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Point distribution in ompat metri spaes,III. Two-point homogeneous spaesM. M. SkriganovSt.Petersburg Department ofSteklov Mathematial InstituteRussian Aademy of SienesE-mail: maksim88138813�mail.ru
We ontinue the investigation of point distributions in ompat metrispaes started in the papers [28,29℄. Our onern is with disrepanies of suhdistributions in metri balls and sums of pairwise distanes between points ofdistributions. In the present paper we onsider ompat onneted two-pointhomogeneous spaes (Riemannian symmetri spaes of rank one). All suhspaes are known, they are spheres in the Eulidean spaes, the real, omplexand quaternioni projetive spaes and the otonioni projetive plane.Using the geometri features of two-point spaes, we show that Sto-larsky's invariane priniple, well-known for the Eulidean spheres, an beextended to all projetive spaes and the otonioni projetive plane. Rely-ing on the theory of spherial funtions, we obtain the best possible boundsfor quadrati disrepanies and sums of distanes for point distributions inthe two-point homogeneous spaes. Appliations to t-designs and L�evy-Shoenberg kernels in suh spaes are also onsidered in the paper.Key words: geometry of distanes, uniform distributions, t-designs ,two-point homogeneous spaes
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ContentsA. Main results1. Disrepanies and metris2. Strong invariane priniple and bounds for disrepanies and sums ofdistanes3. Appliations to t-designs4. Remarks on the L�evy-Shoenberg kernelsB. Geometry of two-point homogeneous spaes andstrong invariane priniples5. Models of projetive spaes and hordal metris6. Proof of Theorem 2.17. Proof of Lemma 2.1C. Spherial funtions and bounds for disrepaniesand sums of distanes8. Commutative spaes and spherial funtions9. Spherial funtion expansions for disrepanies and metris10. Bounds for Fourier-Jaobi oeÆients11. Proof of Theorems 2.2 and 3.1ReferenesA. Main results1. Disrepanies and metrisLet M be a ompat onneted metri spae with a �xed metri � and a�nite Borel measure �, normalized bydiam(M; �) = �; �(M) = 1; (1.1)where diam(E ; �) = sup{�(x1; x2) : x1; x2 ∈ E} (1.2)denotes the diameter of a subset E ⊆ M with respet to a metri �.We write Br(y) = {x : �(x; y) < r} for the ball of radius r ∈ [0; �℄entered at y ∈ M and of volume vr(y) = �(Br(y)). Sine the spae M isonneted, we have R = [0; �℄, where R = {r = �(x1; x2) : x1; x2 ∈ M} isthe set of all possible radii. 3



Let DN ⊂ M be a �nite subset onsisting of N points (not neessarydi�erent). The loal disrepany of the subset DN in the ball Br(y) is de�nedby �[Br(y);DN ℄ = #{Br(y) ∩ DN} −Nvr(y)= ∑x∈DN �(Br(y); x); (1.3)where �(Br(y); x) = �(Br(y); x)− vr(y); (1.4)and �(E ; x) denotes the harateristi funtion of s subset E ⊂ M.The quadrati disrepanies are de�ned by�r[DN ℄ = ∫
M

�[Br(y);DN ℄2 d�(y) = ∑x1;x2∈DN �r(x1; x2); (1.5)where �r(x1; x2) = ∫
M

�(Br(y); x1)�(Br(y); x2) d�(y); (1.6)and �[�;DN ℄ = �∫0 �r[DN ℄�(r) dr = ∑x1;x2∈DN �(�; x1; x2); (1.7)where �(�; x1; x2) = �∫0 �r(x1; x2)�(r) dr; (1.8)where �(r), r ∈ [0; �℄, is a non-negative weight funtion. The quantities�r[DN ℄1=2 and �[�;DN ℄1=2 are known as L2-disrepanies. In the presentpaper it is more onvenient to deal with the quadrati disrepanies (1.5)and (1.7).We introdue the following extremal harateristi�N(�) = inf
DN �[�;DN ℄; (1.9)where the in�mum is taken over all N -point subsets DN ⊂ M.4



For any metri � on M we put�[DN ℄ = ∑x1;x2∈DN �(x1; x2); (1.10)and introdue yet another extremal harateristi�N = sup
DN �[DN ℄; (1.11)where the supremum is taken over all N -point subsets DN ⊂ M.We write 〈�〉 for the average value of a metri �,

〈�〉 = ∫∫
M×M

�(y1; y2) d�(y1) d�(y2): (1.12)Introdue the folloving symmetri di�erene metris on the spae M��(�; y1; y2) = �∫0 ��r (y1; y2)�(r) dr; (1.13)where ��r (y1; y2) = 12�(Br(y1)�Br(y2))= 12(vr(y1) + vr(y2)− 2�(Br(y1) ∩ Br(y2))): (1.14)Here Br(y1)�Br(y2) = Br(y1) ∪Br(y2) \B2(y1) ∩Br(y2) (1.15)is the symmetri di�erene of the balls Br(y1) and Br(y2).The symmetry of the metri � implies the following useful relation�(Br(y); x) = �(Br(x); y) = �(r − �(x; y)) = �r(�(x; y)) (1.16)where �(z), z ∈ R is the harateristi funtion of the half-axis [0;∞), and�r(·) is the harateristi funtion of the interval [0; r℄, 0 ≤ r ≤ �. Using
5



(1.14), (1.15), (1.16), we an write��r (y1; y2) = 12 ∫
M

�(Br(y1)�Br(y2)) d�(y)= 12 ∫
M

[�(Br(y1); y) + �(Br(y2); y)− 2�(Br(y1); y)�(Br(y2); y)℄ d�(y)= 12 ∫
M

|�(Br(y1); y)− �(Br(y2); y)| d�(y) (1.17)For the average values (1.12) of metris (1.14) and (1.13) we obtain
〈��(�)〉 = �∫0 〈��r 〉�(r) dr; (1.18)

〈��r 〉 = 12 ∫∫
M×M

��r (y1; y2) d�(y1) d�(y2) = ∫
M

(vr(y)− vr(y)2) d�(y) (1.19)The symmetri di�erene of any two subsets oinides with the symmetridi�erene of their omplements. Hene��r (y1; y2) = 12�(B′r(y1)�B′r(y2))= 12(v′r(y1) + v′r(y2)− 2�(B′r(y1) ∩ B′r(y2))); (1.20)where B′r(y) = M\Br(y) is the omplement of the ball Br(y), andv′r(y) = �(B′r(y)) = 1− vr(y): (1.21)Now the relation (1.19) takes the form
〈��r 〉 = ∫

M

vr(y)v′r(y) d�(y) (1.22)In (1.17) the balls Br(y) an be also replaed by their omplements B′r(y).The study of the harateristis (1.9) and (1.11) falls within the subjetsof the disrepany theory and geometry of distanes. An extensive literature6



is devoted to suh studies of point distributions on spheres in the Eulideanspae, see, for examples, [1,2,5,6,12,27℄. It was shown in our reent paper [28℄that nontrivial results on the quantities (1.9) and (1.11) an be obtained forvery general metri spaes. Some of these results, needed for the presentwork, are given below in Theorems 1.1 and 1.2.A metri spae M is alled distane-invariant, if the volume of any ballvr = vr(y) is independent of y ∈ M, see [23℄. For suh spaes the formulasfor the disrepanies (1.5) and the symmetri di�erene metris (1.14) anbe essentially simpli�ed. Substituting (1.14) into (1.6), we obtain�r(y1; y2) = ∫
M

�(Br(y1); y)�(Br(y2); y) d�(y)− v2r= �(Br(y1) ∩Br(y2)− v2r ; (1.23)and orrespondingly,�r[DN ℄ = ∑y1;y2∈DN �(Br(y1) ∩Br(y2))− v2rN2: (1.24)Similarly, the relations (1.14), (1.20) and (1.19), (1.22) take the form��r (y1; y2) = vr − ∫
M

�(Br(y1); y)�(Br(y2); y) d�(y)= vr − �(Br(y1) ∩ Br(y2));= v′r − �(B′r(y1) ∩ B′r(y2)) (1.25)and
〈��r 〉 = vr − v2r = vrv′r; (1.26)and orrespondingly,��r [DN ℄ = vrN2 − ∑y1;y2∈DN �(Br(y1) ∩ Br(y2)): (1.27)Integrating these relations with �(r), r ∈ [0; �℄, one an obtain the orre-sponding formulas for the quantities (1.7), (1.8), (1.13), (1.18).The typial examples of distane-invariant spaes are homogeneous spaes

M = G=K, where G is a ompat group, K ⊂ G is a losed subgroup, while �7



and � are G-invariant metri and measure on M. In this ase, the quantities(1.6), (1.8) and (1.13), (1.14) are also G-invariant:�r(gy1; gy2)= �r(y1; y2); �(�; gy1; gy2) = �(�; y1; y2);��r (gy1; gy2)=��r (gy1; gy2); ��(�; gy1; gy2)=��(�; y1; y2);�(Br(gy1) ∩Br(gy2))=�(Br(y1) ∩ Br(y2)); y1; y2∈�; g∈G: 



(1.28)Comparing the relations (1.23){(1.27), we arrive to the following result.This result and its generalizations were given in [28, Thms. 2.1, 3.1℄.Theorem 1.1 (Weak Invariane Priniples). Let a ompat onneted metrispae M with a metri � and a measure � be distane-invariant. Then wehave �r(y1; y2) + ��r (y1; y2) = 〈��r 〉; (1.29)�(�; y1; y2) + ��(�; y1; y2) = 〈��(�)〉; (1.30)�(�;DN) + ��(�;DN) = 〈��(�)〉N2; (1.31)�N (�) + ��N (�) = 〈��(�)〉N2: (1.32)Here r ∈ [0; �℄ and DN ⊂ M is an arbitrary N-point subset. The equali-ties (1.30), (1.31) and (1.32) hold with any weight funtion � suh that theintegrals (1.7), (1.8) and (1.13), (1.18) onverge.Obviously, the integrals (1.7), (1.8) and (1.13), (1.18) onverge for anywight funtion � summable on the interval [0; �℄. More general onditions ofonvergene of these integrals for two-point homogeneous spaes are given inLemma 2.1(i) below.The strong invariane priniple for two-point homogeneous spaes will beestablished in the next setion in Theorem 2.2. Our terminology of strongand weak invariane priniples is explained in omments to Theorem 2.2.A ompat metri spae M with a metri � and a measure � is alledd-reti�able if there exist a measure � on the d-dimensional unit ubeId = [0; 1℄d absolutely ontinuous with respet to the d-dimensional Lebesguemeasure on Id, a measurable subset O ⊂ Id, and an injetive Lipshitz mapf : O → M, suh that �(M\ f(O)) = 0; and �(E) = �(f−1(E ∩ f(O)) forany �-measurable subset E ⊂ M. Reall that a map f : O ⊂ Rd → M isLipshitz if �(f(Z1); f(Z2)) ≤ ‖Z1 − Z2‖; Z1; Z2 ∈ O; (1.33)8



with a positive onstant , and the smallest suh onstant is alled the Lips-hitz onstant of f and denoted by Lip(f); in (1.33) ‖·‖ denotes the Eulideanmetri in Rd, f [26℄.Notie that any smooth (or piee-wise smooth) ompat d-dimensionalmanifold is d-reti�able if in the loal oordinates the metri satis�es (1.12),and the measure is absolutely ontinuous with respet to the d-dimensionalLebesgue measure. Partiularly, any ompat d-dimensional Riemannianmanifold with the geodesi metri � and the Riemannian measure � is d-reti�able. In this ase, it is known that ondition (1.12) holds; see [21,Chapter I, Proposition 9.10℄. On the other hand, the ondition on the Rie-mannian measure is obvious beause the metri tensor is ontinuous.The following result was established in [28, Thm.4.2℄.Theorem 1.2. Suppose that a ompat metri spae M, with a metri �and a measure �, is d-reti�able. Write C = d2d−1 Lip(f), where Lip(f) isthe Lipshitz onstant of the map f in the de�nition of d-reti�ability of thespae M. Then the following hold:(i) If a metri � on M satis�es the inequality�(x1; x2) ≤ 0�(x1; x2) (1.34)with a onstant 0 > 0, then�N ≥ 〈�〉N2 − 0CN1−1=d: (1.35)(ii) If the metri ��(�) satis�es the inequality��(�; x1; x2) ≤ 0�(x1; x2) (1.36)with a onstant 0 > 0, then��N (�) ≥ 〈��(�)〉N2 − 0CN1−1=d (1.37)and �N(�) ≤ 0CN1−1=d: (1.38)Under suh general assumptions one annot expet that the bounds (1.37)and (1.38) are best possible. The orresponding ounterexample is givenin the next setion, see the relation (2.22). Theorem 1.2 guarantees theexistene of well-distributed point subsets in all ompat d-reti�able spaes.9



