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Point distribution in compact metric spaces,
III. Two-point homogeneous spaces

M. M. Skriganov
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Russian Academy of Sciences

E-mail: maksim881388130mail.ru

We continue the investigation of point distributions in compact metric
spaces started in the papers [28,29]. Our concern is with discrepancies of such
distributions in metric balls and sums of pairwise distances between points of
distributions. In the present paper we consider compact connected two-point
homogeneous spaces (Riemannian symmetric spaces of rank one). All such
spaces are known, they are spheres in the Euclidean spaces, the real, complex
and quaternionic projective spaces and the octonionic projective plane.

Using the geometric features of two-point spaces, we show that Sto-
larsky’s invariance principle, well-known for the Euclidean spheres, can be
extended to all projective spaces and the octonionic projective plane. Rely-
ing on the theory of spherical functions, we obtain the best possible bounds
for quadratic discrepancies and sums of distances for point distributions in
the two-point homogeneous spaces. Applications to t-designs and Lévy-
Schoenberg kernels in such spaces are also considered in the paper.

Key words: geometry of distances, uniform distributions, t-designs ,
two-point homogeneous spaces
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A. Main results

1. Discrepancies and metrics

Let M be a compact connected metric space with a fixed metric # and a
finite Borel measure pu, normalized by

diam(M,0) ==m, pM)=1, (1.1)

where
diam(&, p) = sup{p(x1,x2) : x1, 22 € E} (1.2)

denotes the diameter of a subset £ C M with respect to a metric p.

We write B,(y) = {x : 6(x,y) < r} for the ball of radius r € [0, 7]
centered at y € M and of volume v,(y) = u(B,(y)). Since the space M is
connected, we have R = [0, 7], where R = {r = p(z1,x2) : x1,29 € M} is
the set of all possible radii.



Let Dy C M be a finite subset consisting of N points (not necessary
different). The local discrepancy of the subset Dy in the ball B, (y) is defined

by
A[Br(y)a DN] = #{Br(y) N DN} - er(y)
= > A(B(y), ),
where

A(Br(y), 2) = x(B(y), ) = vr(y),

and y (&, z) denotes the characteristic function of s subset £ C M.
The quadratic discrepancies are defined by

APy = [AIBG). DN P duw) = 3 Alonaa),

M z1,22€D N
where
M) = [ B 2)AB ), duy),
M
and -
Aln, Dy} :/)\r[DN]U(T) dr = Z A(n, 1, T2),
0 z1,22€D N

where

™

A, z1, 1) = /)\,(xl,m)n(r) dr,

0

(1.3)

(1.4)

(1.7)

(1.8)

where n(r), r € [0,7], is a non-negative weight function. The quantities
A [Dx]'/? and A[n, Dy]'/? are known as L,-discrepancies. In the present
paper it is more convenient to deal with the quadratic discrepancies (1.5)

and (1.7).
We introduce the following extremal characteristic

An(n) = inf Aln, Dy,
Dn

where the infimum is taken over all N-point subsets Dy C M.

(1.9)



For any metric p on M we put

Nl = 3 planay), (110

r1,22€DN

and introduce yet another extremal characteristic

pn = sup p[Dn], (1.11)
Dn

where the supremum is taken over all N-point subsets Dy C M.
We write (p) for the average value of a metric p,

{p) = // p(y1, y2) dp(yr) dpa(ys). (1.12)

MxM

Introduce the folloving symmetric difference metrics on the space M

™

0%, 00) = [ 62, w)n(r) (1.13)
where
0= (y1,y2) = %:U/(Br(yl)ABr(?h))
= %(UT(%) + v (y2) — 2u(Br(y1) N Br(yQ))). (1.14)
Here
B, (y1)AB,(y2) = Br(y1) U B (y2) \ B2(y1) N By (y2) (1.15)

is the symmetric difference of the balls B,(y;) and B, (ys).
The symmetry of the metric § implies the following useful relation

X(B(y),r) = x(B,(z),y) = x(r — 0(x,y)) = x»(0(z,y)) (1.16)

where x(2), z € R is the characteristic function of the half-axis [0, c0), and
Xr(+) is the characteristic function of the interval [0,7], 0 < r < w. Using



(1.14), (1.15), (1.16), we can write

02 (38) = 5 [ X(BLn) AB.() duly)
M
=5 [ B 01).3) 4 X(Bol).) = 2B ), 1) (B (), 1)) ()
M
=5 | WBen). ) = x(Be). )] ) (1.17)
M

For the average values (1.12) of metrics (1.14) and (1.13) we obtain

™

(0% () = / 02y dr, (1.18)

0

02) =5 [[ 620 duton) dnte) = [ (0:0) = 00 dta)  (119)
M

MxM

The symmetric difference of any two subsets coincides with the symmetric
difference of their complements. Hence

02 (1, 1) = ~p(BL(1)ABL (1))

2
=2 (4l + i) — 2Bl N Biw))). (120)
where B!(y) = M\ B,(y) is the complement of the ball B,(y), and
ve(y) = w(B(y)) = 1= v, (y)- (1.21)

Now the relation (1.19) takes the form

(02) = / 0, () (y) du(y) (1.22)

M

In (1.17) the balls B,(y) can be also replaced by their complements B.(y).
The study of the characteristics (1.9) and (1.11) falls within the subjects
of the discrepancy theory and geometry of distances. An extensive literature
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is devoted to such studies of point distributions on spheres in the Euclidean
space, see, for examples, [1,2,5,6,12,27]. It was shown in our recent paper [28|
that nontrivial results on the quantities (1.9) and (1.11) can be obtained for
very general metric spaces. Some of these results, needed for the present
work, are given below in Theorems 1.1 and 1.2.

A metric space M is called distance-invariant, if the volume of any ball
v, = v,(y) is independent of y € M, see [23]. For such spaces the formulas
for the discrepancies (1.5) and the symmetric difference metrics (1.14) can
be essentially simplified. Substituting (1.14) into (1.6), we obtain

M@wgz/mawmwM&@»mw@%wz

M
= (B (y1) N By (y2) — v?, (1.23)
and correspondingly,
MDN = Y w(Br(y) N By (ys) — N (1.24)
y1,9y2€DN

Similarly, the relations (1.14), (1.20) and (1.19), (1.22) take the form

%@wﬂzw—/ﬂﬁ@&wﬂ&@%mww)

M
= U — M(Br(yl) A BT(?J?))?
= v, — p(Br(y1) N By (y2)) (1.25)
and
02) = v, — v = v, (1.26)
and correspondingly,
02 (Dy] = v, N? = Y u(Bi(y1) N B, (12)). (1.27)

y1,y2€DN

Integrating these relations with 7n(r), » € [0,7], one can obtain the corre-
sponding formulas for the quantities (1.7), (1.8), (1.13), (1.18).

The typical examples of distance-invariant spaces are homogeneous spaces
M = G/K, where G is a compact group, K C G is a closed subgroup, while



and p are G-invariant metric and measure on M. In this case, the quantities
(1.6), (1.8) and (1.13), (1.14) are also G-invariant:

Ar(9y1s 9y2) = A (Y1, 42), A, gy1, gy2) = A0, Y1, 92),
9 (gylagy2) grA(gylang) (nagybng):gA(nayl,yQ)a (1-28)
)N

B, (gy2)) = 1(Br(y1) N By(y2)), y1, y2 €1, g €G.

1(B;(gy1

Comparing the relations (1.23)—(1.27), we arrive to the following result.
This result and its generalizations were given in [28, Thms. 2.1, 3.1].

Theorem 1.1 (Weak Invariance Principles). Let a compact connected metric
space M with a metric 8 and a measure pu be distance-invariant. Then we
have

Ar(Y1,y2) + 9 (y1,92) = <97=A>7 (1.29)
A, Y15 Y2) + 64 (1, Y1, 92) = <9A(77)>a (1.30)
A(n, D) + 02(n, D) = (6°(n)) N? (1.31)

) = (0°( (1.32)

6= (n)) N’

0,7] and Dy C M is an arbitrary N-point subset. The equali-
(1.31) and (1.32) hold with any weight function n such that the
7), (1.8) and (1.13), (1.18) converge.

An(n) + 03 (n

Here r € |
ties (1.30),
integrals (1.

Obviously, the integrals (1.7), (1.8) and (1.13), (1.18) converge for any
wight function 7 summable on the interval [0, 7]. More general conditions of
convergence of these integrals for two-point homogeneous spaces are given in
Lemma 2.1(i) below.

The strong invariance principle for two-point homogeneous spaces will be
established in the next section in Theorem 2.2. Our terminology of strong
and weak invariance principles is explained in comments to Theorem 2.2.

A compact metric space M with a metric # and a measure p is called
d-rectifiable if there exist a measure v on the d-dimensional unit cube
I¢ = [0, 1] absolutely continuous with respect to the d-dimensional Lebesgue
measure on /¢, a measurable subset @ C I, and an injective Lipschitz map
f: O — M, such that u(M\ f(O)) = 0; and p(€) = v(f~HE N f(O)) for
any p-measurable subset & C M. Recall that a map f : O C R? — M is
Lipschitz if

O0(f(72), f(Z2)) < c||Zy — Zs||, 71,75 € O, (1.33)
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with a positive constant ¢, and the smallest such constant is called the Lips-
chitz constant of f and denoted by Lip(f); in (1.33) ||-|| denotes the Euclidean
metric in R?, cf [26].

Notice that any smooth (or piece-wise smooth) compact d-dimensional
manifold is d-rectifiable if in the local coordinates the metric satisfies (1.12),
and the measure is absolutely continuous with respect to the d-dimensional
Lebesgue measure. Particularly, any compact d-dimensional Riemannian
manifold with the geodesic metric # and the Riemannian measure p is d-
rectifiable. In this case, it is known that condition (1.12) holds; see [21,
Chapter I, Proposition 9.10]. On the other hand, the condition on the Rie-
mannian measure is obvious because the metric tensor is continuous.

The following result was established in [28, Thm.4.2].

Theorem 1.2. Suppose that a compact metric space M, with a metric 0
and a measure i, is d-rectifiable. Write C' = d24-1 Lip(f), where Lip(f) is
the Lipschitz constant of the map f in the definition of d-rectifiability of the
space M. Then the following hold:

(i) If a metric p on M satisfies the inequality

p(x1,29) < cof(x1, 22) (1.34)
with a constant cy > 0, then
pon > (p)N? — ¢,C N4, (1.35)
(ii) If the metric 0°(n) satisfies the inequality
0% (1, 21, 29) < cof(w1, x5) (1.36)
with a constant cy > 0, then
O3 (1) = (0% (n)) N> — coCN' /¢ (1.37)

and
Av () < qCN4, (1.38)

Under such general assumptions one cannot expect that the bounds (1.37)
and (1.38) are best possible. The corresponding counterexample is given
in the next section, see the relation (2.22). Theorem 1.2 guarantees the
existence of well-distributed point subsets in all compact d-rectifiable spaces.

9



It should be emphasize that a very non-trivial and difficult problem is to
construct such uniformly distributed subsets explicitly. For spheres in the
Euclidean space a deep investigation of this problem has been given in [25].

