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POINT DISTRIBUTIONS IN TWO-POINTHOMOGENEOUS SPACESM. M. SkriganovSt.Petersburg Department ofSteklov Mathematial InstituteRussian Aademy of SienesE-mail: maksim88138813�mail.ruWe onsider point distributions in ompat onneted two-point homogeneous spaes(Riemannian symmetri spaes of rank one). All suh spaes are known, they are thespheres in the Eulidean spaes, the real, omplex and quaternioni projetive spaesand the otonioni projetive plane. Our onern is with disrepanies of distributions inmetri balls and sums of pairwise distanes between points of distributions in suh spaes.Using the geometri features of two-point spaes, we show that Stolarsky's invarianepriniple, well-known for the Eulidean spheres, an be extended to all projetive spaesand the otonioni projetive plane (Theorem 2.1 and Corollary 2.1). We obtain the spher-ial funtion expansions for disrepanies and sums of distanes (Theorem 8.1). Relyingon these expansions, we prove in all suh spaes the best possible bounds for quadratidisrepanies and sums of pairwise distanes (Theorem 2.2). Appliations to t-designs onsuh two-point homogeneous spaes are also onsidered, and it is shown that the optimalt-designs, reently onstruted in [10, 11, 19℄, meet the best possible bounds for quadratidisrepanies and sums of pairwise distanes. (Corollaries 3.1, 3.2).Key words and phrases: uniform distributions, geometry of distanes,t-designs , two-point homogeneous spaesThe work was supported by the Program of the Presidium of the Rus-sian Aademy of Sienes \Fundamental Problems of Nonlinear Dynamis inMathematial and Physial Sienes".
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ContentsI. Main results1. Disrepanies and metris2. Statements of the main results3. Appliations to t-designsII. Geometry of two-point homogeneous spaesand L2-invariane priniples4. Preliminaries: Models of projetive spaes and hordal metris5. Proof of Theorem 2.16. Proof of Lemma 2.1III. Spherial funtions and bounds for disrepaniesand sums of distanes7. Preliminaries: Commutative spaes and spherial funtions8. Spherial funtion expansions for disrepanies and metris9. Bounds for Fourier-Jaobi oeÆients10. Proof of Theorems 2.2 and 3.111. Additional remarksReferenesI. Main results1 Disrepanies and metrisIn this setion we introdue the basi notation and reall neessary fats fromour previous paper [29℄ on relationships between disrepanies and metrison general ompat metri spaes.Let M be a ompat onneted metri spae with a �xed metri � and a�nite Borel measure �, normalized bydiam(M; �) = �; �(M) = 1; (1.1)where diam(E ; �) = sup{�(x1; x2) : x1; x2 ∈ E} denotes the diameter of asubset E ⊆ M with respet to a metri �.We write Br(y) = {x : �(x; y) < r} for the ball of radius r ∈ R enteredat y ∈ M and of volume vr(y) = �(Br(y)), here R = {r = �(x1; x2) : x1; x2 ∈3







M} is the set of all possible radii. Sine the spae M is onneted, we have
R = [0; �℄.Let DN ⊂ M be a �nite subset onsisting of N points (not neessarydi�erent). The loal disrepany of the subset DN in the ball Br(y) is de�nedby �[Br(y);DN ℄ = #{Br(y) ∩ DN} −Nvr(y) = ∑x∈DN �(Br(y); x); (1.2)where �(Br(y); x) = �(Br(y); x)− vr(y); (1.3)and �(E ; x) denotes the harateristi funtion of s subset E ⊂ M.The quadrati disrepanies are de�ned by�r[DN ℄ = ∫


M


�[Br(y);DN ℄2 d�(y) = ∑x1;x2∈DN �r(x1; x2); (1.4)where �r(y1; y2) = ∫
M


�(Br(y); y1)�(Br(y); y2) d�(y); (1.5)and �[�;DN ℄ = ∫
R


�r[DN ℄�(r) dr = ∑x1;x2∈DN �(�; x1; x2); (1.6)where �(�; y1; y2) = ∫
R


�r(y1; y2)�(r) dr; (1.7)here �(r), r ∈ [0; �℄, is a non-negative weight funtion. The quantities�r[DN ℄1=2 and �[�;DN ℄1=2 are known as L2-disrepanies. In the presentpaper it is more onvenient to deal with the quadrati disrepanies (1.4)and (1.6).We introdue the following extremal harateristi�N(�) = inf
DN �[�;DN ℄; (1.8)where the in�mum is taken over all N -point subsets DN ⊂ M.4







In what follows, besides the original metri � in the de�nition of a ompatmetri spae M, we shall deal with many di�erent metris on M. For ametri � on M we de�ne the sum of pairwise distanes�[DN ℄ = ∑x1;x2∈DN �(x1; x2); (1.9)and introdue the following extremal harateristi�N = sup
DN �[DN ℄; (1.10)where the supremum is taken over all N -point subsets DN ⊂ M. We alsowrite 〈�〉 for the average value of a metri �,


〈�〉 = ∫∫
M×M


�(y1; y2) d�(y1) d�(y2): (1.11)The study of the harateristis (1.8) and (1.10) falls within the subjetsof the disrepany theory and geometry of distanes. An extensive literatureis devoted to point distributions on spheres in the Eulidean spae. Detailedsurveys of the aria an be found in [2, 6, 12, 14, 28℄.It was shown in our reent paper [29℄ that nontrivial results on the quan-tities (1.8) and (1.10) an be established for very general metri spaes. Someof these results are given below in Theorems 1.1 and 1.2 in the form adaptedfor use in the present paper.Introdue the following symmetri di�erene metris on the spae M��(�; y1; y2) = ∫
R


��r (y1; y2)�(r) dr; (1.12)where ��r (y1; y2) = 12�(Br(y1)�Br(y2))= 12(vr(y1) + vr(y2)− 2�(Br(y1) ∩ Br(y2))); (1.13)and Br(y1)�Br(y2) = Br(y1) ∪ Br(y2) \ B2(y1) ∩ Br(y2) is the symmetridi�erene of the balls Br(y1) and Br(y2). We have�(Br(y1)�Br(y2); y) =12(�(Br(y1); y) + �(Br(y2); y)− 2�(Br(y1); y)�(Br(y2); y)= |�(Br(y1); y)− �(Br(y2); y)|; (1.14)5







where we write �(Br(x); y) for the harateristi funtion of ball Br(x). Thesymmetry of the metri � implies the following useful relation�(Br(y); x) = �(Br(x); y) = �(r − �(x; y)) = �r(�(x; y)); (1.15)where �(z), z ∈ R is the harateristi funtion of the half-axis (0;∞), and�r(·) is the harateristi funtion of the interval [0; r), 0 ≤ r ≤ �. From(1.13) and (1.14), we obtain��r (y1; y2) = 12 ∫
M


�(Br(y1)�Br(y2)) d�(y)= 12 ∫
M


(�(Br(y1); y) + �(Br(y2); y)− 2�(Br(y1); y)�(Br(y2); y)) d�(y)= 12 ∫
M


|�(Br(y1); y)− �(Br(y2); y)| d�(y) (1.16)With the help of (1.15), we obtain the following formulas for the averagevalues (1.11) of metris (1.12) and (1.16)
〈��(�)〉 = ∫


R


〈��r 〉�(r) dr; (1.17)
〈��r 〉 = ∫∫


M×M


��r (y1; y2) d�(y1) d�(y2) = ∫
M


(vr(y)− vr(y)2) d�(y) (1.18)The symmetri di�erene of any two subsets oinides with the symmetridi�erene of their omplements, see (1.14). Hene��r (y1; y2) = 12�(B′r(y1)�B′r(y2))= 12(v′r(y1) + v′r(y2)− 2�(B′r(y1) ∩ B′r(y2))); (1.19)where B′r(y) = M\Br(y) is the omplement of the ball Br(y),v′r(y) = �(B′r(y)) = 1− vr(y); (1.20)6







and the relation (1.18) takes the form
〈��r 〉 = ∫


M


vr(y)v′r(y) d�(y) (1.21)In (1.16) the balls Br(y) an be also replaed by their omplements B′r(y).A metri spae M is alled distane-invariant, if the volume of any ballvr = vr(y) is independent of y ∈ M, see [25, p. 504℄. For suh spaes theabove formulas for the disrepanies and the symmetri di�erene metrisan be essentially simpli�ed. Substituting (1.13) into (1.5), we obtain�r(y1; y2) = ∫
M


�(Br(y1); y)�(Br(y2); y) d�(y)− v2r= �(Br(y1) ∩Br(y2)− v2r ; (1.22)and orrespondingly,�r[DN ℄ = ∑y1;y2∈DN �(Br(y1) ∩Br(y2))− v2rN2: (1.23)Similarly, the relations (1.13), (1.19) and (1.18), (1.21) take the form��r (y1; y2) = vr − ∫
M


�(Br(y1); y)�(Br(y2); y) d�(y)= vr − �(Br(y1) ∩ Br(y2)) = v′r − �(B′r(y1) ∩ B′r(y2)); (1.24)
〈��r 〉 = vr − v2r = vrv′r; (1.25)and ��r [DN ℄ = vrN2 − ∑y1;y2∈DN �(Br(y1) ∩ Br(y2)): (1.26)Integrating these relations with �(r), r ∈ [0; �℄, one an obtain the orre-sponding formulas for the quantities (1.12) and (1.17).The typial examples of distane-invariant spaes are homogeneous spaes


M = G=K, where G is a ompat group, K ⊂ G is a losed subgroup, while �7







and � are G-invariant metri and measure on M. In this ase, the quantities(1.6), (1.7) and (1.12), (1.13) are also G-invariant:�r(gy1; gy2)= �r(y1; y2); �(�; gy1; gy2) = �(�; y1; y2);��r (gy1; gy2)=��r (gy1; gy2); ��(�; gy1; gy2)=��(�; y1; y2);�(Br(gy1) ∩Br(gy2))=�(Br(y1) ∩ Br(y2)); 