It should be emphasize that a very non-trivial and diÆult problem is toonstrut suh uniformly distributed subsets expliitly. For spheres in theEulidean spae a deep investigation of this problem has been given in [25℄.In the present paper we will show that the bounds (1.37) and (1.38) arebest possible for ompat onneted two-point spaes and general lasses ofweight funtions �, see Theorem 2.2 below. Main results of this paper werestated previously in [29℄.2. Strong invariane priniple and best boundsfor disrepanies and sums of distanesIn this setion we state and disuss our main results on strong invarianepriniples and best possible bounds for disrepanies and sums of distaneson two-point homogeneous spaes.Reall some neessary fats on two-point homogeneous spaes, see [7,21,22, 33, 34℄. Additional fats on the geometry and harmoni analysis on suhspaes will be given in setions 5 and 8.Let G = G(M) be the group of isometries of a metri spae M with ametri �, i.e. �(gx1; gx2) = �(x1; x2) for all x1, x2 ∈ M and g ∈ G. Thespae M is alled two-point homogeneous, if for any two pairs of points x1,x2 and y1, y2 with �(x1; x2) = �(y1; y2) there exists an isometry g ∈ G,suh that y1 = gx1, y2 = gx2. In this ase, the group G is transitive on
M and M = G=K is a homegeneous spae, where the subgroup K ⊂ G isthe stabilizer of a point x0 ∈ M. Furthermore, the homogeneous spae Mis symmetri, i.e. for any two points y1, y2 ∈ M there exists an isometryg ∈ G, suh that gy1 = y2, gy2 = y1.We onsider ompat onneted two-point homogeneous spaes M =G=K. For suh spaes G and K ⊂ G are Lie groups and M = G=K areRiemannian symmetri spaes of rank one. All suh spaes are lassi�edompletely, see [33, Se. 8.12℄. They are the following:(i) The d-dimensional spheres in the Eulidean spae Sd ⊂ Rd+1, Sd =SO(d+ 1)=SO(d)× {1}, d ≥ 2, and S1 = O(2)=O(1)× {1}.(ii) The real projetive spaes RP n = O(n+ 1)=O(n)×O(1).(iii) The omplex projetive spaes CP n = U(n + 1)=U(n)× U(1).(iv) The quaternioni projetive spaes HP n = Sp(n+1)=SP (n)×Sp(1),(v) The otonioni projetive plane OP 2 = F4= Spin(9).10



Here we use the standard notation from the theory of Lie groups; par-tiularly, F4 is one of the exeptional Lie groups in Cartan's lassi�ation.see [21, 22, 33, 34℄.The indiated projetive spaes FP n as ompat Riemannian manifoldshave dimensions d, d = dimR FP n = nd0; d0 = dimR F; (2.1)where d0 = 1; 2; 4; 8 for F = R, C, H, O, orrespondingly.For spheres Sd we put d0 = d by de�nition. Projetive spaes of di-mension d0 ( n = 1) are isomorphi to the spheres Sd0 : RP 1 ≈ S1;CP 1 ≈S2;HP 1 ≈ S4;OP 1 ≈ S8. We an onveniently agree that d > d0 (n ≥ 2) forprojetive spaes, while the equality d = d0 holds only for spheres. Underthis onvention, the dimensions d = nd0 and d0 de�ne uniquely (up to iso-morphism) the orresponding two-point homogeneous spae whih we denoteby Q = Q(d; d0). We write � for the geodesi distane and � for the Rie-mannian mesure on Q(d; d0). The metri � and the measure � are invariantunder the ation of the orresponding group of isometries and normalized by(1.1). In what follows we always assume that n = 2 if F = O. Projetivespaes OP n do not exist for n > 2. In more detail the geometry of spaes
FP n will be outlined in setion 5.Any spae Q(d; d0) is distane-invariant and the volume of balls is givenby vr = �(d; d0) r∫0 (sin 12u)d−1(os 12u)d0−1 du; r ∈ [0; �℄;�(d; d0) = B(d=2; d0=2)−1 = �(d=2 + d0=2)�(d=2)�(d0=2) :





(2.2)Here B(·; ·) and �(·) are beta and gamma funtions, and we have v� =�(Q(d; d0)) = 1. Notie that the di�erent equivalent forms of the relation(2.2) an be found in the literature, see [22, pp. 165{168℄, [19, pp. 177{178℄, [23, pp. 508{510℄.From the formula (2.2) we obtain the following two-side boundsvr ≃ rd; v′r = 1− vr ≃ (� − r)d0; r ∈ [0; �℄: (2.3)To simplify notation we write in some formulas A . B instead of B =O(A), A & B instead of B = O(A), and A ≃ B if A = O(B) and B = O(A).11



The hordal metri on the spaes Q(d; d0) an be de�ned by�(x1; x2) = sin 12�(x1; x2); x1; x2 ∈ Q(d; d0): (2.4)Notie that the expression (2.4) de�nes a metri beause the funtion '(�) =sin �=2, 0 ≤ � ≤ �, is onave, inreasing and '(0) = 0, that implies thetriangle inequality. For the sphere Sd = {x ∈ Rd+1 : ‖x‖ = 1} we haveos �(x1; x2) = (x1; x2); x1; x2 ∈ Sd�(x1; x2) = sin �(x1; x2) = 12‖x1 − x2‖; (2.5)where (·; ·) is the inner produt and ‖ · ‖ is the Eulidean distane in Rd+1.Eah projetive spae FP n an be anonially imbedded into the unitsphere� : Q(d; d0) ∋ x → �(x) ∈ Sm−1 ⊂ Rm; m = 12(n+ 1)(d+ 2); (2.6)suh that �(x1; x2) = 1√2‖�(x1)− �(x2)‖; x1; x2 ∈ FP n; (2.7)where ‖ · ‖ is the Eulidean distane in Rm+1. Hene, the metri �(x1; x2)oinides with the Eulidean length of a segment joining the orrespondingpoints �(x1) and �(x2) on the unit sphere. The metri is normalized bydiam(Q(d; d0); �) = 1. The imbedding (2.6) will be desribed in Setion 5,see (5.22).Notie that the hordal metri � on projetive spaes FP n oinides withthe well-known Fubini-Study metri. In onnetion with speial point on�g-urations in two-point homogeneous spaes the hordal metri on projetivespaes was disussed in the papers [13,14℄, see also the paper [15℄, where thehordal metri was de�ned for Grassmannian manifolds.Now we are in position to state our main results. First of all, we onsiderstrong invariane priniples. A areful analysis of the imbedding (2.6) leadsto the following.Theorem 2.1. For any spae Q = Q(d; d0) the hordal metri (2.4) and thesymmetri di�erene metri (1.13) are related by�(x1; x2) = (Q)��(�\; x1; x2); x1; x2 ∈ Q; (2.8)12



where �\(r) = sin r, r ∈ [0; �℄, and(Q) = 〈�〉
〈��(�∗)〉 = diam(Q; �)diam(Q; ��(�∗)) : (2.9)The proof of Theorem 2.2 is given in Setion 6. It is lear that theequalities (2.9) follow immediately from (2.8). It suÆes to alulate theaverage value (1.12) of both metris in (2.8) to obtain the �rst equality in(2.9). Similarly, it suÆes to write (2.8) for any pair of antipodal points x1,x2, �(x1; x2) = �, to obtain the seond equality in (2.9).Comparing Theorems 1.1 and 2.1, we arrive at the following.Corollary 2.1 (Strong Invariane Priniple). For any spae Q = Q(d; d0)we have the relation (Q)�[�\;DN ℄ + � [DN ℄ = 〈�〉N2; (2.10)where DN ⊂ Q is an arbitrary N-point subset.Partiularly, for any N we have the equality(Q)�N(�\) + �N = 〈�〉N2: (2.11)Notie that for the sphere Sd the disrepany �[�\;DN ℄ with the speialweight funtion �\(r) = sin r an be written in the form�[�\;DN ℄ = 1∫

−1 dz ∫M [#{B(y; z) ∩ DN} −N�(B(y; z))℄2 d�(y); (2.12)where � is the standard normalized d-dimensional mesure on Sd, andB(y; z) = {x ∈ Sd : os �(x; y) ≥ z}; y ∈ Sd; z ∈ [−1; 1℄; (2.13)is the 'spherial ap', B(y; z) = Br(y), z = os r.For spheres the strong invariane priniple (2.10) was established by Sto-larsky [30℄, see also the papers [8,11℄, where the original proof of this relationhas been essentially simpli�ed. Corollary 2.1 an be thought of as an exten-sion of Stolarsky's invariane priniple to projetive spaes.Reall that a metri spae M with a metri � is alled isometrially Lq-embeddable, if there exists a map ' : M ∋ x → '(x) ∈ Lq, suh that13



�(x1; x2) = ‖'(x1) − '(x2)‖Lq for all x1, x2 ∈ M. A two-point homo-geneous spae Q is isometrially L1-embeddable with respet to any met-ri ��(�), see (1.17). At the same time, the spae Q is isometrially L2-embeddable with respet to the hordal metri � , see (2.5) and (2.7). It isknown, see [17, Se. 6.3℄, that the L2-imbeddability is stronger and impliesthe L1-imbeddability. This explains our terminology of strong and week in-variane priniples. It would be very interesting to �nd out whether thereare weight funtions � 6= �\ for whih the spaes Q with the metri ��(�) arealso L2-embeddable.Now we onsider best possible bounds for the extremal quantities (1.9)and (1.11). At �rst, we state in Lemma 2.1 some important auxiliary results.Introdue the following lasses of weight funtions �(r), r ∈ [0; �℄,W (a; b) = {� ≥ 0 : ‖�‖a;b < ∞}; a ≥ b ≥ 1;
‖�‖a;b = ∫0 (sin 12r)a−1(os 12r)b−1�(r) dr:  (2.14)It is worth noting that weight funtions in the lasses (2.14) admit ratherlarge singularities at points r = 0 and r = �.Lemma 2.1. For any spae Q(d; d0) the following hold :(i) The kernel (1.6) and the metri (1.14) satisfy the bounds

|�r(y1; y2)| ≤ C(sin 12r)d(os 12r)d0 ;��r (y1; y2) ≤ C(sin 12r)d(os 12r)d0 : (2.15)If � ∈ W (d + 1; d0 + 1), then the kernel (1.8) and the metri (1.13) satisfythe bounds
|�(�; y1; y2)| ≤ C‖�‖d+1;d0+1;��(�; y1; y2) ≤ C‖�‖d+1;d0+1:} (2.16)(ii) The metri (1.14) satis�es the bound��r (y1; y2) ≤ C(sin 12r)d−1(os 12r)d0−1�(y1; y2): (2.17)If � ∈ W (d; d0), then the metri (1.13) satis�es the bound��(�; y1; y2) ≤ C‖�‖d;d0�(y1; y2): (2.18)14



Constants in the bounds (2.15), (2.16), (2.17) and (2.18) depend only ond and d0.The proof of Lemma 2.1 is given in Setion 7. Partiularly, it follows fromLemma 2.1 that the weak invariane priniples (1.30) - (1.32) hold in spaesQ(d; d0) with weight funtions � ∈ W (d+ 1; d0 + 1).Our result on the extremal quantities (1.9) and (1.11) an be stated asfollowsTheorem 2.2. For any spae Q(d; d0) the following hold :If � ∈ W (d; d0), � 6= 0, then for any N we have
〈��(�)〉N2 − (�)N1− 1d > ��N (�) > 〈��(�)〉N2 − C(�)N1− 1d ; (2.19)1(�)N1− 1d < �N(�) < C1(�)N1− 1d (2.20)with positive onstants independent of N .Partiularly, for the hordal metri � on Q(d; d0) we have

