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ABSTRACT

The paper is devoted to the study of some well-knonw combinatorial functions on
the symmetric group &,, — the major index maj, the descent number des, and
the inversion number inv — from the representation-theoretic point of view. We
show that each of these functions generates in the group algebra the same ideal,
and the restriction of the left regular representation to this ideal is isomorphic to
the representation of &,, in the space of n x n skew-symmetric matrices. This
allows us to obtain formulas for the functions maj, des, inv in terms of matrices of
an exceptionally simple form. These formulas are applied to find the spectra of the
elements under study in the regular representation, as well as to deduce a series
of identities relating these functions to one another and to the number of fixed
points fix.
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1 Introduction

In the representation theory of noncommutative locally compact groups, one of the oldest ideas,
which generalizes the idea of Fourier transform, is that the dual object to every element of the
group algebra is the operator-valued function defined on the space of equivalence classes of
irreducible representations whose value at a given class is the type (up to equivalence) of the
unitary operator corresponding to the given element in representations of this class.

Strange as it may seem, this idea, which has been fruitfully employed in the representation
theory of Lie groups, has, to the authors’ knowledge, little popularity in the representation
theory of finite groups and, in particular, of the symmetric group &,,. In the elaboration of
this idea, we can suggest the following definition.

Definition 1. The dual complezity of an element a of the group algebra C[G] is the dimension
of the cyclic subspace (ideal) Ide(a) = C[G]a generated by all left translations of this element.

For example, the dual complexity of every group element (regarded as a §-function) coincides
with the order of the group, i.e., is the maximum possible. What can be said of elements of
the group algebra with small dual complexity? Is not there some dependence, or rather inverse
dependence, between the size of the support of an element and its dual complexity, as in the
classical theory of Fourier transform? Such questions for the symmetric group directly relate
combinatorics to representation theory, and seem not to have been studied. Our paper should
be regarded as the first steps in this direction.

The following example was essentially observed (in a quite different connection and in other
terms) in [1]. Consider the distance from a permutation g € &,, to the identity of &,, in the
word metric with respect to the Coxeter generators, or, in other words, the inversion number
inv(g). The duality of the corresponding element of C[&,,] is equal to n(n — 1)/2 + 1, and the
representation in the ideal Ide(inv) is isomorphic to the sum of the identity representation and
the representation in the space of n x n skew-symmetric matrices.

We were interested in more complicated statistics® on the symmetric group, such as the
major index maj(g) and the number of descents des(g), see, e.g., [13]. The study of these
statistics goes back to MacMahon [9], and by now there is an extensive literature devoted
to different problems of enumerative combinatorics involving these functions, which play an
important role in the combinatorics of permutations (let us mention, for instance, the papers
3,4, 12, 5, 7, 8, 10]). Note also the recent appearance (in a slightly different version, for Young
tableaux) of the major index as a key element of a construction establishing a relation between
representations of the infinite symmetric group and the affine algebra EI\Q , see [14]. It was an
additional motivation for investigating not purely combinatorial, but representation-theoretic
properties of the statistics under consideration, which up to now have not been given attention.

The attempt to consider the complexity of these elements in the sense of Definition 1 led to
unexpected results: not only the complexity turned out to be also equal to a humble value of
n(n —1)/2+ 1, but it appeared that the corresponding ideals Ide(maj) and Ide(des) coincide
with Ide(inv) and thus can also be realized (up to the subspace of constants) in the space of
skew-symmetric matrices.

The elaboration of this idea allowed us to obtain for the functions maj, des, inv, originally
defined by nontrivial combinatorial conditions, the surprisingly simple formulas (7)—(9) in terms

3According to a tradition which originates in physics, functions on the symmetric group are often called
statistics of permutations.



of matrices of a very simple form. The usefulness of these formulas is illustrated by the fact
that they allow one to easily find the spectra of the elements under consideration in the regular
representation (Theorems 4 and 5), as well as to obtain a whole series of new simple identities
relating these functions to each other and to another important function — the number of fixed
points fix (Corollaries 2, 4).

