �(y1; y2))]1=2 : (8.20)Comparing (8.19) and (8.20), we obtain (8.18).41



9 Bounds for Fourier-Ja
obi 
oeÆ
ientsIn this se
tion we estimate the following 
oeÆ
ientsal(r) = (sin 12r)d−1(
os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 ; (9.1)Al(�) = �∫0 �(u)al(u) du; (9.2)Al(�r) = �∫0 �r(u)al(u) du = r∫0 al(u) du; (9.3)where J (�;�)l (·) is de�ned in (8.1). In fa
t, we prove spe
ial weighted boundsfor Ja
obi polynomials.Lemma 9.1. Let the weight fun
tion � ∈ W (d; d0), � 6= 0, then the followingbounds hold:(i) For 0 < r ≤ � and l ≥ 1, we haveAl(�) > 
r−d+1al(r): (9.4)(ii) There exists a 
onstant L ≥ 1, depending only on � and �, su
h thatfor 0 < r ≤ �=2 and lr > L, we haveAl(�) < Cr−dAl(�r): (9.5)The positive 
onstants 
 and C in (9.4) and (9.5) depend only on �, �and �.Proof. The asymptoti
 formula (8.2) implies the following relationsJ (�+1;�+1)l−1 (r) = (�l)−1 {sin[(l + l0)r + r0℄ +O((l sin r)−1)} ; (9.6)
{J (�+1;�+1)l−1 (r)}2 = {12 − 12 
os 2[(l + l0)r + r0℄ +Rl(r)} ; (9.7)where the error term Rl(r) satis�esRl(r) = {O(l−1) for 0 < 
0 ≤ r ≤ � − 
0;O((lr)−1) for l−1 ≤ r ≤ �=2; (9.8)42



where 0 < 
0 < �=2 is arbitrary �xed.(i) Sin
e � ∈ W (d; d0), � 6= 0, a suÆ
iently small 
onstant 0 < 
0 < �=2
an be 
hosen to satisfy�−
0∫
0 �(u)(sin 12u)d−1(
os 12u)d0−1 du
≥ 12 �∫0 �(u)(sin 12u)d−1(
os 12u)d0−1 du = 12‖�‖d;d0 > 0: (9.9)Using (9.9), (9.7) and the �rst bound in (9.8), we obtainAl(�) ≥ �−
0∫
0 �(u)(sin 12u)d−1(
os 12u)d0−1 {J (�+1;�+1)l−1 (u)}2 du

≥ (�l)−1{14‖�‖d;d0−12 �−
0∫
0 �(u)(sin 12u)d−1(
os 12u)d0−1 
os 2[(l+l0)u+r0℄ du+O(l−1)} = (4�l)−1‖�‖d;d0 + o(1); (9.10)where in the last equality the Riemann-Lebesgue lemma has been used.Hen
e Al(�) ≥ (8�l)−1‖�‖d;d0 (9.11)for all suÆ
iently large l > l1. We havemin1≤l≤l1 lAl(�) > 0; (9.12)sin
e, Al(�) > 0 for all l ≥ 1. From (9.11) and (9.12), we 
on
lude that thebound Al(�) > 
1l−1 (9.13)holds for all l ≥ 1 with a 
onstant 
1 > 0 depending only on �; � and �.From the other hand, the bound (8.3) impliesr−d+1al(r) = r−d+1(sin 12r)d−1(
os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 ≤ 
2l−1 (9.14)Comparing the bounds (9.13) and (9.14), we obtain the bound (9.4) with
 = 
1
−12 . 43



(ii) Let 0 < r ≤ �=2 and lr ≥ L, where L ≥ 1 is a 
onstant whi
h will be�xed later. From the de�nition (9.3), we obtainr−dAl(�r) ≥ r−d r∫r=2 al(u) du
≥ r−d(sin 14r)d−1(
os 12r)d0−1 r∫r=2 {J (�+1;�+1)l−1 (u)}2 du> 
1r−1 r∫r=2 {J (�+1;�+1)l−1 }2 du; (9.15)where one 
an put 
1 = (1=8)d−1(1=2)d0−1. Using the asymptoti
 formula(9.7) and the se
ond bound in (9.8), we obtainr−1 r∫r=2 {J (�+1;�+1)l−1 (u)}2 du= (�l)−1