(1.27)for all y1; y2 ∈ G=K, g ∈ G.Comparing the relations (1.22){(1.26), we arrive to the following result.This result and its generalizations were given in [29, Theorems 2.1, 3.1℄.Theorem 1.1. (The L1-invariane priniples). Let a ompat onnetedmetri spae M with a metri � and a measure � be distane-invariant.Then we have �r(y1; y2) + ��r (y1; y2) = 〈��r 〉; (1.28)�(�; y1; y2) + ��(�; y1; y2) = 〈��(�)〉; (1.29)�(�;DN) + ��(�;DN) = 〈��(�)〉N2; (1.30)�N (�) + ��N (�) = 〈��(�)〉N2: (1.31)Here r ∈ R = [0; �℄ and DN ⊂ M is an arbitrary N-point subset. Theequalities (1.29), (1.30) and (1.31) hold with any weight funtion � suh thatthe integrals (1.6), (1.7) and (1.12), (1.17) onverge.Obviously, the integrals (1.6), (1.7) and (1.12), (1.17) onverge for anywight funtion � summable on the interval [0; �℄. More general onditionsof onvergene of these integrals for two-point homogeneous spaes will begiven in Lemma 2.1 below. Notie that the assumption of onnetedness ofthe spae M in Theorem 1.1 is of no onern, and the measure �(r) dr in thede�nitions (1.7) and (1.12) an be replaed with a measure d�(r) on the setof radii R, see [29, Theorems. 2.1℄The L2-invariane priniple, spei� for two-point homogeneous spaes,will be given in the next setion, see Theorem 2.1 and Corollary 2.1. Ourterminology of L1- and L2-invariane priniples will be explained in the om-ments to Corollary 2.1.To state a further result from [29℄ we reall the onept of reti�ablespaes, see [27℄. A ompat metri spae M with a metri � and a measure� is alled d-reti�able if there exist a measure � on the d-dimensional unit8







ube Id = [0; 1℄d absolutely ontinuous with respet to the d-dimensionalLebesgue measure on Id, a measurable subset O ⊂ Id, and an injetiveLipshitz mapping f : O → M, suh that �(M \ f(O)) = 0; and �(E) =�(f−1(E ∩ f(O)) for any �-measurable subset E ⊂ M. Reall that a mapf : O ⊂ Rd → M is Lipshitz if�(f(Z1); f(Z2)) ≤ ‖Z1 − Z2‖; Z1; Z2 ∈ O; (1.32)with a positive onstant , and the smallest suh onstant is alled the Lips-hitz onstant of f and denoted by Lip(f); in (1.32) ‖·‖ denotes the Eulideannorm in Rd.Notie that any smooth (or piee-wise smooth) ompat d-dimensionalmanifold is d-reti�able if in the loal oordinates the metri satis�es (1.32),and the measure is absolutely ontinuous with respet to the d-dimensionalLebesgue measure. Partiularly, any ompat d-dimensional Riemannianmanifold with the geodesi metri � and the Riemannian measure � is d-reti�able. In this ase, it is known that the ondition (1.32) holds; see[23, Chapter I, Proposition 9.10℄. On the other hand, the ondition on theRiemannian measure is obvious beause the metri tensor is ontinuous.The following result was established in [29, Theorem.4.2℄. Notie thatthe proof of this result is relying on a probabilisti version of Theorem 1.1,see [29, Theorem 3.1℄.Theorem 1.2. Suppose that a ompat metri spae M, with a metri �and a measure �, is d-reti�able. Write C = d2d−1 Lip(f), where Lip(f) isthe Lipshitz onstant of the map f in the de�nition of d-reti�ability of thespae M. Then the following hold:(i) If a metri � on M satis�es the inequality�(x1; x2) ≤ 0�(x1; x2) (1.33)with a onstant 0 > 0, then�N ≥ 〈�〉N2 − 0CN1− 1d : (1.34)(ii) If the metri ��(�) satis�es the inequality��(�; x1; x2) ≤ 0�(x1; x2) (1.35)with a onstant 0 > 0, then��N(�) ≥ 〈��(�)〉N2 − 0CN1− 1d (1.36)9







and �N(�) ≤ 0CN1− 1d : (1.37)Partiularly, the above statements are true for a ompat Riemannianmanifold with the geodesi distane � and the Riemannian measure �.Under suh general assumptions one annot expet that the bounds (1.36)and (1.37) are best possible. Consider, for example, the d-dimensional unitspheres Sd = {x ∈ Rd+1 : ‖x‖ = 1} with the geodesi (great irle) metri �and the standard Lebesgue measure � on Sd. In this ase, we have�N = 〈�〉N2 − "N ; 〈�〉 = �=2; (1.38)where "N = 0 for even N and "N ≤ �=2 for odd N .The appearane of suh anomalously small errors in the formula (1.38)an be easily explained with the help of invariane priniple (1.28). We shalldisuss this question in setion 11.In the present paper we shall show that the bounds (1.36) and (1.37) arebest possible for ompat onneted two-point spaes and general lasses ofweight funtions �, see Theorem 2.2 below.2 Statements of the main resultsFirst of all we reall the de�nition and some neessary fats on two-pointhomogeneous spaes, see [7, 23, 24, 34, 35℄. Additional fats on the geometryand harmoni analysis on suh spaes will be given in setions 4 and 7. LetG = G(M) be the group of isometries of a metri spae M with a metri�, i.e. �(gx1; gx2) = �(x1; x2) for all x1, x2 ∈ M and g ∈ G. The spae
M is alled two-point homogeneous, if for any two pairs of points x1, x2 andy1, y2 with �(x1; x2) = �(y1; y2) there exists an isometry g ∈ G, suh thaty1 = gx1, y2 = gx2. In this ase, the group G is obviously transitive on
M and M = G=K is a homogeneous spae, where the subgroup K ⊂ G isthe stabilizer of a point x0 ∈ M. Furthermore, the homogeneous spae Mis symmetri, i.e. for any two points y1, y2 ∈ M there exists an isometryg ∈ G, suh that gy1 = y2, gy2 = y1.We onsider ompat onneted two-point homogeneous spaes M =G=K. For suh spaes G and K ⊂ G are Lie groups and M = G=K areRiemannian symmetri spaes of rank one. This means that all at totallygeodesi submanifolds inM are one dimensional and oinide with geodesis.10







This also means that all G-invariant di�erential operators on M are polyno-mials of the Laplae-Beltrami operator on M. All suh spaes are lassi�edompletely, see, for example, [34, Se. 8.12℄. They are the following:(i) The d-dimensional Eulidean spheres Sd = SO(d + 1)=SO(d)× {1},d ≥ 2, and S1 = O(2)=O(1)× {1}.(ii) The real projetive spaes RP n = O(n+ 1)=O(n)×O(1).(iii) The omplex projetive spaes CP n = U(n + 1)=U(n)× U(1).(iv) The quaternioni projetive spaes HP n = Sp(n+1)=SP (n)×Sp(1),(v) The otonioni projetive plane OP 2 = F4= Spin(9).Here we use the standard notation from the theory of Lie groups; parti-ularly, F4 is one of the exeptional Lie groups in Cartan's lassi�ation.The indiated projetive spaes FP n as ompat Riemannian manifoldshave dimensions d, d = dimR FP n = nd0; d0 = dimR F; (2.1)where d0 = 1; 2; 4; 8 for F = R, C, H, O, orrespondingly.For spheres Sd we put d0 = d by de�nition. Projetive spaes of di-mension d0 (n = 1) are isomorphi to the spheres Sd0 : RP 1 ≈ S1;CP 1 ≈S2;HP 1 ≈ S4;OP 1 ≈ S8. We an onveniently agree that d > d0 (n ≥ 2) forprojetive spaes, while the equality d = d0 holds only for spheres. Underthis onvention, the dimensions d = nd0 and d0 de�ne uniquely (up to iso-morphism) the orresponding two-point homogeneous spae whih we denoteby Q = Q(d; d0). We write � for the geodesi distane and � for the Rie-mannian measure on Q(d; d0). The metri � and the measure � are invariantunder the ation of the orresponding group of isometries and normalized by(1.1). In what follows we always assume that n = 2 if F = O, sine projetivespaes OP n do not exist for n > 2. In more detail the geometry of spaes
FP n will be outlined in setion 4.Any spae Q(d; d0) is distane-invariant and the volume of balls is givenby vr = �(d; d0) r∫0 (sin 12u)d−1(os 12u)d0−1 du; r ∈ [0; �℄;�(d; d0) = B(d=2; d0=2)−1 = �(d=2 + d0=2)�(d=2)�(d0=2) :







(2.2)Here B(·; ·) and �(·) are the beta and gamma funtions, and v� =�(Q(d; d0)) = 1. Di�erent equivalent forms of the relation (2.2) an be foundin the literature, see [20, pp. 177{178℄, [24, pp. 165{168℄, [25, pp. 508{510℄.11







From the formula (2.2) we obtain the following two-side boundsvr ≃ rd; v′r = 1− vr ≃ (� − r)d0; r ∈ [0; �℄: (2.3)To simplify notation we write in some formulas A . B instead of B =O(A), A & B instead of B = O(A), and A ≃ B if A = O(B) and B = O(A).The hordal metri on the spaes Q(d; d0) an be de�ned by�(x1; x2) = sin 12�(x1; x2); x1; x2 ∈ Q(d; d0): (2.4)Notie that the expression (2.4) de�nes a metri beause the funtion '(�) =sin �=2, 0 ≤ � ≤ �, is onave, inreasing and '(0) = 0, that implies thetriangle inequality. For the sphere Sd = {x ∈ Rd+1 : ‖x‖ = 1} we haveos �(x1; x2) = (x1; x2); x1; x2 ∈ Sd;�(x1; x2) = sin 12�(x1; x2) = 12‖x1 − x2‖; (2.5)where (·; ·) is the inner produt and ‖ · ‖ is the Eulidean norm in Rd+1.Eah projetive spae FP n an be anonially imbedded into the unitsphere� : Q(d; d0) ∋ x → �(x) ∈ Sm−1 ⊂ Rm; m = 12(n+ 1)(d+ 2); (2.6)suh that �(x1; x2) = 1√2‖�(x1)− �(x2)‖; x1; x2 ∈ FP n; (2.7)where ‖ · ‖ is the Eulidean norm in Rm+1. Hene, the metri �(x1; x2) oin-ides with the Eulidean length of a segment joining the orresponding points�(x1) and �(x2) on the unit sphere and normalized by diam(Q(d; d0); �) = 1.The imbedding (2.6) will be desribed expliitly in Setion 4.The hordal metri � on the omplex projetive spae CP n is known asthe Fubini{Study metri. In onnetion with speial point on�gurations intwo-point homogeneous spaes the hordal metri on projetive spaes hasbeen disussed in the papers [15,16℄, see also the paper [17℄, where the hordalmetri has been de�ned for Grassmannian manifolds.Now we are in position to state our main results. First of all, we onsiderthe L2-invariane priniples for two-point homogeneous spaes. A arefulanalysis of the imbedding (2.6) leads to the following.12







Theorem 2.1. For any spae Q = Q(d; d0) the hordal metri (2.4) and thesymmetri di�erene metri (1.12) are related by�(x1; x2) = (Q) ��(�\; x1; x2); x1; x2 ∈ Q; (2.8)where �\(r) = sin r, r ∈ [0; �℄, and(Q) = 〈�〉
〈��(�\)〉 = diam(Q; �)diam(Q; ��(�\)) : (2.9)The proof of Theorem 2.2 is given in Setion 5. It is lear that theequalities (2.9) follow immediately from (2.8). It suÆes to alulate theaverage values (1.11) of both metris in (2.8) to obtain the �rst equalityin (2.9). Similarly, writing (2.8) for any pair of antipodal points x1, x2,�(x1; x2) = �, we obtain the seond equality in (2.9). Reall that pointsx1; x2 are antipodal for a metri � if �(x1; x2) = diam(Q; �). If points x1; x2are antipodal for the metri �, then in view of (2.4) and (2.8) they are alsoantipodal for the metris � and ��(�\).Comparing Theorems 1.1 and 2.1, we arrive at the following.Corollary 2.1. (The L2-invariane priniple). For any spae Q = Q(d; d0)we have the relation (Q)�[�\;DN ℄ + � [DN ℄ = 〈�〉N2; (2.10)where DN ⊂ Q is an arbitrary N-point subset.Partiularly, for any N we have the equality(Q)�N(�\) + �N = 〈�〉N2: (2.11)Notie that for the sphere Sd the disrepany �[�\;DN ℄ with the speialweight funtion �\(r) = sin r an be written in the form�[�\;DN ℄ = 1∫


