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Point distribution in 
ompa
t metri
 spa
es,III. Two-point homogeneous spa
esM. M. SkriganovSt.Petersburg Department ofSteklov Mathemati
al InstituteRussian A
ademy of S
ien
esE-mail: maksim88138813�mail.ru
We 
ontinue the investigation of point distributions in 
ompa
t metri
spa
es started in the papers [28,29℄. Our 
on
ern is with dis
repan
ies of su
hdistributions in metri
 balls and sums of pairwise distan
es between points ofdistributions. In the present paper we 
onsider 
ompa
t 
onne
ted two-pointhomogeneous spa
es (Riemannian symmetri
 spa
es of rank one). All su
hspa
es are known, they are spheres in the Eu
lidean spa
es, the real, 
omplexand quaternioni
 proje
tive spa
es and the o
tonioni
 proje
tive plane.Using the geometri
 features of two-point spa
es, we show that Sto-larsky's invarian
e prin
iple, well-known for the Eu
lidean spheres, 
an beextended to all proje
tive spa
es and the o
tonioni
 proje
tive plane. Rely-ing on the theory of spheri
al fun
tions, we obtain the best possible boundsfor quadrati
 dis
repan
ies and sums of distan
es for point distributions inthe two-point homogeneous spa
es. Appli
ations to t-designs and L�evy-S
hoenberg kernels in su
h spa
es are also 
onsidered in the paper.Key words: geometry of distan
es, uniform distributions, t-designs ,two-point homogeneous spa
es
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esA. Main results1. Dis
repan
ies and metri
sLet M be a 
ompa
t 
onne
ted metri
 spa
e with a �xed metri
 � and a�nite Borel measure �, normalized bydiam(M; �) = �; �(M) = 1; (1.1)where diam(E ; �) = sup{�(x1; x2) : x1; x2 ∈ E} (1.2)denotes the diameter of a subset E ⊆ M with respe
t to a metri
 �.We write Br(y) = {x : �(x; y) < r} for the ball of radius r ∈ [0; �℄
entered at y ∈ M and of volume vr(y) = �(Br(y)). Sin
e the spa
e M is
onne
ted, we have R = [0; �℄, where R = {r = �(x1; x2) : x1; x2 ∈ M} isthe set of all possible radii. 3



Let DN ⊂ M be a �nite subset 
onsisting of N points (not ne
essarydi�erent). The lo
al dis
repan
y of the subset DN in the ball Br(y) is de�nedby �[Br(y);DN ℄ = #{Br(y) ∩ DN} −Nvr(y)= ∑x∈DN �(Br(y); x); (1.3)where �(Br(y); x) = �(Br(y); x)− vr(y); (1.4)and �(E ; x) denotes the 
hara
teristi
 fun
tion of s subset E ⊂ M.The quadrati
 dis
repan
ies are de�ned by�r[DN ℄ = ∫
M

�[Br(y);DN ℄2 d�(y) = ∑x1;x2∈DN �r(x1; x2); (1.5)where �r(x1; x2) = ∫
M

�(Br(y); x1)�(Br(y); x2) d�(y); (1.6)and �[�;DN ℄ = �∫0 �r[DN ℄�(r) dr = ∑x1;x2∈DN �(�; x1; x2); (1.7)where �(�; x1; x2) = �∫0 �r(x1; x2)�(r) dr; (1.8)where �(r), r ∈ [0; �℄, is a non-negative weight fun
tion. The quantities�r[DN ℄1=2 and �[�;DN ℄1=2 are known as L2-dis
repan
ies. In the presentpaper it is more 
onvenient to deal with the quadrati
 dis
repan
ies (1.5)and (1.7).We introdu
e the following extremal 
hara
teristi
�N(�) = inf
DN �[�;DN ℄; (1.9)where the in�mum is taken over all N -point subsets DN ⊂ M.4



For any metri
 � on M we put�[DN ℄ = ∑x1;x2∈DN �(x1; x2); (1.10)and introdu
e yet another extremal 
hara
teristi
�N = sup
DN �[DN ℄; (1.11)where the supremum is taken over all N -point subsets DN ⊂ M.We write 〈�〉 for the average value of a metri
 �,

〈�〉 = ∫∫
M×M

�(y1; y2) d�(y1) d�(y2): (1.12)Introdu
e the folloving symmetri
 di�eren
e metri
s on the spa
e M��(�; y1; y2) = �∫0 ��r (y1; y2)�(r) dr; (1.13)where ��r (y1; y2) = 12�(Br(y1)�Br(y2))= 12(vr(y1) + vr(y2)− 2�(Br(y1) ∩ Br(y2))): (1.14)Here Br(y1)�Br(y2) = Br(y1) ∪Br(y2) \B2(y1) ∩Br(y2) (1.15)is the symmetri
 di�eren
e of the balls Br(y1) and Br(y2).The symmetry of the metri
 � implies the following useful relation�(Br(y); x) = �(Br(x); y) = �(r − �(x; y)) = �r(�(x; y)) (1.16)where �(z), z ∈ R is the 
hara
teristi
 fun
tion of the half-axis [0;∞), and�r(·) is the 
hara
teristi
 fun
tion of the interval [0; r℄, 0 ≤ r ≤ �. Using
5



(1.14), (1.15), (1.16), we 
an write��r (y1; y2) = 12 ∫
M

�(Br(y1)�Br(y2)) d�(y)= 12 ∫
M

[�(Br(y1); y) + �(Br(y2); y)− 2�(Br(y1); y)�(Br(y2); y)℄ d�(y)= 12 ∫
M

|�(Br(y1); y)− �(Br(y2); y)| d�(y) (1.17)For the average values (1.12) of metri
s (1.14) and (1.13) we obtain
〈��(�)〉 = �∫0 〈��r 〉�(r) dr; (1.18)

〈��r 〉 = 12 ∫∫
M×M

��r (y1; y2) d�(y1) d�(y2) = ∫
M

(vr(y)− vr(y)2) d�(y) (1.19)The symmetri
 di�eren
e of any two subsets 
oin
ides with the symmetri
di�eren
e of their 
omplements. Hen
e��r (y1; y2) = 12�(B′r(y1)�B′r(y2))= 12(v′r(y1) + v′r(y2)− 2�(B′r(y1) ∩ B′r(y2))); (1.20)where B′r(y) = M\Br(y) is the 
omplement of the ball Br(y), andv′r(y) = �(B′r(y)) = 1− vr(y): (1.21)Now the relation (1.19) takes the form
〈��r 〉 = ∫

M

vr(y)v′r(y) d�(y) (1.22)In (1.17) the balls Br(y) 
an be also repla
ed by their 
omplements B′r(y).The study of the 
hara
teristi
s (1.9) and (1.11) falls within the subje
tsof the dis
repan
y theory and geometry of distan
es. An extensive literature6



is devoted to su
h studies of point distributions on spheres in the Eu
lideanspa
e, see, for examples, [1,2,5,6,12,27℄. It was shown in our re
ent paper [28℄that nontrivial results on the quantities (1.9) and (1.11) 
an be obtained forvery general metri
 spa
es. Some of these results, needed for the presentwork, are given below in Theorems 1.1 and 1.2.A metri
 spa
e M is 
alled distan
e-invariant, if the volume of any ballvr = vr(y) is independent of y ∈ M, see [23℄. For su
h spa
es the formulasfor the dis
repan
ies (1.5) and the symmetri
 di�eren
e metri
s (1.14) 
anbe essentially simpli�ed. Substituting (1.14) into (1.6), we obtain�r(y1; y2) = ∫
M

�(Br(y1); y)�(Br(y2); y) d�(y)− v2r= �(Br(y1) ∩Br(y2)− v2r ; (1.23)and 
orrespondingly,�r[DN ℄ = ∑y1;y2∈DN �(Br(y1) ∩Br(y2))− v2rN2: (1.24)Similarly, the relations (1.14), (1.20) and (1.19), (1.22) take the form��r (y1; y2) = vr − ∫
M

�(Br(y1); y)�(Br(y2); y) d�(y)= vr − �(Br(y1) ∩ Br(y2));= v′r − �(B′r(y1) ∩ B′r(y2)) (1.25)and
〈��r 〉 = vr − v2r = vrv′r; (1.26)and 
orrespondingly,��r [DN ℄ = vrN2 − ∑y1;y2∈DN �(Br(y1) ∩ Br(y2)): (1.27)Integrating these relations with �(r), r ∈ [0; �℄, one 
an obtain the 
orre-sponding formulas for the quantities (1.7), (1.8), (1.13), (1.18).The typi
al examples of distan
e-invariant spa
es are homogeneous spa
es

M = G=K, where G is a 
ompa
t group, K ⊂ G is a 
losed subgroup, while �7



and � are G-invariant metri
 and measure on M. In this 
ase, the quantities(1.6), (1.8) and (1.13), (1.14) are also G-invariant:�r(gy1; gy2)= �r(y1; y2); �(�; gy1; gy2) = �(�; y1; y2);��r (gy1; gy2)=��r (gy1; gy2); ��(�; gy1; gy2)=��(�; y1; y2);�(Br(gy1) ∩Br(gy2))=�(Br(y1) ∩ Br(y2)); y1; y2∈�; g∈G: 



(1.28)Comparing the relations (1.23){(1.27), we arrive to the following result.This result and its generalizations were given in [28, Thms. 2.1, 3.1℄.Theorem 1.1 (Weak Invarian
e Prin
iples). Let a 
ompa
t 
onne
ted metri
spa
e M with a metri
 � and a measure � be distan
e-invariant. Then wehave �r(y1; y2) + ��r (y1; y2) = 〈��r 〉; (1.29)�(�; y1; y2) + ��(�; y1; y2) = 〈��(�)〉; (1.30)�(�;DN) + ��(�;DN) = 〈��(�)〉N2; (1.31)�N (�) + ��N (�) = 〈��(�)〉N2: (1.32)Here r ∈ [0; �℄ and DN ⊂ M is an arbitrary N-point subset. The equali-ties (1.30), (1.31) and (1.32) hold with any weight fun
tion � su
h that theintegrals (1.7), (1.8) and (1.13), (1.18) 
onverge.Obviously, the integrals (1.7), (1.8) and (1.13), (1.18) 
onverge for anywight fun
tion � summable on the interval [0; �℄. More general 
onditions of
onvergen
e of these integrals for two-point homogeneous spa
es are given inLemma 2.1(i) below.The strong invarian
e prin
iple for two-point homogeneous spa
es will beestablished in the next se
tion in Theorem 2.2. Our terminology of strongand weak invarian
e prin
iples is explained in 
omments to Theorem 2.2.A 
ompa
t metri
 spa
e M with a metri
 � and a measure � is 
alledd-re
ti�able if there exist a measure � on the d-dimensional unit 
ubeId = [0; 1℄d absolutely 
ontinuous with respe
t to the d-dimensional Lebesguemeasure on Id, a measurable subset O ⊂ Id, and an inje
tive Lips
hitz mapf : O → M, su
h that �(M\ f(O)) = 0; and �(E) = �(f−1(E ∩ f(O)) forany �-measurable subset E ⊂ M. Re
all that a map f : O ⊂ Rd → M isLips
hitz if �(f(Z1); f(Z2)) ≤ 
‖Z1 − Z2‖; Z1; Z2 ∈ O; (1.33)8



with a positive 
onstant 
, and the smallest su
h 
onstant is 
alled the Lips-
hitz 
onstant of f and denoted by Lip(f); in (1.33) ‖·‖ denotes the Eu
lideanmetri
 in Rd, 
f [26℄.Noti
e that any smooth (or pie
e-wise smooth) 
ompa
t d-dimensionalmanifold is d-re
ti�able if in the lo
al 
oordinates the metri
 satis�es (1.12),and the measure is absolutely 
ontinuous with respe
t to the d-dimensionalLebesgue measure. Parti
ularly, any 
ompa
t d-dimensional Riemannianmanifold with the geodesi
 metri
 � and the Riemannian measure � is d-re
ti�able. In this 
ase, it is known that 
ondition (1.12) holds; see [21,Chapter I, Proposition 9.10℄. On the other hand, the 
ondition on the Rie-mannian measure is obvious be
ause the metri
 tensor is 
ontinuous.The following result was established in [28, Thm.4.2℄.Theorem 1.2. Suppose that a 
ompa
t metri
 spa
e M, with a metri
 �and a measure �, is d-re
ti�able. Write C = d2d−1 Lip(f), where Lip(f) isthe Lips
hitz 
onstant of the map f in the de�nition of d-re
ti�ability of thespa
e M. Then the following hold:(i) If a metri
 � on M satis�es the inequality�(x1; x2) ≤ 
0�(x1; x2) (1.34)with a 
onstant 
0 > 0, then�N ≥ 〈�〉N2 − 
0CN1−1=d: (1.35)(ii) If the metri
 ��(�) satis�es the inequality��(�; x1; x2) ≤ 
0�(x1; x2) (1.36)with a 
onstant 
0 > 0, then��N (�) ≥ 〈��(�)〉N2 − 
0CN1−1=d (1.37)and �N(�) ≤ 
0CN1−1=d: (1.38)Under su
h general assumptions one 
annot expe
t that the bounds (1.37)and (1.38) are best possible. The 
orresponding 
ounterexample is givenin the next se
tion, see the relation (2.22). Theorem 1.2 guarantees theexisten
e of well-distributed point subsets in all 
ompa
t d-re
ti�able spa
es.9