In Section 2 we briefly recall the definitions and basic properties of the statistics under study.
The main results are presented in Section 3: we explicitly construct and study in detail the
isomorphism between the representations of the group &, in the ideal Ide(maj) = Ide(des) =
Ide(inv) and in the space of skew-symmetric matrices, and obtain formulas for these statistics
as simple matrix elements. In Section 4 these formulas are applied to obtain corollaries: to find
the spectra of the functions under study in the regular representation and to derive a series of
identities involving them. Finally, in Section 5 we briefly describe the relation of our results to
investigations of the so-called Solomon descent algebra.

2 The combinatorial functions maj, des, inv

By &,, we denote the symmetric group of order n, and by 7y, the irreducible representation of
G, corresponding to a Young diagram .

We consider the following functions of permutations o € &,, (see, e.g., [13]): the descent
number

des(o0) = # Des(o), where Des(o)={i=1,...,n—1:0() >0o(i+1)},

the major index

i€Des(o)
the inversion number
inv(o) =#{i <j:o(i) >a(j)},

and the number of fixed points

fix(o)=#{i=1,...,n:0(1) =1i}.

The statistics maj and inv are MacMahonian, i.e., their generating functions coincide and
equal

D g =N g = (14 )L+ g+ ). (gt ..+ g
ceB, ceGy,

the statistic des is Fulerian, i.e., its generating function is given by the Euler polynomials:

n 1 _
oeS, n>0 qe
It is not difficult to deduce that

Z maj(o) = Z inv(c) =n!- w, Z des(o) =n!- o ; 1. (1)

ceG, ceG, oce6,




For each of the statistics ¢ = maj, des, inv, we denote by wu. the corresponding element of
the group algebra C[G,,]:
U = Z e(g)g € C[&,).
geS,
We will also need the centered (i.e., orthogonal to the constants) versions of the statistics under
consideration, for which ) s €(0) = 0:
des(o) = des(0) — %51, maj(o) = maj(o) — 271,

2 4
n(n—1)

inv(o) = inv(o) — T

and the corresponding elements uz = Y s €(0)o of the group algebra.
MacMahon studied four fundamental statistics of permutations: maj, des, inv, and also the

excedance number
exc(o)=#{i=1,...,n—1:0(1) > i}.

This statistic is also Eulerian, i.e., has the same distribution as des. Thus, the four functions
maj,inv and des,exc form two pairs of equally distributed statistics. However, in contrast
to maj, des,inv, the function exc generates another ideal, which coincides with the primary
component of the natural representation (plus the subspace of constants). Hence its dual
complexity is equal to (n — 1)? + 1. It is not difficult to see that the same ideal is generated
also by the function fix.

Note also that sometimes, instead of the major index, one uses the so-called comajor index
comayj, where comaj(0) = 3, pey,)(n —1). Since, obviously, comaj(c) = ndes(o) —maj(o), all
the results obtained below for des and maj can easily be extended to comaj.

3 Realization of the combinatorial functions maj, des, inv in
the space of skew-symmetric matrices

Let M be the space of nxn skew-symmetric matrices. There is a natural action of the symmetric
group &,, in M by simultaneous permutations of rows and columns. It is well known that this
representation ¢ of &,, decomposes into the sum of two irreducible representations 7,1 1) (the
natural representation) and 7(,_1 12y, which will be denoted by m; and 7, respectively. Also,
denote by P, and P, the orthogonal projections in M to the spaces of m; and m,. We equip M
with the inner product

(A B)= L T(AB) = Y ayby, A= (ay), B=(b). )

1<J

The representation p is, obviously, unitary.

For 1 <i < j < n, denote by E;; the skew-symmetric matrix with 1 in the cell (7, j) and —1
in the cell (j,17), all other entries being zero. Obviously, the matrices { E;;} form an orthonormal
basis in M with respect to the inner product (2). By abuse of language, we will call them the
matriz units.

Consider (also for 1 < i < j <n) the following elements of the group algebra C[&,,]:

1 if o(1) < o(y),

1
iy = 7= 2 eul0)o,  where gy(0) = {—1 if (i) > o(j).