−1 dz ∫Sd [#{B(y; z) ∩ DN} −N�(B(y; z))℄2 d�(y); (2.12)where B(y; z) = {x ∈ Sd : os �(x; y) ≥ z}; y ∈ Sd; z ∈ [−1; 1℄; is a spherialap; in our notation B(y; z) = Br(y), z = os r.For spheres the invariane priniple (2.10) was established by Sto-larsky [31℄, see also the reent papers [8, 13℄, where the original proof of13







this relation was essentially simpli�ed. Corollary 2.1 an be thought of as anextension of Stolarsky's invariane priniple to projetive spaes.A metri spae M with a metri � is alled isometrially Lq-embeddable,if there exists a map ' : M ∋ x → '(x) ∈ Lq, suh that �(x1; x2) =
‖'(x1) − '(x2)‖Lq for all x1, x2 ∈ M. Notie that the L2-embeddability isstronger and implies the L1-embeddability, see [18, Se. 6.3℄.A ompat metri spae M is isometrially L1-embeddable with respetto any symmetri di�erene metri ��r and ��(�), see (1.16) and (1.12). Atthe same time, the two-point homogeneous spae Q(d; d0) is isometrially L2-embeddable with respet to the hordal metri � , see (2.5) and (2.7). Thisexplains our terminology of L1- and L2-invariane priniples.It would be interesting to �nd out whether there are other weight fun-tions � 6= �\ for whih the spaes Q(d; d0) with the metri ��(�) are alsoL2-embeddable.Now we onsider best possible bounds for the extremal quantities (1.8)and (1.10). At �rst, we state in Lemma 2.1 some important auxiliary results.Introdue the following lasses of weight funtions �(r), r ∈ [0; �℄,W (a; b) = {� ≥ 0 : ‖�‖a;b < ∞}; a ≥ b ≥ 1;


‖�‖a;b = �∫0 (sin 12r)a−1(os 12r)b−1�(r) dr:  (2.13)It is worth noting that weight funtions in the lasses (2.14) admit ratherlarge singularities at points r = 0 and r = �.Lemma 2.1. For any spae Q(d; d0) the following hold :(i) The kernel (1.5) and the metri (1.13) satisfy the bounds
|�r(y1; y2)| ≤ C(sin 12r)d(os 12r)d0 ;��r (y1; y2) ≤ C(sin 12r)d(os 12r)d0 : (2.14)If � ∈ W (d + 1; d0 + 1), then the kernel (1.8) and the metri (1.13) satisfythe bounds


|�(�; y1; y2)| ≤ C‖�‖d+1;d0+1;��(�; y1; y2) ≤ C‖�‖d+1;d0+1:} (2.15)14







(ii) The metri (1.13) satis�es the bound��r (y1; y2) ≤ C(sin 12r)d−1(os 12r)d0−1�(y1; y2): (2.16)If � ∈ W (d; d0), then the metri (1.12) satis�es the bound��(�; y1; y2) ≤ C‖�‖d;d0�(y1; y2): (2.17)Constants in the bounds (2.14) { (2.17) depend only on d and d0.The proof of Lemma 2.1 is given in Setion 6. It follows from Lemma 2.1that the L1-invariane priniples (1.29) { (1.31) hold for the spaes Q(d; d0)with weight funtions � ∈ W (d+ 1; d0 + 1).Our result on the extremal quantities(1.8) and (1.10) an be stated asfollows.Theorem 2.2. For any spae Q(d; d0) the following hold :If � ∈ W (d; d0), � 6= 0, then for any N we have
〈��(�)〉N2 − (�)N1− 1d > ��N (�) > 〈��(�)〉N2 − C(�)N1− 1d ; (2.18)1(�)N1− 1d < �N(�) < C1(�)N1− 1d (2.19)with positive onstants independent of N . Partiularly, for the hordal metri� on Q(d; d0), we have


〈�〉N2 − N1− 1d > �N > 〈�〉N2 − CN1− 1d (2.20)with the onstants  = (�\) and C = C(�\).For the hordal metri � on the sphere Sd the bounds (2.20) were knownearlier. The right bound in (2.20) was established by Alexander [1℄ and theleft by Bek [5℄, see also [6,9℄. Theorem 2.2 an be thought of as an extensionof the results of these authors to projetive spaes. However, it should bepointed out that the bounds (2.18) and (2.19) are new even in the ase ofsphere Sd.The proof of Theorem 2.2 is given in Setion 10. It is lear that theright bounds in (2.18) and (2.19) follow immediately from Theorem 1.2(ii)and Lemma 2.1(ii). In Setion 10 we shall prove the left bound in (2.19).By the invariane priniple (1.31) this will immediately imply the left boundin (2.18). The proof of the left bound in (2.19) is relying on the theory ofspherial funtions on homogeneous spaes Q(d; d0).15







3 Appliations to t-designsMany spei� point on�gurations on spheres and other two-point homoge-neous spaes are desribed in the literature, see, for example, [4, 10{12, 14{17, 19, 25, 28℄. One an ask whether the points of suh spei� on�gura-tions are distributed uniformly in the orresponding spaes, and whether thequadrati disrepanies (1.6) and the sums of pairwise distanes (1.9) an beestimated preisely for suh point subsets.In the present paper we onsider these questions for t-designs. Considera smooth ompat onneted d-dimensional manifold M in Rm equippedwith a smooth Riemannian sruture, so that the geodesi distane � and theRiemanniam measure � normalized by (1.1) are de�ned on M. An N -pointsubset DN ⊂ M is alled a t-design, if the exat quadrature formula
∑x∈DN F (x) = N ∫


M


F (y) d�(y) (3.1)holds for all polynomials F (x); x ∈ Rm of total degree not exeeding t.It is known, see, for example, [19℄, that any N -point t-design DN ⊂ Msatis�es the bound N & td with a onstant independent of N and t. AnN -point t-design DN ⊂ M is alled optimal, if+td ≥ N ≥ −td (3.2)with some positive onstants + and − independent of N and t. Atually, inthis de�nition we deal with sequenes of N -point t-designs DN as N → ∞.As we mentioned earlier, the two-point homogeneous spaes Q(d; d0) anbe anonially imbedded into Rm, see the omments to (2.6), Hene, theabove de�nitions an be used for Q(d; d0).Sine the spaes Q(d; d0) are homogeneous, an equivalent de�nition oft-designs an be given in the following invariant form, see [4, 25℄. An N -point subset DN ⊂ Q(d; d0) is a t-design, if and only if the exat quadratureformula
∑x1;x2∈DN f(os �(x1; x2)) = N2 ∫∫Q×Q f(os �(y1; y2)) d�(y1) d�(y2) (3.3)holds for all polynomials f(z); z ∈ C, of degree not exeeding t. The formula16







(3.3) is equivalent to the following quadrature formulas
∑x∈DN f(os �(x; y)) = N ∫Q f(os �(x; y)) d�(x); (3.4)whih holds identially for all y ∈ Q. Another equivalent de�nition of t-designs an be given in terms of spherial funtions on the spaes Q(d; d0),see [4, 25℄. We shall return to these questions in Setion 7, see (7.32).For any N -point subset DN ⊂ M we put�[DN ; r℄ = maxy∈Q #{Br(y) ∩ DN}; r ∈ [0; �℄; (3.5)and �[DN ; r℄ = N if r > �.Our result on t-designs an be stated as follows.Theorem 3.1. Let the weight funtion � ∈ W (d; d0), then the following hold:(i) There exists a onstant L ≥ 1 depending only on d and d0, suh thatfor any N-point t-design DN ⊂ Q(d; d0) with t ≥ 2L=� we have�[�;DN ℄ < Ctd−1(�[DN ; Lt−1℄)2: (3.6)(ii) For optimal N-point t-designs DN ⊂ Q(d; d0) the bound (3.6) takesthe form �[�;DN ℄ < CN1− 1d (�[DN ; −1=d+ LN−1=d℄)2; (3.7)where + is the onstant in the de�nition (3.6).The onstants C in the bounds (3.6) and (3.7) depend only on d, d0 and�. The inequality (3.7) follows immediately from (3.6) and the de�nition(3.2). The proof of the bound (3.6) is given in Setion 10. The proof isrelying on the theory of spherial funtions on homogeneous spaes Q(d; d0).We are interested whether the fator in (3.7) with the funtion � an bebounded from above by a onstant independent of N . In this ase, the orderof bound (3.7) would be the best possible. Two simple suÆient onditionsfor this are given below in Lemma 3.1.Introdue some de�nitions. For an arbitrary N -point subset DN ⊂ M,we put Æ[DN ℄ = 12 min{�(x1; x2) : x1; x2 ∈ DN ; x1 6= x2} (3.8)17







The balls BÆ(x), Æ = Æ[DN ℄, x ∈ DN , do not overlap. Therefore, Æ . N−1=d,sine the volume of balls vr(x) ≃ rd uniformly for r ∈ [0; �℄ and x ∈ M. AnN -point subset DN ⊂ M is alled well-separated, if Æ[DN ℄ ≥ N−1=d with aonstant  > 0 independent of N .Consider an equal-measure partition PN = {Pi}N1 of the manifold M,
M = N⋃i=1Pi; �(Pi ∩ Pj) = 0; i 6= j; �(Pi) = 1=N;and put Diam(PN ; �) = max1≤i≤N diam(Pi; �):We say that an equal-measure partition PN is of small diameter, ifDiam(PN ; �) ≤ 0N−1=d (3.9)with a onstant 0 > 0 independent of N . Construtions of equal-measurepartitions of small diameter are known for a large lass of smooth ompatmanifolds in Rm, see [21℄ and referenes therein.We also say that an N -point subset DN = {xi}N1 ∈ M is subordinated toa partition PN = {Pi}N1 of M, if xi ∈ Pi; i = 1 : : : N .We onveniently agree that for r > � the ball Br(x) = M and vr(x) = 1.With these onvention and de�nitions the following result is true.Lemma 3.1. Suppose that an N-point subset DN ⊂ M satis�es one of thefollowing onditions:(i) DN is well-separated,(ii) DN is subordinated to an equal-measure partition of small diameter.Then, for any onstant  > 0 there exists a onstant C = C() indepen-dent of N suh that �[DN ; N−1=d℄ ≤ C: (3.10)Proof. For brevity, we write a = N−1=d. Consider the ball Ba(y) enteredat an arbitrary point y ∈ Q and put E = Ba(y) ∩ DN , K = #{E}. Assumealso that points of DN = {xi}N1 are enumerated suh that E = {xi}K1 .(i) By the de�nition of a well-separated subset DN , the balls BÆ(x),Æ = Æ[DN ℄, x ∈ E , do not overlap and all these balls are ontained in theball Ba+Æ(y). Therefore, ∑1≤i≤K vÆ(xi) ≤ va+Æ. Sine vr(x) ≃ rd; we haveK . va+Æ=vÆ ≃ (1 + C=)d; and (3.10) follows.18







(ii) By the de�nition of a subset DN subordinated to an equal-measurepartition PN = {Pi}N1 of small diameter b = 1N−1=d, eah part Pi; 1 ≤i ≤ K is ontained in the ball Ba+b(y). Therefore, N−1K ≤ va+b(y), andK ≤ Nva+b(y) ≃ (+ 1)d, that proves (3.10).Comparing Theorem 3.1 with Lemma 3.1, and taking into aount theleft bounds of Theorem 2.2, we arrive at the following.Corollary 3.1. Let the weight funtion � ∈ W (d; d0), � 6= 0. Suppose thatan N-point subset DN ⊂ Q(d; d0) is an optimal t-design and satis�es one ofthe onditions (i) or (ii) of Lemma 3.1. Then, for all suÆiently large N wehave
〈��(�)〉N2 − N1− 1d > ��[�;DN ℄ > 〈��(�)〉N2 − CN1− 1d ; (3.11)N1− 1d < �[�;DN ℄ < CN1− 1d (3.12)Partiularly, for the hordal metri � on Q(d; d0) we have