In the present paper we will show that the bounds (1.37) and (1.38) are
best possible for compact connected two-point spaces and general classes of
weight functions 7, see Theorem 2.2 below. Main results of this paper were
stated previously in [29].

2. Strong invariance principle and best bounds
for discrepancies and sums of distances

In this section we state and discuss our main results on strong invariance
principles and best possible bounds for discrepancies and sums of distances
on two-point homogeneous spaces.

Recall some necessary facts on two-point homogeneous spaces, see [7,21,
22,33,34]. Additional facts on the geometry and harmonic analysis on such
spaces will be given in sections 5 and 8.

Let G = G(M) be the group of isometries of a metric space M with a
metric 6, i.e. 6(gxy,gr2) = (21, 25) for all z1, x5 € M and g € G. The
space M is called two-point homogeneous, if for any two pairs of points zy,
xo and Yy, yo with O(z1,29) = 0(y1,y2) there exists an isometry g € G,
such that y; = gz, y» = gxs. In this case, the group G is transitive on
M and M = G/K is a homegeneous space, where the subgroup K C G is
the stabilizer of a point o € M. Furthermore, the homogeneous space M
is symmetric, i.e. for any two points y;, y2 € M there exists an isometry
g € G, such that gy, = y2, gy2 = 41

We consider compact connected two-point homogeneous spaces M =
G/K. For such spaces G and K C G are Lie groups and M = G/K are
Riemannian symmetric spaces of rank one. All such spaces are classified
completely, see [33, Sec. 8.12]. They are the following:

(i) The d-dimensional spheres in the Euclidean space S c R¥*! S4 =
SO(d+1)/S0O(d) x {1}, d > 2, and S' = O(2)/O(1) x {1}.

(i) The real projective spaces RP™ = O(n +1)/0(n) x O(1).

(iii) The complex projective spaces CP" = U(n +1)/U(n) x U(1).

(iv) The quaternionic projective spaces HP™ = Sp(n+1)/SP(n) x Sp(1),

(v) The octonionic projective plane QP? = F,/ Spin(9).

10



Here we use the standard notation from the theory of Lie groups; par-
ticularly, F}; is one of the exceptional Lie groups in Cartan’s classification.
see [21,22,33,34].

The indicated projective spaces FP™ as compact Riemannian manifolds
have dimensions d,

d= dlmR FP" = ndo, d[) = dlmR F, (21)

where dy = 1,2,4,8 for F =R, C, H, O, correspondingly.

For spheres S¢ we put dy = d by definition. Projective spaces of di-
mension dy ( n = 1) are isomorphic to the spheres S%: RP! ~ S! CP! ~
SZ HP!' ~ S* OP' ~ S% We can conveniently agree that d > dy (n > 2) for
projective spaces, while the equality d = dy holds only for spheres. Under
this convention, the dimensions d = ndy and dy define uniquely (up to iso-
morphism) the corresponding two-point homogeneous space which we denote
by @ = Q(d,dy). We write 6 for the geodesic distance and u for the Rie-
mannian mesure on Q(d, dy). The metric # and the measure y are invariant
under the action of the corresponding group of isometries and normalized by
(1.1). In what follows we always assume that n = 2 if F = Q. Projective
spaces OP™ do not exist for n > 2. In more detail the geometry of spaces
FP™ will be outlined in section 5.

Any space Q(d,dp) is distance-invariant and the volume of balls is given
by
S L do—1
v = k(d, dg) [ (sin iu) (cos iu) “du, relo,n],
2 (2.2)
_ F(d/? + d0/2)
d,do) = B(d/2,dy/2)"" = :
/{( ) 0) ( / ) 0/ ) F(d/Q)F(do/Q)
Here B(-,-) and I'(-) are beta and gamma functions, and we have v, =
pu(Q(d,dy)) = 1. Notice that the different equivalent forms of the relation
(2.2) can be found in the literature, see [22, pp. 165-168|, [19, pp. 177
178], [23, pp. 508-510].
From the formula (2.2) we obtain the following two-side bounds

v~ v =1 v~ (7 —7r)°, rel0n] (2.3)

To simplify notation we write in some formulas A < B instead of B =
O(A), A Z B instead of B = 0(A), and A~ Bif A= 0O(B) and B = O(A).
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The chordal metric on the spaces Q(d,dy) can be defined by
1
7(21,19) = sin iﬂ(xl,m), Ty, Ty € Q(d, dy). (2.4)

Notice that the expression (2.4) defines a metric because the function ¢(0) =
sinf/2, 0 < 0 < 7, is concave, increasing and (0) = 0, that implies the
triangle inequality. For the sphere S? = {z € R4 : ||z|| = 1} we have

COSQ(Il,.'L'Q) = (xl,xg),I1,$2 € Sd

T(x1,22) = sinf(xq, x9) = §|\x1 — o], (2.5)

where (-, -) is the inner product and || - || is the Euclidean distance in R%*!,
Each projective space FP™ can be canonically imbedded into the unit
sphere

M:Qd,dy) > — TI(x) € S™ C R™, m = %(n F1)d+2),  (2.6)

such that
1
T(x1,29) = —=||Il(2x1) — [I(x9)||, x1,20 € FP", 2.7
(21, 72) ﬂH(l) (@), w1, 22 (2.7)
where || - || is the Euclidean distance in R™"!. Hence, the metric 7(z1, zs)

coincides with the Euclidean length of a segment joining the corresponding
points II(z;) and II(z2) on the unit sphere. The metric is normalized by
diam(Q(d, dy), 7) = 1. The imbedding (2.6) will be described in Section 5,
see (5.22).

Notice that the chordal metric 7 on projective spaces FP" coincides with
the well-known Fubini-Study metric. In connection with special point config-
urations in two-point homogeneous spaces the chordal metric on projective
spaces was discussed in the papers [13,14], see also the paper [15], where the
chordal metric was defined for Grassmannian manifolds.

Now we are in position to state our main results. First of all, we consider
strong invariance principles. A careful analysis of the imbedding (2.6) leads
to the following.

Theorem 2.1. For any space Q = Q(d,dy) the chordal metric (2.4) and the
symmetric difference metric (1.13) are related by

7(21,22) = ’Y(Q)GA(UH,%,%), T, T3 € Q, (2.8)

12



where n°(r) = sinr, r € [0, 7], and

(T) _ diam(Q, 7)
(02(n7))  diam(Q, 0%(n*))

The proof of Theorem 2.2 is given in Section 6. It is clear that the
equalities (2.9) follow immediately from (2.8). It suffices to calculate the
average value (1.12) of both metrics in (2.8) to obtain the first equality in
(2.9). Similarly, it suffices to write (2.8) for any pair of antipodal points z,
To, O(x1,x2) = 7, to obtain the second equality in (2.9).

Comparing Theorems 1.1 and 2.1, we arrive at the following.

7(Q) =

(2.9)

Corollary 2.1 (Strong Invariance Principle). For any space Q@ = Q(d,dy)
we have the relation

Y(Q)Aln', D] + 7[Dn] = (1) N?, (2.10)

where Dy C Q 1s an arbitrary N -point subset.
Particularly, for any N we have the equality

QAN (') + v = (T)N?. (2.11)

Notice that for the sphere S¢ the discrepancy A[n?, Dy| with the special
weight function 7%(r) = sinr can be written in the form

A, D] = / - / #{B(y.2) "Dy} — Nu(B(y, )P duly),  (2.12)
—1 M

where p is the standard normalized d-dimensional mesure on S¢, and
B(y,z) = {x € S%: cosO(z,y) > 2}, y € S, 2 € [-1,1], (2.13)

is the ’spherical cap’, B(y, z) = B.(y), z = cosr.

For spheres the strong invariance principle (2.10) was established by Sto-
larsky [30], see also the papers [8,11], where the original proof of this relation
has been essentially simplified. Corollary 2.1 can be thought of as an exten-
sion of Stolarsky’s invariance principle to projective spaces.

Recall that a metric space M with a metric p is called isometrically L,-
embeddable, if there exists a map ¢ : M > v — ¢(x) € L,, such that

13



p(x1,72) = |lo(@1) — @(z9)z, for all z, 2o € M. A two-point homo-
geneous space () is isometrically Li;-embeddable with respect to any met-
ric 02(n), see (1.17). At the same time, the space @ is isometrically Lo-
embeddable with respect to the chordal metric 7, see (2.5) and (2.7). It is
known, see [17, Sec. 6.3], that the Ls-imbeddability is stronger and implies
the L;-imbeddability. This explains our terminology of strong and week in-
variance principles. It would be very interesting to find out whether there
are weight functions 1 # 7 for which the spaces @ with the metric 6 (1) are
also Lo-embeddable.

Now we consider best possible bounds for the extremal quantities (1.9)
and (1.11). At first, we state in Lemma 2.1 some important auxiliary results.
Introduce the following classes of weight functions n(r), r € [0, 7],

Wi(a,b) ={n>0:|n|ap <o}, a>b>1,

ah = /(sin %r)“_l(cos %r)b_ln(r) dr. (2.14)

0

IE

It is worth noting that weight functions in the classes (2.14) admit rather
large singularities at points r = 0 and r = 7.

Lemma 2.1. For any space Q(d,dy) the following hold :
(i) The kernel (1.6) and the metric (1.14) satisfy the bounds

1 1
‘)\T(yla yZ)‘ S C(Sin _T)d(COS _T)dO,
. ; (2.15)
1 1 .
02 (1, 2) < C(sin 1)’ (cos 5r)*.

If n e W(d+1,dy + 1), then the kernel (1.8) and the metric (1.13) satisfy

the bounds
0311 < Clrlasaoe o)
0% (1, y1,y2) < Clinllat1,do+1-
(ii) The metric (1.14) satisfies the bound
1 1
0% (y1,12) < Cf(sin ir)d_l(cos ir)do_lﬂ(yl, Ya). (2.17)
If n € W(d,dy), then the metric (1.13) satisfies the bound
HA(naylayZ) S CHan,doe(ylayQ)' (218)
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Constants in the bounds (2.15), (2.16), (2.17) and (2.18) depend only on
d and dy.

The proof of Lemma 2.1 is given in Section 7. Particularly, it follows from
Lemma 2.1 that the weak invariance principles (1.30) - (1.32) hold in spaces
Q(d, dy) with weight functions n € W(d + 1,dy + 1).

Our result on the extremal quantities (1.9) and (1.11) can be stated as
follows

Theorem 2.2. For any space Q(d,dy) the following hold :
If n e W(d,dy), n # 0, then for any N we have

(O*())N? — c(n)N'"1 > 0% (n) > (0*(n))N? — C(nN'"2,  (2.19)
e ()N

with positive constants independent of N.
Particularly, for the chordal metric T on Q(d,dy) we have

1

< An(n) < Ci(n)N'id (2.20)

(T)N? — cN'id > 1y > (T)N? — CN'-i (2.21)
with the constants ¢ = c¢(n*) and C = C(n?).

The proof of Theorem 2.2 is given in Section 11. It is clear that the right
bounds in (2.19) and (2.20) follow immediately from Theorem 1.2(ii) and
Lemma 2.1(ii). In Section 11 we will prove the left bound in (2.20). This
will imply immediately the left bound in (2.19) by the invariance principle
(1.32). The proof of the left bound in (2.20) is relying on the theory of
spherical functions on homogeneous spaces Q(d, dp).