〈�〉N2 − N1− 1d > �N > 〈�〉N2 − CN1− 1d (2.21)with the onstants  = (�\) and C = C(�\).The proof of Theorem 2.2 is given in Setion 11. It is lear that the rightbounds in (2.19) and (2.20) follow immediately from Theorem 1.2(ii) andLemma 2.1(ii). In Setion 11 we will prove the left bound in (2.20). Thiswill imply immediately the left bound in (2.19) by the invariane priniple(1.32). The proof of the left bound in (2.20) is relying on the theory ofspherial funtions on homogeneous spaes Q(d; d0).For the hordal metri � on the sphere Sd the bounds (2.21) were knownearlier. The right bound in (2.21) was established by Alexander [1℄ andthe left by Bek [5℄. In [5℄, see also [6℄, the left bound (2.20) was provedfor quadrati disrepanies on spheres with the speial weight funtion �\,see (2.12). Together with Stolarsky's invariane priniple this implies the leftbound (2.21) for the hordal metri on Sd.The universal bound (1.35) of Theorem 1.2(i) holds for all metris � onspaes Q Lipshitz ontinuous with respet to the geodesi distane �. How-ever, not all suh metris satisfy the two-side bounds of type (2.19). Forexample, for the geodesi distane � on the sphere Sd we have�N = 〈�〉N2 − "N ; 〈�〉 = �=2; (2.22)15



where "N = 0 for even N and 0 ≤ "N ≤ �=2 for odd N . Additional ommentson this example and its relationships with invariane priniples and spherialfuntions are given in Setions 4 and 9. Notie that very reently the exatequality "N = �=2 for odd N was proved in the paper [8℄.In onlusion of this setion we notie the following. Non-ompat on-neted two-point spaes M = G=K are also lassi�ed ompletely as hyper-boli spaes over algebras F = R, C, H, O, see [33, Se. 8.12℄, and oneould onsider the spaes of double osets M = � \ Q = � \ G=K, where� ⊂ G is a disrete subgroup in the group of isomerties, suh that the invari-ant measure �(M) < ∞. In this ase, the extremal disrepanies (1.9) andsums of distanes (1.11) for the symmetry di�erene metris (1.13), (1.14)are well-de�ned and their study should be of muh interest, espeially fornon-ompat M. A detailed study of these questions falls outside the sopeof the present paper.3. Appliations to t-designMany spei� point on�gurations on spheres and other two-point homoge-neous spaes are desribed in the literature, see, for example, [4,8,12{15,23,25, 27℄. One an ask whether the points of suh spei� on�gurations aredistributed uniformly in the orresponding spaes, and how the quadratidisrepanies (1.7) and the sums of distanes (1.10) ould be estimated pre-isely for suh point subsets ?In the present paper we onsider these questions for t-designs. Reallthat an N -point subset DN ⊂ Sd is alled a spherial t-design, if the exatquadrature formula
∑x∈DN F (x) = N ∫Sd F (y) d�(y) (3.1)holds for all homogeneous polynomials F (x); x ∈ Rd+1 of degree not exeed-ing t. The onept of t-design an be easily extended to ompat two-pointspaes, see [4, 23℄. In this ase, an N -point subset DN ⊂ Q(d; d0) is alled at-design, if the exat quadrature formula

∑x1;x2∈DN f(os �(x1; x2)) = N2 ∫∫Q×Q f(os �(t1; y2)) d�(y1) d�(y2) (3.2)16



holds for all polynomials f(z); z ∈ C, of degree not exeeding t. The ondi-tion (3.2) an be written in di�erent equivalent forms, for example, as thefollowing quadrature formula
∑x∈DN f(os �(x; y1)) = N ∫Q f(os �(y1; y2)) d�(y); (3.3)whih holds identially for all y1; y2 ∈ Q. The de�nition of t-designs an bealso given in terms of spherial funtions on the spaes Q(d; d0), see [4, 23℄.We will return to these questions in Setion 8, see (8.35).The integrals in the right-hand sides in (3.2) and (3.3) are equal, thatfollows at one from the de�nition of two-point spaes. For brevity, we write

〈f〉Q = ∫Q f(os �(y; y2) d�(y) = ∫∫Q×Q f(os(y1; y2)) d�(y1) d�(y2): (3.4)From (2.2) we obtain
〈f〉Q = B(d=2; d0=2)−1 �∫0 f(os �)(sin 12�)d−1(os 12�)d0−1d�: (3.5)It is known, see [23, p. 520℄, that any N -point t-design DN ⊂ Q(d; d0)satis�es the bound N ≥ td with a onstant  > 0 independent of N and t.An N -point t-design DN ⊂ Q(d; d0) is alled an optimum t-design, if+td ≥ N ≥ −td (3.6)with some positive onstants + and − independent of N and t. Atually, inthis de�nition we deal with sequenes of N -point t-designs DN as N → ∞.For any N -point subset DN ⊂ Q(d; d0) we put�[DN ; r℄ = maxy∈Q #{Br(y) ∩ DN}; r ∈ [0; �℄; (3.7)and �[DN ; r℄ = N if r > �.Our result on t-designs an be stated as follows.Theorem 3.1. Let the weight funtion � ∈ W (d; d0), then the following hold:17



(i) There exists a onstant L ≥ 1 depending only on d and d0, suh thatfor any N-point t-design DN ⊂ Q(d; d0) with t ≥ 2L=� we have�[�;DN ℄ < Ctd−1(�[DN ; Lt−1℄)2: (3.8)(ii) For optimum N-point t-designs DN ⊂ Q(d; d0) the bound (3.8) takesthe form �[�;DN ℄ < CN1− 1d (�[DN ; −1=d+ LN−1=d℄)2; (3.9)where + is the onstant in the de�nition (3.6).The onstants C in the bounds (3.8) Ñ (3.9) depend only on d, d0 and �.The proof of Theorem 3.1 is given in Setion 11. It is lear that theequalities (3.9) follow immediately from (3.8) and the de�nition (3.6). Theproof of the bound (3.8) is relying on the theory of spherial funtions onhomogeneous spaes Q(d; d0).For an arbitrary N -point subset DN ⊂ Q(d; d0), we putÆ[DN ℄ = 12 min{�(x1; x2) : x1; x2 ∈ DN ; x1 6= x2} (3.10)Hene, the balls BÆ(x), Æ = Æ[DN ℄, x ∈ DN , do not overlap. Therefore,vÆN ≤ 1 and, in view of (2.3), we have Æ . N−1=d. An N -point subset
DN ⊂ Q(d; d0) is alled well-separated, if Æ[DN ℄ ≥ N−1=d with a onstant > 0 independent of N .We onveniently agree that for r > � the ball Br(y) = Q and vr = 1.With this onvention the following result is true.Lemma 3.1. Let an N-point subset DN ⊂ Q(d; d0) be well-separated. Then,for any onstant C > 0 we have�[DN ; CN− 1d ℄ ≤ 1 (3.11)with the onstant 1 = 1(C) independent of N .Proof. For brevity, we write a = CN− 1d . Consider the ball Ba(y) entered ata point y ∈ Q and put E = Ba(y) ∩ DN , K = #{E}. By the de�nition of awell-separated subset , the balls BÆ(x), Æ = Æ[DN ℄, x ∈ E , do not overlap andall these balls are ontained in the ball Ba+Æ(y). Therefore, vÆK ≤ va+Æ, andin view of (2.3), we have K ≤ va+Æ=vÆ ≃ (1 + C=)d: This proves the bound(3.11). 18



Comparing Theorem 3.1 and Lemma 3.1, we arrive at the following.Corollary 3.1. Let the weight funtion � ∈ W (d; d0), � 6= 0. Suppose thatan N-point subset DN ⊂ Q(d; d0) satis�es the following two onditions:(i) DN is an optimum t-design(ii) DN is a well-separated subset.Then, for all suÆiently large N we have
〈��(�)〉N2 − N1− 1d > ��[�;DN ℄ > 〈��(�)〉N2 − CN1− 1d ; (3.12)N1− 1d < �[�;DN ℄ < CN1− 1d (3.13)Partiularly, for the hordal metri � on Q(d; d0) we have

〈r〉N2 − N1− 1d > � [DN ℄ > 〈r〉N2 − CN1− 1d (3.14)The positive onstants in (3.12) - (3.14) are independent of N .The existene of optimum t-designs was a long standing open problem(the Korevaar-Meyers onjeture). In the reent papers by Bondarenko, Rad-henko and Viazovska [9,10℄ this problem was solved for spherial t-designs.The existene of optimum spherial t-designs was proved in [9℄ for all suÆ-iently large N , and it was proved in [10℄ that suh optimum t-designs anbe hosen as well-separated subsets on the sphere. Hene, Corollary 3.1 isappliable for this ase, and we onlude that spherial t-designs onstrutedin [10℄ meet the best possible bounds for quadrati disrepanies (3.12) andsums of distanes (3.13), (3.14).Using spherial t-designs one an easily onstrut [t=2℄-designs on the realprojetive spae RP d = Q(d; 1). Consider the anonial projetionp : Sd ∋ x → p(x) ∈ RP d; (3.15)where p(x) denotes the one-dimensional subspae in Rd+1 passing through thepoint x ∈ Sd, and p(−x) = p(x). In the present disussion, we onvenientlywrite �◦ for the geodesi distane on Sd and � for the geodesi distane on
RP d. Both distanes are normalized by (1.1). By de�nition, �◦(x1; x2) is theangle between the vetors x1; x2 ∈ Sd, while 12�(x1; x2) is the angle betweenthe subspaes p(x1); p(x2) ∈ RP d. Hene, os �◦(x1; x2) = (x1; x2), see (2.5),and os 12�(x1; x2) = |〈x1; x2〉|, ÑÑ. (5.6), x1; x2 ∈ Sd. Therefore,os �(x1; x2) = 2(os �◦(x1; x2))2 − 1 (3.16)19



and �(x1; x2) = 2min{�◦(x1; x2); � − �◦(x1; x2)}: (3.17)Partiularly, � = 2�◦ if 0 ≤ �◦ ≤ �=2.For an N -point subset D◦N ⊂ Sd we de�ne
DN = p(D◦N) = {p(x) : x ∈ D◦N} ⊂ RP d; (3.18)i.e. DN is a olletion of the one-dimensional subspaes in Rd+1 passingthrough the points x ∈ D◦N ⊂ Sd. If D◦N ontains pairs of antipodal points xand −x, then the orresponding subspaes p(x1) and p(x2) oinide and areounted with the multipliity 2 as points in RP d. It is obvious, that if a subset

D◦N ⊂ Sd is well-separated, then, in general, the subset DN = p(D◦N) ⊂ RP dis not.Lemma 3.2. (i) If a subset D◦N ⊂ Sd is an optimum t-design, then the subset
DN = p(D◦N) ⊂ RP d is an optimum [t=2℄-design.(ii) If a subset D◦N ⊂ Sd is well-separated, then the subset DN = p(D◦N) ⊂
RP d satis�es the bound (3.11) with an arbitrary onstant C > 0 and theonstant 1 = 1(C) independent of N .Proof. (i) If f is a polynomial of degree m, then, in view of (3.16), f(os �) =f(2 os2 �◦ − 1) = f1(os �◦), where f1 is a polynomial of degree 2m, andf1(z) = f1(−z). Furthermore,�(d; 1) �∫0 f(os �)(sin 12�)d−1d�= �(d; d) �∫0 f1(os �◦)(sin 12�◦)d−1(os 12�◦)d−1d�◦; (3.19)where the known identity for the beta funtion B(z; z) = 21−2zB(z; 1=2) hasbeen taken into aount. From (3.5) and (3.19), we obtain

〈f〉RP d = 〈f1〉Sd: (3.20)If D◦N ⊂ Sd is a spherial optimum t-design and 2m ≤ t, then the de�ni-tion (3.3) together with (3.20) implies
∑x∈DN f(os �(x; y)) = ∑x∈D◦N f1(os �◦(x; y)) = 〈f1〉Sd = 〈f〉RP d;20