〈r〉N2 − N1− 1d > � [DN ℄ > 〈r〉N2 − CN1− 1d (3.13)The positive onstants in (3.11) { (3.13) are independent of N .The existene of optimal t-designs was a long standing open problemknown as the Korevaar{Meyers onjeture. In the papers [10, 11℄ by Bon-darenko, Radhenko and Viazovska a breakthrough on the problem wasobtained for spherial t-designs. In [10℄ the existene of optimal t-designs
DN ∈ Sd was proved for all suÆiently large N , and it was proved in [11℄that suh optimal t-designs an be hosen as well-separated subsets on thespheres Sd. Hene, Corollary 3.1 is appliable for the spheres Sd.Using optimal spherial t-designs DN one an easily onstrut optimal[t=2℄-designs D◦N on the real projetive spae RP d = Q(d; 1). Furthermore,if DN is well-separated on Sd, then D◦N satis�es the relation (3.10) on RP d,see [30, Se.3℄. Hene, Corollary 3.1 is also appliable for the real projetivespaes RP d.The orresponding generalizations to the projetive spaes CP n, HP n and
QP 2 are not so straightforward. In the reent paper [19℄ by Etayo, Marzo andOrtega{Cerd�a the results of the paper [10℄ were extended to smooth ompatonneted algebrai manifolds M = {x ∈ Rm : f1(x) = · · · = fr(x) = 0},where f1; : : : ; fr are polynomials with real oeÆients. We state results from[19℄ in the following form. 19







Theorem 3.2. Let M be a smooth ompat onneted d-dimensional aÆnealgebrai manifold in Rm equipped with a smooth Riemannian struture.Then there exist the positive onstants −; + and 0 depending only on M,suh that the following is true.(i) For all suÆiently large N there exist N-point optimal t-designs DN ⊂
M satisfying (3.2).(ii) Eah of these optimal t-designs DN is subordinated to an equal-measure partition PN of small diameter on M satisfying (3.9).In fat, the statement (i) of Theorem 3.2 is ontained in Theorem 2.2 in[19℄, while the statement (ii) follows immediately from the proof of Theorem2.2 in [19℄.The two-point homogeneous spaes Q(d; d0) an be realized as smoothompat onneted aÆne algebrai manifold. For the spheres Sd this is ob-vious, while for the projetive spaes RP n;CP n;HP n and the projetiveotonioni plane OP 2 this follows immediately from expliit formulas (4.13)and (4.14).Comparing Theorem 3.2 and Corollary 3.1, we arrive at the following.Corollary 3.2. On eah spae Q(d; d0) for all suÆiently large N there existN-point optimal t-designs DN ⊂ Q(d; d0), whih satisfy the relations (3.11),(3.12), (3.13) of Corollary 3.1.II. Geometry of two-point homogeneous spaesandthe L2-invariane priniples4 Preliminaries: Models of projetive spaesand hordal metrisIn this setion we de�ne the hordal metris on the projetive spaes FP n,
F = R, C; H, n ≥ 2, and the otonioni projetive plane OP 2 in terms ofspeial models for these spaes. For the sake of onveniene, we desribe suhmodels in suÆient detail and give the neessary referenes.Reall the general fats on the algebras R;C;H;O over the �eld of realnumbers. We have the natural inlusions R ⊂ C ⊂ H ⊂ O: where the o-tonions O are a nonassoiative and nonommutative algebra of dimension 820







with a basis 1; e1; e2; e3; e4; e5; e6; e7 (their multipliation table an be foundin [3, p. 150℄ and [7, p. 90℄), the quaternions H are an assoiative but non-ommutative subalgebra of dimension 4 spanned by 1; e1; e2; e3, �nally, Cand R are assoiative and ommutative subalgebras of dimensions 2 and 1spanned by 1; e1 and 1, orrespondingly. From the multipliation table onean easily see that for any two indexes 1 ≤ i; j ≤ 7; i 6= j; there exists anindex 1 ≤ k ≤ 7, suh thateiej = −ejei = ek; i 6= j; e2i = −1: (4.1)Let a = �0 +∑7i=1 �iei ∈ O, �i ∈ R, 0 ≤ i ≤ 7, be a typial otonion. Wewrite Re a = �0 for the real part, �a = �0 −∑7i=1 �iei for the onjugation,
|a| = (�20 +∑7i−1 �2i )1=2 fot the norm. Using (4.1), one an easily hek thatRe ab = Re ba; ab = ba; |a|2 = a�a = �aa; |ab| = |a| |b|: (4.2)The last equality in (4.2) implies that all algebras R;C;H;O are divisionalgebras. Notie also that by a theorem of Artin a subalgebra in O generatedby any two otonions is assoiative and isomorphi to one of the algebras H,
C, or R, see [3℄.The standard model of projetive spaes over the assoiative algebras
F = R, C, H is well known, see, for example, [3, 7, 22, 34℄. Let Fn+1 be alinear spae of vetors a = (a0; : : : ; an), ai ∈ F, 1 ≤ i ≤ n with the rightmultipliation by salars a ∈ F, the Hermitian inner produt(a;b) = n∑i=0 �aibi; a;b ∈ Fn+1; (4.3)and the norm |a|,


|a|2 = (a; a) = n∑i=0 |ai|2: (4.4)In this ase, in view of assoiativity of the algebras F = R, C;H, aprojetive spae FP n an be de�ned as a set of one-dimensional (over F)subspaes in Fn+1:
FP n = {p(a) = aF : a ∈ Fn+1; |a| = 1}: (4.5)The metri � on FP n is de�ned byos 12�(a;b)= |(a;b)|; a;b ∈ Fn+1; |a|= |b|=1; 0 ≤ �(a;b) ≤ �; (4.6)21







i.e. 12�(a;b) is the angle between the subspaes p(a) and p(b). The transitivegroup of isometries U(n + 1;F) for the metri � onsists of nondegeneratelinear transformations of the spae Fn+1, preserving the inner produt (4.3),and the stabilizer of a point is isomorphi to the subgroup U(n;F)×U(1;F).Hene,
FP n = U(n + 1;F)=U(n;F)× U(1;F): (4.7)The groups U(n + 1;F) an be easily determined (they have been indiatedin setion 2 in the list of ompat onneted two-point homogeneous spaes).A Riemannian U(n+1;F)-invariant struture orresponding to the metri �an be also de�ned on the projetive spae (4.5), and one an easily hekthat these spaes are two-point homogeneous spaes.There is another model where a projetive spae FP n, F = R;C;H, isidenti�ed with the set of orthogonal projetors onto the one-dimensionalsubspaes in Fn+1. This model admits a generalization to the otonioniprojetive plane OP 2 and in its terms the hordal metri an be naturallyde�ned for all projetive spaes.Let H(Fn+1) denote the set of all Hermitian (n + 1) × (n + 1) matrieswith the entries in F, F = R, C;H;O,


H(Fn+1) = {A = ((aij)) : aij = aji; aij ∈ F; 0 ≤ i; j ≤ n} (4.8)with n = 2 if F = O. It is lear that H(Fn+1) is a linear spae over R ofdimension m = dimR H(Fn+1) = 12(n+ 1)(d+ 2); d = nd0: (4.9)The linear spae H(Fn+1) is equipped with the symmetri real-valuedinner produt
〈A;B〉 = 12 Tr(AB +BA) = ReTrAB = Re n∑i;j=0aijbij (4.10)and the norm


‖A‖ = (TrA2)1=2 = ( n∑i;j=0 |aij|2)1=2 ; (4.11)here TrA = ∑ni=0 aii denotes the trae of a matrix A. For the distane
‖A−B‖ between matries A;B ∈ H(Fn+1), we have


‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2〈A;B〉: (4.12)22







Thus, H(Fn+1) an be thought of as the m-dimensional Eulidean spae.If F 6= O, the orthogonal projetor �a ∈ H(Fn+1) onto a one-dimensionalsubspae p(a) = aF, a = (a0; : : : ; an) ∈ Fn+1, |a| = 1, an be given by�a = a(a; ·) or in the matrix form �a = [ai�aj℄, 0 ≤ i; j ≤ n. Therefore, theprojetive spae (4.5) an be written as follows
FP n = {� ∈ H(Fn+1) : �2 = �; Tr� = 1}: (4.13)The group of isometries U(n + 1;F) ats on suh projetors by the formulag(�) = g�g−1, g ∈ U(n + 1;F).For the otonioni projetive plane OP 2 the similar model is also known.A detailed disussion of this model an be found in [3, 7, 22℄ inluding anexplanation why otonioni projetive spaes OP n do not exist if n > 2. Inthis model one puts by de�nition
OP 2 = {� ∈ H(O3) : �2 = �; Tr� = 1}: (4.14)Thus, the formulas (4.13) and (4.14) are quite similar. One an hekthat eah matrix in (4.14) an be written as �a ∈ OP 2 for a vetor a =(a0; a1; a2) ∈ O3, where �a = [ai�aj℄, 0 ≤ i; j ≤ 2, |a|2 = |a0|2+ |a1|2+ |a2|2 =1, and additionally (a0a1)a2 = a0(a1a2), see [22, Lemma 14.90℄. The addi-tional ondition means that the subalgebra in O generated by the oordinatesa0; a1; a2 is assoiative. Using this fat, one an easily show that OP 2 is a16-dimensional ompat onneted Riemannian manifold, see [3, 7, 22℄.The group of nondegenerate linear transformations g of the spae H(O3)preserving the squares g(A2) = g(A)2, A ∈ H(O3), is isomorphi to the 52-dimensional exeptional Lie group F4. This group also preserves the trae,inner produt (4.10) and norm (4.11) of matries A ∈ H(O3). The groupF4 is transitive on OP 2, and the stabilizer of a point is isomorphi to thespinor group Spin(9), see [22, Lemma 14.96 and Theorem 14.99℄. Hene,


OP 2 = F4= Spin(9) is a homogeneous spae, and one an prove that OP 2 isa two-point homogeneous spae.Notie that the relations �2 = �; Tr� = 1 in (4.13) and (4.14) arepolynomial equations in the orresponding m-dimensional Eulidean spae
H(Fn+1). Hene, the projetive spaes RP n;CP n;HP n and the otonioniprojetive plane OP 2 an be thought of as aÆne algebrai manifolds in Rm.For our disussion we need to desribe the struture of geodesis in pro-jetive spaes. Suh a desription an be easily done in terms of models (4.13)23







and (4.14). It is known, see [7,23,34℄, that all geodesis on a two-point homo-geneous spae Q(d; d0) are losed and homeomorphi to the unit irle. Thegroup of isometries is transitive on the set of geodesis and the the stabilizerof a point is transitive on the set of geodesis passing through this point.Therefore, all geodesis have the same length 2� (under the normalization(1.1) for the invariant Riemannian distane).The inlusions R ⊂ C ⊂ H ⊂ O indue the following inlusions of theorresponding projetive spaes
F1P n1 ⊆ FP n; F1 ⊆ F; n1 ≤ n; (4.15)moreover, the subspae F1P n1 is a geodesi submanifold in FP n, see [7,Se. 3.24℄. Partiularly, the real projetive line RP 1, homeomorphi to theunit irle S1, is embedded as a geodesi into all projetive spaes FP n,S1 ≈ RP 1 ⊂ FP n; (4.16)see [7, Proposition 3.32℄. In (4.16) n = 2 if F = O. These fats an also beimmediately derived from a general desription of geodesi submanifolds inRiemannian symmetri spaes, see [23, Chap. VII, Corollary 10.5℄.Using the models (4.13) and (4.14), we an write the real projetive line


RP 1 as the following set of 2× 2 matries:
RP 1 = {�(u); u ∈ R=�Z}; (4.17)where�(u)=( os2 u sinu osusin u osu sin2 u ) =(os u − sin usinu os u )(1 00 0)(os u sinusinu os u) :For eah u ∈ R the matrix �(u) is an orthogonal projetor onto the one-dimensional subspae xR, x = (os u; sinu) ∈ S1. The embedding RP 1 into