For the chordal metric 7 on the sphere S¢ the bounds (2.21) were known
earlier. The right bound in (2.21) was established by Alexander [1] and
the left by Beck [5]. In [5], see also [6], the left bound (2.20) was proved
for quadratic discrepancies on spheres with the special weight function 7%,
see (2.12). Together with Stolarsky’s invariance principle this implies the left
bound (2.21) for the chordal metric on S¢.

The universal bound (1.35) of Theorem 1.2(i) holds for all metrics p on
spaces ( Lipschitz continuous with respect to the geodesic distance 6. How-
ever, not all such metrics satisfy the two-side bounds of type (2.19). For
example, for the geodesic distance # on the sphere S we have

Oy = (O)N? — ey, (0) =7/2, (2.22)
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where ey = 0 for even N and 0 < ey < 7/2 for odd N. Additional comments
on this example and its relationships with invariance principles and spherical
functions are given in Sections 4 and 9. Notice that very recently the exact
equality ey = m/2 for odd N was proved in the paper [8].

In conclusion of this section we notice the following. Non-compact con-
nected two-point spaces M = G/K are also classified completely as hyper-
bolic spaces over algebras F = R, C, H, O, see [33, Sec. 8.12], and one
could consider the spaces of double cosets M =T\ Q = ' \ G/K, where
[' C G is a discrete subgroup in the group of isomerties, such that the invari-
ant measure (M) < oo. In this case, the extremal discrepancies (1.9) and
sums of distances (1.11) for the symmetry difference metrics (1.13), (1.14)
are well-defined and their study should be of much interest, especially for
non-compact M. A detailed study of these questions falls outside the scope
of the present paper.

3. Applications to t-design

Many specific point configurations on spheres and other two-point homoge-
neous spaces are described in the literature, see, for example, [4,8,12-15,23,
25,27]. One can ask whether the points of such specific configurations are
distributed uniformly in the corresponding spaces, and how the quadratic
discrepancies (1.7) and the sums of distances (1.10) could be estimated pre-
cisely for such point subsets 7

In the present paper we consider these questions for t-designs. Recall
that an N-point subset Dy C S¢ is called a spherical t-design, if the exact
quadrature formula

z€DN

S F@) =N / F(y) du(y) (3.1)

holds for all homogeneous polynomials F(z),z € R+ of degree not exceed-
ing t. The concept of t-design can be easily extended to compact two-point
spaces, see [4,23]. In this case, an N-point subset Dy C Q(d,dy) is called a
t-design, if the exact quadrature formula

S F(cos(an, 1)) = N? / / FlcosO(ts, o) du(y) dulys)  (3.2)

z1,x2€DN QxQ
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holds for all polynomials f(z),z € C, of degree not exceeding t. The condi-
tion (3.2) can be written in different equivalent forms, for example, as the
following quadrature formula

> FeosO(z.) = N / F(cos B(un, 12)) du(y). (33)

r€DN

which holds identically for all y;,y, € Q). The definition of ¢-designs can be
also given in terms of spherical functions on the spaces Q(d, dy), see [4,23].
We will return to these questions in Section 8, see (8.35).

The integrals in the right-hand sides in (3.2) and (3.3) are equal, that
follows at once from the definition of two-point spaces. For brevity, we write

Q—/f (cos O(y, y2) du(y / f(cos(y1,y2)) du(yr) dpu(ysz)- (3.4)
QxQ

From (2.2) we obtain

™

(Flo = B(d)2,dy/2)"! / F(cos 0)(sin %G)dl(cos %e)dolde. (3.5)

0

It is known, see [23, p. 520], that any N-point ¢-design Dy C Q(d, dy)
satisfies the bound N > ct? with a constant ¢ > 0 independent of N and t.
An N-point t-design Dy C Q(d, dyp) is called an optimum t-design, if

it >N > c_t? (3.6)

with some positive constants ¢, and ¢_ independent of N and ¢. Actually, in
this definition we deal with sequences of N-point ¢-designs Dy as N — oo.
For any N-point subset Dy C Q(d, dy) we put

v[Dy,r| = max #{B,(y) NDy}, re€l0,n], (3.7)

and v[Dy,r] = N if r > 7.
Our result on ¢-designs can be stated as follows.

Theorem 3.1. Let the weight function n € W(d, dy), then the following hold:

17



(i) There ezists a constant L > 1 depending only on d and dy, such that
for any N-point t-design Dy C Q(d,dy) with t > 2L/7 we have

An, D] < Ct* 1 (v[Dy, Lt71])2. (3.8)

(ii) For optimum N-point t-designs Dy C Q(d,dy) the bound (3.8) takes
the form .
A7, Dy] < CN'a(v[Dy, ¢/ LN~14))2, (3.9)

where ¢, is the constant in the definition (3.6).
The constants C' in the bounds (3.8) 4 (3.9) depend only on d, dy and 7.

The proof of Theorem 3.1 is given in Section 11. It is clear that the
equalities (3.9) follow immediately from (3.8) and the definition (3.6). The
proof of the bound (3.8) is relying on the theory of spherical functions on
homogeneous spaces Q(d, dp).

For an arbitrary N-point subset Dy C Q(d, dy), we put

L .
d[Dn] = 2 min{0(z1,2) : ¥1,22 € Dy, 11 # T2} (3.10)

Hence, the balls Bs(z), § = §[Dy|, © € Dy, do not overlap. Therefore,
vsN < 1 and, in view of (2.3), we have 6 < N~Y/4. An N-point subset
Dy C Q(d,dy) is called well-separated, if §[Dy] > ¢N~'/? with a constant
¢ > 0 independent of N.

We conveniently agree that for » > 7 the ball B,(y) = @ and v, = 1.
With this convention the following result is true.

Lemma 3.1. Let an N-point subset Dy C Q(d, dy) be well-separated. Then,
for any constant C > 0 we have

V[Dy,CN71] < ¢; (3.11)
with the constant ¢, = ¢1(C') independent of N.

Proof. For brevity, we write a = CN ~i. Consider the ball B, (y) centered at
a point y € @ and put & = B,(y) N Dy, K = #{E}. By the definition of a
well-separated subset , the balls Bs(x), § = 6[Dy], € £, do not overlap and
all these balls are contained in the ball B, s(y). Therefore, vsK < v,44, and
in view of (2.3), we have K < v,,5/vs ~ (1 + C/c)?. This proves the bound
(3.11). O
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Comparing Theorem 3.1 and Lemma 3.1, we arrive at the following.

Corollary 3.1. Let the weight function n € W(d,dy), n # 0. Suppose that
an N-point subset Dy C Q(d, dy) satisfies the following two conditions:

(i) Dy is an optimum t-design

(ii) Dy is a well-separated subset.

Then, for all sufficiently large N we have

(02 () N? — eN'"1 > 03[, Dy] > (9 ())N? — CN'14, (3.12)
¢N'"2 < A[p,Dy] < CN'"a (3.13)

Particularly, for the chordal metric T on Q(d, dy) we have
(PYN? — ¢N'"i > 7[Dy] > (r)N?> — CN'" i (3.14)
The positive constants in (3.12) - (3.14) are independent of N.

The existence of optimum ¢-designs was a long standing open problem
(the Korevaar-Meyers conjecture). In the recent papers by Bondarenko, Rad-
chenko and Viazovska [9,10] this problem was solved for spherical ¢-designs.
The existence of optimum spherical ¢-designs was proved in [9] for all suffi-
ciently large N, and it was proved in [10] that such optimum ¢-designs can
be chosen as well-separated subsets on the sphere. Hence, Corollary 3.1 is
applicable for this case, and we conclude that spherical ¢-designs constructed
in [10] meet the best possible bounds for quadratic discrepancies (3.12) and
sums of distances (3.13), (3.14).

Using spherical t-designs one can easily construct [¢/2]-designs on the real
projective space RP? = Q(d,1). Consider the canonical projection

p:Sts 1z — p(x) e RPY, (3.15)

where p(z) denotes the one-dimensional subspace in R%*! passing through the
point z € S¢, and p(—z) = p(x). In the present discussion, we conveniently
write §° for the geodesic distance on S? and 6 for the geodesic distance on
RP?. Both distances are normalized by (1.1). By definition, 8°(z, 5) is the
angle between the vectors z, 7o € S¢, while %H(xl, To) is the angle between
the subspaces p(z1),p(z2) € RPY. Hence, cos0°(z1,19) = (21, 72), see (2.5),
and cos 10(z1, z2) = [(z1, 22)|, 1. (5.6), z1, 22 € S% Therefore,

cos 0(x1,19) = 2(cos 0°(z1, 22)) — 1 (3.16)
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and
0(z1,x2) = 2min{0°(x1, z2), ™ — 0° (21, 22) }. (3.17)

Particularly, # = 20° if 0 < 6° < 7/2.
For an N-point subset D3, C S? we define

Dy = p(D%) = {p(z) : v € DY} C RPY, (3.18)

i.e. Dy is a collection of the one-dimensional subspaces in R%*! passing
through the points x € D3, C S?. If DS, contains pairs of antipodal points x
and —z, then the corresponding subspaces p(z;) and p(z3) coincide and are
counted with the multiplicity 2 as points in RP?. It is obvious, that if a subset
D%, C 8% is well-separated, then, in general, the subset Dy = p(D3;) C RP?
is not.

Lemma 3.2. (i) If a subset D3, C S is an optimum t-design, then the subset
Dy = p(DY) C RPY is an optimum [t/2]-design.

(ii) If a subset D3y C S¢ is well-separated, then the subset Dy = p(D%y) C
RP? satisfies the bound (3.11) with an arbitrary constant C > 0 and the
constant ¢, = ¢,(C) independent of N.

Proof. (i) If f is a polynomial of degree m, then, in view of (3.16), f(cosf) =
f(2cos?6° — 1) = fi(cos@°), where f, is a polynomial of degree 2m, and
fi(2) = fi(—%). Furthermore,

r(d, 1) / f(cos#)(sin %e)d—lde

™

1 1

= k(d, d) / fi(cos 6°)(sin 500)‘[’1((305 §0°)d’1d9°, (3.19)
0

where the known identity for the beta function B(z, z) = 2172 B(z,1/2) has

been taken into account. From (3.5) and (3.19), we obtain

(Frpe = (f1)s0. (3.20)

If DY, C S? is a spherical optimum ¢-design and 2m < ¢, then the defini-
tion (3.3) together with (3.20) implies

Y fleosBlay)) = Y filcos(z,y) = (fi)s: = (f)rp,

z€DN z€DY;
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Hence, the subset Dy C RP? is an optimum [t/2]-design.