Hene, the subset DN ⊂ RP d is an optimum [t=2℄-design.(ii) Write Br(y) ⊂ RP d for the ball of radius r entered at p(y), andB◦r (y) ⊂ Sd for the ball of radius r entered at y ∈ Sd. From (3.15) weonlude that a point p(x) ∈ RP d belongs to the ball Br(y) if and only ifthe point x ∈ Sd belongs to either the ball B◦r=2(y) or the ball B◦r=2(−y).Therefore,#{Br(y) ∩ Dn} = #{B◦r=2(y) ∩ D0N}+#{B◦r=2(−y) ∩ D0N}From this equality and the de�nition (3.7), we obtain the bound�[DN ; r℄ ≤ 2�[D◦N ; r=2℄: (3.21)If a subset D◦N ⊂ Sd is well-separated, then by Lemma 3.1 for any on-stant C the bound �[D◦N ; CN−1=d℄ ≤ ◦1 holds with a onstant ◦1 = ◦1(C)independent of N . Together with (3.21) this implies that the bound (3.11)holds for the subset DN ⊂ RP d with an arbitrary onstant C and the on-stant 1 = 2◦1(C=2; d) independent of N .Comparing Theorem 3.1 and Lemma 3.2, we arrive at the following.Corollary 3.2. Let the weight funtion � ∈ W (d; 1), � 6= 0, and suppose thatan N-point subset D◦N ⊂ Sd satis�es the onditions (i) Ñ (ii) of Corollary 3.1.Then, the N-point subset DN = p(D◦N) ⊂ RP d satis�es the bounds (3.12),(3.13), (3.14) of Corollary 3.1.The orresponding generalizations to the projetive spaes CP n, HP n and
QP 2 is not straightforward and involve the methods of ited papers [9, 10℄.4. Remarks on L�evy-Shoenberg kernelsThe L�evy-Shoenberg kernels our as ovarianes of random proessesparametrized by points of a homogeneous spae. For details we refer to thepaper by Gangolli [19℄. In this setion we disuss very briey some topisrelated to suh kernels in the ontext of the present paper.As before, we onsider ompat homogeneous spaes Q = G=K. A real-valued symmetri kernel f(y1; y2), y1; y2 ∈ Q, is alled a L�evy-Shoenbergkernel, if the following onditions are satis�ed:(i) There exists a point y0 ∈ Q suh that f(y; y0) = 0 for all y ∈ Q,21



(ii) The kernel f is positive de�nite, i.e. for any points x1; : : : ; xN ∈ Qand any omplex numbers z1; : : : ; zN
∑1≤i;y≤N �zizjf(xi; xj) ≥ 0: (4.1)(iii) The polarization �(y1; y2) of the kernel f(y1; y2) de�ned by�(y1; y2) = f(y1; y1) + f(y2; y2)− 2f(y1; y2); (4.2)is G-invariant, i.e. �(gy1; gy2) = �(y1; y2) for all y1; y2 ∈ Q and g ∈ G.Notie that the kernel f an be reovered from its polarization � byf(y1; y2) = 12(�(y1; y0) + �(y2; y0)− �(y1; y2)) (4.3)It is known, see [19, Se. 7℄, that if a L�evy-Shoenberg kernel f and itspolarization � are given, then the standard methods of probability theoryenable us to onstrut a Gaussian proess as the mapping Y : Q ∋ x →Yx = Yx(!) ∈ L2(
; d!); suh that EYx1 = 0, EYx1Yx2 = f(x1; x2) and

E(Yx1 − Yx2)2 = �(x1; x2), for all x1; x2 ∈ Q. Here L2(
; d!) is the Hilbertspae of real-valued square-integrable random variables on a probability spae
 with a probability measure d! and E denotes the expetation on L2(
; d!).Furthermore, if the homogeneous spae Q is a Riemannian manifold and thepolarization � is H�older ontinuous with respet to the geodesi distane �,i.e. �(y1; y2) < �(y1; y2)� with some onstants  and � > 0, then for almostall ! ∈ 
 the trajetories of the proess Yx(!) are ontinuous funtions ofx ∈ Q.In terms of the present paper one an easily desribe a large number ofexpliit examples of L�evy-Shoenberg kernels on homogeneous spaes. Fixarbitrary a point y0 ∈ Q and onsider the kernelfr(y1; y2) = ∫Q Fr(y1; y)Fr(y2; y) d�(y); r ∈ [0; �℄; (4.4)where Fr(x; y) = �(Br(x); y)− �(Br(y0); y) (4.5)and �(Br(x); ·) is the harateristi funtion of the ball Br(x). Put alsof(�; y1; y2) = �∫0 fr(y1; y2)�(r) dr; (4.6)22



where � is a weight funtion suh that the indegral (4.6) onverges. For Q =Q(d; d0) the integral (4.6) onverges if � ∈ W (d+ 1; d0 + 1), see Lemma 2.1(i).Theorem 4.1. (i) For any ompat homogeneous spae Q the kernels (4.4)and (4.6) are L�evy-Shoenberg kernels and their polarizations �r and �(�) areof the form �r(y1; y2) = 2��r (y1; y2); (4.7)�(�; y1; y2) = 2��(�; y1; y2); (4.8)where ��r and ��(�) are symmetri di�erene metris (1.14) and (1.13). Theinversion formulas are the following��r (y1; y0) + ��r (y2; y0)− ��r (y1; y2) = 2fr(y1; y2); (4.9)��(�; y1; y0) + ��(�; y2; y0)− ��(�; y1; y2) = 2f(�; y1; y2); (4.10)Partiularly, for any symmetri di�erene metris (1.14) and (1.13) theexpressions in the left-hand side of (4.9) and (4.10) are positive de�nite ker-nels.(ii) For the two-point homogeneous spaes Q = Q(d; d0) the polarizations(4.7) and (4.8) satisfy the bounds�r(y1; y2) ≤ C(sin 12r)d−1(os 12r)d0−1�(y1; y2); (4.11)�(�; y1; y2) ≤ C‖�‖d;d0�(y1; y2); (4.12)with onstants depending only on d and d0.Proof. (i) Substituting (4.5) into (4.4), we obtainfr(y1; y2) = �(Br(y1) ∩Br(y2))− �(Br(y1) ∩Br(y0)
− �(Br(y2) ∩ Br(y0)) + vr:Therefore, f(y; y) = 2vr − 2�(Br(y) ∩ Br(y0)). With the help of these for-mulas, the polarization (4.2) an be written as �(y1; y2) = 2vr − 2�(Br(y1)∩Br(y2)). Comparing this expression with (1.25), we obtain (4.7). Integrating(4.7) with �(r) and using (1.13), we obtain (4.8). Substituting (4.7) and (4.8)into (4.3), we obtain (4.9) Ñ (4.10). It is obvious that the kernels (4.9) and(4.10) are positive de�nite.(ii) The bounds (4.11), (4.12) follow immediately from (4.7), (4.8) andLemma 2.1 (ii). 23



One simple and instrutive example an be addued. Consider the sphereSd with the geodesi metri � and the standard Lebesgue measure � normal-ized by (1.1). It is known, see [17, Se. 6.4℄, that�(x1; x2) = ��(B�=2(x1)�B�=2(x2)); x1; x2 ∈ Sd; (4.13)where B�=2(x) = {y ∈ Sd : �(y; x) ≤ �=2} = {y ∈ Sd : (y; x) ≥ 0} is thehemisphere entered at x ∈ Sd. Using (1.14), we an write (4.13) in the form�(x1; x2) = �(1− 2�(B�=2(x1) ∩ B�=2(x2)) (4.14)In this form, this equality is almost obvious: it su�ers to notie that themeasure of the intersetion of two hemispheres in (4.14) is a linear funtionof �(x1; x2). Comparing (4.13) and (1.14), we an write�(x1; x2) = 2����=2(x1; x2); (4.15)and so, the geodesi metri � on the sphere Sd is a symmetri di�erenemetri. Using the formulas (4.15) and (4.5), we obtain�(x1; x0) + �(x2; x0)− �(x1; x2) = 4� ∫Sd F�=2(x1; y)F�=2(x2; y) d�(y); (4.16)with F�=2(x; y) = �(B�=2(x); y)− �(B�=2(y0); y).From the formula (4.16) we immediately onlude that the kernelf(x1; x2) = �(x1; x0) + �(x2; x0)− �(x1; x2) (4.17)is positive de�nite. This is the well-known theorem of L�evy. Its original proofwas obtained in terms of 'white noise' integrals for random proesses on Sd,see [24, Chap. 8; Appen. Chap. 3℄. A diret proof was given in [19, Se. 4℄on the base of Gegenbauer polynomial expansion for the metri �. The proofof L�evy's theorem given above is likely to be the simplest.It should be emphasized that the geodesi metri � for the projetivespaes CP n, HP n and QP 2 is not a symmetri di�erene metri and forthese spaes analogs of L�evy's theorem are not true. This follows from [19,Se. 4, pp. 225{226℄. At the same time, for the hordal metri �(x1; x2) =sin �(x1; x2) the kernel f(x1; x2) = �(x1; x0)+ �(x2; x0)− �(x1; x2) is positivede�nite for all two-point homogeneous spaes Q(d; d0). This follows fromTheorems 2.1 and 4.1. 24



In onlusion of this setion we wish to explain the appearane of anoma-lous small error terms in the relation (2.22). Using the formula (4.15) andthe invariane priniple (1.29) for the sphere Sd, we �nd that�[DN ℄ = 〈�〉N2 − 2���=2[DN ℄;where ��=2[DN ℄ = ∫Sd �[B�=2(y);DN ℄2 d�(y)and �[B�=2(y);DN ℄ = #{B�=2(y)∩DN}−Nv�=2: Sine v�=2 = 1=2, we derivefrom (1.26) that 〈�〉 = �=2. Any N -point subset DN ⊂ Sd an be representedas a disjoint union of two subsets DN = D(0)2a ∪ D(1)b ; N = 2a + b; where
D(0)2a = {x ∈ DN : −x ∈ DN}, D(1)b = {x ∈ DN : −x =∈ DN}. We have�[B�=2(y);DN ℄ = �[B�=2(y);D(0)2a ℄ + �[B�=2(y);D(1)b ℄:It is lear that �[B�=2(y);D(0)2a ℄ = 0 for all y ∈ Sd exepting the hyperplanes
〈y; x〉 = 0, x ∈ D(0)2a . Hene, ��=2[DN ℄ = ��=2[D(1)b ℄:Let N = 2a be even and DN = D(0)2a , then ��=2[DN ℄ = 0. Let N = 2a+ 1be odd and DN = D(0)2a ∪ D(0)1 , where D(1)1 = {x0} is a one-point subset. Asimple alulation shows that ��=2[{x0}℄ = �=2. Therefore, ��=2[DN ℄ = �=2,and the relation (2.22) follows.B. Geometry of two-point homogeneous spaesand strong invariane priniples5. Models of projetive spaes and hordalmetrisIn this setion we de�ne the hordal metris on the projetive spaes FP n,
F = R, C;H, n ≥ 2, and the otonioni projetive plane OP 2 in terms ofspeial models for these spaes. For the sake of onveniene, we desribe suhmodels in suÆient detail and give the neessary referenes.Reall the general fats on the algebras R;C;H;O over the �eld of realnumbers. We have the natural inlusions