5



Denote by H the subspace in C[&,,] spanned by these elements. Let Reg; be the left regular
representation of the group 6,, in C[&,,].

Lemma 1. The subspace H s invariant under Reg;, and the corresponding subrepresentation
is isomorphic to the representation o of &,, in the space of skew-symmetric matrices M.

Proof. Define an operator T:H— M by the formula T e;j = E;;. It is easy to check that it
determines a (nonunitary!) isomorphism of the representations under study. O

In view of Lemma 1, we call the elements e;; the pseudomatriz units in H. It is also
convenient to put e;; = —ej; for i > j and e; = 0.

The pseudomatrix units are, obviously, not orthogonal with respect to the standard inner
product in C[&,,]. Namely, it is not difficult to obtain the following relations: for i < j, k <,

1, 1=k, =1,
_ %7 Z:k,j%lor‘]:l,l#k,
<6ija6k‘l> - 1 _l .
—3, t=lorj=k,

0, {k1}n{ij}t=0.

Denote by C; and Cy the normalized central Young symmetrizers (central idempotents in
C[6&,)]) corresponding to the Young diagrams (n — 1,1) and (n — 2, 12), respectively.

Lemma 2.

1 n

Ciei; = - ;(eik + €pj). (3)

Proof. For k # [, denote by ¢i; the Young symmetrizer corresponding to a Young tableau of the
form 721 -1 ] (the order of the other elements in the first row is irrelevant). It is not difficult
to see that .

n —

n-n! Z Chl-

kL

Now one can deduce from the properties of the pseudomatrix units e;; that cye;; = 0 for
{k, 1} 0 {i,j} = 0 and

n

5 Cri€ij =1 E Cik, E crjeij =1 - (n—2)! E Ckj

ki k#j k=1

which implies the desired formula. [

Since the representation of G,, in the space M is the sum of two irreducible representations, a
unitary isomorphism between the representations in H and M can differ from the intertwining
operator 7' only in that the projections of the elements e;; to each of the two irreducible
components are multiplied by different coefficients, and these coefficients can be found from
the condition that the images of the pseudomatrix units should be orthonormal. Namely,
consider in C[&,,] the operator

73

A=
vn+1

(C1+Vn+ 1Cy)

and put
6;]- = AGU



Theorem 1. The operator T : H — M defined by the formula
Te;j =F

is a unitary isomorphism of the representations of the symmetric group &,, in the spaces H and

M.

Proof. 1t is obvious from above that 7" is an intertwining operator. It remains to show that it
is unitary, i.e., that the system of elements {ej,} in C[&,] is orthonormal. Using Lemma 3, it
is not dlfﬁcult to calculate that for two dlfferent pseudomatrix units e;; and ej; we have

0, {k, 1} n{i, 5} =0,
<Cleij7C1€kl> = ntl Z:k,j#lOI‘j:l,’l#k,

3n

ol =] jAkorj=Fk i#L

3n ?

Since (Cye;j, Coerr) = (€4, ex) — (Cresj, Crep), we obtain that

0, {k,1}n{i,7} =0,

<C2eij7c2ekl> = _BLTL’ Z:k,j%lorj:l,l%k,
a =L jAkorj=k i#L
and the fact that the system {e};} is orthonormal follows by a direct calculation. O
Theorem 2. The centered vectors u g, U Ui, lie in the space H; namely,
Vnl Vnl
U&:—Tzekmh -:__ZkekkJrh Uig;:—T Z €ij-
k=1 1<i<j<n
Proof. Follows by a straightforward calculation. m

Corollary 1. Each of the vectors u., where ¢ = des,maj,inv, generates in C[S,] the same
principal right ideal T = H @ {const}. The restriction of the left reqular representation Reg, to
T is the sum of three irreducible representations T(ny @ T(n—1,1) ® T(n—2,12)-

Consider in M the matrices

0o 1 0 0 o 1 0 ... 0
1 o 1 ... O _1 0o 2 ... 0
= 0 0 0 0
haes = Z Ek,k—l—l = ) maJ Z kEy, Jk+1 — )
k=1 0 1 0 n-—1