(ii) Write B,(y) € RP? for the ball of radius r centered at p(y), and
Be(y) C S? for the ball of radius r centered at y € S? From (3.15) we
conclude that a point p(z) € RP? belongs to the ball B,(y) if and only if
the point & € S? belongs to either the ball B ,(y) or the ball B, (—y).
Therefore,

#{B:(y) N D} = #{B}2(y) N D} + #{B7)2(—y) N D }
From this equality and the definition (3.7), we obtain the bound
v[Dn,r] < 2v[Dy,r/2]. (3.21)

If a subset DY C S is well-separated, then by Lemma 3.1 for any con-
stant C' the bound v[D$, CN~/4] < ¢ holds with a constant ¢¢ = ¢$(O)
independent of N. Together with (3.21) this implies that the bound (3.11)
holds for the subset Dy C RP? with an arbitrary constant C' and the con-
stant ¢; = 2¢{(C/2,d) independent of N. O

Comparing Theorem 3.1 and Lemma 3.2, we arrive at the following.

Corollary 3.2. Let the weight functionn € W(d, 1), n # 0, and suppose that
an N-point subset D3, C S? satisfies the conditions (i) 4 (ii) of Corollary 3.1.

Then, the N-point subset Dy = p(D3) C RP? satisfies the bounds (3.12),
(3.13), (3.14) of Corollary 3.1.

The corresponding generalizations to the projective spaces CP", HP™ and
QP? is not straightforward and involve the methods of cited papers [9,10].

4. Remarks on Lévy-Schoenberg kernels

The Lévy-Schoenberg kernels occur as covariances of random processes
parametrized by points of a homogeneous space. For details we refer to the
paper by Gangolli [19]. In this section we discuss very briefly some topics
related to such kernels in the context of the present paper.

As before, we consider compact homogeneous spaces Q = G/K. A real-
valued symmetric kernel f(yi,y2), y1,y2 € @, is called a Lévy-Schoenberg
kernel, if the following conditions are satisfied:

(i) There exists a point yo € @ such that f(y,y0) =0 for all y € Q,
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(ii) The kernel f is positive definite, i.e. for any points z1,...,2xy € @

and any complex numbers zq,..., 2y
1<i,y<N

(iii) The polarization p(y1,y2) of the kernel f(y1,y2) defined by

p(y1,y2) = f(yr, 1) + f(y2,¥2) — 2 (v1, 42), (4.2)

is G-invariant, i.e. p(gy1, gy2) = p(y1,y2) for all y;,y, € @ and g € G.
Notice that the kernel f can be recovered from its polarization p by

1

fy,y2) = §(P(y1, Yo) + P2, Yo) — P(¥1,Y2)) (4.3)

It is known, see [19, Sec. 7], that if a Lévy-Schoenberg kernel f and its
polarization p are given, then the standard methods of probability theory
enable us to construct a Gaussian process as the mapping YV : > v —
Y, = Yi(w) € Ly(Q,dw), such that EY,, = 0, EY,,Y,, = f(z1,22) and
E(Yy, — Yu,)? = p(x1,22), for all z1, 2 € Q. Here Ly(Q, dw) is the Hilbert
space of real-valued square-integrable random variables on a probability space
Q2 with a probability measure dw and E denotes the expectation on Ly(€2, dw).
Furthermore, if the homogeneous space () is a Riemannian manifold and the
polarization p is Holder continuous with respect to the geodesic distance 6,
i.e. p(y1,1y2) < cd(y1,y2)? with some constants ¢ and 3 > 0, then for almost
all w € Q the trajectories of the process Y, (w) are continuous functions of
T € Q.

In terms of the present paper one can easily describe a large number of
explicit examples of Lévy-Schoenberg kernels on homogeneous spaces. Fix
arbitrary a point y, € () and consider the kernel

Fw) = [ Bl duty), 7€ 0.7, (1.4)
Q
where
Fr(z,y) = xX(Br(7),y) — x(Br(10), ) (4.5)

and y(B,(x),-) is the characteristic function of the ball B,.(z). Put also

fn,y,92) = /fr(yla?h)n(T) dr, (4.6)
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where 7 is a weight function such that the indegral (4.6) converges. For Q) =
Q(d, dy) the integral (4.6) converges if n € W (d + 1,dy + 1), see Lemma 2.1

().
Theorem 4.1. (i) For any compact homogeneous space Q the kernels (4.4)

and (4.6) are Lévy-Schoenberg kernels and their polarizations p, and p(n) are
of the form

pr(ylayZ) = 29?(3/1&2); (4-7)
p(n, Y1, y2) = 29A(777 Y1, y?)a (4-8)

where 0% and 02 (n) are symmetric difference metrics (1.14) and (1.13). The
wnwversion formulas are the following

erA(yDyO) + 9?@2;3/0) - HrA(yDyZ) = 2fr(y17y2)7 (4-9)
HA(% Y1, yo) + HA(% Y2, yo) - HA(% Y1, y2) = 2f(77a Y1, y2)7 (4-10)

Particularly, for any symmetric difference metrics (1.14) and (1.13) the
expressions in the left-hand side of (4.9) and (4.10) are positive definite ker-
nels.

(ii) For the two-point homogeneous spaces Q@ = Q(d, dy) the polarizations
(4.7) and (4.8) satisfy the bounds

1 1
pr(y1,y2) < C(sin 57“)'171(003 §T)d0719(y1, Ya), (4.11)
P, y1,y2) < Clnllaad (Y1, ve), (4.12)

with constants depending only on d and dy.

Proof. (i) Substituting (4.5) into (4.4), we obtain

fr(yla y2) = M(Br(yl) N Br(y2)) - :U’(Br(yl) N Br(yU)
— 1(Br(y2) 0 Br(yo)) + vr.

Therefore, f(y,y) = 2v, — 2u(B,(y) N By (yo)). With the help of these for-
mulas, the polarization (4.2) can be written as p(y1,y2) = 2v, — 2u(B,(y1) N
B, (y2)). Comparing this expression with (1.25), we obtain (4.7). Integrating
(4.7) with n(r) and using (1.13), we obtain (4.8). Substituting (4.7) and (4.8)
into (4.3), we obtain (4.9) s (4.10). It is obvious that the kernels (4.9) and
(4.10) are positive definite.

(ii) The bounds (4.11), (4.12) follow immediately from (4.7), (4.8) and
Lemma 2.1 (ii). O
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One simple and instructive example can be adduced. Consider the sphere
S? with the geodesic metric § and the standard Lebesgue measure y normal-
ized by (1.1). It is known, see [17, Sec. 6.4], that

9(1‘1,.%'2) = W/L(BW/Q(Il)ABﬂ/Q(IL'Q)), Tr1,Te € Sd, (413)

where B, jo(z) = {y € S*: 0(y,z) < 7/2} = {y € S : (y,x) > 0} is the
hemisphere centered at z € S?. Using (1.14), we can write (4.13) in the form

9(.%'1,1‘2) = 71'(]_ - 2M(B7r/2(1‘1) N Bﬂ—/g(l'g)) (414)

In this form, this equality is almost obvious: it suffers to notice that the
measure of the intersection of two hemispheres in (4.14) is a linear function
of 8(x1,z5). Comparing (4.13) and (1.14), we can write

9(.1'1,1'2) = 271'9?/2(1'1,.1'2), (415)

and so, the geodesic metric # on the sphere S? is a symmetric difference
metric. Using the formulas (4.15) and (4.5), we obtain

O(x1,20) + 0(x2, 20) — O(21,22) = 47T/F7r/2($1ay)Fn/2(f2ay) du(y), (4.16)

Sd

with Fojs(2,y) = X(Br2(2),y) — X(Br/2(40), )-
From the formula (4.16) we immediately conclude that the kernel

(1, 20) = (21, 20) + 0(22, 0) — 01, 2) (4.17)

is positive definite. This is the well-known theorem of Lévy. Its original proof
was obtained in terms of 'white noise’ integrals for random processes on S¢,
see [24, Chap. 8; Appen. Chap. 3]. A direct proof was given in [19, Sec. 4]
on the base of Gegenbauer polynomial expansion for the metric . The proof
of Lévy’s theorem given above is likely to be the simplest.

It should be emphasized that the geodesic metric 6 for the projective
spaces CP™, HP" and QP? is not a symmetric difference metric and for
these spaces analogs of Lévy’s theorem are not true. This follows from [19,
Sec. 4, pp. 225-226]. At the same time, for the chordal metric 7(z1,x9) =
sinf(xy, x2) the kernel f(z1,x2) = 7(x1,x0) + 7(x2, x9) — T(x1, T2) is positive
definite for all two-point homogeneous spaces Q(d,dy). This follows from
Theorems 2.1 and 4.1.
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In conclusion of this section we wish to explain the appearance of anoma-
lous small error terms in the relation (2.22). Using the formula (4.15) and
the invariance principle (1.29) for the sphere S, we find that

0[Dn] = () N? — 27\ /2[Dn],

where
AealD) = [ AlBuja(u). D duly
gd
and A[By/2(y), Dn] = #{Bx/2(y) "Dy} — Nvg 2. Since vy = 1/2, we derive
from (1.26) that (#) = 7/2. Any N-point subset Dy C S? can be represented
as a disjoint union of two subsets Dy = Dég) U DISI),N = 2a + b, where
DY) = {z € Dy : —z € Dy}, Dél) ={x € Dy : —x ¢ Dy}. We have

A[Brj2(y), D] = A[Bu/a(y), D)) + A[Brja(y), D).

It is clear that A[By/2(y), ng}] =0 for all y € S¢ excepting the hyperplanes
(y,x) = 0, v € D). Hence, Ay s[Dn] = Aejo[Dy].

Let N = 2a be even and Dy = Dé?l), then A\;/5[Dy] =0. Let N =2a +1
be odd and Dy = Dég) U D§°), where Dgl) = {xo} is a one-point subset. A
simple calculation shows that A;/o[{zo}] = 7/2. Therefore, \z/3[Dn] = 7/2,
and the relation (2.22) follows.

B. Geometry of two-point homogeneous spaces
and strong invariance principles

5. Models of projective spaces and chordal
metrics

In this section we define the chordal metrics on the projective spaces FP",
F =R, C,H, n > 2, and the octonionic projective plane QP? in terms of
special models for these spaces. For the sake of convenience, we describe such
models in sufficient detail and give the necessary references.

Recall the general facts on the algebras R, C,H, O over the field of real
numbers. We have the natural inclusions

RcCcHCcO. (5.1)
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where the octonions O are a nonassociative and noncommutative algebra of
dimension 8 with a basis 1, e, eq, €3, €4, €5, €5, €7 (their multiplication table
can be found in [3, p. 150] and [7, p. 90]), the quaternions H are an associa-
tive but noncommutative subalgebra of dimension 4 spanned by 1, eq, e, €3,
finally, C and R are associative and commutative subalgebras of dimensions
2 and 1 spanned by 1,e; and 1, correspondingly. From the multiplication
table one can easily see that for any two indexes 7 > 4,5 > 1,7 # j, there
exists an index 7 > k > 1, such that

eie; = —eje; =e, i#7j, el =—1. (5.2)

Let a = ag + 23:1 a;e; € 0, a; € R, 0 <4 <7, be a typical octonion. We
write Rea = «q for the real part, a = ap — ZZ:1 a;e; for the conjugation,
la| = (af + ST a?)l/2 fot the norm. Using (5.2), one can easily check that

Reab = Reba, ab=ba, |a|*>=aa=aa, |ab|= |a|l|b|.