14 − 12r−1 r∫r=2 
os 2[(l + l0)u+ r0℄ du+O(L−1) : (9.16)The integral on the right-hand side in (9.16) is of order O((rl)−1) . O(L−1).Substituting (9.16) into (9.15), we obtainr−dAl(�r) > 
1(4�l)−1 {1 +O(L−1)} : (9.17)Now, in view of (9.17), we 
an �x a suÆ
iently large 
onstant L, dependingonly on � and �, to satisfyr−dAl(�r) > 
1(8�l)−1 = 
2l−1: (9.18)From the other hand, using the bound (8.3) and the de�nitions (9.2) and(2.13), we obtain Al(�) ≤ C2‖�‖d;d0l−1 = C3l−1: (9.19)Comparing (9.18) and (9.19), we obtain the bound (9.5) with C = C3
−12 .44



10 Proof of Theorems 2.2 and 3.1Theorems 2.2 and 3.1 are immediate 
orollaries of bounds on dis
repan
iesgiven below in Theorem 10.1.By Theorem 9.1 we 
an write the dis
repan
ies (1.4) and (1.6) in thefollowing form �r[DN ℄ = �(d; d0)∑l≥1 l−2Mlal(r)'l[DN ℄; (10.1)�[�;DN ℄ = �(d; d0)∑l≥1 l−2MlAl(�)'l[DN ℄; (10.2)�[�r;DN ℄ = �(d; d0)∑l≥1 l−2MlAl(�r)'l[DN ℄; (10.3)here DN ⊂ Q(d; d0) is an arbitrary N -point subset, and the quantities'l[DN ℄ ≥ 0 are de�ned in (7.31). The series (10.1) { (10.3) 
onverge andall their terms are nonnegative.Theorem 10.1. Let the weight fun
tion � ∈ W (d; d0), � 6= 0, then thefollowing bounds hold:(i) For any N-point subset DN ⊂ Q(d; d0) and an arbitrary r; 0 < r ≤ �,we have �[�;DN ℄ > 
r−d+1�r[DN ℄; (10.4)(ii) There exists a 
onstant L ≥ 1, depending only d and d0, su
h that forany N-point t-design DN ⊂ Q(d; d0) with t ≥ 2L=�, we have�[�;DN ℄ < Cr−d�[�r;DN ℄; r = Lt−1: (10.5)The positive 
onstants 
 and C in (10.4) and (10.5) depend only on d, d0and �.Proof. (i) Applying the bound (9.4) to the series (10.1) and (10.2), we obtainthe bound (10.4).(ii) If DN ⊂ Q(d; d0) is a t-design, then '[DN ℄ = 0 for l = 0; 1; : : : ; t, see(7.32). Hen
e, the summation in all series (10.1) { (10.3) is taken over l > t.Let L be 
hosen as the 
onstant indi
ated in Lemma 9.1(ii). If r = Lt−1,then we have 0 < r ≤ �=2 for t ≥ 2L=� and lr > L for l > t. Applying thebound (9.5) to the series (10.2) and (10.3), we obtain the bound (10.5).45



Now we are in position to prove Theorems 2.2 and 3.1.Proof of Theorem 2.2. As it was explained in 
omments to Theorem 2.2we have to prove only the left bound in (2.19). From the de�nitions ofdis
repan
ies (1.2), (1.4), we 
on
lude that �r[DN ℄ ≥ 〈Nvr〉2; where 〈z〉 =min{|z− n|; n ∈ Z} is the distan
e of z ∈ R from the nearest integer. De�ner by Nvr = 1=2, then �r[DN ℄ ≥ 1=2. In view of (2.3), r ≃ N−1=d and thebound (10.4) implies the left bound in (2.19).Proof of Theorem 3.1. First of all, we noti
e that
∫Q (#{Br(y) ∩ DN})2 d�(y) = ∫Q ( ∑y1∈DN �(Br(y); y1))2 d�(y)= ∫Q ( ∑y1∈DN �(Br(y1); y))2 d�(y) = ∑y1;y2∈DN �(Br(y1) ∩Br(y2)); (10.6)here the formula (1.15) has been used. Comparing (10.6) with (1.23), weobtain �r[DN ℄ < ∫Q (#{Br(y) ∩ DN})2 d�(y) ≤ (�[DN ; r℄)2; (10.7)where �[DN ; r℄ is de�ned in (3.5). Therefore�[�r;DN ℄ = r∫0 �u[DN ℄ du < r(�[DN ; r℄)2; (10.8)sin
e �[DN ; r℄ is a nonde
reasing fun
tion of r. Substituting (10.8) into (10.5),we obtain �[�;DN ℄ < Cr−d+1(�[DN ; r℄)2: (10.9)If r = Lt−1, then the bound (10.9) 
oin
ides with the bound (3.6).11 Additional remarksIn this se
tion we dis
uss very brie
y some questions related with the matterof the present paper. 46



