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ABSTRACT

The paper is devoted to the study of some well-knonw combinatorial functions on
the symmetric group Sn — the major index maj, the descent number des, and
the inversion number inv — from the representation-theoretic point of view. We
show that each of these functions generates in the group algebra the same ideal,
and the restriction of the left regular representation to this ideal is isomorphic to
the representation of Sn in the space of n × n skew-symmetric matrices. This
allows us to obtain formulas for the functions maj, des, inv in terms of matrices of
an exceptionally simple form. These formulas are applied to find the spectra of the
elements under study in the regular representation, as well as to deduce a series
of identities relating these functions to one another and to the number of fixed
points fix.
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1 Introduction
In the representation theory of noncommutative locally compact groups, one of the oldest ideas,
which generalizes the idea of Fourier transform, is that the dual object to every element of the
group algebra is the operator-valued function defined on the space of equivalence classes of
irreducible representations whose value at a given class is the type (up to equivalence) of the
unitary operator corresponding to the given element in representations of this class.

Strange as it may seem, this idea, which has been fruitfully employed in the representation
theory of Lie groups, has, to the authors’ knowledge, little popularity in the representation
theory of finite groups and, in particular, of the symmetric group Sn. In the elaboration of
this idea, we can suggest the following definition.

Definition 1. The dual complexity of an element a of the group algebra C[G] is the dimension
of the cyclic subspace (ideal) Ide(a) = C[G]a generated by all left translations of this element.

For example, the dual complexity of every group element (regarded as a δ-function) coincides
with the order of the group, i.e., is the maximum possible. What can be said of elements of
the group algebra with small dual complexity? Is not there some dependence, or rather inverse
dependence, between the size of the support of an element and its dual complexity, as in the
classical theory of Fourier transform? Such questions for the symmetric group directly relate
combinatorics to representation theory, and seem not to have been studied. Our paper should
be regarded as the first steps in this direction.

The following example was essentially observed (in a quite different connection and in other
terms) in [1]. Consider the distance from a permutation g ∈ Sn to the identity of Sn in the
word metric with respect to the Coxeter generators, or, in other words, the inversion number
inv(g). The duality of the corresponding element of C[Sn] is equal to n(n− 1)/2 + 1, and the
representation in the ideal Ide(inv) is isomorphic to the sum of the identity representation and
the representation in the space of n× n skew-symmetric matrices.

We were interested in more complicated statistics3 on the symmetric group, such as the
major index maj(g) and the number of descents des(g), see, e. g., [13]. The study of these
statistics goes back to MacMahon [9], and by now there is an extensive literature devoted
to different problems of enumerative combinatorics involving these functions, which play an
important role in the combinatorics of permutations (let us mention, for instance, the papers
[3, 4, 12, 5, 7, 8, 10]). Note also the recent appearance (in a slightly different version, for Young
tableaux) of the major index as a key element of a construction establishing a relation between
representations of the infinite symmetric group and the affine algebra ŝl2, see [14]. It was an
additional motivation for investigating not purely combinatorial, but representation-theoretic
properties of the statistics under consideration, which up to now have not been given attention.

The attempt to consider the complexity of these elements in the sense of Definition 1 led to
unexpected results: not only the complexity turned out to be also equal to a humble value of
n(n − 1)/2 + 1, but it appeared that the corresponding ideals Ide(maj) and Ide(des) coincide
with Ide(inv) and thus can also be realized (up to the subspace of constants) in the space of
skew-symmetric matrices.

The elaboration of this idea allowed us to obtain for the functions maj, des, inv, originally
defined by nontrivial combinatorial conditions, the surprisingly simple formulas (7)–(9) in terms

3According to a tradition which originates in physics, functions on the symmetric group are often called
statistics of permutations.
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of matrices of a very simple form. The usefulness of these formulas is illustrated by the fact
that they allow one to easily find the spectra of the elements under consideration in the regular
representation (Theorems 4 and 5), as well as to obtain a whole series of new simple identities
relating these functions to each other and to another important function — the number of fixed
points fix (Corollaries 2, 4).