It follows from the last equality that all algebras (5.1) are division algebras.
Notice also that by a theorem of Artin a subalgebra generated in Q@ by any
two octonions is associative and isomorphic to either H, or C, or R, see [3].

First of all, we recall the standard model of projective spaces over the
associative algebras F = R,C,H. Let F**! be a linear space of vectors
a = (ag,...,a,), a; € F, 1 < i < n with the right multiplication by scalars
a € IF, the Hermitian inner product

(a,b) => @b, abeF (5.3)
=0

and the norm |a],
a® = (a,2) = ) |aif. (5.4)
i=0

In this case, in view of associativity of the algebras F = R, C,H, a
projective space FP" can be defined as a set of one-dimensional (over F)
subspaces in F"+1:

FP" = {p(a) = aF : a € "' |a| = 1}. (5.5)
The metric @ on FP" is defined by

1
cosiﬁ(a, b)=|(a,b)|, a,becF"™, |a|=|b|=1, 0<6(a,b) <7, (5.6)
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i.e. 10(a,b) is the angle between the subspaces p(a) and p(b). The transitive
group of isometries U(n + 1,F) for the metric 6 consists of nondegenerate
linear transformations of the space F"*!, preserving the inner product (5.3),
and the stabilizer of a point is isomorphic to the subgroup U(n,F) x U(1,F).
Hence,

FP" = U(n +1,F)/U(n,F) x U(1,F). (5.7)

The groups U(n + 1,F) can be easily determined (they have been indicated
in section 2 in the list of compact connected two-point homogeneous spaces).
A Riemannian U(n + 1, F)-invariant structure corresponding to the metric 6
can be also defined on the projective space (5.5), and one can easily check
that these spaces are two-point homogeneous spaces.

There is another model where a projective space FP", F = R,C, H, is
identified with the set of orthogonal projectors onto the one-dimensional
subspaces in F"*!. This model admits a generalization to the octonionic
projective plane QP? and in its terms the chordal metric can be naturally
defined for all projective spaces.

Let H(F"*!) denote the set of all Hermitian (n + 1) x (n + 1) matrices
with the entries in F, F =R, C, H, O,

H(Fn+1) = {A = ((a”)) : aij = Ejz-, aij c F, 0 S Z,j S n} (58)

It is clear that H(F"*') is a linear space over R of dimension
1
m = dimg H(F"*") = i(n +1)(d+2), d=nd,. (5.9)

The linear space H(F"™') is equipped with the symmetric real-valued
inner product

(A,B) = %Tr(AB + BA) = ReTr AB = Re Z aiibi; (5.10)

i,j=0
and the norm
n 1/2
|A]| = (Tr A%)Y/? = (Z \aijE) : (5.11)
i,j=0

here TrA = > "  a; denotes the trace of a matrix A. For the distance
|A — BJ| between matrices A, B € H(F**!), we have

|4 = BI* = | A" + | BII* — 2(4, B). (5.12)
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Thus, H(F"™) can be thought of as the m-dimensional Euclidean space.

If F # O, the orthogonal projector I, € H(F"*!) onto a one-dimensional
subspace p(a) = aF, a = (ag,...,a,) € F*" |a] = 1, can be given by
II, = a(a,-) or in the matrix form II, = ((a;a;)), 0 < 7,7 < n. Therefore,
the projective space (5.5) can be written as follows

FP" = {Il € H(F"*!): 11> =TI, TrIl = 1}. (5.13)

The group of isometries U(n + 1,F) acts on such projectors by the formula
g(IT) = gllg™*, g € U(n + 1, F).

For the octonionic projective plane QP? the similar model (due to
Freudenthal and Jordan) is also known. A detailed discussion of this model
can be found in [3,7,18,20] including an explanation why octonionic projec-
tive spaces QOP" do not exist if n > 2. In this model one puts by definition

OP? = {Il € H(Q?) : IT?> =11, TrIl = 1}. (5.14)

Thus, the formulas (5.13) and (5.14) are quite similar. One can check
that each matrix in (5.14) can be written as TI, € OP? for a vector
a = (ap,a1,a2) € O3 where I, = ((a;a5)), 0 < 4,7 < 2, |a]*> =
lao|? + |a1]? +|az]? = 1, and additionally (aga;)as = ag(ajas), see [20, Lemma
14.90]. The additional condition means that the subalgebra in O generated
by the coordinates ag, ai, as is associative. Using this fact, one can easily
show that QOP? is a 16-dimensional compact connected Riemannian mani-
fold, see [20, p. 290].

The group of nondegenerate linear transformations ¢ of the space H(0?)
preserving the squares g(A?) = g(A)?, A € H(Q?), is isomorphic to the 52-
dimensional exceptional Lie group Fj. This group also preserves the trace,
inner product (5.10) and norm (5.11) of matrices A € H(03). The group
Fy is transitive on QP?, and the stabilizer of a point is isomorphic to the
spinor group Spin(9), see [20, Lemma 14.96 and Theorem 14.99]. Hence,
OP? = F,/ Spin(9) is a homogeneous space, and one can prove that QP? is
a two-point homogeneous space.

For our discussion we need to describe the structure of geodesics in pro-
jective spaces. Such a description can be easily done in terms of models (5.13)
and (5.14). It is known, see [7,21,33], that all geodesics on a two-point homo-
geneous space Q(d, dy) are closed and homeomorphic to the unit circle. The
group of isometries is transitive on the set of geodesics and the the stabilizer
of a point is transitive on the set of geodesics passing through this point.
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Therefore, all geodesics have the same length 27 (under the normalization
(1.1) for the invariant Riemannian distance).

The inclusions (5.1) induce the following inclusions of the corresponding
projective spaces

F,P" CFP", F,CF, n <n, (5.15)

moreover, the subspace F;P" is a geodesic submanifold in FP", see [7,
Sec. 3.24]. Particularly, the real projective line RP', homeomorphic to the
unit circle S', is embedded as a geodesic into all projective spaces FP",

S'~RP' C FP", (5.16)

see [7, Proposition 3.32]. In (5.16) n =2 if F = O.
Using the models (5.13) and (5.14), we can write the real projective line
RP! as the following set of 2 x 2 matrices:

RP' = {¢(u),u € R/7Z}, (5.17)

cos’u  sinucosu cosu —sinu) (1 0) fcosu sinu
sinucosu  sin“u sinu  cosu 0 0/ \sinu cosu
For each u € R the matrix ((u) is an orthogonal projector onto the one-

dimensional subspace 2R, = (cosu,sinu) € S'. The embedding RP' into
FP™ can be written as the following set of (n + 1) x (n + 1) matrices:

Z ={Z(u),u e R/7Z} C FP", (5.18)
_ [ Cu)  Onorp
Z(U) B <02,n1 Onl,nl) ’

where 0y denotes the zero matrix of size k£ x [. The set of matrices (5.18) is
a geodesic in FP™. All other geodesics are of the form ¢g(Z), where g € G is
an isometry of the space FP™. The parameter u in (5.18) and the geodesic
distance # on the space FP™ are related by

0(Z(u), Z(0)) =2lu|, —7/2<u<m/2, (5.19)

and for all u € R this formula can be extended by periodicity. Particularly,
we have

2min{u, 7 —u} if 0<u<m,

2u if 0<u<m/2.

0(Z(u/2), Z(—u/2)) = {
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Therefore,
0(Z(v), Z(—v)) =4v, 0<v<7/4 (5.20)

In such a form, this relation will be needed in the next section.
Now, we define the chordal distance on projective spaces. The formulas
(5.13), (5.14) a (5.11) imply

(TT]]* = TrII*> = Tr 1T = 1. (5.21)

for any IT € FP™. Therefore, the projective spaces FP", defined by (5.13)
and (5.14), are submanifolds in the unit sphere

FP" C S™ ' ={A e HE"™): ||4] =1} C H(F"*!) ~ R™. (5.22)

It fact, this is an embedding of FP™ into the (m — 2)-dimensional sphere, the
intersection of the sphere S™~! with the hyperplane in H(F"!') defined by
TrA=1,see (5.21).

The chordal distance 7(IT;,115) between Iy, 11, € FP™ is defined as the
Euclidean distance (5.12):

1
T(HI,HQ) = —2”1_[1 — H2H = (1 — <H1,H2>)1/2. (523)

The coefficient 1/+/2 is chosen to satisfy diam(r, FP") = 1.

It is clear from (5.23) that 7(g(IIy), g(Il)) = 7(IIy, II2) for all isometries
g € G of the space FP". Since FP" is a two-point homogeneous space, for
any Iy, T, € FP™ with 6(I1;, 1) = 2u, 0 < u < %ﬂ', there exists g € GG, such
that g(ITy) = Z(u), g(IIy) = Z(0). From (5.23), (5.18) and (5.17), we obtain
7(Z(u), Z(0)) = sinu = sin $0(II(u), I1(0)). Therefore,

1
T(Hl,Hg) = sin 59(1_[1,1_[2), (524)

as it was claimed before in (2.4).

Notice also that antipodal points IT,,I1I_ € FP™ ie. O(I1,,11_) = =
and 7(IT.,I1_) = 1, can be characterized by the orthogonality condition
(IT,,I1_) = 0, see (5.23), (5.24).
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6. Proof of Theorem 2.1

The proof of Theorem 2.1 is relying on the following special representation
of the symmetric difference metric (1.13) on a compact metric space M,
see [28, Lemma 2.1]. Here this representation is given in a form adapted for
the chordal metric (5.23) on the spaces Q(d, dy).

Lemma 6.1. Let the weight function n be summarized on the interval [0, 7],
then

02 e) = 5 [ 1000 ) ~ ol duts) (61
M

with the nonincreasing function
o(r)= /n(u) du. (6.2)

Particularly, if M is a two-point homogeneous space Q@ = Q(d,dy) and
the weight function n°(r) = sinr, then

0> (0", y1, o) = / 17 (y1,y)? = 7(y2, 9)? dp(y), (6.3)
Q

where 7(-,-) is the chordal metric (5.23) on Q(d, dy).

Proof. For brevity, we write 6(y;,y) = 0; and 6(yo,y) = 65. Using (1.13),
(1.17) and (1.16), we obtain

GA(naylayZ)

B ;/ / (X(r = 61) + X(r = 62) = 2x(r — 01)x(r = 62))u(r) dr | dps(y)
M 0

— % / (0(61) + o (02) — 20(max{0y,0})) du(y)- (6.4)
M

Since o is a nonincreasing function, we have
20 (max{6y,02})=2min{o(61),0(62)} =0 (61)+0(02)—|o(01)—0(62)|. (6.5)

Substituting (6.5) into (6.4), we obtain (6.1).
If n*(r) = sinr, then of(r) = 2 — 2sin®r/2. Substituting this expression
into (6.1) and using (5.24), we obtain (6.3). O
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For completeness we give at first the proof of Theorem 2.1 in the case of
spheres S¢.