(i) First of all we explain the appearan
e of anomalously small errors inthe formula (1.38). It is known that for the sphere Sd the geodesi
 metri
 �
an be written as follows�(y1; y2) = ��(B�=2(y1)�B�=2(y2)); y1; y2 ∈ Sd; (11.1)where B�=2(y) = {x ∈ Sd : �(x; y) < �=2} = {x ∈ Sd : (x; y) > 0} isthe hemisphere 
entered at y ∈ Sd and � the standard Lebesgue measurenormalized by (1.1), see [18, Se
. 6.4℄. Using (1.13), we 
an write (11.1) inthe form �(y1; y2) = �(1− 2�(B�=2(y1) ∩ B�=2(y2)) (11.2)Noti
e that in this form, the equality (11.2) is obvious: it su�ers to noti
ethat the measure of the interse
tion of two hemispheres in (11.2) is a linearfun
tion of �(y1; y2). Comparing (11.2) and (1.24) and taking into a

ountthat v�=2 = 1=2, we 
an write�(y1; y2) = 2����=2(y1; y2): (11.3)Hen
e, the geodesi
 metri
 � on the sphere Sd is a symmetri
 di�eren
emetri
.Using the formula (11.3) and the invarian
e prin
iple (1.28) for the sphereSd, we �nd that �[DN ℄ = 〈�〉N2 − 2���=2[DN ℄;where ��=2[DN ℄ = ∫Sd �[B�=2(y);DN ℄2 d�(y)where �[B�=2(y);DN ℄ = #{B�=2(y)∩DN}−Nv�=2: and 〈�〉 = �=2, see (1.25).An N -point subset DN ⊂ Sd 
an be represented as a disjoint union of twosubsets DN = D(0)2a ∪ D(1)b ; N = 2a + b; where D(0)2a = {x ∈ DN : −x ∈ DN}and D(1)b = {x ∈ DN : −x =∈ DN}. We have�[B�=2(y);DN ℄ = �[B�=2(y);D(0)2a ℄ + �[B�=2(y);D(1)b ℄:It is 
lear that �[B�=2(y);D(0)2a ℄ = 0 for all y ∈ Sd ex
ept the hyperplanes
〈y; x〉 = 0, x ∈ D(0)2a . Hen
e, ��=2[DN ℄ = ��=2[D(1)b ℄:Let N = 2a be even and DN = D(0)2a , then ��=2[DN ℄ = 0. Let N = 2a+ 1be odd and DN = D(0)2a ∪ D(1)1 , where D(1)1 = {x0} is a one-point subset. A47



simple 
al
ulation shows that ��=2[{x0}℄ = �=2. Therefore, ��=2[DN ℄ = �=2,and the relation (1.38) follows.A similar proof of the relation (1.38) was re
ently given in [8, Theorem3.5℄. Additionally, these authors established the exa
t value "N = �=2 forodd N .The relation (1.38) 
an be also derived from the spheri
al fun
tion expan-sion (8.14) for the geodesi
 distan
e on Sd. For the sphere Sd, we have d0 = d,� = � = d=2− 1, and Ja
obi polynomials P (�;�)l (z) 
oin
ide, up to 
onstantfa
tors, with Gegenbauer polynomials. Furthermore, P (�;�)l (z) for even andodd l are, 
orrespondingly, even and odd fun
tions of z, see [32, Se
. 4.7℄.Comparing the formula (11.3) and the expansion (8.14) for r = �=2, weobtain the following expansion for the geodesi
 distan
e on Sd�(y1; y2) ==2� [14−(14)d�(d; d0) ∑odd l≥1 l−2Ml {P (�+1;�+1)l−1 (0)}2 P (�;�)l (
os �(y1; y2))P (�;�)l (1) ]