It should be emphasize that a very non-trivial and diÆ
ult problem is to
onstru
t su
h uniformly distributed subsets expli
itly. For spheres in theEu
lidean spa
e a deep investigation of this problem has been given in [25℄.In the present paper we will show that the bounds (1.37) and (1.38) arebest possible for 
ompa
t 
onne
ted two-point spa
es and general 
lasses ofweight fun
tions �, see Theorem 2.2 below. Main results of this paper werestated previously in [29℄.2. Strong invarian
e prin
iple and best boundsfor dis
repan
ies and sums of distan
esIn this se
tion we state and dis
uss our main results on strong invarian
eprin
iples and best possible bounds for dis
repan
ies and sums of distan
eson two-point homogeneous spa
es.Re
all some ne
essary fa
ts on two-point homogeneous spa
es, see [7,21,22, 33, 34℄. Additional fa
ts on the geometry and harmoni
 analysis on su
hspa
es will be given in se
tions 5 and 8.Let G = G(M) be the group of isometries of a metri
 spa
e M with ametri
 �, i.e. �(gx1; gx2) = �(x1; x2) for all x1, x2 ∈ M and g ∈ G. Thespa
e M is 
alled two-point homogeneous, if for any two pairs of points x1,x2 and y1, y2 with �(x1; x2) = �(y1; y2) there exists an isometry g ∈ G,su
h that y1 = gx1, y2 = gx2. In this 
ase, the group G is transitive on
M and M = G=K is a homegeneous spa
e, where the subgroup K ⊂ G isthe stabilizer of a point x0 ∈ M. Furthermore, the homogeneous spa
e Mis symmetri
, i.e. for any two points y1, y2 ∈ M there exists an isometryg ∈ G, su
h that gy1 = y2, gy2 = y1.We 
onsider 
ompa
t 
onne
ted two-point homogeneous spa
es M =G=K. For su
h spa
es G and K ⊂ G are Lie groups and M = G=K areRiemannian symmetri
 spa
es of rank one. All su
h spa
es are 
lassi�ed
ompletely, see [33, Se
. 8.12℄. They are the following:(i) The d-dimensional spheres in the Eu
lidean spa
e Sd ⊂ Rd+1, Sd =SO(d+ 1)=SO(d)× {1}, d ≥ 2, and S1 = O(2)=O(1)× {1}.(ii) The real proje
tive spa
es RP n = O(n+ 1)=O(n)×O(1).(iii) The 
omplex proje
tive spa
es CP n = U(n + 1)=U(n)× U(1).(iv) The quaternioni
 proje
tive spa
es HP n = Sp(n+1)=SP (n)×Sp(1),(v) The o
tonioni
 proje
tive plane OP 2 = F4= Spin(9).10



Here we use the standard notation from the theory of Lie groups; par-ti
ularly, F4 is one of the ex
eptional Lie groups in Cartan's 
lassi�
ation.see [21, 22, 33, 34℄.The indi
ated proje
tive spa
es FP n as 
ompa
t Riemannian manifoldshave dimensions d, d = dimR FP n = nd0; d0 = dimR F; (2.1)where d0 = 1; 2; 4; 8 for F = R, C, H, O, 
orrespondingly.For spheres Sd we put d0 = d by de�nition. Proje
tive spa
es of di-mension d0 ( n = 1) are isomorphi
 to the spheres Sd0 : RP 1 ≈ S1;CP 1 ≈S2;HP 1 ≈ S4;OP 1 ≈ S8. We 
an 
onveniently agree that d > d0 (n ≥ 2) forproje
tive spa
es, while the equality d = d0 holds only for spheres. Underthis 
onvention, the dimensions d = nd0 and d0 de�ne uniquely (up to iso-morphism) the 
orresponding two-point homogeneous spa
e whi
h we denoteby Q = Q(d; d0). We write � for the geodesi
 distan
e and � for the Rie-mannian mesure on Q(d; d0). The metri
 � and the measure � are invariantunder the a
tion of the 
orresponding group of isometries and normalized by(1.1). In what follows we always assume that n = 2 if F = O. Proje
tivespa
es OP n do not exist for n > 2. In more detail the geometry of spa
es
FP n will be outlined in se
tion 5.Any spa
e Q(d; d0) is distan
e-invariant and the volume of balls is givenby vr = �(d; d0) r∫0 (sin 12u)d−1(
os 12u)d0−1 du; r ∈ [0; �℄;�(d; d0) = B(d=2; d0=2)−1 = �(d=2 + d0=2)�(d=2)�(d0=2) :





(2.2)Here B(·; ·) and �(·) are beta and gamma fun
tions, and we have v� =�(Q(d; d0)) = 1. Noti
e that the di�erent equivalent forms of the relation(2.2) 
an be found in the literature, see [22, pp. 165{168℄, [19, pp. 177{178℄, [23, pp. 508{510℄.From the formula (2.2) we obtain the following two-side boundsvr ≃ rd; v′r = 1− vr ≃ (� − r)d0; r ∈ [0; �℄: (2.3)To simplify notation we write in some formulas A . B instead of B =O(A), A & B instead of B = O(A), and A ≃ B if A = O(B) and B = O(A).11



The 
hordal metri
 on the spa
es Q(d; d0) 
an be de�ned by�(x1; x2) = sin 12�(x1; x2); x1; x2 ∈ Q(d; d0): (2.4)Noti
e that the expression (2.4) de�nes a metri
 be
ause the fun
tion '(�) =sin �=2, 0 ≤ � ≤ �, is 
on
ave, in
reasing and '(0) = 0, that implies thetriangle inequality. For the sphere Sd = {x ∈ Rd+1 : ‖x‖ = 1} we have
os �(x1; x2) = (x1; x2); x1; x2 ∈ Sd�(x1; x2) = sin �(x1; x2) = 12‖x1 − x2‖; (2.5)where (·; ·) is the inner produ
t and ‖ · ‖ is the Eu
lidean distan
e in Rd+1.Ea
h proje
tive spa
e FP n 
an be 
anoni
ally imbedded into the unitsphere� : Q(d; d0) ∋ x → �(x) ∈ Sm−1 ⊂ Rm; m = 12(n+ 1)(d+ 2); (2.6)su
h that �(x1; x2) = 1√2‖�(x1)− �(x2)‖; x1; x2 ∈ FP n; (2.7)where ‖ · ‖ is the Eu
lidean distan
e in Rm+1. Hen
e, the metri
 �(x1; x2)
oin
ides with the Eu
lidean length of a segment joining the 
orrespondingpoints �(x1) and �(x2) on the unit sphere. The metri
 is normalized bydiam(Q(d; d0); �) = 1. The imbedding (2.6) will be des
ribed in Se
tion 5,see (5.22).Noti
e that the 
hordal metri
 � on proje
tive spa
es FP n 
oin
ides withthe well-known Fubini-Study metri
. In 
onne
tion with spe
ial point 
on�g-urations in two-point homogeneous spa
es the 
hordal metri
 on proje
tivespa
es was dis
ussed in the papers [13,14℄, see also the paper [15℄, where the
hordal metri
 was de�ned for Grassmannian manifolds.Now we are in position to state our main results. First of all, we 
onsiderstrong invarian
e prin
iples. A 
areful analysis of the imbedding (2.6) leadsto the following.Theorem 2.1. For any spa
e Q = Q(d; d0) the 
hordal metri
 (2.4) and thesymmetri
 di�eren
e metri
 (1.13) are related by�(x1; x2) = 
(Q)��(�\; x1; x2); x1; x2 ∈ Q; (2.8)12



where �\(r) = sin r, r ∈ [0; �℄, and
(Q) = 〈�〉
〈��(�∗)〉 = diam(Q; �)diam(Q; ��(�∗)) : (2.9)The proof of Theorem 2.2 is given in Se
tion 6. It is 
lear that theequalities (2.9) follow immediately from (2.8). It suÆ
es to 
al
ulate theaverage value (1.12) of both metri
s in (2.8) to obtain the �rst equality in(2.9). Similarly, it suÆ
es to write (2.8) for any pair of antipodal points x1,x2, �(x1; x2) = �, to obtain the se
ond equality in (2.9).Comparing Theorems 1.1 and 2.1, we arrive at the following.Corollary 2.1 (Strong Invarian
e Prin
iple). For any spa
e Q = Q(d; d0)we have the relation 
(Q)�[�\;DN ℄ + � [DN ℄ = 〈�〉N2; (2.10)where DN ⊂ Q is an arbitrary N-point subset.Parti
ularly, for any N we have the equality
(Q)�N(�\) + �N = 〈�〉N2: (2.11)Noti
e that for the sphere Sd the dis
repan
y �[�\;DN ℄ with the spe
ialweight fun
tion �\(r) = sin r 
an be written in the form�[�\;DN ℄ = 1∫

−1 dz ∫M [#{B(y; z) ∩ DN} −N�(B(y; z))℄2 d�(y); (2.12)where � is the standard normalized d-dimensional mesure on Sd, andB(y; z) = {x ∈ Sd : 
os �(x; y) ≥ z}; y ∈ Sd; z ∈ [−1; 1℄; (2.13)is the 'spheri
al 
ap', B(y; z) = Br(y), z = 
os r.For spheres the strong invarian
e prin
iple (2.10) was established by Sto-larsky [30℄, see also the papers [8,11℄, where the original proof of this relationhas been essentially simpli�ed. Corollary 2.1 
an be thought of as an exten-sion of Stolarsky's invarian
e prin
iple to proje
tive spa
es.Re
all that a metri
 spa
e M with a metri
 � is 
alled isometri
ally Lq-embeddable, if there exists a map ' : M ∋ x → '(x) ∈ Lq, su
h that13



�(x1; x2) = ‖'(x1) − '(x2)‖Lq for all x1, x2 ∈ M. A two-point homo-geneous spa
e Q is isometri
ally L1-embeddable with respe
t to any met-ri
 ��(�), see (1.17). At the same time, the spa
e Q is isometri
ally L2-embeddable with respe
t to the 
hordal metri
 � , see (2.5) and (2.7). It isknown, see [17, Se
. 6.3℄, that the L2-imbeddability is stronger and impliesthe L1-imbeddability. This explains our terminology of strong and week in-varian
e prin
iples. It would be very interesting to �nd out whether thereare weight fun
tions � 6= �\ for whi
h the spa
es Q with the metri
 ��(�) arealso L2-embeddable.Now we 
onsider best possible bounds for the extremal quantities (1.9)and (1.11). At �rst, we state in Lemma 2.1 some important auxiliary results.Introdu
e the following 
lasses of weight fun
tions �(r), r ∈ [0; �℄,W (a; b) = {� ≥ 0 : ‖�‖a;b < ∞}; a ≥ b ≥ 1;
‖�‖a;b = ∫0 (sin 12r)a−1(
os 12r)b−1�(r) dr:  (2.14)It is worth noting that weight fun
tions in the 
lasses (2.14) admit ratherlarge singularities at points r = 0 and r = �.Lemma 2.1. For any spa
e Q(d; d0) the following hold :(i) The kernel (1.6) and the metri
 (1.14) satisfy the bounds

|�r(y1; y2)| ≤ C(sin 12r)d(
os 12r)d0 ;��r (y1; y2) ≤ C(sin 12r)d(
os 12r)d0 : (2.15)If � ∈ W (d + 1; d0 + 1), then the kernel (1.8) and the metri
 (1.13) satisfythe bounds
|�(�; y1; y2)| ≤ C‖�‖d+1;d0+1;��(�; y1; y2) ≤ C‖�‖d+1;d0+1:} (2.16)(ii) The metri
 (1.14) satis�es the bound��r (y1; y2) ≤ C(sin 12r)d−1(
os 12r)d0−1�(y1; y2): (2.17)If � ∈ W (d; d0), then the metri
 (1.13) satis�es the bound��(�; y1; y2) ≤ C‖�‖d;d0�(y1; y2): (2.18)14



Constants in the bounds (2.15), (2.16), (2.17) and (2.18) depend only ond and d0.The proof of Lemma 2.1 is given in Se
tion 7. Parti
ularly, it follows fromLemma 2.1 that the weak invarian
e prin
iples (1.30) - (1.32) hold in spa
esQ(d; d0) with weight fun
tions � ∈ W (d+ 1; d0 + 1).Our result on the extremal quantities (1.9) and (1.11) 
an be stated asfollowsTheorem 2.2. For any spa
e Q(d; d0) the following hold :If � ∈ W (d; d0), � 6= 0, then for any N we have
〈��(�)〉N2 − 
(�)N1− 1d > ��N (�) > 〈��(�)〉N2 − C(�)N1− 1d ; (2.19)
1(�)N1− 1d < �N(�) < C1(�)N1− 1d (2.20)with positive 
onstants independent of N .Parti
ularly, for the 
hordal metri
 � on Q(d; d0) we have