R ⊂ C ⊂ H ⊂ O: (5.1)25



where the otonions O are a nonassoiative and nonommutative algebra ofdimension 8 with a basis 1; e1; e2; e3; e4; e5; e6; e7 (their multipliation tablean be found in [3, p. 150℄ and [7, p. 90℄), the quaternions H are an assoia-tive but nonommutative subalgebra of dimension 4 spanned by 1; e1; e2; e3,�nally, C and R are assoiative and ommutative subalgebras of dimensions2 and 1 spanned by 1; e1 and 1, orrespondingly. From the multipliationtable one an easily see that for any two indexes 7 ≥ i; j ≥ 1; i 6= j; thereexists an index 7 ≥ k ≥ 1, suh thateiej = −ejei = ek; i 6= j; e2i = −1: (5.2)Let a = �0 +∑7i=1 �iei ∈ O, �i ∈ R, 0 ≤ i ≤ 7, be a typial otonion. Wewrite Re a = �0 for the real part, �a = �0 −∑7i=1 �iei for the onjugation,
|a| = (�20 +∑7i−1 �2i )1=2 fot the norm. Using (5.2), one an easily hek thatRe ab = Re ba; ab = ba; |a|2 = a�a = �aa; |ab| = |a| |b|:It follows from the last equality that all algebras (5.1) are division algebras.Notie also that by a theorem of Artin a subalgebra generated in O by anytwo otonions is assoiative and isomorphi to either H, or C, or R, see [3℄.First of all, we reall the standard model of projetive spaes over theassoiative algebras F = R;C;H. Let Fn+1 be a linear spae of vetorsa = (a0; : : : ; an), ai ∈ F, 1 ≤ i ≤ n with the right multipliation by salarsa ∈ F, the Hermitian inner produt(a;b) = n∑i=0 �aibi; a;b ∈ Fn+1; (5.3)and the norm |a|,

|a|2 = (a; a) = n∑i=0 |ai|2: (5.4)In this ase, in view of assoiativity of the algebras F = R, C;H, aprojetive spae FP n an be de�ned as a set of one-dimensional (over F)subspaes in Fn+1:
FP n = {p(a) = aF : a ∈ Fn+1; |a| = 1}: (5.5)The metri � on FP n is de�ned byos 12�(a;b)= |(a;b)|; a;b ∈ Fn+1; |a|= |b|=1; 0 ≤ �(a;b) ≤ �; (5.6)26



i.e. 12�(a;b) is the angle between the subspaes p(a) and p(b). The transitivegroup of isometries U(n + 1;F) for the metri � onsists of nondegeneratelinear transformations of the spae Fn+1, preserving the inner produt (5.3),and the stabilizer of a point is isomorphi to the subgroup U(n;F)×U(1;F).Hene,
FP n = U(n + 1;F)=U(n;F)× U(1;F): (5.7)The groups U(n + 1;F) an be easily determined (they have been indiatedin setion 2 in the list of ompat onneted two-point homogeneous spaes).A Riemannian U(n+1;F)-invariant struture orresponding to the metri �an be also de�ned on the projetive spae (5.5), and one an easily hekthat these spaes are two-point homogeneous spaes.There is another model where a projetive spae FP n, F = R;C;H, isidenti�ed with the set of orthogonal projetors onto the one-dimensionalsubspaes in Fn+1. This model admits a generalization to the otonioniprojetive plane OP 2 and in its terms the hordal metri an be naturallyde�ned for all projetive spaes.Let H(Fn+1) denote the set of all Hermitian (n + 1) × (n + 1) matrieswith the entries in F, F = R, C;H;O,

H(Fn+1) = {A = ((aij)) : aij = aji; aij ∈ F; 0 ≤ i; j ≤ n}: (5.8)It is lear that H(Fn+1) is a linear spae over R of dimensionm = dimR H(Fn+1) = 12(n+ 1)(d+ 2); d = nd0: (5.9)The linear spae H(Fn+1) is equipped with the symmetri real-valuedinner produt
〈A;B〉 = 12 Tr(AB +BA) = ReTrAB = Re n∑i;j=0aijbij (5.10)and the norm

‖A‖ = (TrA2)1=2 = ( n∑i;j=0 |aij|2)1=2 ; (5.11)here TrA = ∑ni=0 aii denotes the trae of a matrix A. For the distane
‖A−B‖ between matries A;B ∈ H(Fn+1), we have

‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2〈A;B〉: (5.12)27



Thus, H(Fn+1) an be thought of as the m-dimensional Eulidean spae.If F 6= O, the orthogonal projetor �a ∈ H(Fn+1) onto a one-dimensionalsubspae p(a) = aF, a = (a0; : : : ; an) ∈ Fn+1, |a| = 1, an be given by�a = a(a; ·) or in the matrix form �a = ((ai�aj)), 0 ≤ i; j ≤ n. Therefore,the projetive spae (5.5) an be written as follows
FP n = {� ∈ H(Fn+1) : �2 = �; Tr� = 1}: (5.13)The group of isometries U(n + 1;F) ats on suh projetors by the formulag(�) = g�g−1, g ∈ U(n + 1;F).For the otonioni projetive plane OP 2 the similar model (due toFreudenthal and Jordan) is also known. A detailed disussion of this modelan be found in [3,7,18,20℄ inluding an explanation why otonioni proje-tive spaes OP n do not exist if n > 2. In this model one puts by de�nition
OP 2 = {� ∈ H(O3) : �2 = �; Tr� = 1}: (5.14)Thus, the formulas (5.13) and (5.14) are quite similar. One an hekthat eah matrix in (5.14) an be written as �a ∈ OP 2 for a vetora = (a0; a1; a2) ∈ O3, where �a = ((ai�aj)), 0 ≤ i; j ≤ 2, |a|2 =

|a0|2+ |a1|2+ |a2|2 = 1, and additionally (a0a1)a2 = a0(a1a2), see [20, Lemma14.90℄. The additional ondition means that the subalgebra in O generatedby the oordinates a0; a1; a2 is assoiative. Using this fat, one an easilyshow that OP 2 is a 16-dimensional ompat onneted Riemannian mani-fold, see [20, p. 290 ℄.The group of nondegenerate linear transformations g of the spae H(O3)preserving the squares g(A2) = g(A)2, A ∈ H(O3), is isomorphi to the 52-dimensional exeptional Lie group F4. This group also preserves the trae,inner produt (5.10) and norm (5.11) of matries A ∈ H(O3). The groupF4 is transitive on OP 2, and the stabilizer of a point is isomorphi to thespinor group Spin(9), see [20, Lemma 14.96 and Theorem 14.99℄. Hene,
OP 2 = F4= Spin(9) is a homogeneous spae, and one an prove that OP 2 isa two-point homogeneous spae.For our disussion we need to desribe the struture of geodesis in pro-jetive spaes. Suh a desription an be easily done in terms of models (5.13)and (5.14). It is known, see [7,21,33℄, that all geodesis on a two-point homo-geneous spae Q(d; d0) are losed and homeomorphi to the unit irle. Thegroup of isometries is transitive on the set of geodesis and the the stabilizerof a point is transitive on the set of geodesis passing through this point.28



Therefore, all geodesis have the same length 2� (under the normalization(1.1) for the invariant Riemannian distane).The inlusions (5.1) indue the following inlusions of the orrespondingprojetive spaes
F1P n1 ⊆ FP n; F1 ⊆ F; n1 ≤ n; (5.15)moreover, the subspae F1P n1 is a geodesi submanifold in FP n, see [7,Se. 3.24℄. Partiularly, the real projetive line RP 1, homeomorphi to theunit irle S1, is embedded as a geodesi into all projetive spaes FP n,S1 ≈ RP 1 ⊂ FP n; (5.16)see [7, Proposition 3.32℄. In (5.16) n = 2 if F = O.Using the models (5.13) and (5.14), we an write the real projetive line

RP 1 as the following set of 2× 2 matries:
RP 1 = {�(u); u ∈ R=�Z}; (5.17)�(u)=( os2 u sinu os usinu os u sin2 u )=(os u − sinusin u os u )(1 00 0)(os u sinusin u os u) :For eah u ∈ R the matrix �(u) is an orthogonal projetor onto the one-dimensional subspae xR, x = (os u; sinu) ∈ S1. The embedding RP 1 into

FP n an be written as the following set of (n+ 1)× (n + 1) matries:Z = {Z(u); u ∈ R=�Z} ⊂ FP n; (5.18)Z(u) = ( �(u) 0n−1;202;n−1 0n−1;n−1) ;where 0k;l denotes the zero matrix of size k× l. The set of matries (5.18) isa geodesi in FP n. All other geodesis are of the form g(Z), where g ∈ G isan isometry of the spae FP n. The parameter u in (5.18) and the geodesidistane � on the spae FP n are related by�(Z(u); Z(0)) = 2|u|; −�=2 < u ≤ �=2; (5.19)and for all u ∈ R this formula an be extended by periodiity. Partiularly,we have�(Z(u=2); Z(−u=2)) = {2min{u; � − u} if 0 ≤ u ≤ �;2u if 0 ≤ u ≤ �=2:29



Therefore, �(Z(v); Z(−v)) = 4v; 0 ≤ v ≤ �=4: (5.20)In suh a form, this relation will be needed in the next setion.Now, we de�ne the hordal distane on projetive spaes. The formulas(5.13), (5.14) Ñ (5.11) imply
‖�‖2 = Tr�2 = Tr� = 1: (5.21)for any � ∈ FP n. Therefore, the projetive spaes FP n, de�ned by (5.13)and (5.14), are submanifolds in the unit sphere

FP n ⊂ Sm−1 = {A ∈ H(Fn+1) : ‖A‖ = 1} ⊂ H(Fn+1) ≈ Rm: (5.22)It fat, this is an embedding of FP n into the (m−2)-dimensional sphere, theintersetion of the sphere Sm−1 with the hyperplane in H(Fn+1) de�ned byTrA = 1, see (5.21).The hordal distane �(�1;�2) between �1;�2 ∈ FP n is de�ned as theEulidean distane (5.12):�(�1;�2) = 1√2‖�1 − �2‖ = (1− 〈�1;�2〉)1=2: (5.23)The oeÆient 1=√2 is hosen to satisfy diam(�;FP n) = 1.It is lear from (5.23) that �(g(�1), g(�2)) = �(�1;�2) for all isometriesg ∈ G of the spae FP n. Sine FP n is a two-point homogeneous spae, forany �1;�2 ∈ FP n with �(�1;�2) = 2u, 0 ≤ u ≤ 12�, there exists g ∈ G, suhthat g(�1) = Z(u), g(�2) = Z(0). From (5.23), (5.18) and (5.17), we obtain�(Z(u); Z(0)) = sinu = sin 12�(�(u);�(0)): Therefore,�(�1;�2) = sin 12�(�1;�2); (5.24)as it was laimed before in (2.4).Notie also that antipodal points �+;�− ∈ FP n, i.e. �(�+;�−) = �and �(�+;�−) = 1, an be haraterized by the orthogonality ondition
〈�+;�−〉 = 0, see (5.23), (5.24).
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6. Proof of Theorem 2.1The proof of Theorem 2.1 is relying on the following speial representationof the symmetri di�erene metri (1.13) on a ompat metri spae M,see [28, Lemma 2.1℄. Here this representation is given in a form adapted forthe hordal metri (5.23) on the spaes Q(d; d0).Lemma 6.1. Let the weight funtion � be summarized on the interval [0; �℄,then ��(�; y1; y2) = 12 ∫
M

|�(�(y1; y))− �(�(y2; y))| d�(y) (6.1)with the noninreasing funtion�(r) = �∫r �(u) du: (6.2)Partiularly, if M is a two-point homogeneous spae Q = Q(d; d0) andthe weight funtion �\(r) = sin r, then��(�\; y1; y2) = ∫Q |�(y1; y)2 − �(y2; y)2| d�(y); (6.3)where �(·; ·) is the hordal metri (5.23) on Q(d; d0).Proof. For brevity, we write �(y1; y) = �1 and �(y2; y) = �2. Using (1.13),(1.17) and (1.16), we obtain��(�; y1; y2)= 12 ∫
M




�∫0 (�(r − �1) + �(r − �2)− 2�(r − �1)�(r − �2))�(r) dr d�(y)= 12 ∫
M

(�(�1) + �(�2)− 2�(max{�1; �2})) d�(y): (6.4)Sine � is a noninreasing funtion, we have2�(max{�1; �2})=2min{�(�1); �(�2)}=�(�1)+�(�2)−|�(�1)−�(�2)|: (6.5)Substituting (6.5) into (6.4), we obtain (6.1).If �\(r) = sin r, then �\(r) = 2 − 2 sin2 r=2. Substituting this expressioninto (6.1) and using (5.24), we obtain (6.3).31