= 2�(14)d�(d; d0) ∑odd l≥1 l−2Ml {P (�+1;�+1)l−1 (0)}2 [1− P (�;�)l (
os �(y1; y2))P (�;�)l (1) ] :(11.4)The expansion 
ontains spheri
al fun
tions only with odd indexes. For oddl for the sums (7.31), we have 'l[D(0)2a ℄ = 0 and 'l[D(0)2a ∪ D(1)1 ℄ = 1, wherethe subsets D(0)2a and D(0)2a ∪ D(1)1 are de�ned as above. Substituting theseequalities into (11.4), we obtain the relation (1.38).(ii) The L�evi{S
hoenberg kernel on an arbitrary metri
 spa
e M with ametri
 � is de�ned byk(�; y1; y2) = �(y1; y0) + �(y2; y0)− �(y1; y2); (11.5)where y0 ∈ M is a �xed point, see [20℄ The metri
 � 
an be re
overed fromthe kernel k by �(y1; y2) = 2(k(�; y1; y1) + k(�; y2; y2)− 2k(�; y1; y2)):If the kernel (11.5) is positive de�nite, i.e. ∑1≤i;j≤N �
i
jk(�; yi; yj) ≥ 0for any points y1; : : : ; yN ∈ M and any 
omplex numbers 
1; : : : ; 
N , then it
an be thought of as a 
ovarian
e of a Gaussian pro
ess (a random �eld) on
M. The standard methods of probability theory enable one to 
onstru
t su
hrandom �eld as a mappingW : M ∋ y → W (y) =W (y; !) ∈ L2(
; d!); su
hthat W (y0) = 0;EW (y1) = 0, EW (y1)W (y2) = k(�; y1; y2) and E(W (y1) −48



W (y2))2 = �(y1; y2), for all y1; y2 ∈ M. Here L2(
; d!) is the Hilbert spa
eof real-valued square-integrable random variables on a probability spa
e 
with a probability measure d! and E denotes the expe
tation on L2(
; d!).Furthermore, if M is a Riemannian manifold and � is H�older 
ontinuouswith respe
t to the geodesi
 distan
e �, i.e. �(y1; y2) < 
�(y1; y2)� with some
onstants 
 and � > 0, then for almost all ! ∈ 
 traje
tories of the random�eld W (y; !) are 
ontinuous fun
tions of y ∈ M. For more details we referto [20℄.Comparing the de�nitions (1.12) and (1.13) with (11.5), we obtaink(��(�); y1; y2) = ∫
R

k(��r ; y1; y2)�(r) dr; (11.6)where k(��r ; y1; y2) = ∫
M

Fr(y1; y)Fr(y2; y) d�(y); (11.7)where Fr(x; y) = �(Br(x); y) − �(Br(y0); y). This proves that the L�evi{S
hoenberg kernels for all symmetri
 di�eren
e metri
s are positive de�nite.Parti
ularly, in view of (11.3), for the geodesi
 metri
 on the sphere Sd theformula (11.7) 
an be written ask(�; y1; y2) = 2� ∫Sd F�=2(y1; y)F�=2(y2; y) d�(y): (11.8)Therefore, the kernel �(y1; y0) + �(y2; y0)− �(y1; y2) is positive de�nite. Thisis a well-known theorem of L�evy, see [26℄ and [20℄. Originally, its proofwas obtained in terms of 'white noise' integrals for random �elds on Sd,see [26, Chap. 3 in Appendix℄. A dire
t proof was given in [20, Se
. 4℄ interms of an expansion of the metri
 � by Gegenbauer polynomials. The proofof L�evy's theorem given above is likely to be the simplest.Noti
e that in 
ontrast to the spheres Sd, the geodesi
 metri
s � on theproje
tive spa
es CP n, HP n and QP 2 are not symmetri
 di�eren
e metri
sand for proje
tive spa
es analogs of L�evy's theorem are not true. This followsfrom the results of the paper [20, Se
. 4, pp. 225{226℄. At the same time,the L�evi{S
hoenberg kernel k(�; y1; y2) for the 
hordal metri
 � is positivede�nite for all two-point homogeneous spa
es Q(d; d0). This follows fromTheorems 2.1. 49



A general theory of random �elds on two-point homogeneous spa
es hasbeen developed in [20℄. It should be interesting to study in more detailsrandom �elds on Q(d; d0) with the 
ovarian
es (11.6) and (11.7). Noti
ethat Lemma 2.1 
ontains, in fa
t, 
onditions under whi
h traje
tories of su
hrandom �eld are 
ontinuous almost surely.(iii) Finally, we noti
e that non
ompa
t 
onne
ted two-point homoge-neous spa
es G=K are also 
lassi�ed 
ompletely as hyperboli
 spa
es overalgebras F = R, C, H, O, see [34, Se
. 8.12℄, and one 
an 
onsider the spa
esof double 
osets M = � \Q = � \G=K, where � ⊂ G is a dis
rete subgroupin the group of isomerties of Q, su
h that the invariant measure �(M) < ∞.In this 
ase, dis
repan
ies of distributions and sums of pairwise distan
es forthe symmetry di�eren
e metri
s 
an be de�ned and their study should be ofmu
h interest, espe
ially for non-
ompa
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