FP n an be written as the following set of (n+ 1)× (n + 1) matries:Z = {Z(u); u ∈ R=�Z} ⊂ FP n; (4.18)where Z(u) = ( �(u) 0n−1;202;n−1 0n−1;n−1) ;where 0k;l denotes the zero matrix of size k× l. The set of matries (4.18) isa geodesi in FP n. All other geodesis are of the form g(Z), where g ∈ G is24







an isometry of the spae FP n. The parameter u in (4.18) and the geodesidistane � on the spae FP n are related by�(Z(u); Z(0)) = 2|u|; −�=2 < u ≤ �=2; (4.19)and for all u ∈ R this formula an be extended by periodiity. Partiularly,we have�(Z(u=2); Z(−u=2)) = {2min{u; � − u} if 0 ≤ u ≤ �;2u if 0 ≤ u ≤ �=2:Therefore, �(Z(v); Z(−v)) = 4v; 0 ≤ v ≤ �=4: (4.20)The relation (4.20) will be needed in the next setion.Now, we de�ne the hordal distane on projetive spaes. The formulas(4.13), (4.14) and (4.11) imply
‖�‖2 = Tr�2 = Tr� = 1: (4.21)for any � ∈ FP n. Therefore, the projetive spaes FP n, de�ned by (4.13)and (4.14), are submanifolds in the unit sphere


FP n ⊂ Sm−1 = {A ∈ H(Fn+1) : ‖A‖ = 1} ⊂ H(Fn+1) ≈ Rm: (4.22)It fat, this is an embedding of FP n into the (m−2)-dimensional sphere, theintersetion of the sphere Sm−1 with the hyperplane in H(Fn+1) de�ned byTrA = 1, see (4.21).The hordal distane �(�1;�2) between �1;�2 ∈ FP n is de�ned as theEulidean distane (4.12):�(�1;�2) = 1√2‖�1 − �2‖ = (1− 〈�1;�2〉)1=2: (4.23)The oeÆient 1=√2 is hosen to satisfy diam(FP n; �) = 1.It is lear from (4.23) that �(g(�1), g(�2)) = �(�1;�2) for all isometriesg ∈ G of the spae FP n. Sine FP n is a two-point homogeneous spae, forany �1;�2 ∈ FP n with �(�1;�2) = 2u, 0 ≤ u ≤ 12�, there exists g ∈ G, suhthat g(�1) = Z(u), g(�2) = Z(0). From (4.23), (4.18) and (4.17), we obtain�(Z(u); Z(0)) = sinu = sin 12�(�(u);�(0)): Therefore,�(�1;�2) = sin 12�(�1;�2); (4.24)25







as it was de�ned before in (2.4).Notie also that antipodal points �+;�− ∈ FP n, i.e. �(�+;�−) = �and �(�+;�−) = 1, an be haraterized by the orthogonality ondition
〈�+;�−〉 = 0, see (4.23), (4.24).5 Proof of Theorem 2.1The proof of Theorem 2.1 is relying on the following speial representation ofthe symmetri di�erene metri (1.12), given earlier in see [29, Lemma 2.1℄.Here this representation is given in a form adapted to the hordal metri(4.23).Lemma 5.1. Let the weight funtion � be summarized on the interval [0; �℄,then ��(�; y1; y2) = 12 ∫


M


|�(�(y1; y))− �(�(y2; y))| d�(y) (5.1)with the noninreasing funtion�(r) = �∫r �(u) du: (5.2)Partiularly, if M is a two-point homogeneous spae Q = Q(d; d0) andthe weight funtion �\(r) = sin r, then��(�\; y1; y2) = ∫Q |�(y1; y)2 − �(y2; y)2| d�(y); (5.3)where �(·; ·) is the hordal metri (5.23) on Q(d; d0).Proof. For brevity, we write �(y1; y) = �1 and �(y2; y) = �2. Using (1.12),(1.15) and (1.16), we obtain��(�; y1; y2)= 12 ∫
M






�∫0 (�(r − �1) + �(r − �2)− 2�(r − �1)�(r − �2))�(r) dr d�(y)= 12 ∫
M


(�(�1) + �(�2)− 2�(max{�1; �2})) d�(y): (5.4)26







Sine � is a noninreasing funtion, we have2�(max{�1; �2})=2min{�(�1); �(�2)}=�(�1)+�(�2)−|�(�1)−�(�2)|: (5.5)Substituting (5.5) into (5.4), we obtain (5.1).If �\(r) = sin r, then �\(r) = 2 − 2 sin2 r=2. Substituting this expressioninto (5.1) and using the de�nition (4.24), we obtain (5.3).For ompleteness, we give in the beginning a very short proof of Theo-rem 2.1 in the ase of spheres.Proof of Theorem 2.1 for spheres. For the sphere Sd the hordal metri � isde�ned (2.5). We have�(y1; y)2 − �(y2; y)2 = 14(‖y1 − y‖2 − ‖y2 − y‖2)= −12(y1 − y2; y) = −�(y1; y2)(x; y); y1; y2 ∈ Sd; (5.6)where x = ‖y1−y2‖−1(y1−y2) ∈ Sd. Substituting (5.6) into (5.3), we obtain��(�\; y1; y2) = �(y1; y2) ∫Sd |(x; y)| d�(y): (5.7)It is lear that the integral in (5.7) is independent of x ∈ Sd. This proves theequality (2.8) for Sd with the onstant (Sd) = (∫Sd |(x; y)| d�(y))−1 :Proof of Theorem 2.1 for projetive spaes. We write �1;�2;� for points inthe models of projetive spaes (4.13) and (4.14). With this notation, therelation (5.3) takes the form��(�\;�1;�2) = ∫


FPn |�(�1;�)2 − �(�2;�)2| d�(�): (5.8)Sine FP n is a two-point homogeneous spae, for �1;�2 ∈ FP n with�(�1;�2) = 4v, 0 ≤ v ≤ �=4, there exists an isometry g ∈ G, suh thatg(�1) = Z(v), g(�2) = Z(−v), see (4.20). Therefore,
∫


FPn |�(�1;�)2 − �(�2;�)2| d�(�) = ∫


FPn |�(Z(v);�)2 − �(Z(−v);�)2| d�(�):(5.9)27







From the de�nition (4.23), we obtain�(Z(v);�)2−�(Z(−v);�)2= 12(‖Z(v)−�‖2−‖Z(−v)−�‖2)= 〈Z(v)− Z(−v);�〉: (5.10)The formulas (4.17) and (4.18) implyZ(v)− Z(−v) = (�(v)− �(−v) 0n−1;202;n−1 0n−1;n−1)and �(v)− �(−v) = ( 0 sin 2usin 2u 0 ) = sin 2u(�+ − �−);where �+ = 12 (1 11 1) ; �− = 12 ( 1 −1
−1 1 ) :Therefore, Z(v)− Z(−v) = sin 2v(Z+ − Z−); (5.11)where Z± = ( �± 0n−1;202;n−1 0n−1;n−1) :We have Z∗


± = Z±, Z2
± = Z±, TrZ± = 1, i.e. Z± ∈ FP n, and 〈Z+; Z−〉 = 0,i.e. Z+ and Z− are antipodal points. Using (4.24), we an write�(�1;�2) = �(Z(v); Z(−v)) = sin 2v;and the equality (5.11) takes the formZ(v)− Z(−v) = �(�1;�2)(Z+ − Z−): (5.12)Substituting (5.12) into (5.10), we �nd that�(Z(v);�)2 − �(Z(−v);�)2 = �(�1;�2)〈Z+ − Z−;�〉: (5.13)Substituting (5.13) into (5.9) and using (5.8), we obtain��(�\;�1;�2) = �(�1;�2)��(�\; Z+; Z−); (5.14)28







where ��(�\; Z+; Z−) = ∫


FPn |〈Z+ − Z−;�〉| d�(�): (5.15)The integral (5.15) is independent of �1;�2, This proves the equality (2.8)for FP n with the onstant (FP n) = (∫
FPn |〈Z+ − Z−;�〉| d�(�))−1. Notiethat in this formula any pair of antipodal points in FP n an be taken insteadof Z+; Z−. The proof of Theorem 2.1 is omplete.6 Proof of Lemma 2.1(i) In (1.22) we put y1 = y2 = y to obtain�r(y; y) = vr − v2r = vrv′r: (6.1)Applying the Cauhy{Shwarz inequality to (1.5), we obtain


|�r(y1; y2)| ≤ (�r(y1; y2)�r(y2; y2))1=2 = vrv′r: (6.2)Using the weak invariane priniple (1.28), the formula (1.25) and the bound(6.2), we obtain ��r (y1; y2) ≤ 2vrv′r: (6.3)For r ∈ [0; �℄, we have sin 12r ≃ r; os 12r ≃ � − r: (6.4)Substituting the bounds (2.3) for the volumes vr and v′r into (6.2) and (6.3)and using (6.4), we obtain (2.14). Integrating (2.14) with � ∈ W (d+1; d0+1),we obtain (2.15).(ii) We an assume that 0 < r < �, sine ��r (y1; y2) = 0 identially, ifr = 0 or r = �. For brevity, we write Æ = �(y1; y2)=2. The parameters r andÆ vary in the region 0 < r < �, 0 ≤ Æ ≤ �=2. This retangular region an berepresented as a disjoint union of three triangular regions:(a) 0 < r < Æ, 0 ≤ Æ ≤ �=2,(b) � > r ≥ � − Æ, 0 ≤ Æ ≤ �=2,() r > Æ, 0 < r < � − Æ, 0 ≤ Æ < �=2.In eah of these regions we shall prove the bound (2.16). Notie that forr ∈ [0; �℄, the funtion sin r=2 is inreasing while os r=2 is dereasing.29







Case (a). Using the relations (1.24), (2.2), (2.3) and (6.4), we obtain��r (y1; y2) ≤ vr ≃ r∫0 (sin 12u)d−1(os 12u)d0−1 du
.


r∫0 (sin 12u)d−1 du ≃ (sin 12r)d−1r
. (sin 12r)d−1(os 12r)d0−1Æ: (6.5)Case (b). Similarly, from (1.24), (2.2), (2.3) and (6.4), we obtain��r (y1; y2) ≤ v′r ≃ �∫r (sin 12u)d−1(os 12u)d0−1 du


.