For ompleteness we give at �rst the proof of Theorem 2.1 in the ase ofspheres Sd.Proof of Theorem 2.1 for spheres. For the sphere Sd the hordal metri � isde�ned (2.5). We have�(y1; y)2 − �(y2; y)2 = 14(‖y1 − y‖2 − ‖y2 − y‖2)= −12(y1 − y2; y) = −�(y1; y2)(x; y); y1; y2 ∈ Sd; (6.6)where x = ‖y1−y2‖−1(y1−y2) ∈ Sd. Substituting (6.6) into (6.3), we obtain��(�\; y1; y2) = �(y1; y2) ∫Sd |(x; y)| d�(y): (6.7)It is lear that the integral in (6.7) is independent of x ∈ Sd. This provesthe equality (2.8) for Sd with the onstant(Sd) = ∫Sd |(x; y)| d�(y)−1 :
Proof of Theorem 2.1 for projetive spaes. We write �1;�2;� for points inthe models of projetive spaes (5.13) and (5.14). With this notation, therelation (6.3) takes the form��(�\;�1;�2) = ∫

FPn |�(�1;�)2 − �(�2;�)2| d�(�): (6.8)Sine FP n is a two-point homogeneous spae, for �1;�2 ∈ FP n with�(�1;�2) = 4v, 0 ≤ v ≤ �=4, there exists an isometry g ∈ G, suh thatg(�1) = Z(v), g(�2) = Z(−v), see (5.20). Therefore,
∫

FPn |�(�1;�)2 − �(�2;�)2| d�(�)= ∫

FPn |�(Z(v);�)2 − �(Z(−v);�)2| d�(�): (6.9)32



From the de�nition (5.23), we obtain�(Z(v);�)2−�(Z(−v);�)2= 12(‖Z(v)−�‖2−‖Z(−v)−�‖2)= 〈Z(v)− Z(−v);�〉: (6.10)The formulas (5.17) and (5.18) implyZ(v)− Z(−v) = (�(v)− �(−v) 0n−1;202;n−1 0n−1;n−1)and �(v)− �(−v) = ( 0 sin 2usin 2u 0 ) = sin 2u(�+ − �−);where �+ = 12 (1 11 1) ; �− = 12 ( 1 −1
−1 1 ) :Therefore, Z(v)− Z(−v) = sin 2v(Z+ − Z−); (6.11)where Z± = ( �± 0n−1;202;n−1 0n−1;n−1) :We have Z∗

± = Z±, Z2
± = Z±, TrZ± = 1, i.e. Z± ∈ FP n, and 〈Z+; Z−〉 = 0,i.e. Z+ and Z− are antipodal points. Using (5.24), we an write�(�1;�2) = �(Z(v); Z(−v)) = sin 2v;and the equality (6.11) takes the formZ(v)− Z(−v) = �(�1;�2)(Z+ − Z−): (6.12)Substituting (6.12) into (6.10), we �nd that�(Z(v);�)2 − �(Z(−v);�)2 = �(�1;�2)〈Z+ − Z−;�〉: (6.13)Substituting (6.13) into (6.9) and using (6.8), we obtain��(�\;�1;�2) = �(�1;�2)��(�\; Z+; Z−): (6.14)33



where ��(�\; Z+; Z−) = ∫

FPn |〈Z+ − Z−;�〉| d�(�): (6.15)The integral (6.15) is independent of �1;�2, This proves the equality (2.8)for FP n with the onstant(FP n) = ∫
FPn |〈Z+ − Z−;�〉| d�(�)−1 :In this formula any pair of antipodal points in FP n an be taken instead ofZ+; Z−. The proof of Theorem 2.1 is omplete.7. Proof of Lemma 2.1(i) In (1.23) we put y1 = y2 = y to obtain�r(y; y) = vr − v2r = vrv′r: (7.1)Applying the Cauhy{Shwarz inequality to (1.6), we obtain

|�r(y1; y2)| ≤ (�r(y1; y2)�r(y2; y2))1=2 = vrv′r: (7.2)Using the weak invariane prinipl (1.29), the formula (1.26) and the bound(7.2), we obtain ��r (y1; y2) ≤ 2vrv′r: (7.3)Substituting the bounds (2.3) for the volumes vr and v′r into (7.2) and(7.3), we obtain the bounds (2.15). Integrating (2.15) with � ∈ W (d+1; d0+1), we obtain the bounds (2.16).(ii) We an assume that 0 < r < �, sine ��r (y1; y2) = 0 identially, ifr = 0 or r = �. For brevity, we write Æ = �(y1; y2)=2. The parameters r andÆ vary in the region 0 < r < �, 0 ≤ Æ ≤ �=2. This retangular region an berepresented as a disjoint union of three triangular regions:(a) 0 < r < Æ, 0 ≤ Æ ≤ 12�,(b) � > r ≥ � − Æ, 0 ≤ Æ ≤ 12�,() r > Æ, 0 < r < � − Æ, 0 ≤ Æ < 12�.34



In eah of these triangular regions we will prove the bound (2.17). Forr ∈ [0; �℄, the funtion sin 12r is inreasing while os 12r is dereasing, and thebounds are satis�ed sin 12r ≃ r; os 12r ≃ � − r: (7.4)Case (a). Using the relations (1.25), (2.2), (2.3) and (7.4), we obtain��r (y1; y2) ≤ vr ≃ r∫0 (sin 12u)d−1(os 12u)d0−1 du
.

r∫0 (sin 12u)d−1 du ≃ (sin 12r)d−1r
. (sin 12r)d−1(os 12r)d0−1Æ: (7.5)Case (b). Similarly, from (1.25), (2.2), (2.3) and (7.4), we obtain��r (y1; y2) ≤ v′r ≃ �∫r (sin 12u)d−1(os 12u)d0−1 du

.

�∫r (os 12u)d0−1 du ≃ (os 12r)d0−1(� − r)
. (sin 12r)d−1(os 12r)d0−1Æ (7.6)Case (). Sine �(y1; y2) < �, there exists the unique geodesi  ⊂Q(d; d0) of shortest length �(y1; y2) joining points y1; y2, ÑÑ. [21, Chap. VII,Se. 10℄. Let y0 denote its midpoint, i.e. y0 ∈ , �(y1; y0) = �(y2; y0) = Æ.The triangle inequality for the metri � implies that the ball Br−Æ(y0) isontained in the intersetion Br(y1) ∩Br(y2). Hene�(Br(y1) ∩ Br(y2)) ≥ vr−Æ: (7.7)
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Using again the relations (1.25), (2.2), (2.3) and (7.7), we obtain��r (y1; y2) ≤ vr − vr−Æ ≃ r∫r−Æ (sin 12u)d−1(os 12u)d0−1 du
. (sin 12r)d−1(os 12(r − Æ))d0−1 ≃ (sin 12r)d−1(� − r + Æ)d0−1
≃ (sin 12r)d−1(� − r)d0−1(1 + Æ� − r)d0−1

. (sin 12r)d−1(� − r)d0−1Æ
≃ (sin 12r)d−1(os 12r)d0−1Æ: (7.8)Now, the bound (2.17) follows from the bounds (7.6), (7.7), (7.8). Inte-grating (2.17) with � ∈ W (d; d0), we obtain the bound (2.18). The proof ofLemma 2.1 is omplete.C. Spherial funtions and bounds for disrep-anies and sums of distanes8. Commutative spaes and spherial fun-tionsIn this setion we outline general fats on harmoni analysis on ommuta-tive spaes. The two-point homogeneous spaes Q(d; d0) are an importantsublass of suh spaes. The general theory of ommutative spaes is givenin [34℄, see also [22, 32℄. For ompat groups this theory is rather simple.Let G be a ompat group and K ⊂ G a losed subgroup. Denote by �Gand �K Haar measures on the groups G and K, orrespondingly, �G(G) =�K(K) = 1. As before, � denotes the invariant measure on the homogeneousspae Q = G=K, and �G = �K×�. We write Lq(G), q = 1; 2, for the spae offuntions on G integrable with the power q with respet to the Haar measure,Lq(G=K) and Lq(K \G=K) for the subspaes of funtions in Lq(G) satisfyingf(gk) = f(g), k ∈ K, and, orrespondingly, f(k1gk2) = f(g); k1; k2 ∈ K.Obviously, funtions in these subspaes an be thought of as funtions onQ = G=K. The spaes L1(K \ G=K) ⊂ L1(G=K) ⊂ L1(G) are Banah36



algebras with respet to a multipliation de�ned as the onvolutionf1 ∗ f2(g) = ∫G f1(gh−1)f2(h) d�G(h): (8.1)These algebras are assoiative but, in general, they are not ommutative. Forexample, the algebra L1(G) is ommutative if and only if G is ommutative.If the algebra L1(K\G=K) is ommutative, the pair of groupsK ⊂ G is alleda Gelfand pair and the orresponding homogeneous spae Q = G=K is alleda ommutative spae, see [34℄. The subgroup K in a Gelfand pair is alledmassive, see [32℄. Two large lasses of ommutative spaes are Riemanniansymmetri spaes and two-point homogeneous spaes, see [22,34℄. The spaesQ(d; d0) belong to both of these lasses.Consider the following unitary representation of a group G in the spaeL2(G=K) T (g)f(h) = f(g−1h); f ∈ L2(G=K); g; h ∈ G: (8.2)and its deomposition into the orthogonal sumT = ⊕̂l≥0 Tl; L2(G=K) = ⊕̂l≥0 Vl (8.3)of unitary irreduible representations Tl in �nite-dimensional spaes Vl. Letml = dimVl, and (·; ·) denote the inner produt in Vl.If Q = G=K is a ommutative spae, then the irreduible representationsTl ourring in (8.3) are pair-wise nonequivalent and eah subspae Vl in(8.3) ontains a single K-invariant unit vetor e(l), i.e. Tl(k)e(l) = e(l) for allk ∈ K.Fix an orthonormal basis e1; : : : ; eml in the spae Vl, suh that e1 = e(l)and de�ne the matrix elements t(l)ij (g) = (Tl(g)ei; ej). It is lear thatt(l)ij (g1g2) = ml∑p=1 t(l)ip (g1)t(l)pj (g2);t(l)ij (g−1) = t(l)ji (g): 



(8.4)We also have the orthogonality relations
∫G t(l)ij (g)t(l′)ij (g)d�G(g) = m−1l Æll′Æii′Æjj′: (8.5)37



The sets of funtions {m1=2l t(l)1j (g), j = 1; : : : ; ml, l ≥ 0} and {m1=2l t(l)11(g); l ≥0} are orthonormal bases in the spaes L2(G=K) and L2(K \ G=K), orre-spondingly, see [32℄.The matrix elements 'l(g) = t(l)11(g) are alled (zonal) spherial funtions.Notie that the matrix elements t(l)1j (g), j = 2; : : : ; ml are alled assoiatedspherial funtions. The de�nition and the formula (8.4) imply immediatelythat all spherial funtions are ontinuous, 'l(1) = 1, where 1 is the unitelement of G, |'l(g)| ≤ 1 for all g ∈ G, and'l(g1g−12 ) = ml∑j=1 t(l)1j (g1)t(l)1j (g2);'l(g) = 'l(g−1): 



(8.6)It follows from (8.6) that 'l is positive de�nite:
∑1≤i;j≤N ij'l(g−1i gj) ≥ 0 (8.7)for any g1; : : : ; gN ∈ G and any omplex numbers 1; : : : ; N . From (8.1),(8.5) and (8.6), we obtain the following 'orthogonality relations' with respetto the onvolution ('l ∗ 'l′)(g) = Æll′m−1l 'l(g): (8.8)Funtions f ∈ L2(K \G=K) have the following expansionsf(g) ∼∑l≥0 mll(f)'l(g); (8.9)where ∼ denotes the L2-onvergene. The Fourier oeÆients are given byl(f) = ∫G f(g)'l(g) d�G(g); (8.10)and ∫G |f(g)|2 d�G(g) =∑l≥0 ml|l(f)|2 (8.11)Substituting the expansion (8.9) for two funtions f1; f2 ∈ L2(K \G=K)into the de�nition of onvolution (8.1) and using the relation (8.8), we obtainf1 ∗ f2(g) =∑l≥0 mll(f1)l(f2)'l(g): (8.12)38