In Section 2 we briefly recall the definitions and basic properties of the statistics under study.
The main results are presented in Section 3: we explicitly construct and study in detail the
isomorphism between the representations of the group Sn in the ideal Ide(maj) = Ide(des) =
Ide(inv) and in the space of skew-symmetric matrices, and obtain formulas for these statistics
as simple matrix elements. In Section 4 these formulas are applied to obtain corollaries: to find
the spectra of the functions under study in the regular representation and to derive a series of
identities involving them. Finally, in Section 5 we briefly describe the relation of our results to
investigations of the so-called Solomon descent algebra.

2 The combinatorial functions maj, des, inv
By Sn we denote the symmetric group of order n, and by πλ, the irreducible representation of
Sn corresponding to a Young diagram λ.

We consider the following functions of permutations σ ∈ Sn (see, e. g., [13]): the descent
number

des(σ) = # Des(σ), where Des(σ) = {i = 1, . . . , n− 1 : σ(i) > σ(i+ 1)},

the major index
maj(σ) =

∑
i∈Des(σ)

i,

the inversion number
inv(σ) = #{i < j : σ(i) > σ(j)},

and the number of fixed points

fix(σ) = #{i = 1, . . . , n : σ(i) = i}.

The statistics maj and inv are MacMahonian, i.e., their generating functions coincide and
equal ∑

σ∈Sn

qmaj(σ) =
∑
σ∈Sn

qinv(σ) = (1 + q)(1 + q + q2) . . . (1 + q + . . .+ qn−1);

the statistic des is Eulerian, i.e., its generating function is given by the Euler polynomials:∑
σ∈Sn

qdes(σ) = An(q), where
∑
n≥0

An(q)
zn

n!
=

(1− q)ez

eqz − qez
.

It is not difficult to deduce that∑
σ∈Sn

maj(σ) =
∑
σ∈Sn

inv(σ) = n! · n(n− 1)

4
,

∑
σ∈Sn

des(σ) = n! · n− 1

2
. (1)

4



For each of the statistics ε = maj, des, inv, we denote by uε the corresponding element of
the group algebra C[Sn]:

uε =
∑
g∈Sn

ε(g)g ∈ C[Sn].

We will also need the centered (i.e., orthogonal to the constants) versions of the statistics under
consideration, for which

∑
σ∈Sn ε̃(σ) = 0:

d̃es(σ) = des(σ)− n−1
2
, m̃aj(σ) = maj(σ)− n(n−1)

4
,

ĩnv(σ) = inv(σ)− n(n−1)
4

,

and the corresponding elements uε̃ =
∑

σ∈Sn ε̃(σ)σ of the group algebra.
MacMahon studied four fundamental statistics of permutations: maj, des, inv, and also the

excedance number
exc(σ) = #{i = 1, . . . , n− 1 : σ(i) > i}.

This statistic is also Eulerian, i.e., has the same distribution as des. Thus, the four functions
maj, inv and des, exc form two pairs of equally distributed statistics. However, in contrast
to maj, des, inv, the function exc generates another ideal, which coincides with the primary
component of the natural representation (plus the subspace of constants). Hence its dual
complexity is equal to (n − 1)2 + 1. It is not difficult to see that the same ideal is generated
also by the function fix.

Note also that sometimes, instead of the major index, one uses the so-called comajor index
comaj, where comaj(σ) =

∑
i∈Des(σ)(n− i). Since, obviously, comaj(σ) = n des(σ)−maj(σ), all

the results obtained below for des and maj can easily be extended to comaj.

3 Realization of the combinatorial functions maj, des, inv in
the space of skew-symmetric matrices

LetM be the space of n×n skew-symmetric matrices. There is a natural action of the symmetric
group Sn inM by simultaneous permutations of rows and columns. It is well known that this
representation % of Sn decomposes into the sum of two irreducible representations π(n−1,1) (the
natural representation) and π(n−1,12), which will be denoted by π1 and π2, respectively. Also,
denote by P1 and P2 the orthogonal projections inM to the spaces of π1 and π2. We equipM
with the inner product

〈A,B〉 =
1

2
Tr(AB) =

∑
i<j

aijbij, A = (aij), B = (bij). (2)

The representation % is, obviously, unitary.
For 1 ≤ i < j ≤ n, denote by Eij the skew-symmetric matrix with 1 in the cell (i, j) and −1

in the cell (j, i), all other entries being zero. Obviously, the matrices {Eij} form an orthonormal
basis inM with respect to the inner product (2). By abuse of language, we will call them the
matrix units.