�∫r (os 12u)d0−1 du ≃ (os 12r)d0−1(� − r)
. (sin 12r)d−1(os 12r)d0−1Æ (6.6)Case (). Sine 0 < �(y1; y2) < �, there exists the unique geodesi  ⊂Q(d; d0) of shortest length �(y1; y2) joining points y1; y2, see [23, Chap. VII,Se. 10℄. Let y0 denote its midpoint, i.e. y0 ∈ , �(y1; y0) = �(y2; y0) = Æ.The triangle inequality for the metri � implies that the ball Br−Æ(y0) isontained in the intersetion Br(y1) ∩Br(y2). Hene�(Br(y1) ∩ Br(y2)) ≥ vr−Æ: (6.7)Using again the relations (1.24), (2.2), (2.3) together with (6.7), we obtain��r (y1; y2) ≤ vr − vr−Æ ≃ r∫r−Æ (sin 12u)d−1(os 12u)d0−1 du


. (sin 12r)d−1(os 12(r − Æ))d0−1 ≃ (sin 12r)d−1(� − r + Æ)d0−1
≃ (sin 12r)d−1(� − r)d0−1(1 + Æ� − r)d0−1


. (sin 12r)d−1(� − r)d0−1Æ
≃ (sin 12r)d−1(os 12r)d0−1Æ: (6.8)30







Now, the bound (2.16) follows from the bounds (6.6) { (6.8). Integrat-ing (2.16) with � ∈ W (d; d0), we obtain the bound (2.17). The proof ofLemma 2.1 is omplete.III. Spherial funtions and bounds for dis-repanies and sums of distanes7 Preliminaries: Commutative spaes andspherial funtionsIn this setion we outline general fats on harmoni analysis on the two-point homogeneous spaes Q(d; d0). The spaes Q(d; d0) belong to a spei�and very important lass of ommutative spaes. The general theory ofommutative spaes an be found in [35℄, see also [24℄ and [33, vol. III,Chap. 17℄. For ompat groups this theory is rather simple. We outline theneessary fats in the form onvenient in the subsequent alulations.Let G be a ompat group and K ⊂ G a losed subgroup. Denote by �Gand �K Haar measures on the groups G and K, orrespondingly, �G(G) =�K(K) = 1. As before, � denotes the invariant measure on the homogeneousspae Q = G=K, and �G = �K×�. We write Lq(G), q = 1; 2, for the spae offuntions on G integrable with the power q with respet to the Haar measure,Lq(G=K) and Lq(K \G=K) for the subspaes of funtions in Lq(G) satisfyingf(gk) = f(g), k ∈ K, and, orrespondingly, f(k1gk2) = f(g); k1; k2 ∈ K.Obviously, funtions in these subspaes an be thought of as funtions onQ = G=K. The spaes L1(K \ G=K) ⊂ L1(G=K) ⊂ L1(G) are assoiativeBanah algebras with the onvolution produtf1 ∗ f2(g) = ∫G f1(gh−1)f2(h) d�G(h): (7.1)If the algebra L1(K \ G=K) is ommutative, the pair of groups K ⊂ G isalled a Gelfand pair and the orresponding homogeneous spae Q = G=Kis alled a ommutative spae, see [35℄. Two large lasses of ommutativespaes are Riemannian symmetri spaes and two-point homogeneous spaes,see [24, 35℄. The spaes Q(d; d0) belong to both of these lasses.31







Consider the following unitary representation of a group G in the spaeL2(G=K) T (g)f(h) = f(g−1h); f ∈ L2(G=K); g; h ∈ G: (7.2)and its deomposition into the orthogonal sumT = ⊕̂l≥0 Tl; L2(G=K) = ⊕̂l≥0 Vl (7.3)of unitary irreduible representations Tl in �nite-dimensional spaes Vl. Letml = dimVl, and (·; ·) denote the inner produt in Vl.If Q = G=K is a ommutative spae, then the irreduible representationsTl ourring in (8.3) are pair-wise nonequivalent and eah subspae Vl in(7.3) ontains a single K-invariant unit vetor e(l), i.e. Tl(k)e(l) = e(l) for allk ∈ K.Fix an orthonormal basis e1; : : : ; eml in the spae Vl, suh that e1 = e(l)and de�ne the matrix elements t(l)ij (g) = (Tl(g)ei; ej). Then, we havet(l)ij (g1g2) = ml∑p=1 t(l)ip (g1)t(l)pj (g2) and t(l)ij (g−1) = t(l)ji (g): (7.4)We also have the orthogonality relations
∫G t(l)ij (g)t(l′)ij (g)d�G(g) = m−1l Æll′Æii′Æjj′; (7.5)where Æab is Kroneker's symbol. The sets of funtions {m1=2l t(l)1j (g), j =1; : : : ; ml, l ≥ 0} and {m1=2l t(l)11 (g); l ≥ 0} are orthonormal bases in the spaesL2(G=K) and L2(K \G=K), orrespondingly, see [33, vol. I, Se. 2.3℄ ( notiethat in [33℄ the subgroup K in a Gelfand pair K ⊂ G is alled massive ).The matrix elements 'l(g) = t(l)11(g) are alled zonal spherial funtionsor simply spherial funtions (the matrix elements t(l)1j (g), j = 2; : : : ; ml arealled assoiated spherial funtions). The de�nition of 'l(g) and the formula(7.4) immediately imply that all spherial funtions are ontinuous, 'l(e) = 1,where e is the unit element in G, |'l(g)| ≤ 1 for all g ∈ G,'l(g1g−12 ) = ml∑j=1 t(l)1j (g1)t(l)1j (g2); and 'l(g) = 'l(g−1): (7.6)32







It follows from (7.6) that 'l is positive de�nite:
∑1≤i;j≤N ij'l(g−1i gj) ≥ 0 (7.7)for any g1; : : : ; gN ∈ G and any omplex numbers 1; : : : ; N .From (7.1), (7.5) and (7.6), we obtain the following relation for the on-volution of two spherial funtions('l ∗ 'l′)(g) = Æll′m−1l 'l(g): (7.8)Putting g = e in (7.8), we obtain the following formula for the dimensionsml of irreduible representations in (7.3)ml = ∫G |'l(g)|2 d�G(g)−1 : (7.9)Funtions f ∈ L2(K \G=K) have the following expansionsf(g) ∼∑l≥0 mll(f)'l(g); (7.10)where ∼ denotes the L2-onvergene, Fourier oeÆients are given byl(f) = ∫G f(g)'l(g) d�G(g); (7.11)and Parseval's equality has the form ∫G |f(g)|2 d�G(g) = ∑l≥0ml |l(f)|2:Atually, this is the Peter{Weyl theorem written for the spae L2(K \G=K),see [33, vol. I, Chap. 2℄Substituting the expansion (7.9) for two funtions f1; f2 ∈ L2(K \G=K)into (7.1) and using the relation (7.8), we obtainf1 ∗ f2(g) =∑l≥0 ml l(f1) l(f2)'l(g): (7.12)Applying the Cauhy{Shwarz inequality to (7.12), we observe that the series(7.12) onverges absolutely. Sine the spherial funtions 'l are ontinuousand |'l(g)| ≤ 1, we onlude that the onvolution f1 ∗ f2 is a ontinuousfuntion. 33







The fats listed above are true for all ompat ommutative spaes. Nowwe wish to speify these fats for two-point homogeneous spaes.Let K ⊂ G be ompat groups and Q = G=K a two-point homogeneousspae with a G-invariant metri �. Suppose that K is the stabilizer of a �xedpoint y0 ∈ Q. It follows from the de�nition, see setion 2, that the subgroupK is transitive on eah sphere �r(y0) = {y : �(y; y0) = r} ⊂ Q, r ∈ R.Thus, any funtion f ∈ Lq(K \ G=K), as a funtion on Q, is onstant oneah sphere �r(y0), and we an writef(g) = F (�(gy0; y0)) (7.13)with a funtion F (r), r ∈ R. In other words, the set of double osets K\G=Kis in one-to-one orrespondene with the set of radii R.Using (7.13), the onvolution (7.1) an be written in the form(f1 ∗ f2)(g−11 g2) = ∫G F1(�(g1y0; gy0))F2(�(gy0; g2y0)) d�(g)= ∫Q F1(�(y1; y))F2(�(y; y2)) d�(y); (7.14)where y1 = g1y0, y2 = g2y0.For a funtion of the form (7.13) we have
∫G |f(g)|2 d�G(g) = ∫Q |F (�(y; y0))|2 d�(y) = ∫


R


|F (r)|2 dvr; (7.15)where the last integral is thought of as a Stieltjes integral with the non-dereasing funtion vr = �(Br(y0)), r ∈ R. It follows from (7.13) and(7.15) that the mapping f → F is an isometry of the spae L2(K \ G=K)onto the spae L2(R; vr) of funtions F (r), r ∈ R, with the norm ‖F‖ =(∫
R
|F (r)|2 dvr)1=2:Sine the spherial funtions 'l ∈ L2(K \ G=K), they an be written inthe form (7.13): 'l(g) = �l(�(gy0; y0)); (7.16)where �l ∈ L2(R; vr), and putting y1 = g1y0, y2 = g2y2, g1; g2 ∈ G, we anwrite 'l(g−11 g2) = �l(�(g1y0; g2y0)) = �l(�(y1; y2)): (7.17)34







It follows from the properties of 'l that �l are ontinuous and real-valued,�l(0) = 1, |�l(r)| ≤ 1, r ∈ R. The set of funtions {m1=2l �l; l ≥ 0} isan orthonormal basis in the spae L2(R; vr) and the expansion (7.10) forF ∈ L2(R; vr) takes the formF (r) ∼∑l≥0 mll(F ) �l(r) (7.18)with the Fourier oeÆientsl(F ) = ∫
R


F (r)�l(r) dvr (7.19)and Parseval's equality ∫
R
|F (r)|2 dvr =∑l≥0ml |l(F )|2:Comparing the relations (7.12) and (7.14), we arrive at the followingformula


∫Q F1(�(y1; y))F2(�(y; y2)) d�(y) =∑l≥0 mll(F1)l(F2)�l(�(y1; y2)): (7.20)For the spaes Q = Q(d; d0) the matrix elements t(l)1j (g) are eigenfuntionsof the Laplae{Beltrami operator on Q and the spherial funtions 'l(g) =t(l)11(g) are eigenfuntions of the radial part of this operator and an be foundexpliitly, see [20, p. 178℄, [24, Chap. V, Theorem. 4.5℄, [25, pp. 514{512,543{544℄, [35, Theorem. 11.4.21℄. For the funtions �l in (7.16), we have�l(r) = �(�;�)l (r) = P (�;�)l (os r)P (�;�)l (1) ; r ∈ R = [0; �℄; (7.21)where P (�;�)l (z) are the standard Jaobi polynomials of degree l normalizedby P (�;�)l (1) = (� + ll ) = (� + 1) : : : (�+ l)l! ≃ l�; (7.22)see [32℄. The parameters �; � in (7.22) and the dimensions d, d0 in Q(d; d0)are related by � = 12d− 1; � = 12d0 − 1 (7.23)In what follows, we use the parameters �; � along with the dimensions d,d0, assuming they are related by (7.23). With this assumption we have35







� ≥ � ≥ −1=2 always, sine d and d0 ≥ 1. Notie that |P (�;�)l (z)| ≤ P (�;�)l (1)for z ∈ [−1; 1℄ and � ≥ � ≥ −1=2.We have the following orthogonality relations for Jaobi polynomials,see [32, Eq. (4.3.3)℄,�∫0 P (�;�)l (os u)P (�;�)l′ (os u)(sin 12u)d−1(os 12u)d0−1 du= (12)�+�+1 1∫
−1 P (�;�)l (z)P (�;�)l′ (z)(1− z)�(1 + z)� dz =M−1l Æll′ ; (7.24)where M0 = �(d; d0) andMl = (2l + � + � + 1)�(l + 1)�(l + � + � + 1)�(l + � + 1)�(l + � + 1) ≃ l; l ≥ 1: (7.25)Substituting the expressions for spherial funtions (7.16), (7.21) into theformula (7.9) and using (7.24), we obtain the following expliit formula forthe dimensions ml of irreduible representations in (7.3):ml =MlB(d=2; d0=2)(� + ll )2


≃ ld−1: (7.26)For funtions F ∈ L2([0; �℄; vr) the expansion (7.18) takes the formF (r) ∼∑l≥0 Ml Cl(F )P (�;�)l (os r); (7.27)with the Fourier-Jaobi oeÆientsCl(F ) = �∫0 F (u)P (�;�)l (os u) (sin 12u)d−1 (os 12u)d0−1 du: (7.28)and Parseval's equality ∫
R
|F (r)|2 dvr = �(d; d0)∑l≥0Ml |Cl(F )|2: TheFourier{Jaobi oeÆients (7.28) and Fourier oeÆients (7.19) are relatedby l(F ) = Cl(F ) �(d; d0)P (�;�)l (1) ; l ≥ 0: (7.29)36