0 0

o 1 1 ... 1

o 1 ... 1

o ... 1

hinv:ZEij:
1<) 0 1
0

(when writing matrices, we always indicate only their upper triangular parts, meaning that

the lower triangular parts can be recovered from the skew symmetry). Denote ¢, = _\/TE It

follows from Theorems 2 and 1 that

o~ CTL
Tuz = c,h,, Tu: =

ﬁ(\/n+1P1hE+P2h€). (4)



Lemma 3. For k < m, the projection of the matrix unit Ey,, to the natural representation is
given by the formula

1 j=k
Py B = (i)} =1, where a;; = agkm) — a§-km) and a§km) =q—+, j=m,
0 otherwise.

Proof. Tt is well known that
P M ={M = (a;;), where a;; = a; — o; and (a;) € R", Zaj =0},

PM ={M = (ajj) : aj;i = —ay, Zaij = 0 for every j}. (5)
Using this fact, it is not difficult to find the desired projection. O
Lemma 4.
01 1 12 0 n—1 -1 -1 -1 -2
0 0 0 1 0 n 0 0o -1
1 0 ... 0 1 1 0O n ... 0 -1
Plhdes:_ ) P2hdes:_ )
n 0 0 1 n 0 n -1
0 1 0 n-1
0 0
01 0 0 0 -1
00 0 s20 0 o
o 1 0 3 0 -1
Plhmaj = ) Pthaj = )
0 n—2 -1
01 0 n—2
0 0
Plhinv = A, Pthnv = Ba
where A = (a;j) and B = (b;;) are Toeplitz matrices with the entries
2k 2
Qiirk = —, bijpp=1——. (6)
n n
Proof. Easily follows from Lemma 3 or directly from (5). O]
Denote by P the orthogonal projection in C[&,] to the subspace H, and let hy = T PJ,.
Lemma 5.
3
ho = 4| —>— (A Vil B) ,
0 (n+1)! Tvn

where the Toeplitz matrices A and B are given by (6).

Proof. Since {e},,} is an orthonormal system in H, we can write P, = >, (Je, €}) €l Using
the above results, we obtain

3 -
hm = \| ——=T1 (P, Egm + V1 + 1Py Eyyp)
n+1
3 m m /1 m m
“ Vs (Z(af =B+ Vi 1) (Gmg — o™ + )Ei)
i<j i<j
/3 e
i<j



It remains to observe that (J.,e;;) = \/Lﬁ for © < j, and the desired result follows by straight-
forward calculations. O

Now we are in a position to prove our key theorem on the representation-theoretic meaning
of the combinatorial statistics maj, des, inv.

Theorem 3. For every element f =" o0 € H,

O'EGTL
Co = _<Q(0>hinva ,ff>

In particular, for every permutation o € &, the major index maj(o), the descent number
des(0), and the inversion number inv(o) can be calculated by the following “matriz” formulas:

maj(o) = n(nT_l) - %(Q(0>hinva hmaj>7 (7)
des(o) = n ; L — %<Q(U)hinva Res), (8)
inv(o) = w — %(Q(U)hinvu hiny) (9)

where o is the representation of the group &,, in the space M of n X n skew-symmetric matrices.

Proof. Let f = ZUEGn c,0 € H be an arbitrary element from . For every permutation
o € 6, we have ¢, = (05, f) = (Reg;(0)de, f). Since P is the orthogonal projection to the
invariant subspace H, we have (Reg,(0)d, f) = (Reg;(0)PJ., f). Acting on both sides by the
unitary isomorphism 7', we find

¢o = (T'Reg(0) Po., T'f) = (0(0)T Poe, T f) = {e(o)ho, T'f)

- ﬁ (<Q(U)A,P1Tf> +vVn + 1{o(0) B, Psz>) :

where we have used the orthogonality of the spaces of different representations. Note that

PTf = V@?Plff, BTf= \%ngf, whence

¢ = —= ((e(0) A, PITf) + (e(0)B, L)) = —={e(0)hins. T).