〈�〉N2 − 
N1− 1d > �N > 〈�〉N2 − CN1− 1d (2.21)with the 
onstants 
 = 
(�\) and C = C(�\).The proof of Theorem 2.2 is given in Se
tion 11. It is 
lear that the rightbounds in (2.19) and (2.20) follow immediately from Theorem 1.2(ii) andLemma 2.1(ii). In Se
tion 11 we will prove the left bound in (2.20). Thiswill imply immediately the left bound in (2.19) by the invarian
e prin
iple(1.32). The proof of the left bound in (2.20) is relying on the theory ofspheri
al fun
tions on homogeneous spa
es Q(d; d0).For the 
hordal metri
 � on the sphere Sd the bounds (2.21) were knownearlier. The right bound in (2.21) was established by Alexander [1℄ andthe left by Be
k [5℄. In [5℄, see also [6℄, the left bound (2.20) was provedfor quadrati
 dis
repan
ies on spheres with the spe
ial weight fun
tion �\,see (2.12). Together with Stolarsky's invarian
e prin
iple this implies the leftbound (2.21) for the 
hordal metri
 on Sd.The universal bound (1.35) of Theorem 1.2(i) holds for all metri
s � onspa
es Q Lips
hitz 
ontinuous with respe
t to the geodesi
 distan
e �. How-ever, not all su
h metri
s satisfy the two-side bounds of type (2.19). Forexample, for the geodesi
 distan
e � on the sphere Sd we have�N = 〈�〉N2 − "N ; 〈�〉 = �=2; (2.22)15



where "N = 0 for even N and 0 ≤ "N ≤ �=2 for odd N . Additional 
ommentson this example and its relationships with invarian
e prin
iples and spheri
alfun
tions are given in Se
tions 4 and 9. Noti
e that very re
ently the exa
tequality "N = �=2 for odd N was proved in the paper [8℄.In 
on
lusion of this se
tion we noti
e the following. Non-
ompa
t 
on-ne
ted two-point spa
es M = G=K are also 
lassi�ed 
ompletely as hyper-boli
 spa
es over algebras F = R, C, H, O, see [33, Se
. 8.12℄, and one
ould 
onsider the spa
es of double 
osets M = � \ Q = � \ G=K, where� ⊂ G is a dis
rete subgroup in the group of isomerties, su
h that the invari-ant measure �(M) < ∞. In this 
ase, the extremal dis
repan
ies (1.9) andsums of distan
es (1.11) for the symmetry di�eren
e metri
s (1.13), (1.14)are well-de�ned and their study should be of mu
h interest, espe
ially fornon-
ompa
t M. A detailed study of these questions falls outside the s
opeof the present paper.3. Appli
ations to t-designMany spe
i�
 point 
on�gurations on spheres and other two-point homoge-neous spa
es are des
ribed in the literature, see, for example, [4,8,12{15,23,25, 27℄. One 
an ask whether the points of su
h spe
i�
 
on�gurations aredistributed uniformly in the 
orresponding spa
es, and how the quadrati
dis
repan
ies (1.7) and the sums of distan
es (1.10) 
ould be estimated pre-
isely for su
h point subsets ?In the present paper we 
onsider these questions for t-designs. Re
allthat an N -point subset DN ⊂ Sd is 
alled a spheri
al t-design, if the exa
tquadrature formula
∑x∈DN F (x) = N ∫Sd F (y) d�(y) (3.1)holds for all homogeneous polynomials F (x); x ∈ Rd+1 of degree not ex
eed-ing t. The 
on
ept of t-design 
an be easily extended to 
ompa
t two-pointspa
es, see [4, 23℄. In this 
ase, an N -point subset DN ⊂ Q(d; d0) is 
alled at-design, if the exa
t quadrature formula

∑x1;x2∈DN f(
os �(x1; x2)) = N2 ∫∫Q×Q f(
os �(t1; y2)) d�(y1) d�(y2) (3.2)16



holds for all polynomials f(z); z ∈ C, of degree not ex
eeding t. The 
ondi-tion (3.2) 
an be written in di�erent equivalent forms, for example, as thefollowing quadrature formula
∑x∈DN f(
os �(x; y1)) = N ∫Q f(
os �(y1; y2)) d�(y); (3.3)whi
h holds identi
ally for all y1; y2 ∈ Q. The de�nition of t-designs 
an bealso given in terms of spheri
al fun
tions on the spa
es Q(d; d0), see [4, 23℄.We will return to these questions in Se
tion 8, see (8.35).The integrals in the right-hand sides in (3.2) and (3.3) are equal, thatfollows at on
e from the de�nition of two-point spa
es. For brevity, we write

〈f〉Q = ∫Q f(
os �(y; y2) d�(y) = ∫∫Q×Q f(
os(y1; y2)) d�(y1) d�(y2): (3.4)From (2.2) we obtain
〈f〉Q = B(d=2; d0=2)−1 �∫0 f(
os �)(sin 12�)d−1(
os 12�)d0−1d�: (3.5)It is known, see [23, p. 520℄, that any N -point t-design DN ⊂ Q(d; d0)satis�es the bound N ≥ 
td with a 
onstant 
 > 0 independent of N and t.An N -point t-design DN ⊂ Q(d; d0) is 
alled an optimum t-design, if
+td ≥ N ≥ 
−td (3.6)with some positive 
onstants 
+ and 
− independent of N and t. A
tually, inthis de�nition we deal with sequen
es of N -point t-designs DN as N → ∞.For any N -point subset DN ⊂ Q(d; d0) we put�[DN ; r℄ = maxy∈Q #{Br(y) ∩ DN}; r ∈ [0; �℄; (3.7)and �[DN ; r℄ = N if r > �.Our result on t-designs 
an be stated as follows.Theorem 3.1. Let the weight fun
tion � ∈ W (d; d0), then the following hold:17



(i) There exists a 
onstant L ≥ 1 depending only on d and d0, su
h thatfor any N-point t-design DN ⊂ Q(d; d0) with t ≥ 2L=� we have�[�;DN ℄ < Ctd−1(�[DN ; Lt−1℄)2: (3.8)(ii) For optimum N-point t-designs DN ⊂ Q(d; d0) the bound (3.8) takesthe form �[�;DN ℄ < CN1− 1d (�[DN ; 
−1=d+ LN−1=d℄)2; (3.9)where 
+ is the 
onstant in the de�nition (3.6).The 
onstants C in the bounds (3.8) Ñ (3.9) depend only on d, d0 and �.The proof of Theorem 3.1 is given in Se
tion 11. It is 
lear that theequalities (3.9) follow immediately from (3.8) and the de�nition (3.6). Theproof of the bound (3.8) is relying on the theory of spheri
al fun
tions onhomogeneous spa
es Q(d; d0).For an arbitrary N -point subset DN ⊂ Q(d; d0), we putÆ[DN ℄ = 12 min{�(x1; x2) : x1; x2 ∈ DN ; x1 6= x2} (3.10)Hen
e, the balls BÆ(x), Æ = Æ[DN ℄, x ∈ DN , do not overlap. Therefore,vÆN ≤ 1 and, in view of (2.3), we have Æ . N−1=d. An N -point subset
DN ⊂ Q(d; d0) is 
alled well-separated, if Æ[DN ℄ ≥ 
N−1=d with a 
onstant
 > 0 independent of N .We 
onveniently agree that for r > � the ball Br(y) = Q and vr = 1.With this 
onvention the following result is true.Lemma 3.1. Let an N-point subset DN ⊂ Q(d; d0) be well-separated. Then,for any 
onstant C > 0 we have�[DN ; CN− 1d ℄ ≤ 
1 (3.11)with the 
onstant 
1 = 
1(C) independent of N .Proof. For brevity, we write a = CN− 1d . Consider the ball Ba(y) 
entered ata point y ∈ Q and put E = Ba(y) ∩ DN , K = #{E}. By the de�nition of awell-separated subset , the balls BÆ(x), Æ = Æ[DN ℄, x ∈ E , do not overlap andall these balls are 
ontained in the ball Ba+Æ(y). Therefore, vÆK ≤ va+Æ, andin view of (2.3), we have K ≤ va+Æ=vÆ ≃ (1 + C=
)d: This proves the bound(3.11). 18



Comparing Theorem 3.1 and Lemma 3.1, we arrive at the following.Corollary 3.1. Let the weight fun
tion � ∈ W (d; d0), � 6= 0. Suppose thatan N-point subset DN ⊂ Q(d; d0) satis�es the following two 
onditions:(i) DN is an optimum t-design(ii) DN is a well-separated subset.Then, for all suÆ
iently large N we have
〈��(�)〉N2 − 
N1− 1d > ��[�;DN ℄ > 〈��(�)〉N2 − CN1− 1d ; (3.12)
N1− 1d < �[�;DN ℄ < CN1− 1d (3.13)Parti
ularly, for the 
hordal metri
 � on Q(d; d0) we have

〈r〉N2 − 
N1− 1d > � [DN ℄ > 〈r〉N2 − CN1− 1d (3.14)The positive 
onstants in (3.12) - (3.14) are independent of N .The existen
e of optimum t-designs was a long standing open problem(the Korevaar-Meyers 
onje
ture). In the re
ent papers by Bondarenko, Rad-
henko and Viazovska [9,10℄ this problem was solved for spheri
al t-designs.The existen
e of optimum spheri
al t-designs was proved in [9℄ for all suÆ-
iently large N , and it was proved in [10℄ that su
h optimum t-designs 
anbe 
hosen as well-separated subsets on the sphere. Hen
e, Corollary 3.1 isappli
able for this 
ase, and we 
on
lude that spheri
al t-designs 
onstru
tedin [10℄ meet the best possible bounds for quadrati
 dis
repan
ies (3.12) andsums of distan
es (3.13), (3.14).Using spheri
al t-designs one 
an easily 
onstru
t [t=2℄-designs on the realproje
tive spa
e RP d = Q(d; 1). Consider the 
anoni
al proje
tionp : Sd ∋ x → p(x) ∈ RP d; (3.15)where p(x) denotes the one-dimensional subspa
e in Rd+1 passing through thepoint x ∈ Sd, and p(−x) = p(x). In the present dis
ussion, we 
onvenientlywrite �◦ for the geodesi
 distan
e on Sd and � for the geodesi
 distan
e on
RP d. Both distan
es are normalized by (1.1). By de�nition, �◦(x1; x2) is theangle between the ve
tors x1; x2 ∈ Sd, while 12�(x1; x2) is the angle betweenthe subspa
es p(x1); p(x2) ∈ RP d. Hen
e, 
os �◦(x1; x2) = (x1; x2), see (2.5),and 
os 12�(x1; x2) = |〈x1; x2〉|, ÑÑ. (5.6), x1; x2 ∈ Sd. Therefore,
os �(x1; x2) = 2(
os �◦(x1; x2))2 − 1 (3.16)19



and �(x1; x2) = 2min{�◦(x1; x2); � − �◦(x1; x2)}: (3.17)Parti
ularly, � = 2�◦ if 0 ≤ �◦ ≤ �=2.For an N -point subset D◦N ⊂ Sd we de�ne
DN = p(D◦N) = {p(x) : x ∈ D◦N} ⊂ RP d; (3.18)i.e. DN is a 
olle
tion of the one-dimensional subspa
es in Rd+1 passingthrough the points x ∈ D◦N ⊂ Sd. If D◦N 
ontains pairs of antipodal points xand −x, then the 
orresponding subspa
es p(x1) and p(x2) 
oin
ide and are
ounted with the multipli
ity 2 as points in RP d. It is obvious, that if a subset

D◦N ⊂ Sd is well-separated, then, in general, the subset DN = p(D◦N) ⊂ RP dis not.Lemma 3.2. (i) If a subset D◦N ⊂ Sd is an optimum t-design, then the subset
DN = p(D◦N) ⊂ RP d is an optimum [t=2℄-design.(ii) If a subset D◦N ⊂ Sd is well-separated, then the subset DN = p(D◦N) ⊂
RP d satis�es the bound (3.11) with an arbitrary 
onstant C > 0 and the
onstant 
1 = 
1(C) independent of N .Proof. (i) If f is a polynomial of degree m, then, in view of (3.16), f(
os �) =f(2 
os2 �◦ − 1) = f1(
os �◦), where f1 is a polynomial of degree 2m, andf1(z) = f1(−z). Furthermore,�(d; 1) �∫0 f(
os �)(sin 12�)d−1d�= �(d; d) �∫0 f1(
os �◦)(sin 12�◦)d−1(
os 12�◦)d−1d�◦; (3.19)where the known identity for the beta fun
tion B(z; z) = 21−2zB(z; 1=2) hasbeen taken into a

ount. From (3.5) and (3.19), we obtain

〈f〉RP d = 〈f1〉Sd: (3.20)If D◦N ⊂ Sd is a spheri
al optimum t-design and 2m ≤ t, then the de�ni-tion (3.3) together with (3.20) implies
∑x∈DN f(
os �(x; y)) = ∑x∈D◦N f1(
os �◦(x; y)) = 〈f1〉Sd = 〈f〉RP d;20