Applying the Cauhy{Shwarz inequality to (8.12) and using (8.11), we ob-serve that the series (8.12) onverges absolutely. Sine the spherial funtions'l are ontinuous and |'l(g)| ≤ 1, we onlude that the onvolution f1 ∗ f2is a ontinuous funtion.The fats given above are true for all ompat ommutative spaes. Nowwe wish to speify the expansions (8.9){(8.12) for two-point homogeneousspaes.Let K ⊂ G be ompat groups and Q = G=K a two-point homogeneousspae with a G-invariant metri �. Suppose that K is the stabilizer of a pointy0 ∈ Q. It follows from the de�nition, see setion 2, that the subgroup K istransitive on eah sphere �r(y0) = {y : �(y; y0) = r} ⊂ Q, r ∈ R, where R =
{�(y; y0) : y ∈ Q} is the set of radii. Thus, any funtion f ∈ Lq(K \ G=K),as a funtion on Q, is onstant on eah sphere �r(y0). Therefore, we anwrite f(g) = F (�(gy0; y0)) (8.13)with a funtion F (r), r ∈ R. In other words, double osets K \ G=K areparametrized by radii r ∈ R.Sine the metri � is G-invariant and symmetri, we have the relations�(gy0; y0) = �(y0; g−1y0) = �(g−1y0; y0);�(g1y0; g2y0) = �(y0; g−11 g2y0) = �(g−11 g2y0;0 ):} (8.14)Comparing (8.13) and (8.14), we obtainf(g) = f(g−1): (8.15)Using (8.13), the onvolution (8.1) of funtions f1; f2 ∈ L2(K \G=K) an bewritten in the form(f1 ∗ f2)(g−11 g2) = ∫G F1(�(g1y0; gy0))F2(�(gy0; g2y0)) d�(g)= ∫Q F1(�(y1; y))F2(�(y; y2)) d�(y); (8.16)where y1 = g1y0, y2 = g2y0.For a funtion of the form (8.13) we have

∫G f(g) d�G(g) = ∫Q F (�(y; y0)) d�(y) = ∫
R

F (r) dvr; (8.17)39



where the last integral is thought of as a Stieltjes integral with the nonde-reasing funtion vr = �(Br(y0)), r ∈ R.It follows from (8.13) and (8.17) that the mapping f → F is an isometryof the spae L2(K \G=K) onto the spae L2(R; vr) of funtions F (r), r ∈ R,with the norm
‖F‖ = ∫

R

|F (r)|2 dvr1=2 : (8.18)Sine the zonal spherial funtions 'l ∈ L2(K\G=K), they an be writtenin the form (8.13): 'l(g) = �l(�(gy0; y0)); (8.19)where �l ∈ L2(R; vr). Putting y1 = g1y0, y2 = g2y2, g1; g2 ∈ G, we an write(8.19) as follows'l(g−11 g2) = �l(�(g1y0; g2y0)) = �l(�(y1; y2)): (8.20)It follows from the properties of 'l that �l are ontinuous, �l(0) = 1,
|�l(r)| ≤ 1, r ∈ R, moreover, �l are real-valued, in view of (8.6) and (8.15).The set of funtions {m1=2l �l; l ≥ 0} is an orthonormal basis in the spaeL2(R; vr) and the expansion (8.9) for F ∈ L2(R; vr) takes the formF (r) ∼∑l≥0 mll(F ) �l(r) (8.21)with the Fourier oeÆientsl(F ) = ∫

R

F (r)�l(r) dvr: (8.22)Comparing the formulas (8.12), (8.16), (8.21), we arrive at the followingrelation∫Q F1(�(y1; y))F2(�(y; y2)) d�(y) =∑l≥0 mll(F1)l(F2)�l(�(y1; y2)): (8.23)For all spaes Q = Q(d; d0) spherial funtions are known, see ÑÑ. [16,Chp. 9, Se. 2℄, [19, p. 178℄, [22, Chp. V, Thm. 4.5℄, [23, pp. 514{512, 543{544℄, [34, Thm. 11.4.21℄. The funtions �l in (8.19) are expliitly given by�l(r) = �(�;�)l (r) = P (�;�)l (os r)P (�;�)l (1) ; r ∈ R = [0; �℄; (8.24)40



where P (�;�)l (z) are the standard Jaobi polynomials of degree l normalizedby P (�;�)l (1) = (� + ll ) = (� + 1) : : : (�+ l)l! ≃ l�; (8.25)see [31℄. The parameters �; � in (8.24) and the dimensions d, d0 in Q(d; d0)are related by � = d2 − 1; � = d02 − 1 (8.26)In what follows, we will use dimensions d, d0 as well as parameters �; �,assuming that they are related by (8.26). Notie that in this ase, we have� ≥ � ≥ −1=2 always.We have the following orthogonality relations for Jaobi polynomials,see [31, Eq. (4.3.3)℄,�∫0 P (�;�)l (os u)P (�;�)l′ (os u)(sin 12u)d−1(os 12u)d0−1 du= (12)�+�+1 1∫
−1 P (�;�)l (z)P (�;�)l′ (z)(1− z)�(1 + z)� dz =M−1l Æll′ ; (8.27)where M0 = �(d; d0) andMl = (2l + � + � + 1)�(l + 1)�(l + � + � + 1)�(l + � + 1)�(l + � + 1) ≃ l; l ≥ 1: (8.28)Comparing the orthogonality relations (8.5) and (8.28), we obtain the expliitformula for dimensions ml of irreduible representations Tl in (8.3):ml =MlB(d=2; d0=2)(� + ll )2

≃ ld−1: (8.29)For funtions F ∈ L2([0; �℄; vr) the expansion (8.21) takes the formF (r) ∼∑l≥0 MlCl(F )P (�;�)l (os r); (8.30)with the Fourier-Jaobi oeÆientsCl(F ) = �∫0 F (u)P (�;�)l (os u)(sin 12u)d−1(os 12u)d0−1 du: (8.31)41



The Fourier oeÆients (8.22) and Fourier-Jaobi oeÆients (8.31) are re-lated by l(F ) = Cl(F ) �(d; d0)P (�;�)l (1) ; l ≥ 0: (8.32)Using the relations (8.24), (8.31) and (8.32), we an write the relation(8.23) in the form
∫Q F1(�(y1; y))F2(�(y; y2)) d�(y)= �(d; d0)∑l≥0 MlCl(F1)Cl(F2)P (�;�)l (os �(y1; y2))P (�;�)l (1) (8.33)This relation will be used in setion 9 to obtain zonal spherial funtionexpansions for disrepanies and metris .The ondition of positive de�niteness (8.7) for the zonal spherial fun-tions (8.24) will be used in setion 11 in the following speial form'l[DN ℄ = ∑x1;x2∈DN P (�;�)l (os �(x1; x2))P (�;�)l (1) ≥ 0 (8.34)for an arbitrary N -point subset DN ⊂ Q(d; d0).Obviously, the onditions (3.2), (3.3) in the de�nition of t-designs DN ⊂Q(d; d0) are equivalent to the following equalities, see also [4, 23℄,'l[DN ℄ = 0; l = 0; 1; : : : ; t: (8.35)9. Spherial funtion expansions for disrep-anies and metrisIn this setion we obtain expliit zonal spherial funtion expansions for thekernels (1.6), (1.8) and the symmetri di�erene metris (1.33), (1.14) on thespaes Q(d; d0). In the next setions we will estimate the oeÆients of theseexpansions.First of all, we reall the main fats on asymptoti behavior of Jaobipolynomials P (�;�)l (z), z ∈ [−1; 1℄, � ≥ −1=2, � ≥ −1=2, as l → ∞. Thebehavior is extremely irregular on the interval z ∈ [−1; 1℄: Inside the interval42



Jaobi polynomials osillate and are of order l−1=2, while in neighborhoods ofthe end points z = 1 and z = −1 they inrease sharply up to the quantitiesof order l� and l�, orrespondingly. We desribe suh irregularities in termsof the following weighted bounds. We putJ (�;�)l (r) = (sin 12r)�+ 12 (os 12r)�+ 12P (�;�)l (os r); r ∈ [0; �℄ (9.1)For r ∈ [0l−1; � − 0l−1℄, where 0 > 0 is an arbitrary onstant, we havethe asymptoti formulaJ (�;�)l (r) = (�l)−1=2{os[(l + l0)r + r0℄ +O((l sin r)−1)}; (9.2)where l0 = (� + � + 1)=2, r0 = −�(2� + 1)=4, see [31, Thm. 8.21.3℄.For r ∈ [0; 0l−1℄ or r ∈ [� − 0l−1; �℄, we have the bound J (�;�)l (r) =O(l−1=2), see [31, Thm. 7.32.2℄. This bound together with (9.2) implies thefollowing bound
|J (�;�)l (r)| < (l + 1)−1=2; l ≥ 0; (9.3)uniformly for all r ∈ [0; �℄ with a onstant depending only on � and �.Now, we onsider the measure of the intersetion of two balls Br(y1) andBr(y2) in the spae Q = Q(d; d0)�r(y1; y2) = �(Br(y1) ∩Br(y2)) = ∫Q �r(�(y1; y))�r(�(y; y2)) d�(y); (9.4)where �r(·) is the harateristi funtion of the interval [0; r℄, 0 ≤ r ≤ �, see(1.16).Lemma 9.1. The kernel (9.4) has the following zonal spherial funtionexpansion�r(y1; y2) = v2r + �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)(os �(y1; y2))P (�;�)l (1) ; (9.5)where vr = �(Br(y)) andal(r) = (sin 12r)2d(os 12r)2d0 {P (�+1;�+1)l−1 (os r)}2= (sin 12r)d−1(os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 : (9.6)43



The oeÆients in (9.5) satisfyMlal(r) ≤ (sin 12r)d−1(os 12r)d0−1 (9.7)with a onstant depending only on d and d0. Furthermore, we have the equal-ity �(d; d0)∑l≥1 l−2Mlal(r) = vr − v2r = vrv′r: (9.8)Proof. Applying the expansion (8.33) to the integral (9.4), we obtain�r(y1; y2) = �(d; d0)∑l≥0 Ml{Cl(�r)}2 P (�;�)l (os �(y1; y2))P (�;�)l (1) ; (9.9)where Cl(�l) are Fourier-Jaobi oeÆients (8.31) of the harateristi fun-tion �r. We haveCl(�r) = r∫0 P (�;�)l (os u)(sin 12u)d−1(os 12u)d0−1 du= (12) d−12 + d0−12 1∫os r (1− z)�(a+ z)�P (�;�)l (z) dz: (9.10)In view of (2.2), we have C0(�r) = �(d; d0)−1vr. For l ≥ 1 we use Rodrigues'formula for Jaobi polynomials, see [31, Eq. (4.3.1)℄,P (�;�)l (z) = (−1)l2ll! (1− z)−�(1 + z)−� dldzl {(1− z)l+�(1 + z)l+�} : (9.11)Substituting (9.11) into (9.10), we obtain1∫os r (1− z)�(1 + z)�P (�;�)l (z) dz= (2l)−1(1− os r)�+1(1 + os r)�+1P (�+1;�+1)l−1 (os r)= 2�+�+1l−1(sin 12r)2�+2(os 12)2�+2P (�+1;�+1)l−1 (os r):44