-

again by the orthogonality and since h;,, = A+ B. The remaining part of the theorem follows
from (4). O

4 Corollaries: spectra and convolutions

In this section we show how the “matrix” formulas for combinatorial functions found in Theo-
rem 3 allow one to easily obtain results on the spectra of elements (in the regular representation),
convolutions, etc.

Denote by M., where e = maj, inv, des, the operator of right multiplication by u. in C[&,,].
Since the operators of left and right multiplication in C[&,,] commute, every eigenspace of M,
is an invariant subspace for the left regular representation Reg;.

9



Theorem 4. Fach of the operators My,j, Maes has two nonzero eigenvalues: sg > 0 and s7 < 0,
where

_ . |
Sgna‘] g n‘ . M’ Srlna‘] — —n_7
4 2
n—1
sdes = pl . 5 sl = —(n — 1)L

The correspondent eigenspaces for both operators coincide. The subspace corresponding to s
1s one-dimensional and coincides with the subspace of constants, i.e., with the subspace of the
identity subrepresentation m(,) in Reg;. The subspace corresponding to s has dimension @
and coincides with the subspace H introduced above (in particular, the representation in it is

isomorphic to the sum of two drreducible representations 1,1y + T(n_2,12))-

Proof. Obviously, the constant element 1 = jes, 9 n C[&,] is an eigenvector for M. with
the eigenvalue s5 = > o €(g), which can be found from (1). Hence in what follows we
may consider the operators Mz of multiplication by the centered (orthogonal to the constants)
vectors uz, and we must prove that each of these operators has a single nonzero eigenvalue
equal to s{ and the corresponding eigenspace coincides with H.

The fact that H is an invariant subspace for Mz outside of which the operator vanishes
immediately follows from Theorem 2. Each of the irreducible subspaces H; = C1H and Hy =
CoH is also invariant. Let f =3 s f(0)o € Hy C H, where k = 1,2. By Theorem 3, we

have f(o) = \/La(g(a)hinv,ff) Then

(Mzf)(0) = > flg)E(g o) Z Dhine, T){0(g70) hiny, he)

g€6n gEGn

- 2\/_ ;Gn Riny, ff}(g(g)he, 0(0) iny)

!
= T@(P]@hmvypk ><Tf Q( ) 1nv>

by the orthogonality relations for matrix elements. But the latter expression is equal to
—5 dlm — (Prhiny, Pehe) f(o), which implies that f is an eigenvector of Mz with the eigenvalue

n!
— 5= (Pihiny, Pihe). (10)

2d1m7rk

(n—1)(n—2)
2

It remains to observe that dimm; = n — 1, dimmy, = and to calculate the inner

products of matrices using Lemma 4:

2(n—1 n—1)(n—-2

<P1hinv’ Plhdes> - (T>7 <P2hinV7 P2hd68> - ( )TL< )7
—1)(n—2

<P1hinv’ plhmaj> =n-—- 17 <P2hinv7 Pthaj> = <n >2(n )

We see that in the subspaces H; and Hs the eigenvalues coincide and are equal to the desired
value. O

10



Corollary 2. In the group algebra C|&,], the following identities hold for convolutions of the
combinatorial functions under consideration:

n!

u— ku=— =—(n—1 u—, U kU, = —— - U=,

maj des maj maj maj 9 maj
o n!

Uggs * Ugs = —(n = Dl gy, ugg *ug = — 5 ugg
1 n!

u * g =~ = Dhug, ug rugg = -5 g,

or, explicitly, -
Z maj(g des (g7'0) = —(n—1)! - maj(o),

geS,
and similarly for all the other convolutions. In particular, ug, and U are, up to normaliza-
tion, idempotents in C[S,,].

Proof. By Theorem 4, each of the vectors u
right multiplication by u g,

UG, Uy lies in an eigenspace of the operators of
with known elgenvalues, which implies the desired identities.
n

Yimaj

Theorem 5. The operator My, has three nonzero eigenvalues: s > 0 and si, sV < 0,

where

inv n(n B 1) inv (77, + 1)' inv n!
50 :n!-T, U= S =g

The subspace corresponding to s is one-dimensional and coincides with the subspace of con-
stants. The subspace correspondmg to s has dimension n — 1 and coincides with Hy = CH.