Proof of Theorem 2.1 for spheres. For the sphere S? the chordal metric 7 is
defined (2.5). We have

1
T(y1,y)” — (Y2, y)* = 7y = yl* = lly= — ylI”)

1
= —§(y1 — Y2, y) = =7 (Y1, 42) (%, ), y1, 42 € S, (6.6)
where z = |ly; —ya|| 7' (y1 — y2) € S Substituting (6.6) into (6.3), we obtain
0, 00) = 7(0n.e) [ IG5 ). (©.7)
Sd

It is clear that the integral in (6.7) is independent of x € S%. This proves
the equality (2.8) for S¢ with the constant

—1

+(5%) = / (&, )] duly)

O

Proof of Theorem 2.1 for projective spaces. We write Iy, I, IT for points in
the models of projective spaces (5.13) and (5.14). With this notation, the
relation (6.3) takes the form

05 (' TT,  TTy) = / (I, TTY2 — 7(TTy, 12| dya(TT). (6.)

Since FP™ is a two-point homogeneous space, for II;,Il, € FP™ with
O(I1;,11,) = 4v, 0 < v < 7/4, there exists an isometry ¢ € G, such that
g(Ily) = Z(v), g(I1y) = Z(—v), see (5.20). Therefore,

/ (I, T1)? — 7 (I, TTY?] dya(11)

Fpn

:/\T(Z(v),H)Z—T(Z(—U),H)2|d,u(l_[). (6.9)

FP™
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From the definition (5.23), we obtain
T(Z(v)aH)Z—T(Z(—v)aH)ZZ%(HZ(U) = T|* =12 (=v) -T0*)
= (Z(v) — Z(—v),TI). (6.10)

The formulas (5.17) and (5.18) imply

Z(v) — Z(—v) = (C(v) —((=0) O )

02,77,71 Onfl,nfl
and
0 sin 2u .
0(0) = 60 = (g, ") =sin2u(ce — ),
where . .
11 1 -1

C+_§(1 1)’ C_5(—1 1)'

Therefore,
Z(w) = Z(—v) =sin2v(Zy — Z_), (6.11)

where

Ci Onfl 2
Ly = ’ .
* (02,n1 Onfl,nfl

We have Z% = Zy, Z2 = Zy, Tt Zo = 1, ie. Zo € FP", and (Z,,7_) = 0,
i.e. Z, and Z_ are antipodal points. Using (5.24), we can write

(I, ;) = 7(Z(v), Z(—v)) = sin 2v,
and the equality (6.11) takes the form
Z() = Z(—v) = 7(I}, ) (Z, — Z_). (6.12)
Substituting (6.12) into (6.10), we find that
7(Z(v),)? — 7(Z(~v),N)? = 7(I1}, ,){Z, — Z_,TI). (6.13)
Substituting (6.13) into (6.9) and using (6.8), we obtain

02 (n*, Ty, T1y) = (11, T1,)0% (0, Zy, Z_). (6.14)
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where
007 20,2 = [ 1020~ 22, 10) dum), (6.15)
FPn
The integral (6.15) is independent of IIy, Ty, This proves the equality (2.8)
for FP™ with the constant

-1

J(FPY) = / (70 — 7 T dyu(T)

In this formula any pair of antipodal points in FP™ can be taken instead of
Z.,Z_. The proof of Theorem 2.1 is complete. O

7. Proof of Lemma 2.1

(i) In (1.23) we put y; = y2 = y to obtain
My, y) = v — 02 = v (7.1)
Applying the Cauchy—Schwarz inequality to (1.6), we obtain

|)‘T‘(y17y2)| < ()‘r(ylay2))‘r(y2ay2))1/2 = Urv;- (7-2)

Using the weak invariance principl (1.29), the formula (1.26) and the bound
(7.2), we obtain

GrA(yl, Yo) < 20,v).. (7.3)

Substituting the bounds (2.3) for the volumes v, and v, into (7.2) and
(7.3), we obtain the bounds (2.15). Integrating (2.15) with n € W(d+1, dy+
1), we obtain the bounds (2.16).

(ii) We can assume that 0 < r < 7, since 02(y;,y2) = 0 identically, if
r =0 or r = m. For brevity, we write 0 = 6(y;,y2)/2. The parameters r and
d vary in the region 0 < r < m, 0 < § < 7/2. This rectangular region can be
represented as a disjoint union of three triangular regions:

(a) 0<r<4,0<6< g,

(b)7r>r27r—5,0§5§%7r,

(c)r>6,0<r<m—0,0<d<im
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In each of these triangular regions we will prove the bound (2.17). For
r € [0, 7], the function sin %T is increasing while cos %T is decreasing, and the
bounds are satisfied

1 1
sin—ro~wr, cos—ro~m-—r. (7.4)
2 2

Case (a). Using the relations (1.25), (2.2), (2.3) and (7.4), we obtain

r

1 1
97=A(y17 y2) <o~ /(Sin §U)d71(cos §U)d071 Ju
0

[ 1
/(sin iu)d_1 du =~ (sin ir)d_lr

0

AN

1 1
< (sin §r)d_1(cos ir)do_lé. (7.5)

Case (b). Similarly, from (1.25), (2.2), (2.3) and (7.4), we obtain

™

1 1
02 (y1,y2) < v =~ /(sin §u)d_1(cos §u)do—1 s

r
™

1 1
/(cos iu)d‘)’1 du ~ (cos ir)do’l(ﬂ —)

r

AN

1 1
< (sin ir)dfl(cos iT)d°’16 (7.6)

Case (c). Since 0(y1,y2) < m, there exists the unique geodesic v C
Q(d, dy) of shortest length 6(y1,y2) joining points y, yo, asa. [21, Chap. VII,
Sec. 10]. Let y, denote its midpoint, i.e. yo € 7, 0(y1,%0) = 0(y2,%0) = 0.
The triangle inequality for the metric # implies that the ball B, _s(yo) is
contained in the intersection B, (y1) N B, (y2). Hence

u(B (1) O By () > vrs. (7.7)
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Using again the relations (1.25), (2.2), (2.3) and (7.7), we obtain

r

1 1
erA(yla y2) SV — Upg /(Sin iu)d_l(COS 5u)do—l du
r—a§

1 1 1
< (sin §r)d_1(cos 5(7“ —§))! ~ (sin 57a)d—1(7r A

]_ 5 do—1 1
~ (sin §T)d71(7r - (1 * T — r> < (sin §T)d71(7r —r)do-ls

1 1
= (sin )™ (cos 5o, (78)

Now, the bound (2.17) follows from the bounds (7.6), (7.7), (7.8). Inte-
grating (2.17) with n € W(d,d,), we obtain the bound (2.18). The proof of
Lemma 2.1 is complete.

C. Spherical functions and bounds for discrep-
ancies and sums of distances

8. Commutative spaces and spherical func-
tions

In this section we outline general facts on harmonic analysis on commuta-
tive spaces. The two-point homogeneous spaces @Q(d,dy) are an important
subclass of such spaces. The general theory of commutative spaces is given
in [34], see also [22,32]. For compact groups this theory is rather simple.
Let G be a compact group and K C G a closed subgroup. Denote by ua
and py Haar measures on the groups G and K, correspondingly, ug(G) =
pr(K) =1. As before, u denotes the invariant measure on the homogeneous
space Q = G/K, and pug = ug x p. We write L,(G), ¢ = 1,2, for the space of
functions on G integrable with the power ¢ with respect to the Haar measure,
L,(G/K) and L,(K\G/K) for the subspaces of functions in L,(G) satisfying
f(gk) = f(g), k € K, and, correspondingly, f(kigks) = f(g9), k1, ks € K.
Obviously, functions in these subspaces can be thought of as functions on
Q@ = G/K. The spaces L1(K \ G/K) C L1(G/K) C L;(G) are Banach
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algebras with respect to a multiplication defined as the convolution

fi* fa(g) = /fl(ghl)f2(h) dpc(h). (8.1)

These algebras are associative but, in general, they are not commutative. For
example, the algebra L;(G) is commutative if and only if G is commutative.
If the algebra Li (K \G/K) is commutative, the pair of groups K C G is called
a Gelfand pair and the corresponding homogeneous space Q = G/K is called
a commutative space, see [34]. The subgroup K in a Gelfand pair is called
massive, see [32]. Two large classes of commutative spaces are Riemannian
symmetric spaces and two-point homogeneous spaces, see [22,34]. The spaces
Q(d, dy) belong to both of these classes.

Consider the following unitary representation of a group G in the space
Ly(G/K)

T(g)f(h)=f(g~'h), [ € L:(G/K), g,heQG. (8.2)

and its decomposition into the orthogonal sum

T—@T. LG/K) =@V (8.3

1>0 1>0

of unitary irreducible representations 7; in finite-dimensional spaces V;. Let
m; = dimV}, and (-, ) denote the inner product in V;.

If @ = G/K is a commutative space, then the irreducible representations
T, occurring in (8.3) are pair-wise nonequivalent and each subspace V; in
(8.3) contains a single K-invariant unit vector e, i.e. Tj(k)e() = eV for all
keK.

Fix an orthonormal basis ey, ..., e, in the space Vj, such that e; = e(®)

l

and define the matrix elements tg.) (9) = (Ti(g)ei, e;). It is clear that

my

l l l
p=1 (8.4)

O ¢,~1y — +O
tij (9)= tji (9).
We also have the orthogonality relations

/tﬁﬁ-) (g)tz(é'/)(g) dpc(g) = my ' 6 bindjj. (8.5)
G
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The sets of functions {mll/th? (9),7=1,...,my, 1 >0} and {ml/2 Wg), 1>
0} are orthonormal bases in the spaces LQ(G/K) and Lo(K \ G/K), corre-
spondingly, see [32].

The matrix elements ¢;(g) = ¢ (g) are called (zonal) spherical functions.
Notice that the matrix elements tY} (9), 7 = 2,...,my are called associated
spherical functions. The definition and the formula (8.4) imply immediately
that all spherical functions are continuous, ¢;(1) = 1, where 1 is the unit

element of G, |¢;(g)] <1 for all g € G, and

(9195 Ztlj gi)t

(8.6)
wilg) = 901(971)-
It follows from (8.6) that ¢ is positive definite:
> acoilg'g) =0 (8.7)
1<ij<N
for any ¢;,...,95 € G and any complex numbers ¢;,...,cy. From (8.1),

(8.5) and (8.6), we obtain the following 'orthogonality relations’ with respect
to the convolution

(o1 * 1) (9) = dwm; ' @i(g). (8.8)
Functions f € Ly(K \ G/K) have the following expansions

9) ~ Y _ma(falg), (8.9)

>0

where ~ denotes the Ls-convergence. The Fourier coefficients are given by

- / F(9)er@) duc(), (8.10)

and

>0

/ 10 duc(e) = 3 mila(f)P (8.11)

Substituting the expansion (8.9) for two functions fi, fo € Ly(K \ G/K)
into the definition of convolution (8.1) and using the relation (8.8), we obtain

fi* fa(g Zmzcz f)a(f2)eig)- (8.12)

>0
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Applying the Cauchy-Schwarz inequality to (8.12) and using (8.11), we ob-
serve that the series (8.12) converges absolutely. Since the spherical functions
¢ are continuous and |¢;(g)| < 1, we conclude that the convolution f; x fo
is a continuous function.

The facts given above are true for all compact commutative spaces. Now
we wish to specify the expansions (8.9)—(8.12) for two-point homogeneous
spaces.