Hen
e, the subset DN ⊂ RP d is an optimum [t=2℄-design.(ii) Write Br(y) ⊂ RP d for the ball of radius r 
entered at p(y), andB◦r (y) ⊂ Sd for the ball of radius r 
entered at y ∈ Sd. From (3.15) we
on
lude that a point p(x) ∈ RP d belongs to the ball Br(y) if and only ifthe point x ∈ Sd belongs to either the ball B◦r=2(y) or the ball B◦r=2(−y).Therefore,#{Br(y) ∩ Dn} = #{B◦r=2(y) ∩ D0N}+#{B◦r=2(−y) ∩ D0N}From this equality and the de�nition (3.7), we obtain the bound�[DN ; r℄ ≤ 2�[D◦N ; r=2℄: (3.21)If a subset D◦N ⊂ Sd is well-separated, then by Lemma 3.1 for any 
on-stant C the bound �[D◦N ; CN−1=d℄ ≤ 
◦1 holds with a 
onstant 
◦1 = 
◦1(C)independent of N . Together with (3.21) this implies that the bound (3.11)holds for the subset DN ⊂ RP d with an arbitrary 
onstant C and the 
on-stant 
1 = 2
◦1(C=2; d) independent of N .Comparing Theorem 3.1 and Lemma 3.2, we arrive at the following.Corollary 3.2. Let the weight fun
tion � ∈ W (d; 1), � 6= 0, and suppose thatan N-point subset D◦N ⊂ Sd satis�es the 
onditions (i) Ñ (ii) of Corollary 3.1.Then, the N-point subset DN = p(D◦N) ⊂ RP d satis�es the bounds (3.12),(3.13), (3.14) of Corollary 3.1.The 
orresponding generalizations to the proje
tive spa
es CP n, HP n and
QP 2 is not straightforward and involve the methods of 
ited papers [9, 10℄.4. Remarks on L�evy-S
hoenberg kernelsThe L�evy-S
hoenberg kernels o

ur as 
ovarian
es of random pro
essesparametrized by points of a homogeneous spa
e. For details we refer to thepaper by Gangolli [19℄. In this se
tion we dis
uss very brie
y some topi
srelated to su
h kernels in the 
ontext of the present paper.As before, we 
onsider 
ompa
t homogeneous spa
es Q = G=K. A real-valued symmetri
 kernel f(y1; y2), y1; y2 ∈ Q, is 
alled a L�evy-S
hoenbergkernel, if the following 
onditions are satis�ed:(i) There exists a point y0 ∈ Q su
h that f(y; y0) = 0 for all y ∈ Q,21



(ii) The kernel f is positive de�nite, i.e. for any points x1; : : : ; xN ∈ Qand any 
omplex numbers z1; : : : ; zN
∑1≤i;y≤N �zizjf(xi; xj) ≥ 0: (4.1)(iii) The polarization �(y1; y2) of the kernel f(y1; y2) de�ned by�(y1; y2) = f(y1; y1) + f(y2; y2)− 2f(y1; y2); (4.2)is G-invariant, i.e. �(gy1; gy2) = �(y1; y2) for all y1; y2 ∈ Q and g ∈ G.Noti
e that the kernel f 
an be re
overed from its polarization � byf(y1; y2) = 12(�(y1; y0) + �(y2; y0)− �(y1; y2)) (4.3)It is known, see [19, Se
. 7℄, that if a L�evy-S
hoenberg kernel f and itspolarization � are given, then the standard methods of probability theoryenable us to 
onstru
t a Gaussian pro
ess as the mapping Y : Q ∋ x →Yx = Yx(!) ∈ L2(
; d!); su
h that EYx1 = 0, EYx1Yx2 = f(x1; x2) and

E(Yx1 − Yx2)2 = �(x1; x2), for all x1; x2 ∈ Q. Here L2(
; d!) is the Hilbertspa
e of real-valued square-integrable random variables on a probability spa
e
 with a probability measure d! and E denotes the expe
tation on L2(
; d!).Furthermore, if the homogeneous spa
e Q is a Riemannian manifold and thepolarization � is H�older 
ontinuous with respe
t to the geodesi
 distan
e �,i.e. �(y1; y2) < 
�(y1; y2)� with some 
onstants 
 and � > 0, then for almostall ! ∈ 
 the traje
tories of the pro
ess Yx(!) are 
ontinuous fun
tions ofx ∈ Q.In terms of the present paper one 
an easily des
ribe a large number ofexpli
it examples of L�evy-S
hoenberg kernels on homogeneous spa
es. Fixarbitrary a point y0 ∈ Q and 
onsider the kernelfr(y1; y2) = ∫Q Fr(y1; y)Fr(y2; y) d�(y); r ∈ [0; �℄; (4.4)where Fr(x; y) = �(Br(x); y)− �(Br(y0); y) (4.5)and �(Br(x); ·) is the 
hara
teristi
 fun
tion of the ball Br(x). Put alsof(�; y1; y2) = �∫0 fr(y1; y2)�(r) dr; (4.6)22



where � is a weight fun
tion su
h that the indegral (4.6) 
onverges. For Q =Q(d; d0) the integral (4.6) 
onverges if � ∈ W (d+ 1; d0 + 1), see Lemma 2.1(i).Theorem 4.1. (i) For any 
ompa
t homogeneous spa
e Q the kernels (4.4)and (4.6) are L�evy-S
hoenberg kernels and their polarizations �r and �(�) areof the form �r(y1; y2) = 2��r (y1; y2); (4.7)�(�; y1; y2) = 2��(�; y1; y2); (4.8)where ��r and ��(�) are symmetri
 di�eren
e metri
s (1.14) and (1.13). Theinversion formulas are the following��r (y1; y0) + ��r (y2; y0)− ��r (y1; y2) = 2fr(y1; y2); (4.9)��(�; y1; y0) + ��(�; y2; y0)− ��(�; y1; y2) = 2f(�; y1; y2); (4.10)Parti
ularly, for any symmetri
 di�eren
e metri
s (1.14) and (1.13) theexpressions in the left-hand side of (4.9) and (4.10) are positive de�nite ker-nels.(ii) For the two-point homogeneous spa
es Q = Q(d; d0) the polarizations(4.7) and (4.8) satisfy the bounds�r(y1; y2) ≤ C(sin 12r)d−1(
os 12r)d0−1�(y1; y2); (4.11)�(�; y1; y2) ≤ C‖�‖d;d0�(y1; y2); (4.12)with 
onstants depending only on d and d0.Proof. (i) Substituting (4.5) into (4.4), we obtainfr(y1; y2) = �(Br(y1) ∩Br(y2))− �(Br(y1) ∩Br(y0)
− �(Br(y2) ∩ Br(y0)) + vr:Therefore, f(y; y) = 2vr − 2�(Br(y) ∩ Br(y0)). With the help of these for-mulas, the polarization (4.2) 
an be written as �(y1; y2) = 2vr − 2�(Br(y1)∩Br(y2)). Comparing this expression with (1.25), we obtain (4.7). Integrating(4.7) with �(r) and using (1.13), we obtain (4.8). Substituting (4.7) and (4.8)into (4.3), we obtain (4.9) Ñ (4.10). It is obvious that the kernels (4.9) and(4.10) are positive de�nite.(ii) The bounds (4.11), (4.12) follow immediately from (4.7), (4.8) andLemma 2.1 (ii). 23



One simple and instru
tive example 
an be addu
ed. Consider the sphereSd with the geodesi
 metri
 � and the standard Lebesgue measure � normal-ized by (1.1). It is known, see [17, Se
. 6.4℄, that�(x1; x2) = ��(B�=2(x1)�B�=2(x2)); x1; x2 ∈ Sd; (4.13)where B�=2(x) = {y ∈ Sd : �(y; x) ≤ �=2} = {y ∈ Sd : (y; x) ≥ 0} is thehemisphere 
entered at x ∈ Sd. Using (1.14), we 
an write (4.13) in the form�(x1; x2) = �(1− 2�(B�=2(x1) ∩ B�=2(x2)) (4.14)In this form, this equality is almost obvious: it su�ers to noti
e that themeasure of the interse
tion of two hemispheres in (4.14) is a linear fun
tionof �(x1; x2). Comparing (4.13) and (1.14), we 
an write�(x1; x2) = 2����=2(x1; x2); (4.15)and so, the geodesi
 metri
 � on the sphere Sd is a symmetri
 di�eren
emetri
. Using the formulas (4.15) and (4.5), we obtain�(x1; x0) + �(x2; x0)− �(x1; x2) = 4� ∫Sd F�=2(x1; y)F�=2(x2; y) d�(y); (4.16)with F�=2(x; y) = �(B�=2(x); y)− �(B�=2(y0); y).From the formula (4.16) we immediately 
on
lude that the kernelf(x1; x2) = �(x1; x0) + �(x2; x0)− �(x1; x2) (4.17)is positive de�nite. This is the well-known theorem of L�evy. Its original proofwas obtained in terms of 'white noise' integrals for random pro
esses on Sd,see [24, Chap. 8; Appen. Chap. 3℄. A dire
t proof was given in [19, Se
. 4℄on the base of Gegenbauer polynomial expansion for the metri
 �. The proofof L�evy's theorem given above is likely to be the simplest.It should be emphasized that the geodesi
 metri
 � for the proje
tivespa
es CP n, HP n and QP 2 is not a symmetri
 di�eren
e metri
 and forthese spa
es analogs of L�evy's theorem are not true. This follows from [19,Se
. 4, pp. 225{226℄. At the same time, for the 
hordal metri
 �(x1; x2) =sin �(x1; x2) the kernel f(x1; x2) = �(x1; x0)+ �(x2; x0)− �(x1; x2) is positivede�nite for all two-point homogeneous spa
es Q(d; d0). This follows fromTheorems 2.1 and 4.1. 24



In 
on
lusion of this se
tion we wish to explain the appearan
e of anoma-lous small error terms in the relation (2.22). Using the formula (4.15) andthe invarian
e prin
iple (1.29) for the sphere Sd, we �nd that�[DN ℄ = 〈�〉N2 − 2���=2[DN ℄;where ��=2[DN ℄ = ∫Sd �[B�=2(y);DN ℄2 d�(y)and �[B�=2(y);DN ℄ = #{B�=2(y)∩DN}−Nv�=2: Sin
e v�=2 = 1=2, we derivefrom (1.26) that 〈�〉 = �=2. Any N -point subset DN ⊂ Sd 
an be representedas a disjoint union of two subsets DN = D(0)2a ∪ D(1)b ; N = 2a + b; where
D(0)2a = {x ∈ DN : −x ∈ DN}, D(1)b = {x ∈ DN : −x =∈ DN}. We have�[B�=2(y);DN ℄ = �[B�=2(y);D(0)2a ℄ + �[B�=2(y);D(1)b ℄:It is 
lear that �[B�=2(y);D(0)2a ℄ = 0 for all y ∈ Sd ex
epting the hyperplanes
〈y; x〉 = 0, x ∈ D(0)2a . Hen
e, ��=2[DN ℄ = ��=2[D(1)b ℄:Let N = 2a be even and DN = D(0)2a , then ��=2[DN ℄ = 0. Let N = 2a+ 1be odd and DN = D(0)2a ∪ D(0)1 , where D(1)1 = {x0} is a one-point subset. Asimple 
al
ulation shows that ��=2[{x0}℄ = �=2. Therefore, ��=2[DN ℄ = �=2,and the relation (2.22) follows.B. Geometry of two-point homogeneous spa
esand strong invarian
e prin
iples5. Models of proje
tive spa
es and 
hordalmetri
sIn this se
tion we de�ne the 
hordal metri
s on the proje
tive spa
es FP n,
F = R, C;H, n ≥ 2, and the o
tonioni
 proje
tive plane OP 2 in terms ofspe
ial models for these spa
es. For the sake of 
onvenien
e, we des
ribe su
hmodels in suÆ
ient detail and give the ne
essary referen
es.Re
all the general fa
ts on the algebras R;C;H;O over the �eld of realnumbers. We have the natural in
lusions