Consider (also for 1 ≤ i < j ≤ n) the following elements of the group algebra C[Sn]:

eij =
1√
n!

∑
εij(σ)σ, where εij(σ) =

{
1 if σ(i) < σ(j),

−1 if σ(i) > σ(j).
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Denote by H the subspace in C[Sn] spanned by these elements. Let Regl be the left regular
representation of the group Sn in C[Sn].

Lemma 1. The subspace H is invariant under Regl, and the corresponding subrepresentation
is isomorphic to the representation % of Sn in the space of skew-symmetric matricesM.

Proof. Define an operator T̂ : H → M by the formula T̂ eij = Eij. It is easy to check that it
determines a (nonunitary!) isomorphism of the representations under study.

In view of Lemma 1, we call the elements eij the pseudomatrix units in H. It is also
convenient to put eij = −eji for i > j and eii = 0.

The pseudomatrix units are, obviously, not orthogonal with respect to the standard inner
product in C[Sn]. Namely, it is not difficult to obtain the following relations: for i < j, k < l,

〈eij, ekl〉 =


1, i = k, j = l,
1
3
, i = k, j 6= l or j = l, i 6= k,

−1
3
, i = l or j = k,

0, {k, l} ∩ {i, j} = ∅.

Denote by C1 and C2 the normalized central Young symmetrizers (central idempotents in
C[Sn]) corresponding to the Young diagrams (n− 1, 1) and (n− 2, 12), respectively.

Lemma 2.

C1eij =
1

n

n∑
k=1

(eik + ekj). (3)

Proof. For k 6= l, denote by ckl the Young symmetrizer corresponding to a Young tableau of the
form k . . .

l
(the order of the other elements in the first row is irrelevant). It is not difficult

to see that
C1 =

n− 1

n · n!

∑
k 6=l

ckl.

Now one can deduce from the properties of the pseudomatrix units eij that ckleij = 0 for
{k, l} ∩ {i, j} = ∅ and∑

k 6=i

ckieij = n · (n− 2)!
n∑
k=1

eik,
∑
k 6=j

ckjeij = n · (n− 2)!
n∑
k=1

ekj,

which implies the desired formula.

Since the representation ofSn in the spaceM is the sum of two irreducible representations, a
unitary isomorphism between the representations in H andM can differ from the intertwining
operator T̂ only in that the projections of the elements eij to each of the two irreducible
components are multiplied by different coefficients, and these coefficients can be found from
the condition that the images of the pseudomatrix units should be orthonormal. Namely,
consider in C[Sn] the operator

A =

√
3√

n+ 1
(C1 +

√
n+ 1C2)

and put
e′ij = Aeij.
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Theorem 1. The operator T : H →M defined by the formula

Te′ij = Eij, 1 ≤ i < j ≤ n,

is a unitary isomorphism of the representations of the symmetric group Sn in the spaces H and
M.

Proof. It is obvious from above that T is an intertwining operator. It remains to show that it
is unitary, i.e., that the system of elements {e′ij} in C[Sn] is orthonormal. Using Lemma 3, it
is not difficult to calculate that for two different pseudomatrix units eij and ekl we have

〈C1eij, C1ekl〉 =


0, {k, l} ∩ {i, j} = ∅,
n+1
3n
, i = k, j 6= l or j = l, i 6= k,

−n+1
3n
, i = l, j 6= k or j = k, i 6= l.

Since 〈C2eij, C2ekl〉 = 〈eij, ekl〉 − 〈C1eij, C1ekl〉, we obtain that

〈C2eij, C2ekl〉 =


0, {k, l} ∩ {i, j} = ∅,
− 1

3n
, i = k, j 6= l or j = l, i 6= k,

1
3n
, i = l, j 6= k or j = k, i 6= l,

and the fact that the system {e′ij} is orthonormal follows by a direct calculation.

Theorem 2. The centered vectors ud̃es, um̃aj, uĩnv lie in the space H; namely,

ud̃es = −
√
n!

2

n−1∑
k=1

ek,k+1, um̃aj = −
√
n!

2

n−1∑
k=1

kek,k+1, uĩnv = −
√
n!