Using the relations (7.21) and (7.29), we an write the formula (7.20) inthe form
∫Q F1(�(y1; y))F2(�(y; y2)) d�(y)= �(d; d0)∑l≥0 Ml Cl(F1)Cl(F2) P (�;�)l (os �(y1; y2))P (�;�)l (1) : (7.30)This formula will be used in the next setion to obtain spherial funtionexpansions for disrepanies and metris .The ondition of positive de�niteness (7.7) for the spherial funtions(7.16), (7.22) will be used in setion 10 in the following speial form'l[DN ℄ = ∑x1;x2∈DN P (�;�)l (os �(x1; x2))P (�;�)l (1) ≥ 0; (7.31)where DN ⊂ Q(d; d0) is an arbitrary N -point subset. Obviously, the ondi-tions (3.3), (3.4) in the de�nition of t-designs DN ⊂ Q(d; d0) are equivalentto the following equalities'l[DN ℄ = 0; l = 0; 1; : : : ; t; (7.32)see also [4, 25℄. The relations (7.32) an be used as an alternative to thede�nition of t-designs given before in setion 3, see [4, 25℄.8 Spherial funtion expansions for disrep-anies and metrisIn this setion we obtain expliit spherial funtion expansions for the kernels(1.5), (1.7) and the symmetri di�erene metris (1.12), (1.13) on the spaesQ(d; d0). The oeÆients of these expansions will be estimated in the nextsetion.First of all, we reall the main fats on Jaobi polynomials P (�;�)l (z),z ∈ [−1; 1℄, � ≥ −1=2, � ≥ −1=2, as l → ∞. It is known, see [32℄, that Jaobipolynomials are behaved extremely irregularly on the interval z ∈ [−1; 1℄:inside the interval they osillate and are of order l−1=2, while in neighborhoodsof the end points z = 1 and z = −1 they inrease rapidly up to the quantities37







of order l� and l�, orrespondingly. It is onvenient to introdue the followingfuntion to desribe suh a behavior of Jaobi polynomials:J (�;�)l (r) = (sin 12r)�+ 12 (os 12r)�+ 12P (�;�)l (os r); r ∈ [0; �℄: (8.1)We have the following two bounds.(a) In the interval r ∈ [0l−1; � − 0l−1℄, where 0 > 0 is an arbitraryonstant, we have the asymptoti formulaJ (�;�)l (r) = (�l)−1=2{os[(l + l0)r + r0℄ +O((l sin r)−1)}; (8.2)where l0 = (� + � + 1)=2, r0 = −�(2� + 1)=4, see [32, Theorem. 8.21.3℄.(b) In the intervals r ∈ [0; 0l−1℄ and r ∈ [�−0l−1; �℄, we have the boundJ (�;�)l (r) = O(l−1=2), see [32, Theorem. 7.32.2℄. This bound together with(8.2) implies the following bound
|J (�;�)l (r)| < (l + 1)−1=2; l ≥ 0; (8.3)whih holds uniformly for all r ∈ [0; �℄ with the onstant  depending onlyon �; � and 0.Consider the measure of the intersetion of two balls Br(y1) and Br(y2)in the spae Q = Q(d; d0)�r(y1; y2) = �(Br(y1) ∩Br(y2)) = ∫Q �r(�(y1; y))�r(�(y; y2)) d�(y); (8.4)where �r(·) is the harateristi funtion of the interval [0; r℄, 0 ≤ r ≤ �, see(1.15).Lemma 8.1. The kernel (8.4) has the following spherial funtion expansion�r(y1; y2) = v2r + �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)(os �(y1; y2))P (�;�)l (1) ; (8.5)where vr = �(Br(y)) andal(r) = (sin 12r)2d(os 12r)2d0 {P (�+1;�+1)l−1 (os r)}2= (sin 12r)d−1(os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 : (8.6)38







The oeÆients in (8.5) satisfyMlal(r) ≤ (sin 12r)d−1(os 12r)d0−1 (8.7)with a onstant depending only on d and d0. Furthermore, we have the equal-ity �(d; d0)∑l≥1 l−2Mlal(r) = vr − v2r = vrv′r: (8.8)Proof. Applying the expansion (7.30) to the integral (8.4), we obtain�r(y1; y2) = �(d; d0)∑l≥0 Ml{Cl(�r)}2 P (�;�)l (os �(y1; y2))P (�;�)l (1) ; (8.9)where Cl(�l) are Fourier-Jaobi oeÆients (7.28) of the harateristi fun-tion �r. We haveCl(�r) = r∫0 P (�;�)l (os u)(sin 12u)d−1(os 12u)d0−1 du= (12) d−12 + d0−12 1∫os r (1− z)�(a+ z)�P (�;�)l (z) dz: (8.10)In view of (2.2), we have C0(�r) = �(d; d0)−1vr. For l ≥ 1 we use Rodrigues'formula for Jaobi polynomials, see [32, Eq. (4.3.1)℄,P (�;�)l (z) = (−1)l2ll! (1− z)−�(1 + z)−� dldzl {(1− z)l+�(1 + z)l+�} : (8.11)Substituting (8.11) into (8.10), we obtain1∫os r (1− z)�(1 + z)�P (�;�)l (z) dz= (2l)−1(1− os r)�+1(1 + os r)�+1P (�+1;�+1)l−1 (os r)= 2�+�+1l−1(sin 12r)2�+2(os 12r)2�+2P (�+1;�+1)l−1 (os r):39







In view of the de�nitions (8.1) and (7.23), we haveCl(�r) = l−1(sin 12r)d(os 12r)d0P (�+1;�+1)l−1 (os r)= l−1(sin 12r) d−12 (os 12r) d0−12 J (�+1;�+1)l−1 (r): (8.12)Substituting (8.12) into (8.9), we obtain the formulas (8.5) and (8.6).The bound (8.7) follows from (8.6), sine Ml ≃ l, see (7.25), andJ (�+1;�+1)l−1 (r) . l−1=2, see (8.3).From (8.4), we obtain �r(y; y) = vr. Putting y1 = y2 = y in (8.5), weobtain (8.8). In fat, the formula (8.8) is Parseval's equality for the expansion(7.27) of the harateristi funtion �r.An immediate orollary of Lemma 3.1 is the following.Theorem 8.1. For any spae Q(d; d0) the following spherial funtion ex-pansions hold:(i) For the kernels �r(y1; y2), see (1.5), and the metris ��r (y1; y2), see(1.13), we have�r(y1; y2) = �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)l (os �(y1; y2))P (�;�)l (1) ; (8.13)
��r (y1; y2) = 〈��r 〉 − �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)l (os �(y1; y2))P (�;�)l (1) ;= �(d; d0)∑l≥1 l−2Mlal(r)[1− P (�;�)l (os �(y1; y2))P (�;�)l (1) ] ; (8.14)where 〈��r 〉 = vrv′r is the average value of metri ��r , see (1.25), and theoeÆients al(r) are de�ned in (8.6).(ii) If the weight funtion � ∈ W (d; d0), then for the kernels �(�; y1; y2),see (1.7), and the metris ��(�; y1; y2), see (1.12), we have�(�; y1; y2) = �(d; d0)∑l≥1 l−2MlAl(�)P (�;�)l (os �(y1; y2))P (�;�)l (1) ; (8.15)40







��(�; y1; y2) = 〈��(�)〉 − �(d; d0)∑l≥1 l−2MlAl(�)P (�;�)l (os �(y1; y2))P (�;�)l (1) ;= �(d; d0)∑l≥1 l−2MlAl(�)[1− P (�;�)l (os �(y1; y2))P (�;�)l (1) ] ; (8.16)where 〈��(�)〉 is the average value of metri ��(�), see (1.17), and the oef-�ients Al(�) are de�ned byAl(�) = �∫0 �(a)al(u) du: (8.17)Proof. (i) Substituting the expansion (8.5) into (1.22) and (1.24), we obtainthe expansions (8.13) and (8.14). Notie that in the seond equality in (8.14)the formula (8.8) has been taken into aount.(ii) In view of the bound (8.7), the series (8.13) and (8.14) an be inte-grated term by term with � ∈ W (d; d0). This gives the expansions (8.15)and (8.16).Notie that by Theorem 2.1 the hordal metri � is a symmetri di�erenemetri (1.12) with the weight funtion �\ and, therefore, it has the expansion(8.16). At the same time, the hordal metri an be written as follows�(y1; y2) = (�; �)[1− P (�;�)1 (os �(y1; y2))P (�;�)1 (1) ]1=2 ; (8.18)with the onstant (�; �) = (� + 1=� + � + 2)1=2 = (d=d+ d0)1=2 :Indeed, by Rodrigues' formula (8.11) P (�;�)1 (z) = 12(�+�+2)z+ 12(�−�),and 12(1− z) = � + 1�+ � + 2 [1− P (�;�)1 (z)P (�;�)1 (1)] : (8.19)On the other hand, by the de�nitions (2.4) and (4.24)�(y1; y2) = sin 12�(y1; y2) = [12 (1− os �(y1; y2))]1=2 : (8.20)Comparing (8.19) and (8.20), we obtain (8.18).41







9 Bounds for Fourier-Jaobi oeÆientsIn this setion we estimate the following oeÆientsal(r) = (sin 12r)d−1(os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 ; (9.1)Al(�) = �∫0 �(u)al(u) du; (9.2)Al(�r) = �∫0 �r(u)al(u) du = r∫0 al(u) du; (9.3)where J (�;�)l (·) is de�ned in (8.1). In fat, we prove speial weighted boundsfor Jaobi polynomials.Lemma 9.1. Let the weight funtion � ∈ W (d; d0), � 6= 0, then the followingbounds hold:(i) For 0 < r ≤ � and l ≥ 1, we haveAl(�) > r−d+1al(r): (9.4)(ii) There exists a onstant L ≥ 1, depending only on � and �, suh thatfor 0 < r ≤ �=2 and lr > L, we haveAl(�) < Cr−dAl(�r): (9.5)The positive onstants  and C in (9.4) and (9.5) depend only on �, �and �.Proof. The asymptoti formula (8.2) implies the following relationsJ (�+1;�+1)l−1 (r) = (�l)−1 {sin[(l + l0)r + r0℄ +O((l sin r)−1)} ; (9.6)
{J (�+1;�+1)l−1 (r)}2 = {12 − 12 os 2[(l + l0)r + r0℄ +Rl(r)} ; (9.7)where the error term Rl(r) satis�esRl(r) = {O(l−1) for 0 < 0 ≤ r ≤ � − 0;O((lr)−1) for l−1 ≤ r ≤ �=2; (9.8)42







where 0 < 0 < �=2 is arbitrary �xed.(i) Sine � ∈ W (d; d0), � 6= 0, a suÆiently small onstant 0 < 0 < �=2an be hosen to satisfy�−0∫0 �(u)(sin 12u)d−1(os 12u)d0−1 du
≥ 12 �∫0 �(u)(sin 12u)d−1(os 12u)d0−1 du = 12‖�‖d;d0 > 0: (9.9)Using (9.9), (9.7) and the �rst bound in (9.8), we obtainAl(�) ≥ �−0∫0 �(u)(sin 12u)d−1(os 12u)d0−1 {J (�+1;�+1)l−1 (u)}2 du