R ⊂ C ⊂ H ⊂ O: (5.1)25



where the o
tonions O are a nonasso
iative and non
ommutative algebra ofdimension 8 with a basis 1; e1; e2; e3; e4; e5; e6; e7 (their multipli
ation table
an be found in [3, p. 150℄ and [7, p. 90℄), the quaternions H are an asso
ia-tive but non
ommutative subalgebra of dimension 4 spanned by 1; e1; e2; e3,�nally, C and R are asso
iative and 
ommutative subalgebras of dimensions2 and 1 spanned by 1; e1 and 1, 
orrespondingly. From the multipli
ationtable one 
an easily see that for any two indexes 7 ≥ i; j ≥ 1; i 6= j; thereexists an index 7 ≥ k ≥ 1, su
h thateiej = −ejei = ek; i 6= j; e2i = −1: (5.2)Let a = �0 +∑7i=1 �iei ∈ O, �i ∈ R, 0 ≤ i ≤ 7, be a typi
al o
tonion. Wewrite Re a = �0 for the real part, �a = �0 −∑7i=1 �iei for the 
onjugation,
|a| = (�20 +∑7i−1 �2i )1=2 fot the norm. Using (5.2), one 
an easily 
he
k thatRe ab = Re ba; ab = ba; |a|2 = a�a = �aa; |ab| = |a| |b|:It follows from the last equality that all algebras (5.1) are division algebras.Noti
e also that by a theorem of Artin a subalgebra generated in O by anytwo o
tonions is asso
iative and isomorphi
 to either H, or C, or R, see [3℄.First of all, we re
all the standard model of proje
tive spa
es over theasso
iative algebras F = R;C;H. Let Fn+1 be a linear spa
e of ve
torsa = (a0; : : : ; an), ai ∈ F, 1 ≤ i ≤ n with the right multipli
ation by s
alarsa ∈ F, the Hermitian inner produ
t(a;b) = n∑i=0 �aibi; a;b ∈ Fn+1; (5.3)and the norm |a|,

|a|2 = (a; a) = n∑i=0 |ai|2: (5.4)In this 
ase, in view of asso
iativity of the algebras F = R, C;H, aproje
tive spa
e FP n 
an be de�ned as a set of one-dimensional (over F)subspa
es in Fn+1:
FP n = {p(a) = aF : a ∈ Fn+1; |a| = 1}: (5.5)The metri
 � on FP n is de�ned by
os 12�(a;b)= |(a;b)|; a;b ∈ Fn+1; |a|= |b|=1; 0 ≤ �(a;b) ≤ �; (5.6)26



i.e. 12�(a;b) is the angle between the subspa
es p(a) and p(b). The transitivegroup of isometries U(n + 1;F) for the metri
 � 
onsists of nondegeneratelinear transformations of the spa
e Fn+1, preserving the inner produ
t (5.3),and the stabilizer of a point is isomorphi
 to the subgroup U(n;F)×U(1;F).Hen
e,
FP n = U(n + 1;F)=U(n;F)× U(1;F): (5.7)The groups U(n + 1;F) 
an be easily determined (they have been indi
atedin se
tion 2 in the list of 
ompa
t 
onne
ted two-point homogeneous spa
es).A Riemannian U(n+1;F)-invariant stru
ture 
orresponding to the metri
 �
an be also de�ned on the proje
tive spa
e (5.5), and one 
an easily 
he
kthat these spa
es are two-point homogeneous spa
es.There is another model where a proje
tive spa
e FP n, F = R;C;H, isidenti�ed with the set of orthogonal proje
tors onto the one-dimensionalsubspa
es in Fn+1. This model admits a generalization to the o
tonioni
proje
tive plane OP 2 and in its terms the 
hordal metri
 
an be naturallyde�ned for all proje
tive spa
es.Let H(Fn+1) denote the set of all Hermitian (n + 1) × (n + 1) matri
eswith the entries in F, F = R, C;H;O,

H(Fn+1) = {A = ((aij)) : aij = aji; aij ∈ F; 0 ≤ i; j ≤ n}: (5.8)It is 
lear that H(Fn+1) is a linear spa
e over R of dimensionm = dimR H(Fn+1) = 12(n+ 1)(d+ 2); d = nd0: (5.9)The linear spa
e H(Fn+1) is equipped with the symmetri
 real-valuedinner produ
t
〈A;B〉 = 12 Tr(AB +BA) = ReTrAB = Re n∑i;j=0aijbij (5.10)and the norm

‖A‖ = (TrA2)1=2 = ( n∑i;j=0 |aij|2)1=2 ; (5.11)here TrA = ∑ni=0 aii denotes the tra
e of a matrix A. For the distan
e
‖A−B‖ between matri
es A;B ∈ H(Fn+1), we have

‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2〈A;B〉: (5.12)27



Thus, H(Fn+1) 
an be thought of as the m-dimensional Eu
lidean spa
e.If F 6= O, the orthogonal proje
tor �a ∈ H(Fn+1) onto a one-dimensionalsubspa
e p(a) = aF, a = (a0; : : : ; an) ∈ Fn+1, |a| = 1, 
an be given by�a = a(a; ·) or in the matrix form �a = ((ai�aj)), 0 ≤ i; j ≤ n. Therefore,the proje
tive spa
e (5.5) 
an be written as follows
FP n = {� ∈ H(Fn+1) : �2 = �; Tr� = 1}: (5.13)The group of isometries U(n + 1;F) a
ts on su
h proje
tors by the formulag(�) = g�g−1, g ∈ U(n + 1;F).For the o
tonioni
 proje
tive plane OP 2 the similar model (due toFreudenthal and Jordan) is also known. A detailed dis
ussion of this model
an be found in [3,7,18,20℄ in
luding an explanation why o
tonioni
 proje
-tive spa
es OP n do not exist if n > 2. In this model one puts by de�nition
OP 2 = {� ∈ H(O3) : �2 = �; Tr� = 1}: (5.14)Thus, the formulas (5.13) and (5.14) are quite similar. One 
an 
he
kthat ea
h matrix in (5.14) 
an be written as �a ∈ OP 2 for a ve
tora = (a0; a1; a2) ∈ O3, where �a = ((ai�aj)), 0 ≤ i; j ≤ 2, |a|2 =

|a0|2+ |a1|2+ |a2|2 = 1, and additionally (a0a1)a2 = a0(a1a2), see [20, Lemma14.90℄. The additional 
ondition means that the subalgebra in O generatedby the 
oordinates a0; a1; a2 is asso
iative. Using this fa
t, one 
an easilyshow that OP 2 is a 16-dimensional 
ompa
t 
onne
ted Riemannian mani-fold, see [20, p. 290 ℄.The group of nondegenerate linear transformations g of the spa
e H(O3)preserving the squares g(A2) = g(A)2, A ∈ H(O3), is isomorphi
 to the 52-dimensional ex
eptional Lie group F4. This group also preserves the tra
e,inner produ
t (5.10) and norm (5.11) of matri
es A ∈ H(O3). The groupF4 is transitive on OP 2, and the stabilizer of a point is isomorphi
 to thespinor group Spin(9), see [20, Lemma 14.96 and Theorem 14.99℄. Hen
e,
OP 2 = F4= Spin(9) is a homogeneous spa
e, and one 
an prove that OP 2 isa two-point homogeneous spa
e.For our dis
ussion we need to des
ribe the stru
ture of geodesi
s in pro-je
tive spa
es. Su
h a des
ription 
an be easily done in terms of models (5.13)and (5.14). It is known, see [7,21,33℄, that all geodesi
s on a two-point homo-geneous spa
e Q(d; d0) are 
losed and homeomorphi
 to the unit 
ir
le. Thegroup of isometries is transitive on the set of geodesi
s and the the stabilizerof a point is transitive on the set of geodesi
s passing through this point.28



Therefore, all geodesi
s have the same length 2� (under the normalization(1.1) for the invariant Riemannian distan
e).The in
lusions (5.1) indu
e the following in
lusions of the 
orrespondingproje
tive spa
es
F1P n1 ⊆ FP n; F1 ⊆ F; n1 ≤ n; (5.15)moreover, the subspa
e F1P n1 is a geodesi
 submanifold in FP n, see [7,Se
. 3.24℄. Parti
ularly, the real proje
tive line RP 1, homeomorphi
 to theunit 
ir
le S1, is embedded as a geodesi
 into all proje
tive spa
es FP n,S1 ≈ RP 1 ⊂ FP n; (5.16)see [7, Proposition 3.32℄. In (5.16) n = 2 if F = O.Using the models (5.13) and (5.14), we 
an write the real proje
tive line

RP 1 as the following set of 2× 2 matri
es:
RP 1 = {�(u); u ∈ R=�Z}; (5.17)�(u)=( 
os2 u sinu 
os usinu 
os u sin2 u )=(
os u − sinusin u 
os u )(1 00 0)(
os u sinusin u 
os u) :For ea
h u ∈ R the matrix �(u) is an orthogonal proje
tor onto the one-dimensional subspa
e xR, x = (
os u; sinu) ∈ S1. The embedding RP 1 into

FP n 
an be written as the following set of (n+ 1)× (n + 1) matri
es:Z = {Z(u); u ∈ R=�Z} ⊂ FP n; (5.18)Z(u) = ( �(u) 0n−1;202;n−1 0n−1;n−1) ;where 0k;l denotes the zero matrix of size k× l. The set of matri
es (5.18) isa geodesi
 in FP n. All other geodesi
s are of the form g(Z), where g ∈ G isan isometry of the spa
e FP n. The parameter u in (5.18) and the geodesi
distan
e � on the spa
e FP n are related by�(Z(u); Z(0)) = 2|u|; −�=2 < u ≤ �=2; (5.19)and for all u ∈ R this formula 
an be extended by periodi
ity. Parti
ularly,we have�(Z(u=2); Z(−u=2)) = {2min{u; � − u} if 0 ≤ u ≤ �;2u if 0 ≤ u ≤ �=2:29



Therefore, �(Z(v); Z(−v)) = 4v; 0 ≤ v ≤ �=4: (5.20)In su
h a form, this relation will be needed in the next se
tion.Now, we de�ne the 
hordal distan
e on proje
tive spa
es. The formulas(5.13), (5.14) Ñ (5.11) imply
‖�‖2 = Tr�2 = Tr� = 1: (5.21)for any � ∈ FP n. Therefore, the proje
tive spa
es FP n, de�ned by (5.13)and (5.14), are submanifolds in the unit sphere

FP n ⊂ Sm−1 = {A ∈ H(Fn+1) : ‖A‖ = 1} ⊂ H(Fn+1) ≈ Rm: (5.22)It fa
t, this is an embedding of FP n into the (m−2)-dimensional sphere, theinterse
tion of the sphere Sm−1 with the hyperplane in H(Fn+1) de�ned byTrA = 1, see (5.21).The 
hordal distan
e �(�1;�2) between �1;�2 ∈ FP n is de�ned as theEu
lidean distan
e (5.12):�(�1;�2) = 1√2‖�1 − �2‖ = (1− 〈�1;�2〉)1=2: (5.23)The 
oeÆ
ient 1=√2 is 
hosen to satisfy diam(�;FP n) = 1.It is 
lear from (5.23) that �(g(�1), g(�2)) = �(�1;�2) for all isometriesg ∈ G of the spa
e FP n. Sin
e FP n is a two-point homogeneous spa
e, forany �1;�2 ∈ FP n with �(�1;�2) = 2u, 0 ≤ u ≤ 12�, there exists g ∈ G, su
hthat g(�1) = Z(u), g(�2) = Z(0). From (5.23), (5.18) and (5.17), we obtain�(Z(u); Z(0)) = sinu = sin 12�(�(u);�(0)): Therefore,�(�1;�2) = sin 12�(�1;�2); (5.24)as it was 
laimed before in (2.4).Noti
e also that antipodal points �+;�− ∈ FP n, i.e. �(�+;�−) = �and �(�+;�−) = 1, 
an be 
hara
terized by the orthogonality 
ondition
〈�+;�−〉 = 0, see (5.23), (5.24).
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6. Proof of Theorem 2.1The proof of Theorem 2.1 is relying on the following spe
ial representationof the symmetri
 di�eren
e metri
 (1.13) on a 
ompa
t metri
 spa
e M,see [28, Lemma 2.1℄. Here this representation is given in a form adapted forthe 
hordal metri
 (5.23) on the spa
es Q(d; d0).Lemma 6.1. Let the weight fun
tion � be summarized on the interval [0; �℄,then ��(�; y1; y2) = 12 ∫
M

|�(�(y1; y))− �(�(y2; y))| d�(y) (6.1)with the nonin
reasing fun
tion�(r) = �∫r �(u) du: (6.2)Parti
ularly, if M is a two-point homogeneous spa
e Q = Q(d; d0) andthe weight fun
tion �\(r) = sin r, then��(�\; y1; y2) = ∫Q |�(y1; y)2 − �(y2; y)2| d�(y); (6.3)where �(·; ·) is the 
hordal metri
 (5.23) on Q(d; d0).Proof. For brevity, we write �(y1; y) = �1 and �(y2; y) = �2. Using (1.13),(1.17) and (1.16), we obtain��(�; y1; y2)= 12 ∫
M




�∫0 (�(r − �1) + �(r − �2)− 2�(r − �1)�(r − �2))�(r) dr d�(y)= 12 ∫
M

(�(�1) + �(�2)− 2�(max{�1; �2})) d�(y): (6.4)Sin
e � is a nonin
reasing fun
tion, we have2�(max{�1; �2})=2min{�(�1); �(�2)}=�(�1)+�(�2)−|�(�1)−�(�2)|: (6.5)Substituting (6.5) into (6.4), we obtain (6.1).If �\(r) = sin r, then �\(r) = 2 − 2 sin2 r=2. Substituting this expressioninto (6.1) and using (5.24), we obtain (6.3).31