2

∑
1≤i<j≤n

eij.

Proof. Follows by a straightforward calculation.

Corollary 1. Each of the vectors uε, where ε = des,maj, inv, generates in C[Sn] the same
principal right ideal I = H⊕{const}. The restriction of the left regular representation Regl to
I is the sum of three irreducible representations π(n) ⊕ π(n−1,1) ⊕ π(n−2,12).

Consider inM the matrices

hdes =
n−1∑
k=1

Ek,k+1 =


0 1 0 . . . 0

0 1 . . . 0
0 . . . 0

. . .
0 1

0

 , hmaj =
n−1∑
k=1

kEk,k+1 =


0 1 0 . . . 0

0 2 . . . 0
0 . . . 0

. . .
0 n− 1

0

 ,

hinv =
∑
i<j

Eij =


0 1 1 . . . 1

0 1 . . . 1
0 . . . 1

. . .
0 1

0


(when writing matrices, we always indicate only their upper triangular parts, meaning that
the lower triangular parts can be recovered from the skew symmetry). Denote cn = −

√
n!
2
. It

follows from Theorems 2 and 1 that

T̂ uε̃ = cnhε, Tuε̃ =
cn√

3
(
√
n+ 1P1hε + P2hε). (4)
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Lemma 3. For k < m, the projection of the matrix unit Ekm to the natural representation is
given by the formula

P1Ekm = (aij)
n
i,j=1, where aij = α

(km)
i − α(km)

j and α(km)
j =


1
n
, j = k,

− 1
n
, j = m,

0 otherwise.

Proof. It is well known that

P1M = {M = (aij), where aij = αi − αj and (αj) ∈ Rn,
∑

αj = 0},

P2M = {M = (aij) : aji = −aij,
∑
i

aij = 0 for every j}. (5)

Using this fact, it is not difficult to find the desired projection.

Lemma 4.

P1hdes =
1

n


0 1 1 . . . 1 2

0 0 . . . 0 1
0 . . . 0 1

. . .
0 0 1

0 1
0

 , P2hdes =
1

n


0 n− 1 −1 −1 . . . −1 −2

0 n 0 . . . 0 −1
0 n . . . 0 −1

. . .
0 n −1

0 n− 1
0

 ;

P1hmaj =


0 0 . . . 0 1

0 . . . 0 1
. . . 0 1
. . .

0 1
0

 , P2hmaj =


0 1 0 0 . . . 0 −1

0 2 0 . . . 0 −1
0 3 . . . 0 −1

. . .
0 n− 2 −1

0 n− 2
0

 ;

P1hinv = A, P2hinv = B,

where A = (aij) and B = (bij) are Toeplitz matrices with the entries

ai,i+k =
2k

n
, bi,i+k = 1− 2k

n
. (6)

Proof. Easily follows from Lemma 3 or directly from (5).

Denote by P the orthogonal projection in C[Sn] to the subspace H, and let h0 = TPδe.

Lemma 5.

h0 =

√
3

(n+ 1)!

(
A+
√
n+ 1 ·B

)
,

where the Toeplitz matrices A and B are given by (6).

Proof. Since {e′km} is an orthonormal system inH, we can write Pδe =
∑

km〈δe, e′km〉e′km. Using
the above results, we obtain

e′km =

√
3

n+ 1
T̂−1(P1Ekm +

√
n+ 1P2Ekm)

=

√
3

n+ 1

(∑
i<j

(αkmi − αkmj )Eij +
√
n+ 1

∑
i<j

(δkm,ij − αkmi + αkmj )Eij

)

=

√
3

n+ 1

(
√
n+ 1ekm −

∑
i<j

(
√
n+ 1− 1)(αkmi − αkmj )eij

)
.
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It remains to observe that 〈δe, eij〉 = 1√
n!

for i < j, and the desired result follows by straight-
forward calculations.

Now we are in a position to prove our key theorem on the representation-theoretic meaning
of the combinatorial statistics maj, des, inv.

Theorem 3. For every element f =
∑

σ∈Sn cσσ ∈ H,

cσ =
1√
n!
〈%(σ)hinv, T̂ f〉.