W and coincides with Hy = CoH.

\'%

The subspace corresponding to s has dimension

Proof. The proof is entirely similar to that of Theorem 4, one should only calculate || P by ||* =

Z;i 4:22( —k)y==. _1 and || Pohiny || = n(n{l) — ”23_1 = (n—1)2(n—2) and substitute these values

into (10). O

Corollary 3. The function inv on the group &, is conditionally nonpositive definite, i.e., for
every collection of complex numbers (4)qecs,

Z inv(g~'h)z,7, <0 provided that Z zy = 0. (11)

g,hEGn 0'6671

Observe that inequality (11) holds also for maj and des, however, these functions, in contrast
to inv, are not symmetric on &,, (i.e., do not satisfy the relation f(oc=!) = f(o)), hence they
are not conditionally nonpositive definite according to the classical definition.

The developed techniques allow one to obtain also other identities. Consider, for example,
the character xp.; of the natural representation 7(,_1 1) of the symmetric group &,,. It is well
known that xnat(g) = fix(g) —

Corollary 4.

1 _%7 = maja
= elg)lix(g) —1) =14 L, e=des, (12)
9€Gn —ntl e =inv.

o3|

11



Proof. Let {f;}"=! be an orthonormal basis in the space P.M of the natural representation.
Then for 0 € &,, we have Xnai(0) = 3207 (0(0) fi, fi). Thus the left-hand side in (12) is equal
(again by the orthogonahty relations for matrix elements) to

1
__Z n' Z fzafz ( ) lnvahs> - —m<P1hinv,P1hg>,

0’6671,

and (12) follows from the formulas for the inner products obtained in the proofs of Theorems 4
and 5. O]

Note that identity (12) for the major index can also be obtained from known results on
the joint distribution of the statistics maj and fix (see [8]), but this requires heavy analytic
calculations, whereas the matrix formulas give the answer immediately and simultaneously for
all three statistics maj, des, inv.

5 The Solomon algebra

Originally, we proved Theorem 4 using the techniques developed in [6] in connection with the
study of the so-called Solomon descent algebra [11]. However, it turned out that the approach
presented in Section 3 and based on the observations from Theorems 1 and 2 is much simpler,
more efficient and allows one to obtain more results. Nevertheless, we believe that the link to
the study in [6] is important and worth further investigation, so we will briefly describe it in
this section.

Denote by Comp(n) the set of compositions of a positive integer n. For p = (ay, ..., ) €
Comp(n), put

B, = > o€ C[&,]
o:Des(o)C{a1,a1+az,...,a1+...+ap_1}

In particular, Buny = Y e, 0, and for p, = (1,...,1,2,1,...,1) (where 2 is in the kth
pOSitiOH) Bpk = Za:kgéDes(U) g

The elements {Bp}pccomp(n) generate a subalgebra 3, of the group algebra C[S,,] called
the Solomon descent algebra. In the paper [6], devoted to the study of the structure and
representations of this algebra, another important basis {/,},ccompn) of 3, was introduced,
and the transition matrix between the two bases was obtained. In particular, Bny = I(;») and
By, = Iy, + %](1")’

Let a = Zq a.l, € ¥,, and let M, be the operator of right multiplication by a in C[S,,].
In [6, Theorem 4.4], it is (implicitly) proved that the eigenvalues sy of M, are indexed by the

partitions A of n and s, = by Zp: Ap)=x D> the multiplicity of the eigenvalue s, being equal to
n!
’ Then our results on the spectra of the elements e, Umaj follow from the following simple

observation.

Lemma 6.

-1
n—1)

Udes = (n - 1)B(1") - Bpk = 2 [(1") o [pk’

1 k=1

i

—
—~

3

i = ———Ban = ) kBy, = [(ln Zk
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The description of the eigenspaces can also be deduced from the results of [6] (see also |2,
Theorem 2.2 and Corollary 2.3]). However, our approach makes it possible to obtain Theorem 4
much easier. Note also that the vector u;,, does not lie in the Solomon algebra, hence Theorem 5
cannot be obtained by the method described in this section.
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