≥ (�l)−1{14‖�‖d;d0−12 �−0∫0 �(u)(sin 12u)d−1(os 12u)d0−1 os 2[(l+l0)u+r0℄ du+O(l−1)} = (4�l)−1‖�‖d;d0 + o(1); (9.10)where in the last equality the Riemann-Lebesgue lemma has been used.Hene Al(�) ≥ (8�l)−1‖�‖d;d0 (9.11)for all suÆiently large l > l1. We havemin1≤l≤l1 lAl(�) > 0; (9.12)sine, Al(�) > 0 for all l ≥ 1. From (9.11) and (9.12), we onlude that thebound Al(�) > 1l−1 (9.13)holds for all l ≥ 1 with a onstant 1 > 0 depending only on �; � and �.From the other hand, the bound (8.3) impliesr−d+1al(r) = r−d+1(sin 12r)d−1(os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 ≤ 2l−1 (9.14)Comparing the bounds (9.13) and (9.14), we obtain the bound (9.4) with = 1−12 . 43







(ii) Let 0 < r ≤ �=2 and lr ≥ L, where L ≥ 1 is a onstant whih will be�xed later. From the de�nition (9.3), we obtainr−dAl(�r) ≥ r−d r∫r=2 al(u) du
≥ r−d(sin 14r)d−1(os 12r)d0−1 r∫r=2 {J (�+1;�+1)l−1 (u)}2 du> 1r−1 r∫r=2 {J (�+1;�+1)l−1 }2 du; (9.15)where one an put 1 = (1=8)d−1(1=2)d0−1. Using the asymptoti formula(9.7) and the seond bound in (9.8), we obtainr−1 r∫r=2 {J (�+1;�+1)l−1 (u)}2 du= (�l)−1

14 − 12r−1 r∫r=2 os 2[(l + l0)u+ r0℄ du+O(L−1) : (9.16)The integral on the right-hand side in (9.16) is of order O((rl)−1) . O(L−1).Substituting (9.16) into (9.15), we obtainr−dAl(�r) > 1(4�l)−1 {1 +O(L−1)} : (9.17)Now, in view of (9.17), we an �x a suÆiently large onstant L, dependingonly on � and �, to satisfyr−dAl(�r) > 1(8�l)−1 = 2l−1: (9.18)From the other hand, using the bound (8.3) and the de�nitions (9.2) and(2.13), we obtain Al(�) ≤ C2‖�‖d;d0l−1 = C3l−1: (9.19)Comparing (9.18) and (9.19), we obtain the bound (9.5) with C = C3−12 .44







10 Proof of Theorems 2.2 and 3.1Theorems 2.2 and 3.1 are immediate orollaries of bounds on disrepaniesgiven below in Theorem 10.1.By Theorem 9.1 we an write the disrepanies (1.4) and (1.6) in thefollowing form �r[DN ℄ = �(d; d0)∑l≥1 l−2Mlal(r)'l[DN ℄; (10.1)�[�;DN ℄ = �(d; d0)∑l≥1 l−2MlAl(�)'l[DN ℄; (10.2)�[�r;DN ℄ = �(d; d0)∑l≥1 l−2MlAl(�r)'l[DN ℄; (10.3)here DN ⊂ Q(d; d0) is an arbitrary N -point subset, and the quantities'l[DN ℄ ≥ 0 are de�ned in (7.31). The series (10.1) { (10.3) onverge andall their terms are nonnegative.Theorem 10.1. Let the weight funtion � ∈ W (d; d0), � 6= 0, then thefollowing bounds hold:(i) For any N-point subset DN ⊂ Q(d; d0) and an arbitrary r; 0 < r ≤ �,we have �[�;DN ℄ > r−d+1�r[DN ℄; (10.4)(ii) There exists a onstant L ≥ 1, depending only d and d0, suh that forany N-point t-design DN ⊂ Q(d; d0) with t ≥ 2L=�, we have�[�;DN ℄ < Cr−d�[�r;DN ℄; r = Lt−1: (10.5)The positive onstants  and C in (10.4) and (10.5) depend only on d, d0and �.Proof. (i) Applying the bound (9.4) to the series (10.1) and (10.2), we obtainthe bound (10.4).(ii) If DN ⊂ Q(d; d0) is a t-design, then '[DN ℄ = 0 for l = 0; 1; : : : ; t, see(7.32). Hene, the summation in all series (10.1) { (10.3) is taken over l > t.Let L be hosen as the onstant indiated in Lemma 9.1(ii). If r = Lt−1,then we have 0 < r ≤ �=2 for t ≥ 2L=� and lr > L for l > t. Applying thebound (9.5) to the series (10.2) and (10.3), we obtain the bound (10.5).45







Now we are in position to prove Theorems 2.2 and 3.1.Proof of Theorem 2.2. As it was explained in omments to Theorem 2.2we have to prove only the left bound in (2.19). From the de�nitions ofdisrepanies (1.2), (1.4), we onlude that �r[DN ℄ ≥ 〈Nvr〉2; where 〈z〉 =min{|z− n|; n ∈ Z} is the distane of z ∈ R from the nearest integer. De�ner by Nvr = 1=2, then �r[DN ℄ ≥ 1=2. In view of (2.3), r ≃ N−1=d and thebound (10.4) implies the left bound in (2.19).Proof of Theorem 3.1. First of all, we notie that
∫Q (#{Br(y) ∩ DN})2 d�(y) = ∫Q ( ∑y1∈DN �(Br(y); y1))2 d�(y)= ∫Q ( ∑y1∈DN �(Br(y1); y))2 d�(y) = ∑y1;y2∈DN �(Br(y1) ∩Br(y2)); (10.6)here the formula (1.15) has been used. Comparing (10.6) with (1.23), weobtain �r[DN ℄ < ∫Q (#{Br(y) ∩ DN})2 d�(y) ≤ (�[DN ; r℄)2; (10.7)where �[DN ; r℄ is de�ned in (3.5). Therefore�[�r;DN ℄ = r∫0 �u[DN ℄ du < r(�[DN ; r℄)2; (10.8)sine �[DN ; r℄ is a nondereasing funtion of r. Substituting (10.8) into (10.5),we obtain �[�;DN ℄ < Cr−d+1(�[DN ; r℄)2: (10.9)If r = Lt−1, then the bound (10.9) oinides with the bound (3.6).11 Additional remarksIn this setion we disuss very briey some questions related with the matterof the present paper. 46







(i) First of all we explain the appearane of anomalously small errors inthe formula (1.38). It is known that for the sphere Sd the geodesi metri �an be written as follows�(y1; y2) = ��(B�=2(y1)�B�=2(y2)); y1; y2 ∈ Sd; (11.1)where B�=2(y) = {x ∈ Sd : �(x; y) < �=2} = {x ∈ Sd : (x; y) > 0} isthe hemisphere entered at y ∈ Sd and � the standard Lebesgue measurenormalized by (1.1), see [18, Se. 6.4℄. Using (1.13), we an write (11.1) inthe form �(y1; y2) = �(1− 2�(B�=2(y1) ∩ B�=2(y2)) (11.2)Notie that in this form, the equality (11.2) is obvious: it su�ers to notiethat the measure of the intersetion of two hemispheres in (11.2) is a linearfuntion of �(y1; y2). Comparing (11.2) and (1.24) and taking into aountthat v�=2 = 1=2, we an write�(y1; y2) = 2����=2(y1; y2): (11.3)Hene, the geodesi metri � on the sphere Sd is a symmetri di�erenemetri.Using the formula (11.3) and the invariane priniple (1.28) for the sphereSd, we �nd that �[DN ℄ = 〈�〉N2 − 2���=2[DN ℄;where ��=2[DN ℄ = ∫Sd �[B�=2(y);DN ℄2 d�(y)where �[B�=2(y);DN ℄ = #{B�=2(y)∩DN}−Nv�=2: and 〈�〉 = �=2, see (1.25).An N -point subset DN ⊂ Sd an be represented as a disjoint union of twosubsets DN = D(0)2a ∪ D(1)b ; N = 2a + b; where D(0)2a = {x ∈ DN : −x ∈ DN}and D(1)b = {x ∈ DN : −x =∈ DN}. We have�[B�=2(y);DN ℄ = �[B�=2(y);D(0)2a ℄ + �[B�=2(y);D(1)b ℄:It is lear that �[B�=2(y);D(0)2a ℄ = 0 for all y ∈ Sd exept the hyperplanes
〈y; x〉 = 0, x ∈ D(0)2a . Hene, ��=2[DN ℄ = ��=2[D(1)b ℄:Let N = 2a be even and DN = D(0)2a , then ��=2[DN ℄ = 0. Let N = 2a+ 1be odd and DN = D(0)2a ∪ D(1)1 , where D(1)1 = {x0} is a one-point subset. A47







simple alulation shows that ��=2[{x0}℄ = �=2. Therefore, ��=2[DN ℄ = �=2,and the relation (1.38) follows.A similar proof of the relation (1.38) was reently given in [8, Theorem3.5℄. Additionally, these authors established the exat value "N = �=2 forodd N .The relation (1.38) an be also derived from the spherial funtion expan-sion (8.14) for the geodesi distane on Sd. For the sphere Sd, we have d0 = d,� = � = d=2− 1, and Jaobi polynomials P (�;�)l (z) oinide, up to onstantfators, with Gegenbauer polynomials. Furthermore, P (�;�)l (z) for even andodd l are, orrespondingly, even and odd funtions of z, see [32, Se. 4.7℄.Comparing the formula (11.3) and the expansion (8.14) for r = �=2, weobtain the following expansion for the geodesi distane on Sd�(y1; y2) ==2� [14−(14)d�(d; d0) ∑odd l≥1 l−2Ml {P (�+1;�+1)l−1 (0)}2 P (�;�)l (os �(y1; y2))P (�;�)l (1) ]


= 2�(14)d�(d; d0) ∑odd l≥1 l−2Ml {P (�+1;�+1)l−1 (0)}2 [1− P (�;�)l (os �(y1; y2))P (�;�)l (1) ] :(11.4)The expansion ontains spherial funtions only with odd indexes. For oddl for the sums (7.31), we have 'l[D(0)2a ℄ = 0 and 'l[D(0)2a ∪ D(1)1 ℄ = 1, wherethe subsets D(0)2a and D(0)2a ∪ D(1)1 are de�ned as above. Substituting theseequalities into (11.4), we obtain the relation (1.38).(ii) The L�evi{Shoenberg kernel on an arbitrary metri spae M with ametri � is de�ned byk(�; y1; y2) = �(y1; y0) + �(y2; y0)− �(y1; y2); (11.5)where y0 ∈ M is a �xed point, see [20℄ The metri � an be reovered fromthe kernel k by �(y1; y2) = 2(k(�; y1; y1) + k(�; y2; y2)− 2k(�; y1; y2)):If the kernel (11.5) is positive de�nite, i.e. ∑1≤i;j≤N �ijk(�; yi; yj) ≥ 0for any points y1; : : : ; yN ∈ M and any omplex numbers 1; : : : ; N , then itan be thought of as a ovariane of a Gaussian proess (a random �eld) on
M. The standard methods of probability theory enable one to onstrut suhrandom �eld as a mappingW : M ∋ y → W (y) =W (y; !) ∈ L2(
; d!); suhthat W (y0) = 0;EW (y1) = 0, EW (y1)W (y2) = k(�; y1; y2) and E(W (y1) −48







W (y2))2 = �(y1; y2), for all y1; y2 ∈ M. Here L2(
; d!) is the Hilbert spaeof real-valued square-integrable random variables on a probability spae 
with a probability measure d! and E denotes the expetation on L2(
; d!).Furthermore, if M is a Riemannian manifold and � is H�older ontinuouswith respet to the geodesi distane �, i.e. �(y1; y2) < �(y1; y2)� with someonstants  and � > 0, then for almost all ! ∈ 
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