In particular, for every permutation σ ∈ Sn, the major index maj(σ), the descent number
des(σ), and the inversion number inv(σ) can be calculated by the following “matrix” formulas:

maj(σ) =
n(n− 1)

4
− 1

2
〈%(σ)hinv, hmaj〉, (7)

des(σ) =
n− 1

2
− 1

2
〈%(σ)hinv, hdes〉, (8)

inv(σ) =
n(n− 1)

4
− 1

2
〈%(σ)hinv, hinv〉, (9)

where % is the representation of the group Sn in the spaceM of n×n skew-symmetric matrices.

Proof. Let f =
∑

σ∈Sn cσσ ∈ H be an arbitrary element from H. For every permutation
σ ∈ Sn, we have cσ = 〈δσ, f〉 = 〈Regl(σ)δe, f〉. Since P is the orthogonal projection to the
invariant subspace H, we have 〈Regl(σ)δe, f〉 = 〈Regl(σ)Pδe, f〉. Acting on both sides by the
unitary isomorphism T , we find

cσ = 〈T Regl(σ)Pδe, T f〉 = 〈%(σ)TPδe, T f〉 = 〈%(σ)h0, T f〉

=

√
3

(n+ 1)!

(
〈%(σ)A,P1Tf〉+

√
n+ 1〈%(σ)B,P2Tf〉

)
,

where we have used the orthogonality of the spaces of different representations. Note that
P1Tf =

√
n+1√
3
P1T̂ f , P2Tf = 1√

3
P2T̂ f , whence

cσ =
1√
n!

(
〈%(σ)A,P1T̂ f〉+ 〈%(σ)B,P2T̂ f〉

)
=

1√
n!
〈%(σ)hinv, T̂ f〉,

again by the orthogonality and since hinv = A+B. The remaining part of the theorem follows
from (4).

4 Corollaries: spectra and convolutions
In this section we show how the “matrix” formulas for combinatorial functions found in Theo-
rem 3 allow one to easily obtain results on the spectra of elements (in the regular representation),
convolutions, etc.

Denote by Mε, where ε = maj, inv, des, the operator of right multiplication by uε in C[Sn].
Since the operators of left and right multiplication in C[Sn] commute, every eigenspace of Mε

is an invariant subspace for the left regular representation Regl.
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Theorem 4. Each of the operators Mmaj,Mdes has two nonzero eigenvalues: sε0 > 0 and sε1 < 0,
where

smaj
0 = n! · n(n− 1)

4
, smaj

1 = −n!

2
;

sdes0 = n! · n− 1

2
, sdes1 = −(n− 1)!.

The correspondent eigenspaces for both operators coincide. The subspace corresponding to sε0
is one-dimensional and coincides with the subspace of constants, i.e., with the subspace of the
identity subrepresentation π(n) in Regl. The subspace corresponding to sε1 has dimension n(n−1)

2

and coincides with the subspace H introduced above (in particular, the representation in it is
isomorphic to the sum of two irreducible representations π(n−1,1) + π(n−2,12)).

Proof. Obviously, the constant element 1 =
∑

g∈Sn g in C[Sn] is an eigenvector for Mε with
the eigenvalue sε0 =

∑
g∈Sn ε(g), which can be found from (1). Hence in what follows we

may consider the operators Mε̃ of multiplication by the centered (orthogonal to the constants)
vectors uε̃, and we must prove that each of these operators has a single nonzero eigenvalue
equal to sε1 and the corresponding eigenspace coincides with H.

The fact that H is an invariant subspace for Mε̃ outside of which the operator vanishes
immediately follows from Theorem 2. Each of the irreducible subspaces H1 = C1H and H2 =
C2H is also invariant. Let f =

∑
g∈Sn f(σ)σ ∈ Hk ⊂ H, where k = 1, 2. By Theorem 3, we

have f(σ) = 1√
n!
〈%(σ)hinv, T̂ f〉. Then

(Mε̃f)(σ) =
∑
g∈Sn

f(g)ε̃(g−1σ) = − 1

2
√
n!

∑
g∈Sn

〈%(g)hinv, T̂ f〉〈%(g−1σ)hinv, hε〉

= − 1

2
√
n!

∑
g∈Sn

〈%(g)hinv, T̂ f〉〈%(g)hε, %(σ)hinv〉

= −
√
n!