For 
ompleteness we give at �rst the proof of Theorem 2.1 in the 
ase ofspheres Sd.Proof of Theorem 2.1 for spheres. For the sphere Sd the 
hordal metri
 � isde�ned (2.5). We have�(y1; y)2 − �(y2; y)2 = 14(‖y1 − y‖2 − ‖y2 − y‖2)= −12(y1 − y2; y) = −�(y1; y2)(x; y); y1; y2 ∈ Sd; (6.6)where x = ‖y1−y2‖−1(y1−y2) ∈ Sd. Substituting (6.6) into (6.3), we obtain��(�\; y1; y2) = �(y1; y2) ∫Sd |(x; y)| d�(y): (6.7)It is 
lear that the integral in (6.7) is independent of x ∈ Sd. This provesthe equality (2.8) for Sd with the 
onstant
(Sd) = ∫Sd |(x; y)| d�(y)−1 :
Proof of Theorem 2.1 for proje
tive spa
es. We write �1;�2;� for points inthe models of proje
tive spa
es (5.13) and (5.14). With this notation, therelation (6.3) takes the form��(�\;�1;�2) = ∫

FPn |�(�1;�)2 − �(�2;�)2| d�(�): (6.8)Sin
e FP n is a two-point homogeneous spa
e, for �1;�2 ∈ FP n with�(�1;�2) = 4v, 0 ≤ v ≤ �=4, there exists an isometry g ∈ G, su
h thatg(�1) = Z(v), g(�2) = Z(−v), see (5.20). Therefore,
∫

FPn |�(�1;�)2 − �(�2;�)2| d�(�)= ∫

FPn |�(Z(v);�)2 − �(Z(−v);�)2| d�(�): (6.9)32



From the de�nition (5.23), we obtain�(Z(v);�)2−�(Z(−v);�)2= 12(‖Z(v)−�‖2−‖Z(−v)−�‖2)= 〈Z(v)− Z(−v);�〉: (6.10)The formulas (5.17) and (5.18) implyZ(v)− Z(−v) = (�(v)− �(−v) 0n−1;202;n−1 0n−1;n−1)and �(v)− �(−v) = ( 0 sin 2usin 2u 0 ) = sin 2u(�+ − �−);where �+ = 12 (1 11 1) ; �− = 12 ( 1 −1
−1 1 ) :Therefore, Z(v)− Z(−v) = sin 2v(Z+ − Z−); (6.11)where Z± = ( �± 0n−1;202;n−1 0n−1;n−1) :We have Z∗

± = Z±, Z2
± = Z±, TrZ± = 1, i.e. Z± ∈ FP n, and 〈Z+; Z−〉 = 0,i.e. Z+ and Z− are antipodal points. Using (5.24), we 
an write�(�1;�2) = �(Z(v); Z(−v)) = sin 2v;and the equality (6.11) takes the formZ(v)− Z(−v) = �(�1;�2)(Z+ − Z−): (6.12)Substituting (6.12) into (6.10), we �nd that�(Z(v);�)2 − �(Z(−v);�)2 = �(�1;�2)〈Z+ − Z−;�〉: (6.13)Substituting (6.13) into (6.9) and using (6.8), we obtain��(�\;�1;�2) = �(�1;�2)��(�\; Z+; Z−): (6.14)33



where ��(�\; Z+; Z−) = ∫

FPn |〈Z+ − Z−;�〉| d�(�): (6.15)The integral (6.15) is independent of �1;�2, This proves the equality (2.8)for FP n with the 
onstant
(FP n) = ∫
FPn |〈Z+ − Z−;�〉| d�(�)−1 :In this formula any pair of antipodal points in FP n 
an be taken instead ofZ+; Z−. The proof of Theorem 2.1 is 
omplete.7. Proof of Lemma 2.1(i) In (1.23) we put y1 = y2 = y to obtain�r(y; y) = vr − v2r = vrv′r: (7.1)Applying the Cau
hy{S
hwarz inequality to (1.6), we obtain

|�r(y1; y2)| ≤ (�r(y1; y2)�r(y2; y2))1=2 = vrv′r: (7.2)Using the weak invarian
e prin
ipl (1.29), the formula (1.26) and the bound(7.2), we obtain ��r (y1; y2) ≤ 2vrv′r: (7.3)Substituting the bounds (2.3) for the volumes vr and v′r into (7.2) and(7.3), we obtain the bounds (2.15). Integrating (2.15) with � ∈ W (d+1; d0+1), we obtain the bounds (2.16).(ii) We 
an assume that 0 < r < �, sin
e ��r (y1; y2) = 0 identi
ally, ifr = 0 or r = �. For brevity, we write Æ = �(y1; y2)=2. The parameters r andÆ vary in the region 0 < r < �, 0 ≤ Æ ≤ �=2. This re
tangular region 
an berepresented as a disjoint union of three triangular regions:(a) 0 < r < Æ, 0 ≤ Æ ≤ 12�,(b) � > r ≥ � − Æ, 0 ≤ Æ ≤ 12�,(
) r > Æ, 0 < r < � − Æ, 0 ≤ Æ < 12�.34



In ea
h of these triangular regions we will prove the bound (2.17). Forr ∈ [0; �℄, the fun
tion sin 12r is in
reasing while 
os 12r is de
reasing, and thebounds are satis�ed sin 12r ≃ r; 
os 12r ≃ � − r: (7.4)Case (a). Using the relations (1.25), (2.2), (2.3) and (7.4), we obtain��r (y1; y2) ≤ vr ≃ r∫0 (sin 12u)d−1(
os 12u)d0−1 du
.

r∫0 (sin 12u)d−1 du ≃ (sin 12r)d−1r
. (sin 12r)d−1(
os 12r)d0−1Æ: (7.5)Case (b). Similarly, from (1.25), (2.2), (2.3) and (7.4), we obtain��r (y1; y2) ≤ v′r ≃ �∫r (sin 12u)d−1(
os 12u)d0−1 du

.

�∫r (
os 12u)d0−1 du ≃ (
os 12r)d0−1(� − r)
. (sin 12r)d−1(
os 12r)d0−1Æ (7.6)Case (
). Sin
e �(y1; y2) < �, there exists the unique geodesi
 
 ⊂Q(d; d0) of shortest length �(y1; y2) joining points y1; y2, ÑÑ. [21, Chap. VII,Se
. 10℄. Let y0 denote its midpoint, i.e. y0 ∈ 
, �(y1; y0) = �(y2; y0) = Æ.The triangle inequality for the metri
 � implies that the ball Br−Æ(y0) is
ontained in the interse
tion Br(y1) ∩Br(y2). Hen
e�(Br(y1) ∩ Br(y2)) ≥ vr−Æ: (7.7)

35



Using again the relations (1.25), (2.2), (2.3) and (7.7), we obtain��r (y1; y2) ≤ vr − vr−Æ ≃ r∫r−Æ (sin 12u)d−1(
os 12u)d0−1 du
. (sin 12r)d−1(
os 12(r − Æ))d0−1 ≃ (sin 12r)d−1(� − r + Æ)d0−1
≃ (sin 12r)d−1(� − r)d0−1(1 + Æ� − r)d0−1

. (sin 12r)d−1(� − r)d0−1Æ
≃ (sin 12r)d−1(
os 12r)d0−1Æ: (7.8)Now, the bound (2.17) follows from the bounds (7.6), (7.7), (7.8). Inte-grating (2.17) with � ∈ W (d; d0), we obtain the bound (2.18). The proof ofLemma 2.1 is 
omplete.C. Spheri
al fun
tions and bounds for dis
rep-an
ies and sums of distan
es8. Commutative spa
es and spheri
al fun
-tionsIn this se
tion we outline general fa
ts on harmoni
 analysis on 
ommuta-tive spa
es. The two-point homogeneous spa
es Q(d; d0) are an importantsub
lass of su
h spa
es. The general theory of 
ommutative spa
es is givenin [34℄, see also [22, 32℄. For 
ompa
t groups this theory is rather simple.Let G be a 
ompa
t group and K ⊂ G a 
losed subgroup. Denote by �Gand �K Haar measures on the groups G and K, 
orrespondingly, �G(G) =�K(K) = 1. As before, � denotes the invariant measure on the homogeneousspa
e Q = G=K, and �G = �K×�. We write Lq(G), q = 1; 2, for the spa
e offun
tions on G integrable with the power q with respe
t to the Haar measure,Lq(G=K) and Lq(K \G=K) for the subspa
es of fun
tions in Lq(G) satisfyingf(gk) = f(g), k ∈ K, and, 
orrespondingly, f(k1gk2) = f(g); k1; k2 ∈ K.Obviously, fun
tions in these subspa
es 
an be thought of as fun
tions onQ = G=K. The spa
es L1(K \ G=K) ⊂ L1(G=K) ⊂ L1(G) are Bana
h36



algebras with respe
t to a multipli
ation de�ned as the 
onvolutionf1 ∗ f2(g) = ∫G f1(gh−1)f2(h) d�G(h): (8.1)These algebras are asso
iative but, in general, they are not 
ommutative. Forexample, the algebra L1(G) is 
ommutative if and only if G is 
ommutative.If the algebra L1(K\G=K) is 
ommutative, the pair of groupsK ⊂ G is 
alleda Gelfand pair and the 
orresponding homogeneous spa
e Q = G=K is 
alleda 
ommutative spa
e, see [34℄. The subgroup K in a Gelfand pair is 
alledmassive, see [32℄. Two large 
lasses of 
ommutative spa
es are Riemanniansymmetri
 spa
es and two-point homogeneous spa
es, see [22,34℄. The spa
esQ(d; d0) belong to both of these 
lasses.Consider the following unitary representation of a group G in the spa
eL2(G=K) T (g)f(h) = f(g−1h); f ∈ L2(G=K); g; h ∈ G: (8.2)and its de
omposition into the orthogonal sumT = ⊕̂l≥0 Tl; L2(G=K) = ⊕̂l≥0 Vl (8.3)of unitary irredu
ible representations Tl in �nite-dimensional spa
es Vl. Letml = dimVl, and (·; ·) denote the inner produ
t in Vl.If Q = G=K is a 
ommutative spa
e, then the irredu
ible representationsTl o

urring in (8.3) are pair-wise nonequivalent and ea
h subspa
e Vl in(8.3) 
ontains a single K-invariant unit ve
tor e(l), i.e. Tl(k)e(l) = e(l) for allk ∈ K.Fix an orthonormal basis e1; : : : ; eml in the spa
e Vl, su
h that e1 = e(l)and de�ne the matrix elements t(l)ij (g) = (Tl(g)ei; ej). It is 
lear thatt(l)ij (g1g2) = ml∑p=1 t(l)ip (g1)t(l)pj (g2);t(l)ij (g−1) = t(l)ji (g): 



(8.4)We also have the orthogonality relations
∫G t(l)ij (g)t(l′)ij (g)d�G(g) = m−1l Æll′Æii′Æjj′: (8.5)37



The sets of fun
tions {m1=2l t(l)1j (g), j = 1; : : : ; ml, l ≥ 0} and {m1=2l t(l)11(g); l ≥0} are orthonormal bases in the spa
es L2(G=K) and L2(K \ G=K), 
orre-spondingly, see [32℄.The matrix elements 'l(g) = t(l)11(g) are 
alled (zonal) spheri
al fun
tions.Noti
e that the matrix elements t(l)1j (g), j = 2; : : : ; ml are 
alled asso
iatedspheri
al fun
tions. The de�nition and the formula (8.4) imply immediatelythat all spheri
al fun
tions are 
ontinuous, 'l(1) = 1, where 1 is the unitelement of G, |'l(g)| ≤ 1 for all g ∈ G, and'l(g1g−12 ) = ml∑j=1 t(l)1j (g1)t(l)1j (g2);'l(g) = 'l(g−1): 



(8.6)It follows from (8.6) that 'l is positive de�nite:
∑1≤i;j≤N 
i
j'l(g−1i gj) ≥ 0 (8.7)for any g1; : : : ; gN ∈ G and any 
omplex numbers 
1; : : : ; 
N . From (8.1),(8.5) and (8.6), we obtain the following 'orthogonality relations' with respe
tto the 
onvolution ('l ∗ 'l′)(g) = Æll′m−1l 'l(g): (8.8)Fun
tions f ∈ L2(K \G=K) have the following expansionsf(g) ∼∑l≥0 ml
l(f)'l(g); (8.9)where ∼ denotes the L2-
onvergen
e. The Fourier 
oeÆ
ients are given by
l(f) = ∫G f(g)'l(g) d�G(g); (8.10)and ∫G |f(g)|2 d�G(g) =∑l≥0 ml|
l(f)|2 (8.11)Substituting the expansion (8.9) for two fun
tions f1; f2 ∈ L2(K \G=K)into the de�nition of 
onvolution (8.1) and using the relation (8.8), we obtainf1 ∗ f2(g) =∑l≥0 ml
l(f1)
l(f2)'l(g): (8.12)38