Let K C G be compact groups and Q = G/K a two-point homogeneous
space with a G-invariant metric #. Suppose that K is the stabilizer of a point
Yo € Q. It follows from the definition, see section 2, that the subgroup K is
transitive on each sphere ¥, (y0) = {y : 0(y,v0) =r} C Q, r € R, where R =
{0(y,y0) : y € Q} is the set of radii. Thus, any function f € L, (K \ G/K),
as a function on @), is constant on each sphere X,(yo). Therefore, we can
write

f(g) = F(0(gv0, o)) (8.13)

with a function F(r), r € R. In other words, double cosets K \ G/K are
parametrized by radii r € R.
Since the metric # is G-invariant and symmetric, we have the relations

0(9v0,Y0) = 0(y0, 9 "v0) = (9™ "0, ¥0), }

B i (8.14)
0(g190, 9240) = 0(vo, g1 9290) = 0(g5 ' g290+0 )-

Comparing (8.13) and (8.14), we obtain

flg)=rlg™"). (8.15)

Using (8.13), the convolution (8.1) of functions fi, fo € Lo(K \ G/K) can be
written in the form

(f1* f2)(91_192) = /Fl(g(glyo, 9Y0)) F2(0(gy0, 9210)) dpe(g)

Fy(0(y1,9)) Fa(0(y, y2)) duly), (8.16)

@\Q

where y1 = 190, Y2 = 92Y0-
For a function of the form (8.13) we have

[ 1@ dncto) = [ FO@ ) dutw) = [ Fo)dn,  (327)
G Q R
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where the last integral is thought of as a Stieltjes integral with the nonde-
creasing function v, = u(B,(y)), r € R.

It follows from (8.13) and (8.17) that the mapping f — F is an isometry
of the space Lo(K \ G/K) onto the space Ly(R,v,) of functions F(r), r € R,

with the norm
1/2

171 = [P | .15)

Since the zonal spherical functions ¢, € Ly(K\G/K), they can be written
in the form (8.13):

ei(g) = Pu(0(gy0, Yo)), (8.19)
where ®; € Ly(R,v,). Putting y1 = ¢1y0, Y2 = g2¥2, g1, g2 € G, we can write
(8.19) as follows

o197 g2) = Pi(0(9190, 9200)) = P1(0(y1, 12))- (8.20)

It follows from the properties of ¢; that ®; are continuous, ®;(0) = 1,
|®,(r)| <1, r € R, moreover, ®; are real-valued, in view of (8.6) and (8.15).

The set of functions {mll/Qq)l,l > 0} is an orthonormal basis in the space
Ly(R,v,) and the expansion (8.9) for F' € Ly(R,v,) takes the form

F(r) ~ Y me(F) ®(r) (8.21)

with the Fourier coefficients

o(F) = /F(r)q)l(r) dv,. (8.22)

Comparing the formulas (8.12), (8.16), (8.21), we arrive at the following
relation

/Fl(ﬂ(yl,y))Fz(Q(y,yg))du(y) =Y mia(R)a(F) @ (0(y,y:)).  (8.23)
Q >0

For all spaces @ = Q(d, dy) spherical functions are known, see sa. [16,
Chp. 9, Sec. 2], [19, p. 178], [22, Chp. V, Thm. 4.5], [23, pp. 514-512, 543
544], [34, Thm. 11.4.21]. The functions ®; in (8.19) are explicitly given by

Pl(a’ﬁ) (cosT)

(1) = o7 (r) = PEA(1)
!

, re€R=I0,7, (8.24)
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where Pl(a’ﬁ )(z) are the standard Jacobi polynomials of degree | normalized

by
Pl(a’ﬁ)(l) _ (a—f—l) _ (a+1)...(a+1) ~ e, (8.25)

[ I

see [31]. The parameters «, /5 in (8.24) and the dimensions d, dy in Q(d, do)

are related by
d

do
a_§—1, B_E_l (8.26)
In what follows, we will use dimensions d, dy as well as parameters «, f3,
assuming that they are related by (8.26). Notice that in this case, we have
a>f3>-1/2 always.

We have the following orthogonality relations for Jacobi polynomials,
see [31, Eq. (4.3.3)],

™

1 1
/ P (cos u) P\ (cos u)(sin iu)d_l(cos §1L)"l‘)_1 du
0

1

1 « « o —
= (5)*7 / PP ()P (2)(1 - 2)* (14 2) dz = M6, (8.27)

-1
where My = k(d,dy) and
i+l +a+8+1)
Frl+a+1)I(I+p8+1)

Comparing the orthogonality relations (8.5) and (8.28), we obtain the explicit
formula for dimensions m; of irreducible representations 7; in (8.3):

My=Q2+a+5+1) I, 1>1. (8.28)

2
e = MyB(d)2, do/2) (O‘ N l) ~ i1, (8.29)
For functions F' € Ly([0, 7], v,) the expansion (8.21) takes the form
F(r) ~ Y MC(F)P{*" (cosr), (8.30)
1>0

with the Fourier-Jacobi coefficients

C|(F) = /F(u)Pl(o"ﬁ)(cos u)(sin %u)dl(cos %u)do1 du. (8.31)
0
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The Fourier coefficients (8.22) and Fourier-Jacobi coefficients (8.31) are re-

lated by (4. do)
K@, o

P(1)

Using the relations (8.24), (8.31) and (8.32), we can write the relation
(8.23) in the form

/ F(0(1, 1)) Fa0(y, 1) dps(y)

Q

PP (cosh ,
= (d, do) Z M,Cy(Fy)Ci(F) - ((a,g) (Y1, 92))
= F()

(8.33)

This relation will be used in section 9 to obtain zonal spherical function
expansions for discrepancies and metrics .

The condition of positive definiteness (8.7) for the zonal spherical func-
tions (8.24) will be used in section 11 in the following special form

P (cos Oz, 7))
@lDyl= ) pemgy 20 (8.34)
[

z1,22€DN

for an arbitrary N-point subset Dy C Q(d, dy).
Obviously, the conditions (3.2), (3.3) in the definition of ¢-designs Dy C
Q(d, dy) are equivalent to the following equalities, see also [4, 23],

@w[Dx] =0, 1=0,1,...,t (8.35)

9. Spherical function expansions for discrep-
ancies and metrics

In this section we obtain explicit zonal spherical function expansions for the
kernels (1.6), (1.8) and the symmetric difference metrics (1.33), (1.14) on the
spaces Q(d, dg). In the next sections we will estimate the coefficients of these
expansions.

First of all, we recall the main facts on asymptotic behavior of Jacobi
polynomials Pl(a’ﬁ)(z), ze[-1,1], « > —=1/2, 8 > —1/2, as | — oo. The
behavior is extremely irregular on the interval z € [—1, 1]: Inside the interval
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Jacobi polynomials oscillate and are of order [='/2, while in neighborhoods of
the end points z = 1 and z = —1 they increase sharply up to the quantities
of order [* and %, correspondingly. We describe such irregularities in terms
of the following weighted bounds. We put

1 1
J9(r) = (sin §T)a+%(COS §T)ﬁ+%]3l(0‘a5)(cos r), r€[0,n] (9.1)

For r € [col ™%, ™ — ¢ol™t], where ¢q > 0 is an arbitrary constant, we have
the asymptotic formula

Jl(o"ﬂ)(r) = (wl)~Y?{cos[(l + lo)r + o] + O((Isinr) ™1}, (9.2)

where [y = (o + 8+ 1)/2, 1o = —7(2ac + 1) /4, see [31, Thm. 8.21.3].
For r € [0,¢0l"!] or r € [r — ¢ol~!, 7], we have the bound J®?(r) =
O(I7'/?), see [31, Thm. 7.32.2]. This bound together with (9.2) implies the

following bound
1P @) < el +1)72, 1>, (9-3)

uniformly for all » € [0, 7] with a constant depending only on a and f3.
Now, we consider the measure of the intersection of two balls B, (y;) and

B.(y2) in the space @ = Q(d, dy)

:U’r(yla y2) = M(Br(yl) N Br(y2)) = /Xr(e(yla y))XT(e(ya y2)) dﬂ(y)a (94)
Q

where y,(-) is the characteristic function of the interval [0,r], 0 < r <, see
(1.16).

Lemma 9.1. The kernel (9.4) has the following zonal spherical function
exrpansion

Plap) (cos O(y1,y2))

pr (Y1, 42) = 07 + k(d, do) > 17> Myay(r) o , (9.5)
=1 P (1)
where v, = u(B,(y)) and
I P L o, (a+1,8+1) 2
a(r) = (sin 5r)*(cos 57) {pl_1 (cosr)}
1 1 2
= (sin57)* " (cos )~ {T ) | (9.6)
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The coefficients in (9.5) satisfy

1 1
Myay(r) < c(sin 57’)‘[*1(008 574)110—1 0.7)

with a constant depending only on d and dy. Furthermore, we have the equal-
ity
k(d, dy) Z [72Myay(r) = v, — v2 = v, (9.8)

I>1
Proof. Applying the expansion (8.33) to the integral (9.4), we obtain

(,8)
!

(Y1, y2) = k(d, dp) Z Ml{cz(xr)}Q P, (cos O(y1,y2))

a . (9.9)
= P?(1)

where Cj(x;) are Fourier-Jacobi coefficients (8.31) of the characteristic func-
tion x,. We have

r . ,
Ci(xr) :/Pl(o"ﬁ)(cosu)(sin iu)dfl(cos 5u)do—l du

0

1.d4-1, dg—
= () /(1_z)a(a+z)ﬂa<aﬁ>(z) az. (9.10)

In view of (2.2), we have Cy(x,) = k(d, dy)'v,. For [ > 1 we use Rodrigues’
formula for Jacobi polynomials, see [31, Eq. (4.3.1)],

a, (-1 o
PP (z) = g (1= 2) (1 +2)” dl{ (14 2) L (9.11)

Substituting (9.11) into (9.10), we obtain

1

/ (1= 2)%(1 + 2)P P9 () dz

cosr

= (20)7'(1 — cosT)*TH(1 + cos )P TP (cos )

1 1
= 20FF 1 (sin —)?%2(cos 5)2’8+2]3l(_0‘;r1”8+1) (cosr).
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In view of the definitions (8.26) and (9.1), we have

1 1 .
Ci(xr) = l’l(sin ir)d(cos ir)dOPl(_frl’ﬁﬂ)(cos r)

= ['(sin %T)% (cos %T)@%Jl(afl’ﬁﬂ)(r). (9.12)
Substituting (9.12) into (9.9), we obtain the formulas (9.5) and (9.6).
The bound (9.7) follows from (9.6), since M; ~ [, see (8.28), and
Jl(f;rl’ﬁﬂ)(r) <1712 see (9.3).
From (9.4), we obtain p,(y,y) = v,. Putting in (9.5) y; = y» = y, we
obtain (9.8). 0

An immediate corollary of Lemma 3.1 is the following.