2 dimπk
〈Pkhinv, Pkhε〉〈T̂ f, %(σ)hinv〉

by the orthogonality relations for matrix elements. But the latter expression is equal to
− n!

2 dimπk
〈Pkhinv, Pkhε〉f(σ), which implies that f is an eigenvector of Mε̃ with the eigenvalue

− n!

2 dimπk
〈Pkhinv, Pkhε〉. (10)

It remains to observe that dim π1 = n − 1, dimπ2 = (n−1)(n−2)
2

and to calculate the inner
products of matrices using Lemma 4:

〈P1hinv, P1hdes〉 =
2(n− 1)

n
, 〈P2hinv, P2hdes〉 =

(n− 1)(n− 2)

n
,

〈P1hinv, P1hmaj〉 = n− 1, 〈P2hinv, P2hmaj〉 =
(n− 1)(n− 2)

2
.

We see that in the subspaces H1 and H2 the eigenvalues coincide and are equal to the desired
value.
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Corollary 2. In the group algebra C[Sn], the following identities hold for convolutions of the
combinatorial functions under consideration:

um̃aj ∗ ud̃es = −(n− 1)! · um̃aj, um̃aj ∗ um̃aj = −n!

2
· um̃aj,

ud̃es ∗ ud̃es = −(n− 1)! · ud̃es, ud̃es ∗ um̃aj = −n!

2
· ud̃es,

uĩnv ∗ ud̃es = −(n− 1)! · uĩnv, uĩnv ∗ um̃aj = −n!

2
· uĩnv,

or, explicitly, ∑
g∈Sn

m̃aj(g) d̃es(g−1σ) = −(n− 1)! · m̃aj(σ),

and similarly for all the other convolutions. In particular, ud̃es and um̃aj are, up to normaliza-
tion, idempotents in C[Sn].

Proof. By Theorem 4, each of the vectors um̃aj, ud̃es, uĩnv lies in an eigenspace of the operators of
right multiplication by ud̃es, um̃aj with known eigenvalues, which implies the desired identities.

Theorem 5. The operator Minv has three nonzero eigenvalues: sinv0 > 0 and sinv1 , sinv2 < 0,
where

sinv0 = n! · n(n− 1)

4
, sinv1 = −(n+ 1)!

6
, sinv2 = −n!

6
.

The subspace corresponding to sinv0 is one-dimensional and coincides with the subspace of con-
stants. The subspace corresponding to sinv1 has dimension n− 1 and coincides with H1 = C1H.
The subspace corresponding to sinv2 has dimension (n−1)(n−2)

2
and coincides with H2 = C2H.

Proof. The proof is entirely similar to that of Theorem 4, one should only calculate ‖P1hinv‖2 =∑n−1
k=1

4k2

n2 (n− k) = n2−1
3

and ‖P2hinv‖2 = n(n−1)
2
− n2−1

3
= (n−1)(n−2)

2
and substitute these values

into (10).

Corollary 3. The function inv on the group Sn is conditionally nonpositive definite, i.e., for
every collection of complex numbers (xσ)σ∈Sn,∑

g,h∈Sn

inv(g−1h)xgx̄h ≤ 0 provided that
∑
σ∈Sn

xσ = 0. (11)

Observe that inequality (11) holds also for maj and des, however, these functions, in contrast
to inv, are not symmetric on Sn (i.e., do not satisfy the relation f(σ−1) = f(σ)), hence they
are not conditionally nonpositive definite according to the classical definition.

The developed techniques allow one to obtain also other identities. Consider, for example,
the character χnat of the natural representation π(n−1,1) of the symmetric group Sn. It is well
known that χnat(g) = fix(g)− 1.

Corollary 4.

1

n!

∑
g∈Sn

ε(g)(fix(g)− 1) =


−1

2
, ε = maj,

− 1
n
, ε = des,

−n+1
6
, ε = inv.

(12)
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Proof. Let {fi}n−1i=1 be an orthonormal basis in the space P1M of the natural representation.
Then for σ ∈ Sn we have χnat(σ) =

∑n−1
i=1 〈%(σ)fi, fi〉. Thus the left-hand side in (12) is equal

(again by the orthogonality relations for matrix elements) to

−1

2

∑
i

1

n!