Applying the Cau
hy{S
hwarz inequality to (8.12) and using (8.11), we ob-serve that the series (8.12) 
onverges absolutely. Sin
e the spheri
al fun
tions'l are 
ontinuous and |'l(g)| ≤ 1, we 
on
lude that the 
onvolution f1 ∗ f2is a 
ontinuous fun
tion.The fa
ts given above are true for all 
ompa
t 
ommutative spa
es. Nowwe wish to spe
ify the expansions (8.9){(8.12) for two-point homogeneousspa
es.Let K ⊂ G be 
ompa
t groups and Q = G=K a two-point homogeneousspa
e with a G-invariant metri
 �. Suppose that K is the stabilizer of a pointy0 ∈ Q. It follows from the de�nition, see se
tion 2, that the subgroup K istransitive on ea
h sphere �r(y0) = {y : �(y; y0) = r} ⊂ Q, r ∈ R, where R =
{�(y; y0) : y ∈ Q} is the set of radii. Thus, any fun
tion f ∈ Lq(K \ G=K),as a fun
tion on Q, is 
onstant on ea
h sphere �r(y0). Therefore, we 
anwrite f(g) = F (�(gy0; y0)) (8.13)with a fun
tion F (r), r ∈ R. In other words, double 
osets K \ G=K areparametrized by radii r ∈ R.Sin
e the metri
 � is G-invariant and symmetri
, we have the relations�(gy0; y0) = �(y0; g−1y0) = �(g−1y0; y0);�(g1y0; g2y0) = �(y0; g−11 g2y0) = �(g−11 g2y0;0 ):} (8.14)Comparing (8.13) and (8.14), we obtainf(g) = f(g−1): (8.15)Using (8.13), the 
onvolution (8.1) of fun
tions f1; f2 ∈ L2(K \G=K) 
an bewritten in the form(f1 ∗ f2)(g−11 g2) = ∫G F1(�(g1y0; gy0))F2(�(gy0; g2y0)) d�(g)= ∫Q F1(�(y1; y))F2(�(y; y2)) d�(y); (8.16)where y1 = g1y0, y2 = g2y0.For a fun
tion of the form (8.13) we have

∫G f(g) d�G(g) = ∫Q F (�(y; y0)) d�(y) = ∫
R

F (r) dvr; (8.17)39



where the last integral is thought of as a Stieltjes integral with the nonde-
reasing fun
tion vr = �(Br(y0)), r ∈ R.It follows from (8.13) and (8.17) that the mapping f → F is an isometryof the spa
e L2(K \G=K) onto the spa
e L2(R; vr) of fun
tions F (r), r ∈ R,with the norm
‖F‖ = ∫

R

|F (r)|2 dvr1=2 : (8.18)Sin
e the zonal spheri
al fun
tions 'l ∈ L2(K\G=K), they 
an be writtenin the form (8.13): 'l(g) = �l(�(gy0; y0)); (8.19)where �l ∈ L2(R; vr). Putting y1 = g1y0, y2 = g2y2, g1; g2 ∈ G, we 
an write(8.19) as follows'l(g−11 g2) = �l(�(g1y0; g2y0)) = �l(�(y1; y2)): (8.20)It follows from the properties of 'l that �l are 
ontinuous, �l(0) = 1,
|�l(r)| ≤ 1, r ∈ R, moreover, �l are real-valued, in view of (8.6) and (8.15).The set of fun
tions {m1=2l �l; l ≥ 0} is an orthonormal basis in the spa
eL2(R; vr) and the expansion (8.9) for F ∈ L2(R; vr) takes the formF (r) ∼∑l≥0 ml
l(F ) �l(r) (8.21)with the Fourier 
oeÆ
ients
l(F ) = ∫

R

F (r)�l(r) dvr: (8.22)Comparing the formulas (8.12), (8.16), (8.21), we arrive at the followingrelation∫Q F1(�(y1; y))F2(�(y; y2)) d�(y) =∑l≥0 ml
l(F1)
l(F2)�l(�(y1; y2)): (8.23)For all spa
es Q = Q(d; d0) spheri
al fun
tions are known, see ÑÑ. [16,Chp. 9, Se
. 2℄, [19, p. 178℄, [22, Chp. V, Thm. 4.5℄, [23, pp. 514{512, 543{544℄, [34, Thm. 11.4.21℄. The fun
tions �l in (8.19) are expli
itly given by�l(r) = �(�;�)l (r) = P (�;�)l (
os r)P (�;�)l (1) ; r ∈ R = [0; �℄; (8.24)40



where P (�;�)l (z) are the standard Ja
obi polynomials of degree l normalizedby P (�;�)l (1) = (� + ll ) = (� + 1) : : : (�+ l)l! ≃ l�; (8.25)see [31℄. The parameters �; � in (8.24) and the dimensions d, d0 in Q(d; d0)are related by � = d2 − 1; � = d02 − 1 (8.26)In what follows, we will use dimensions d, d0 as well as parameters �; �,assuming that they are related by (8.26). Noti
e that in this 
ase, we have� ≥ � ≥ −1=2 always.We have the following orthogonality relations for Ja
obi polynomials,see [31, Eq. (4.3.3)℄,�∫0 P (�;�)l (
os u)P (�;�)l′ (
os u)(sin 12u)d−1(
os 12u)d0−1 du= (12)�+�+1 1∫
−1 P (�;�)l (z)P (�;�)l′ (z)(1− z)�(1 + z)� dz =M−1l Æll′ ; (8.27)where M0 = �(d; d0) andMl = (2l + � + � + 1)�(l + 1)�(l + � + � + 1)�(l + � + 1)�(l + � + 1) ≃ l; l ≥ 1: (8.28)Comparing the orthogonality relations (8.5) and (8.28), we obtain the expli
itformula for dimensions ml of irredu
ible representations Tl in (8.3):ml =MlB(d=2; d0=2)(� + ll )2

≃ ld−1: (8.29)For fun
tions F ∈ L2([0; �℄; vr) the expansion (8.21) takes the formF (r) ∼∑l≥0 MlCl(F )P (�;�)l (
os r); (8.30)with the Fourier-Ja
obi 
oeÆ
ientsCl(F ) = �∫0 F (u)P (�;�)l (
os u)(sin 12u)d−1(
os 12u)d0−1 du: (8.31)41



The Fourier 
oeÆ
ients (8.22) and Fourier-Ja
obi 
oeÆ
ients (8.31) are re-lated by 
l(F ) = Cl(F ) �(d; d0)P (�;�)l (1) ; l ≥ 0: (8.32)Using the relations (8.24), (8.31) and (8.32), we 
an write the relation(8.23) in the form
∫Q F1(�(y1; y))F2(�(y; y2)) d�(y)= �(d; d0)∑l≥0 MlCl(F1)Cl(F2)P (�;�)l (
os �(y1; y2))P (�;�)l (1) (8.33)This relation will be used in se
tion 9 to obtain zonal spheri
al fun
tionexpansions for dis
repan
ies and metri
s .The 
ondition of positive de�niteness (8.7) for the zonal spheri
al fun
-tions (8.24) will be used in se
tion 11 in the following spe
ial form'l[DN ℄ = ∑x1;x2∈DN P (�;�)l (
os �(x1; x2))P (�;�)l (1) ≥ 0 (8.34)for an arbitrary N -point subset DN ⊂ Q(d; d0).Obviously, the 
onditions (3.2), (3.3) in the de�nition of t-designs DN ⊂Q(d; d0) are equivalent to the following equalities, see also [4, 23℄,'l[DN ℄ = 0; l = 0; 1; : : : ; t: (8.35)9. Spheri
al fun
tion expansions for dis
rep-an
ies and metri
sIn this se
tion we obtain expli
it zonal spheri
al fun
tion expansions for thekernels (1.6), (1.8) and the symmetri
 di�eren
e metri
s (1.33), (1.14) on thespa
es Q(d; d0). In the next se
tions we will estimate the 
oeÆ
ients of theseexpansions.First of all, we re
all the main fa
ts on asymptoti
 behavior of Ja
obipolynomials P (�;�)l (z), z ∈ [−1; 1℄, � ≥ −1=2, � ≥ −1=2, as l → ∞. Thebehavior is extremely irregular on the interval z ∈ [−1; 1℄: Inside the interval42



Ja
obi polynomials os
illate and are of order l−1=2, while in neighborhoods ofthe end points z = 1 and z = −1 they in
rease sharply up to the quantitiesof order l� and l�, 
orrespondingly. We des
ribe su
h irregularities in termsof the following weighted bounds. We putJ (�;�)l (r) = (sin 12r)�+ 12 (
os 12r)�+ 12P (�;�)l (
os r); r ∈ [0; �℄ (9.1)For r ∈ [
0l−1; � − 
0l−1℄, where 
0 > 0 is an arbitrary 
onstant, we havethe asymptoti
 formulaJ (�;�)l (r) = (�l)−1=2{
os[(l + l0)r + r0℄ +O((l sin r)−1)}; (9.2)where l0 = (� + � + 1)=2, r0 = −�(2� + 1)=4, see [31, Thm. 8.21.3℄.For r ∈ [0; 
0l−1℄ or r ∈ [� − 
0l−1; �℄, we have the bound J (�;�)l (r) =O(l−1=2), see [31, Thm. 7.32.2℄. This bound together with (9.2) implies thefollowing bound
|J (�;�)l (r)| < 
(l + 1)−1=2; l ≥ 0; (9.3)uniformly for all r ∈ [0; �℄ with a 
onstant depending only on � and �.Now, we 
onsider the measure of the interse
tion of two balls Br(y1) andBr(y2) in the spa
e Q = Q(d; d0)�r(y1; y2) = �(Br(y1) ∩Br(y2)) = ∫Q �r(�(y1; y))�r(�(y; y2)) d�(y); (9.4)where �r(·) is the 
hara
teristi
 fun
tion of the interval [0; r℄, 0 ≤ r ≤ �, see(1.16).Lemma 9.1. The kernel (9.4) has the following zonal spheri
al fun
tionexpansion�r(y1; y2) = v2r + �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)(
os �(y1; y2))P (�;�)l (1) ; (9.5)where vr = �(Br(y)) andal(r) = (sin 12r)2d(
os 12r)2d0 {P (�+1;�+1)l−1 (
os r)}2= (sin 12r)d−1(
os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 : (9.6)43



The 
oeÆ
ients in (9.5) satisfyMlal(r) ≤ 
(sin 12r)d−1(
os 12r)d0−1 (9.7)with a 
onstant depending only on d and d0. Furthermore, we have the equal-ity �(d; d0)∑l≥1 l−2Mlal(r) = vr − v2r = vrv′r: (9.8)Proof. Applying the expansion (8.33) to the integral (9.4), we obtain�r(y1; y2) = �(d; d0)∑l≥0 Ml{Cl(�r)}2 P (�;�)l (
os �(y1; y2))P (�;�)l (1) ; (9.9)where Cl(�l) are Fourier-Ja
obi 
oeÆ
ients (8.31) of the 
hara
teristi
 fun
-tion �r. We haveCl(�r) = r∫0 P (�;�)l (
os u)(sin 12u)d−1(
os 12u)d0−1 du= (12) d−12 + d0−12 1∫
os r (1− z)�(a+ z)�P (�;�)l (z) dz: (9.10)In view of (2.2), we have C0(�r) = �(d; d0)−1vr. For l ≥ 1 we use Rodrigues'formula for Ja
obi polynomials, see [31, Eq. (4.3.1)℄,P (�;�)l (z) = (−1)l2ll! (1− z)−�(1 + z)−� dldzl {(1− z)l+�(1 + z)l+�} : (9.11)Substituting (9.11) into (9.10), we obtain1∫
os r (1− z)�(1 + z)�P (�;�)l (z) dz= (2l)−1(1− 
os r)�+1(1 + 
os r)�+1P (�+1;�+1)l−1 (
os r)= 2�+�+1l−1(sin 12r)2�+2(
os 12)2�+2P (�+1;�+1)l−1 (
os r):44



In view of the de�nitions (8.26) and (9.1), we haveCl(�r) = l−1(sin 12r)d(
os 12r)d0P (�+1;�+1)l−1 (
os r)= l−1(sin 12r) d−12 (
os 12r) d0−12 J (�+1;�+1)l−1 (r): (9.12)Substituting (9.12) into (9.9), we obtain the formulas (9.5) and (9.6).The bound (9.7) follows from (9.6), sin
e Ml ≃ l, see (8.28), andJ (�+1;�+1)l−1 (r) . l−1=2, see (9.3).From (9.4), we obtain �r(y; y) = vr. Putting in (9.5) y1 = y2 = y, weobtain (9.8).An immediate 
orollary of Lemma 3.1 is the following.Theorem 9.1. For any spa
e Q(d; d0) the following spheri
al fun
tion ex-pansions hold:(i) For the kernels �r(y1; y2), see (1.6), and the metri
s ��r (y1; y2), see(1.14), we have the expansions�r(y1; y2) = �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)l (
os �(y1; y2))P (�;�)l (1) ; (9.13)
��r (y1; y2) = 〈��r 〉 − �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)l (
os �(y1; y2))P (�;�)l (1) ;=∑l≥1 l−2Mlal(r)[1− P (�;�)l (
os �(y1; y2))P (�;�)l (1) ] ; (9.14)where 〈��r 〉 = vrv′r is the average value of metri
 ��r , see (1.26), and the
oeÆ
ients al(r) are de�ned in (9.6).(ii) If the weight fun
tion � ∈ W (d; d0), then for the kernels �(�; y1; y2),see (1.8), and the metri
s ��(�; y1; y2), see (1.13), we have the expansions�(�; y1; y2) = �(d; d0)∑l≥1 l−2MlAl(�)P (�;�)l (
os �(y1; y2))P (�;�)l (1) ; (9.15)