Theorem 9.1. For any space Q(d,dy) the following spherical function ez-
pansions hold:

(i) For the kernels \.(y1,v2), see (1.6), and the metrics 02 (y1,ys), see
(1.14), we have the expansions

P (cos (y1, y2))

_ 2
Ar (Y1, y2) = K(d, do) lzzll May(r) Pl(a’ﬁ)(l) , (9.13)
A A i P (cos O(y1, 2))
0. (y1,y2) = (0,) — k(d, do) Zl May(r) ) ,
I>1 P
(e,B)
=Y M) [1- 2 (cos 51, 92)) | (9.14)

a!/B
= P?(1)

where (02) = v, is the average value of metric 02, see (1.26), and the
coefficients a;(r) are defined in (9.6).
(i) If the weight function n € W (d,dy), then for the kernels A(n, y1,y2),

see (1.8), and the metrics 02 (n,y1,ys), see (1.13), we have the expansions

P (cos ,
A, 91, 92) = K(d, dU)ZlQMZAz(n) 7 (cos 0(y1, y2))

- : (9.15)
= P9 (1)
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P (cos (y1, 1))

02 (n, 91, 92) = (0°(n)) — K(d, do) ZFZM!A!(W)

= P2 (1)
P (cos Oy,
= /i(d, dO) Z li2MlAl(77) 1 - l ((a,ﬁ) (yl yQ)) ) (916)
=1 P()

where (0% (n)) is the average value of metric 62(n), see (1.18), and the coef-
ficients A;(n) are defined by

™

Ay(n) = / n(a)ar(u) du. (9.17)

0

Proof. (i) Substituting the expansion (9.5) into (1.23) and (1.25), we obtain
the expansions (9.13) and (9.14). Notice that in the second equality in (9.14),
the formula (9.8) has been taken into account.

(ii) In view of the bound (9.7), the series (9.13) and (9.14) can be inte-
grated term by term with n € W(d,dy). This gives the expansions (9.15)
and (9.16). 0

Notice that by Theorem 2.1 the chordal metric 7 is a symmetric difference
metric (1.13) with the weight function 7*(r) = sinr and, therefore, it has the
expansion (9.16). At the same time, the chordal metric can be also written
as follows

1—

(Y1, 42) = c(a, B) (9.18)

o 1/2
P1( ”B)(COS 0(y1, y2))]
PI™7(1)

with the constant

1 1/2 d 1/2
c(a,ﬁ)z(#}@) :(m) . (9.19)

Indeed, Rodrigues’ formula (9.11) gives P{"?(z) = Ha+B+2)z41(a—p),
and so

1 1 P(ayﬁ)
—(1-2)= et oy 17(2) ) (9.20)
2 a+ B +2 plP (1)
On the other hand, by the definitions (2.4), (5.24)
1 1 1/2
7(y1,y2) = sin 59(%, y2) = {5 (1 — cos B(y1, y2))] : (9.21)

46



Comparing (9.20) and (9.21), we obtain (9.18), (9.19).
For the sphere S¢, we have dy = d, 3 = a = d/2—1, and Jacobi polynomi-
als Pl(a’a)(z) coincide, up to constant factors, with Gegenbauer polynomials.

Furthermore, Pl(a’a)(z) for even and odd [ are even and, correspondingly, odd
functions of z, see [31, Sec. 4.7]. Comparing the formula (4.5) and the expan-
sion (9.14) for r = 7/2, we obtain the following expansion for the geodesic
distance on S¢

11 2 P (cos 0(y1, o))
=2 |o—()" 3 P 0)) ’
0(y1, y2) =21 [4 (4) OddZDll 1y 1i—1 (0) Pl(o"a)(l)

1 — ‘Pl(a’a) (COS g(yla 92))
P(1)

:QW(i)d > zle{a(”‘fl’””(O)}Q

odd1>1

] . (9.22)

We emphasize that the expansion contains zonal spherical functions only
with odd numbers. For the sums (8.34), one can easily check the formula

0 if Dy = Da,,

. (9.23)
1 if Dy = Doy,

@il Dy] = {

where [ is odd, the subset Dy, C S¢ consists of a pairs of antipodal points
and Dogy1 = Doy U {x0}, where 2y € S? is an arbitrary point. Substituting
(9.22) into (9.23) and using (9.8), we immediately obtain a further proof of
the relation (2.22).

10. Bounds for Fourier-Jacobi coefficients

In this section we estimate the following coefficients

1 1 2
a(r) = (sin 5r)" eos 5 I L o



where Jl(a’ﬂ)(-) is defined in (9.1). In fact, we prove special weighted bounds
for Jacobi polynomials.

Lemma 10.1. Let the weight function n € W(d,dy), n # 0, then the follow-
ing bounds hold:
(i) For 0 <r <m andl > 1, we have

Ai(n) > er~ ey (r). (10.4)

(ii) There exists a constant L > 1, depending only on « and (3, such that
for 0 <r <7/2 and lr > L, we have

Al(n) < C’TidAl(Xr). (105)

The positive constants ¢ and C' in (10.4) s (10.5) depend only on «, B
and 7.

Proof. The asymptotic formula (9.2) implies the following relations
TPy = (rl) " {sin[(L+ lo)r + o] + O((Isinr) ™)}, (10.6)

{Jl(féil-l,ﬂ-l-l)(r)}? _ {% — %cos 2[(L + lo)r + ro] + Rl(r)} , (10.7)

where the error term R,(r) satisfies

(10.8)

R(r) oY) for 0<cy<r<7m—cp
)=
: o((r)™Y)  for "' <r<7w/2

where 0 < ¢y < 7/2 is an arbitrary constant.
(i) Since n € W(d, dy), n # 0, a sufficiently small constant 0 < ¢y < 7/2
can be chosen to satisfy

1 1 1 1
> 5 [ wtw)tsin o) eos Sy du = Sila > 0. (109
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Using (10.9), (10.7) and the first bound in (10.8), we obtain

T—cCo
1 1 2
o) = [ au)fsin gu)*eos 5y (A5 w)} du
Co

T—co

2(7rl)1{1”77”d"10_l / W(U)(Sinlu)d’l(coslu)dO’IcosQ[(l+l0)u+T0]du
4 2 2 2
. 1
+00™) = (71) " S lmllaa, + (1), (10.10)

here in the last equality, the Riemann-Lebesgue lemma has been used. Hence

1
Ai(n) > (wl) 1§H77Hd,do (10.11)
for all sufficiently large [ > [;. We have

min [A;(n) > 0, (10.12)

1<I<ly

since, A;(n) > 0 for all I > 1. From (10.11) and (10.12), we conclude that
the bound

Ai(n) >0t (10.13)

holds for all [ > 1 with a constant ¢; > 0 depending only on « and f.
From the other hand, the bound (9.3) implies

1 1 2
r~ g (r) = r~%(sin ir)d_l(cos ir)do_l {Jl(ffl’ﬁﬂ)(r)} < et (10.14)
Comparing the bounds (10.13) and (10.14), we obtain the bound (10.14) with

—1
c=cicy .
(ii) Let 0 < r < /2 and Ir > L, where L > 1 is a constant. From the
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definition (10.3), we obtain

r

r A (x,) > r_d/al(u) du
1 2
> r~%sin ~r)*!(cos 57’)‘[0’1 / {Jl(f;rl’ﬁﬂ)(u)} du

2
>c1r1/{J}“1“’5+”} du, (10.15)

r/2
where we can put ¢; = (1/8)471(1/2)%~!. Using the asymptotic formula
(10.7) and the second bound in (10.8), we obtain
-1 (at1,8+1) 2
T {qu (u)} du
r/2
r_l/cos 2[(I + lo)u + 7o) du + O(L™") & . (10.16)

r/2

1 1
= ()7 = - =

It is clear that the integral on the right-hand side in (10.16) is of order
O((rl)~' £ O(L™"). Substituting (10.16) into (10.15), we obtain

A (xy) > ey () {i + O(L_l)} : (10.17)

In view of (10.17), we can chose and fix a sufficiently large constant L, de-
pending only on « and £, to satisfy

1
r A (x,) > g€ ()" = el (10.18)

From the other hand, using the bound (9.3) and the definition (10.2), we
obtain

Ai(n) < Callnllaa,l™ = Csl™". (10.19)
Comparing the bounds (10.18) and (10.19), we obtain the bound (10.5) with
C = 0302_1. O
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11. Proof of Theorems 2.2 and 3.1

In this section we complete the proof of Theorems 2.2 and 3.1. These re-
sults will be obtained as immediate corollaries of a more general result on
discrepancies given below in Theorem 11.1.

By application of Theorem 9.1 we can write the discrepancies (1.5), (1.7)
in the following form

A [Dn] = k(d, dg) Zl_QMlal(r)gpl[DN], (11.1)
A, Dl = s, do) S 2 M) D), (11.2)
A, D] = w(d,do) 3 12 MiA ) D (113

here Dy C Q(d,dy) is an arbitrary N-point subset and the quantities
@i[Dy] > 0 are defined in (8.34). The series (11.1)-(11.3) converge and
all their terms are nonnegative.

Theorem 11.1. Let the weight function n € W(d,dy), n # 0, then the
following bounds hold:
(i) For any N-point subset Dy C Q(d,dy) and an arbitrary r, 0 < r <,
we have
Aln, Dy] > er~ '\, [Dy], (11.4)

(ii) There exists a constant L > 1, depending only d and dy, such that for
any N-point t-design Dy C Q(d, dy) with t > 2L /7, we have

An, Dy] < Cr~\[x,, Dy], ©=Lt™". (11.5)

The positive constants ¢ and C' in (11.4) and (11.5) depend only on d, dy
and 7.

Proof. (i) Using the bound (10.4) and comparing the series (11.1) and (11.2),
we obtain the bound (11.4).

(ii) If Dy C Q(d,dy) is a t-design, then p[Dy] =0saaal =0,1,...,t, see
(8.35), and summation in all series (11.1)—(11.3) is taken over [ > t.

For L we chose the constant indicated in Lemma 10.1 (ii). If r = Lt ™!,
then we have 0 < r < 7/2 for t > 2L/7 and Ir > L for [ > ¢. Using
the bound (10.5) and comparing the series (11.2) and (11.3), we obtain the
bound (11.5). O
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Now we are in position to prove Theorems 2.2 and 3.1.

Proof Theorem 2.2. As it was explained in comments to Theorem 2.2 we
have to prove only the left bound in (2.20). From the definitions of discrep-
ancies (1.3), (1.5), we conclude that

A[Dn] > <<NUT>>27

where ((2)) = min{|z — n|,n € Z} is the distance of z € R from the nearest
integer. Define r by Nv, = 1/2, then \.[D] > 1/2. In view of (2.3), r ~
N4 and the bound (10.4) implies the left bound in (2.20). O

Proof of Theorem 3.1. First of all, we notice that

/(#{Br(y)ﬂDN})Qdu(y) =/ (Z X(Br(y),fv)> du(y)

Q Q \*€bn

= > u(B:(y) N B, (). (11.6)

y1,y2€DN

Forom the formulas (11.6), (1.24), (3.7), we obtain

MDx) < [ (#{B) N Dy duy) < @Dy, (117)
Q
and .
Al D] = /AU[DN] du < r(v[Dy.7])?, (11.8)

0

since v[Dy,r] is a nondecreasing function of r. Substituting (11.8) into
(11.5), we obtain
A, Dy] < Cr~*(v[Dy, 1)) (11.9)

If r = Lt~', then the bound (11.9) coincides with the bound (3.8). O
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