∑
σ∈Sn

〈%(σ)fi, fi〉〈%(σ)hinv, hε〉 = − 1

2(n− 1)
〈P1hinv, P1hε〉,

and (12) follows from the formulas for the inner products obtained in the proofs of Theorems 4
and 5.

Note that identity (12) for the major index can also be obtained from known results on
the joint distribution of the statistics maj and fix (see [8]), but this requires heavy analytic
calculations, whereas the matrix formulas give the answer immediately and simultaneously for
all three statistics maj, des, inv.

5 The Solomon algebra
Originally, we proved Theorem 4 using the techniques developed in [6] in connection with the
study of the so-called Solomon descent algebra [11]. However, it turned out that the approach
presented in Section 3 and based on the observations from Theorems 1 and 2 is much simpler,
more efficient and allows one to obtain more results. Nevertheless, we believe that the link to
the study in [6] is important and worth further investigation, so we will briefly describe it in
this section.

Denote by Comp(n) the set of compositions of a positive integer n. For p = (α1, . . . , αk) ∈
Comp(n), put

Bp =
∑

σ:Des(σ)⊂{α1,α1+α2,...,α1+...+αk−1}

σ ∈ C[Sn].

In particular, B(1n) =
∑

σ∈Sn σ, and for pk = (1, . . . , 1, 2, 1, . . . , 1) (where 2 is in the kth
position) Bpk =

∑
σ:k/∈Des(σ) σ.

The elements {Bp}p∈Comp(n) generate a subalgebra Σn of the group algebra C[Sn] called
the Solomon descent algebra. In the paper [6], devoted to the study of the structure and
representations of this algebra, another important basis {Ip}p∈Comp(n) of Σn was introduced,
and the transition matrix between the two bases was obtained. In particular, B(1n) = I(1n) and
Bpk = Ipk + 1

2
I(1n).

Let a =
∑

q aqIq ∈ Σn, and let Ma be the operator of right multiplication by a in C[Sn].
In [6, Theorem 4.4], it is (implicitly) proved that the eigenvalues sλ of Ma are indexed by the
partitions λ of n and sλ = bλ

∑
p:λ(p)=λ ap, the multiplicity of the eigenvalue sλ being equal to

n!
zλ
.
Then our results on the spectra of the elements udes, umaj follow from the following simple

observation.

Lemma 6.

udes = (n− 1)B(1n) −
n−1∑
k=1

Bpk =
(n− 1)

2
I(1n) −

n−1∑
k=1

Ipk ,

umaj =
n(n− 1)

2
B(1n) −

n−1∑
k=1

kBpk =
n(n− 1)

4
I(1n) −

n−1∑
k=1

kIpk .
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The description of the eigenspaces can also be deduced from the results of [6] (see also [2,
Theorem 2.2 and Corollary 2.3]). However, our approach makes it possible to obtain Theorem 4
much easier. Note also that the vector uinv does not lie in the Solomon algebra, hence Theorem 5
cannot be obtained by the method described in this section.
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applications to representation theory, in: Asymptotic Combinatorics with Applications to
Mathematical Physics, A. M. Vershik (ed.), Lecture Notes Math. 1815 (2003), pp. 201–221.

[2] A. R. Calderbank, P. Hanlon, and S. Sundaram, Representations of the symmetric group in
deformations of the free Lie algebra, Trans. Amer. Math. Soc. 341, No. 1 (1994), 315–333.

[3] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332–350.

[4] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968),
236–240.

[5] D. Foata and M. Schützenberger, Major index and inversion number of permutations,
Math. Nachr. 83 (1978), 143–159.

[6] A. Garsia and C. Reutenauer, A decomposition of Solomon’s descent algebra, Adv. Math.
77 (1989), 189–262.

[7] A. Garsia and I. Gessel, Permutation statistics and partitions, Adv. Math. 31 (1979),
288–305.

[8] I. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent
set, J. Combin. Theory Ser. A, 64 (1993), 189–215.

[9] P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge Univ. Press, London, 1915–
1916. Reprinted by Chelsea, New York, 1960.

[10] J. Shareshian and M. L. Wachs, Eulerian quasisymmetric functions, Adv. Math. 225 (2010),
2921–2966.

[11] L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976),
255–264.
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