45



��(�; y1; y2) = 〈��(�)〉 − �(d; d0)∑l≥1 l−2MlAl(�)P (�;�)l (
os �(y1; y2))P (�;�)l (1) ;= �(d; d0)∑l≥1 l−2MlAl(�)[1− P (�;�)l (
os �(y1; y2))P (�;�)l (1) ] ; (9.16)where 〈��(�)〉 is the average value of metri
 ��(�), see (1.18), and the 
oef-�
ients Al(�) are de�ned byAl(�) = �∫0 �(a)al(u) du: (9.17)Proof. (i) Substituting the expansion (9.5) into (1.23) and (1.25), we obtainthe expansions (9.13) and (9.14). Noti
e that in the se
ond equality in (9.14),the formula (9.8) has been taken into a

ount.(ii) In view of the bound (9.7), the series (9.13) and (9.14) 
an be inte-grated term by term with � ∈ W (d; d0). This gives the expansions (9.15)and (9.16).Noti
e that by Theorem 2.1 the 
hordal metri
 � is a symmetri
 di�eren
emetri
 (1.13) with the weight fun
tion �\(r) = sin r and, therefore, it has theexpansion (9.16). At the same time, the 
hordal metri
 
an be also writtenas follows �(y1; y2) = 
(�; �)[1− P (�;�)1 (
os �(y1; y2))P (�;�)1 (1) ]1=2 ; (9.18)with the 
onstant
(�; �) = ( � + 1� + � + 2)1=2 = ( dd+ d0)1=2 : (9.19)Indeed, Rodrigues' formula (9.11) gives P (�;�)1 (z) = 12(�+�+2)z+ 12(�−�),and so 12(1− z) = � + 1�+ � + 2 [1− P (�;�)1 (z)P (�;�)1 (1)] : (9.20)On the other hand, by the de�nitions (2.4), (5.24)�(y1; y2) = sin 12�(y1; y2) = [12 (1− 
os �(y1; y2))]1=2 : (9.21)46



Comparing (9.20) and (9.21), we obtain (9.18), (9.19).For the sphere Sd, we have d0 = d, � = � = d=2−1, and Ja
obi polynomi-als P (�;�)l (z) 
oin
ide, up to 
onstant fa
tors, with Gegenbauer polynomials.Furthermore, P (�;�)l (z) for even and odd l are even and, 
orrespondingly, oddfun
tions of z, see [31, Se
. 4.7℄. Comparing the formula (4.5) and the expan-sion (9.14) for r = �=2, we obtain the following expansion for the geodesi
distan
e on Sd�(y1; y2)=2� [14−(14)d ∑odd l≥1 l−2Ml {P (�+1;�+1)l−1 (0)}2 P (�;�)l (
os �(y1; y2))P (�;�)l (1) ]

= 2�(14)d ∑odd l≥1 l−2Ml {P (�+1;�+1)l−1 (0)}2 [1− P (�;�)l (
os �(y1; y2))P (�;�)l (1) ] : (9.22)We emphasize that the expansion 
ontains zonal spheri
al fun
tions onlywith odd numbers. For the sums (8.34), one 
an easily 
he
k the formula'l[DN ℄ = {0 if DN = D2a;1 if DN = D2a+1; (9.23)where l is odd, the subset D2a ⊂ Sd 
onsists of a pairs of antipodal pointsand D2a+1 = D2a ∪ {x0}, where x0 ∈ Sd is an arbitrary point. Substituting(9.22) into (9.23) and using (9.8), we immediately obtain a further proof ofthe relation (2.22).10. Bounds for Fourier-Ja
obi 
oeÆ
ientsIn this se
tion we estimate the following 
oeÆ
ientsal(r) = (sin 12r)d−1(
os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 ; (10.1)Al(�) = �∫0 �(u)al(u) du; (10.2)Al(�r) = �∫0 �r(u)al(u) du = r∫0 al(u) du; (10.3)47



where J (�;�)l (·) is de�ned in (9.1). In fa
t, we prove spe
ial weighted boundsfor Ja
obi polynomials.Lemma 10.1. Let the weight fun
tion � ∈ W (d; d0), � 6= 0, then the follow-ing bounds hold:(i) For 0 < r ≤ � and l ≥ 1, we haveAl(�) > 
r−d+1al(r): (10.4)(ii) There exists a 
onstant L ≥ 1, depending only on � and �, su
h thatfor 0 < r ≤ �=2 and lr > L, we haveAl(�) < Cr−dAl(�r): (10.5)The positive 
onstants 
 and C in (10.4) Ñ (10.5) depend only on �, �and �.Proof. The asymptoti
 formula (9.2) implies the following relationsJ (�+1;�+1)l−1 (r) = (�l)−1 {sin[(l + l0)r + r0℄ +O((l sin r)−1)} ; (10.6)
{J (�+1;�+1)l−1 (r)}2 = {12 − 12 
os 2[(l + l0)r + r0℄ +Rl(r)} ; (10.7)where the error term Rl(r) satis�esRl(r) = {O(l−1) for 0 < 
0 ≤ r ≤ � − 
0;O((lr)−1) for l−1 ≤ r ≤ �=2; (10.8)where 0 < 
0 < �=2 is an arbitrary 
onstant.(i) Sin
e � ∈ W (d; d0), � 6= 0, a suÆ
iently small 
onstant 0 < 
0 < �=2
an be 
hosen to satisfy�−
0∫
0 �(u)(sin 12u)d−1(
os 12u)d0−1 du

≥ 12 �∫0 �(u)(sin 12u)d−1(
os 12u)d0−1 du = 12‖�‖d;d0 > 0: (10.9)
48



Using (10.9), (10.7) and the �rst bound in (10.8), we obtainAl(�) ≥ �−
0∫
0 �(u)(sin 12u)d−1(
os 12u)d0−1 {J (�+1;�+1)l−1 (u)}2 du
≥ (�l)−1{14‖�‖d;d0−12 �−
0∫
0 �(u)(sin 12u)d−1(
os 12u)d0−1 
os 2[(l+l0)u+r0℄ du+O(l−1)} = (�l)−114‖�‖d;d0 + ◦(1); (10.10)here in the last equality, the Riemann-Lebesgue lemma has been used. Hen
eAl(�) ≥ (�l)−118‖�‖d;d0 (10.11)for all suÆ
iently large l > l1. We havemin1≤l≤l1 lAl(�) > 0; (10.12)sin
e, Al(�) > 0 for all l ≥ 1. From (10.11) and (10.12), we 
on
lude thatthe bound Al(�) ≥ 
1l−1 (10.13)holds for all l ≥ 1 with a 
onstant 
1 > 0 depending only on � and �.From the other hand, the bound (9.3) impliesr−d+1al(r) = r−d+1(sin 12r)d−1(
os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 ≤ 
2l−1 (10.14)Comparing the bounds (10.13) and (10.14), we obtain the bound (10.14) with
 = 
1
−12 .(ii) Let 0 < r ≤ �=2 and lr ≥ L, where L ≥ 1 is a 
onstant. From the
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de�nition (10.3), we obtainr−dAl(�r) ≥ r−d r∫r=2 al(u) du
≥ r−d(sin 14r)d−1(
os 12r)d0−1 r∫r=2 {J (�+1;�+1)l−1 (u)}2 du> 
1r−1 r∫r=2 {J (�+1;�+1)l−1 }2 du; (10.15)where we 
an put 
1 = (1=8)d−1(1=2)d0−1. Using the asymptoti
 formula(10.7) and the se
ond bound in (10.8), we obtainr−1 r∫r=2 {J (�+1;�+1)l−1 (u)}2 du= (�l)−1

14 − 12r−1 r∫r=2 
os 2[(l + l0)u+ r0℄ du+O(L−1) : (10.16)It is 
lear that the integral on the right-hand side in (10.16) is of orderO((rl)−1 . O(L−1). Substituting (10.16) into (10.15), we obtainr−dAl(�r) > 
1(�l)−1{14 +O(L−1)} : (10.17)In view of (10.17), we 
an 
hose and �x a suÆ
iently large 
onstant L, de-pending only on � and �, to satisfyr−dAl(�r) > 18
1(�l)−1 = 
2l−1: (10.18)From the other hand, using the bound (9.3) and the de�nition (10.2), weobtain Al(�) ≤ C2‖�‖d;d0l−1 = C3l−1: (10.19)Comparing the bounds (10.18) and (10.19), we obtain the bound (10.5) withC = C3
−12 . 50



11. Proof of Theorems 2.2 and 3.1In this se
tion we 
omplete the proof of Theorems 2.2 and 3.1. These re-sults will be obtained as immediate 
orollaries of a more general result ondis
repan
ies given below in Theorem 11.1.By appli
ation of Theorem 9.1 we 
an write the dis
repan
ies (1.5), (1.7)in the following form�r[DN ℄ = �(d; d0)∑l≥1 l−2Mlal(r)'l[DN ℄; (11.1)�[�;DN ℄ = �(d; d0)∑l≥1 l−2MlAl(�)'l[DN ℄; (11.2)�[�r; DN ℄ = �(d; d0)∑l≥1 l−2MlAl(�r)'l[DN ℄; (11.3)here DN ⊂ Q(d; d0) is an arbitrary N -point subset and the quantities'l[DN ℄ ≥ 0 are de�ned in (8.34). The series (11.1){(11.3) 
onverge andall their terms are nonnegative.Theorem 11.1. Let the weight fun
tion � ∈ W (d; d0), � 6= 0, then thefollowing bounds hold:(i) For any N-point subset DN ⊂ Q(d; d0) and an arbitrary r; 0 < r ≤ �,we have �[�;DN ℄ > 
r−d+1�r[DN ℄; (11.4)(ii) There exists a 
onstant L ≥ 1, depending only d and d0, su
h that forany N-point t-design DN ⊂ Q(d; d0) with t ≥ 2L=�, we have�[�;DN ℄ < Cr−d�[�r; DN ℄; r = Lt−1: (11.5)The positive 
onstants 
 and C in (11.4) and (11.5) depend only on d, d0and �.Proof. (i) Using the bound (10.4) and 
omparing the series (11.1) and (11.2),we obtain the bound (11.4).(ii) If DN ⊂ Q(d; d0) is a t-design, then '[DN ℄ = 0 ÑÑÑ l = 0; 1; : : : ; t, see(8.35), and summation in all series (11.1){(11.3) is taken over l > t.For L we 
hose the 
onstant indi
ated in Lemma 10.1 (ii). If r = Lt−1,then we have 0 < r ≤ �=2 for t ≥ 2L=� and lr > L for l > t. Usingthe bound (10.5) and 
omparing the series (11.2) and (11.3), we obtain thebound (11.5). 51



Now we are in position to prove Theorems 2.2 and 3.1.Proof Theorem 2.2. As it was explained in 
omments to Theorem 2.2 wehave to prove only the left bound in (2.20). From the de�nitions of dis
rep-an
ies (1.3), (1.5), we 
on
lude that�r[DN ℄ ≥ 〈〈Nvr〉〉2;where 〈〈z〉〉 = min{|z − n|; n ∈ Z} is the distan
e of z ∈ R from the nearestinteger. De�ne r by Nvr = 1=2, then �r[D℄ ≥ 1=2. In view of (2.3), r ≃N−1=d and the bound (10.4) implies the left bound in (2.20).Proof of Theorem 3.1. First of all, we noti
e that
∫Q (#{Br(y) ∩DN})2 d�(y) = ∫Q (∑x∈DN �(Br(y); x))2 d�(y)= ∑y1;y2∈DN �(Br(y1) ∩Br(y2)): (11.6)Forom the formulas (11.6), (1.24), (3.7), we obtain�r[DN ℄ < ∫Q (#{Br(y) ∩DN})2 d�(y) ≤ (�[DN ; r℄)2: (11.7)and �[�r; DN ℄ = r∫0 �u[DN ℄ du < r(�[DN ; r℄)2; (11.8)sin
e �[DN ; r℄ is a nonde
reasing fun
tion of r. Substituting (11.8) into(11.5), we obtain �[�;DN ℄ < Cr−d+1(�[DN ; r℄)2: (11.9)If r = Lt−1, then the bound (11.9) 
oin
ides with the bound (3.8).Referen
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