In view of the de�nitions (8.26) and (9.1), we haveCl(�r) = l−1(sin 12r)d(os 12r)d0P (�+1;�+1)l−1 (os r)= l−1(sin 12r) d−12 (os 12r) d0−12 J (�+1;�+1)l−1 (r): (9.12)Substituting (9.12) into (9.9), we obtain the formulas (9.5) and (9.6).The bound (9.7) follows from (9.6), sine Ml ≃ l, see (8.28), andJ (�+1;�+1)l−1 (r) . l−1=2, see (9.3).From (9.4), we obtain �r(y; y) = vr. Putting in (9.5) y1 = y2 = y, weobtain (9.8).An immediate orollary of Lemma 3.1 is the following.Theorem 9.1. For any spae Q(d; d0) the following spherial funtion ex-pansions hold:(i) For the kernels �r(y1; y2), see (1.6), and the metris ��r (y1; y2), see(1.14), we have the expansions�r(y1; y2) = �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)l (os �(y1; y2))P (�;�)l (1) ; (9.13)
��r (y1; y2) = 〈��r 〉 − �(d; d0)∑l≥1 l−2Mlal(r)P (�;�)l (os �(y1; y2))P (�;�)l (1) ;=∑l≥1 l−2Mlal(r)[1− P (�;�)l (os �(y1; y2))P (�;�)l (1) ] ; (9.14)where 〈��r 〉 = vrv′r is the average value of metri ��r , see (1.26), and theoeÆients al(r) are de�ned in (9.6).(ii) If the weight funtion � ∈ W (d; d0), then for the kernels �(�; y1; y2),see (1.8), and the metris ��(�; y1; y2), see (1.13), we have the expansions�(�; y1; y2) = �(d; d0)∑l≥1 l−2MlAl(�)P (�;�)l (os �(y1; y2))P (�;�)l (1) ; (9.15)
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��(�; y1; y2) = 〈��(�)〉 − �(d; d0)∑l≥1 l−2MlAl(�)P (�;�)l (os �(y1; y2))P (�;�)l (1) ;= �(d; d0)∑l≥1 l−2MlAl(�)[1− P (�;�)l (os �(y1; y2))P (�;�)l (1) ] ; (9.16)where 〈��(�)〉 is the average value of metri ��(�), see (1.18), and the oef-�ients Al(�) are de�ned byAl(�) = �∫0 �(a)al(u) du: (9.17)Proof. (i) Substituting the expansion (9.5) into (1.23) and (1.25), we obtainthe expansions (9.13) and (9.14). Notie that in the seond equality in (9.14),the formula (9.8) has been taken into aount.(ii) In view of the bound (9.7), the series (9.13) and (9.14) an be inte-grated term by term with � ∈ W (d; d0). This gives the expansions (9.15)and (9.16).Notie that by Theorem 2.1 the hordal metri � is a symmetri di�erenemetri (1.13) with the weight funtion �\(r) = sin r and, therefore, it has theexpansion (9.16). At the same time, the hordal metri an be also writtenas follows �(y1; y2) = (�; �)[1− P (�;�)1 (os �(y1; y2))P (�;�)1 (1) ]1=2 ; (9.18)with the onstant(�; �) = ( � + 1� + � + 2)1=2 = ( dd+ d0)1=2 : (9.19)Indeed, Rodrigues' formula (9.11) gives P (�;�)1 (z) = 12(�+�+2)z+ 12(�−�),and so 12(1− z) = � + 1�+ � + 2 [1− P (�;�)1 (z)P (�;�)1 (1)] : (9.20)On the other hand, by the de�nitions (2.4), (5.24)�(y1; y2) = sin 12�(y1; y2) = [12 (1− os �(y1; y2))]1=2 : (9.21)46



Comparing (9.20) and (9.21), we obtain (9.18), (9.19).For the sphere Sd, we have d0 = d, � = � = d=2−1, and Jaobi polynomi-als P (�;�)l (z) oinide, up to onstant fators, with Gegenbauer polynomials.Furthermore, P (�;�)l (z) for even and odd l are even and, orrespondingly, oddfuntions of z, see [31, Se. 4.7℄. Comparing the formula (4.5) and the expan-sion (9.14) for r = �=2, we obtain the following expansion for the geodesidistane on Sd�(y1; y2)=2� [14−(14)d ∑odd l≥1 l−2Ml {P (�+1;�+1)l−1 (0)}2 P (�;�)l (os �(y1; y2))P (�;�)l (1) ]

= 2�(14)d ∑odd l≥1 l−2Ml {P (�+1;�+1)l−1 (0)}2 [1− P (�;�)l (os �(y1; y2))P (�;�)l (1) ] : (9.22)We emphasize that the expansion ontains zonal spherial funtions onlywith odd numbers. For the sums (8.34), one an easily hek the formula'l[DN ℄ = {0 if DN = D2a;1 if DN = D2a+1; (9.23)where l is odd, the subset D2a ⊂ Sd onsists of a pairs of antipodal pointsand D2a+1 = D2a ∪ {x0}, where x0 ∈ Sd is an arbitrary point. Substituting(9.22) into (9.23) and using (9.8), we immediately obtain a further proof ofthe relation (2.22).10. Bounds for Fourier-Jaobi oeÆientsIn this setion we estimate the following oeÆientsal(r) = (sin 12r)d−1(os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 ; (10.1)Al(�) = �∫0 �(u)al(u) du; (10.2)Al(�r) = �∫0 �r(u)al(u) du = r∫0 al(u) du; (10.3)47



where J (�;�)l (·) is de�ned in (9.1). In fat, we prove speial weighted boundsfor Jaobi polynomials.Lemma 10.1. Let the weight funtion � ∈ W (d; d0), � 6= 0, then the follow-ing bounds hold:(i) For 0 < r ≤ � and l ≥ 1, we haveAl(�) > r−d+1al(r): (10.4)(ii) There exists a onstant L ≥ 1, depending only on � and �, suh thatfor 0 < r ≤ �=2 and lr > L, we haveAl(�) < Cr−dAl(�r): (10.5)The positive onstants  and C in (10.4) Ñ (10.5) depend only on �, �and �.Proof. The asymptoti formula (9.2) implies the following relationsJ (�+1;�+1)l−1 (r) = (�l)−1 {sin[(l + l0)r + r0℄ +O((l sin r)−1)} ; (10.6)
{J (�+1;�+1)l−1 (r)}2 = {12 − 12 os 2[(l + l0)r + r0℄ +Rl(r)} ; (10.7)where the error term Rl(r) satis�esRl(r) = {O(l−1) for 0 < 0 ≤ r ≤ � − 0;O((lr)−1) for l−1 ≤ r ≤ �=2; (10.8)where 0 < 0 < �=2 is an arbitrary onstant.(i) Sine � ∈ W (d; d0), � 6= 0, a suÆiently small onstant 0 < 0 < �=2an be hosen to satisfy�−0∫0 �(u)(sin 12u)d−1(os 12u)d0−1 du

≥ 12 �∫0 �(u)(sin 12u)d−1(os 12u)d0−1 du = 12‖�‖d;d0 > 0: (10.9)
48



Using (10.9), (10.7) and the �rst bound in (10.8), we obtainAl(�) ≥ �−0∫0 �(u)(sin 12u)d−1(os 12u)d0−1 {J (�+1;�+1)l−1 (u)}2 du
≥ (�l)−1{14‖�‖d;d0−12 �−0∫0 �(u)(sin 12u)d−1(os 12u)d0−1 os 2[(l+l0)u+r0℄ du+O(l−1)} = (�l)−114‖�‖d;d0 + ◦(1); (10.10)here in the last equality, the Riemann-Lebesgue lemma has been used. HeneAl(�) ≥ (�l)−118‖�‖d;d0 (10.11)for all suÆiently large l > l1. We havemin1≤l≤l1 lAl(�) > 0; (10.12)sine, Al(�) > 0 for all l ≥ 1. From (10.11) and (10.12), we onlude thatthe bound Al(�) ≥ 1l−1 (10.13)holds for all l ≥ 1 with a onstant 1 > 0 depending only on � and �.From the other hand, the bound (9.3) impliesr−d+1al(r) = r−d+1(sin 12r)d−1(os 12r)d0−1 {J (�+1;�+1)l−1 (r)}2 ≤ 2l−1 (10.14)Comparing the bounds (10.13) and (10.14), we obtain the bound (10.14) with = 1−12 .(ii) Let 0 < r ≤ �=2 and lr ≥ L, where L ≥ 1 is a onstant. From the
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de�nition (10.3), we obtainr−dAl(�r) ≥ r−d r∫r=2 al(u) du
≥ r−d(sin 14r)d−1(os 12r)d0−1 r∫r=2 {J (�+1;�+1)l−1 (u)}2 du> 1r−1 r∫r=2 {J (�+1;�+1)l−1 }2 du; (10.15)where we an put 1 = (1=8)d−1(1=2)d0−1. Using the asymptoti formula(10.7) and the seond bound in (10.8), we obtainr−1 r∫r=2 {J (�+1;�+1)l−1 (u)}2 du= (�l)−1

14 − 12r−1 r∫r=2 os 2[(l + l0)u+ r0℄ du+O(L−1) : (10.16)It is lear that the integral on the right-hand side in (10.16) is of orderO((rl)−1 . O(L−1). Substituting (10.16) into (10.15), we obtainr−dAl(�r) > 1(�l)−1{14 +O(L−1)} : (10.17)In view of (10.17), we an hose and �x a suÆiently large onstant L, de-pending only on � and �, to satisfyr−dAl(�r) > 181(�l)−1 = 2l−1: (10.18)From the other hand, using the bound (9.3) and the de�nition (10.2), weobtain Al(�) ≤ C2‖�‖d;d0l−1 = C3l−1: (10.19)Comparing the bounds (10.18) and (10.19), we obtain the bound (10.5) withC = C3−12 . 50



11. Proof of Theorems 2.2 and 3.1In this setion we omplete the proof of Theorems 2.2 and 3.1. These re-sults will be obtained as immediate orollaries of a more general result ondisrepanies given below in Theorem 11.1.By appliation of Theorem 9.1 we an write the disrepanies (1.5), (1.7)in the following form�r[DN ℄ = �(d; d0)∑l≥1 l−2Mlal(r)'l[DN ℄; (11.1)�[�;DN ℄ = �(d; d0)∑l≥1 l−2MlAl(�)'l[DN ℄; (11.2)�[�r; DN ℄ = �(d; d0)∑l≥1 l−2MlAl(�r)'l[DN ℄; (11.3)here DN ⊂ Q(d; d0) is an arbitrary N -point subset and the quantities'l[DN ℄ ≥ 0 are de�ned in (8.34). The series (11.1){(11.3) onverge andall their terms are nonnegative.Theorem 11.1. Let the weight funtion � ∈ W (d; d0), � 6= 0, then thefollowing bounds hold:(i) For any N-point subset DN ⊂ Q(d; d0) and an arbitrary r; 0 < r ≤ �,we have �[�;DN ℄ > r−d+1�r[DN ℄; (11.4)(ii) There exists a onstant L ≥ 1, depending only d and d0, suh that forany N-point t-design DN ⊂ Q(d; d0) with t ≥ 2L=�, we have�[�;DN ℄ < Cr−d�[�r; DN ℄; r = Lt−1: (11.5)The positive onstants  and C in (11.4) and (11.5) depend only on d, d0and �.Proof. (i) Using the bound (10.4) and omparing the series (11.1) and (11.2),we obtain the bound (11.4).(ii) If DN ⊂ Q(d; d0) is a t-design, then '[DN ℄ = 0 ÑÑÑ l = 0; 1; : : : ; t, see(8.35), and summation in all series (11.1){(11.3) is taken over l > t.For L we hose the onstant indiated in Lemma 10.1 (ii). If r = Lt−1,then we have 0 < r ≤ �=2 for t ≥ 2L=� and lr > L for l > t. Usingthe bound (10.5) and omparing the series (11.2) and (11.3), we obtain thebound (11.5). 51



Now we are in position to prove Theorems 2.2 and 3.1.Proof Theorem 2.2. As it was explained in omments to Theorem 2.2 wehave to prove only the left bound in (2.20). From the de�nitions of disrep-anies (1.3), (1.5), we onlude that�r[DN ℄ ≥ 〈〈Nvr〉〉2;where 〈〈z〉〉 = min{|z − n|; n ∈ Z} is the distane of z ∈ R from the nearestinteger. De�ne r by Nvr = 1=2, then �r[D℄ ≥ 1=2. In view of (2.3), r ≃N−1=d and the bound (10.4) implies the left bound in (2.20).Proof of Theorem 3.1. First of all, we notie that
∫Q (#{Br(y) ∩DN})2 d�(y) = ∫Q (∑x∈DN �(Br(y); x))2 d�(y)= ∑y1;y2∈DN �(Br(y1) ∩Br(y2)): (11.6)Forom the formulas (11.6), (1.24), (3.7), we obtain�r[DN ℄ < ∫Q (#{Br(y) ∩DN})2 d�(y) ≤ (�[DN ; r℄)2: (11.7)and �[�r; DN ℄ = r∫0 �u[DN ℄ du < r(�[DN ; r℄)2; (11.8)sine �[DN ; r℄ is a nondereasing funtion of r. Substituting (11.8) into(11.5), we obtain �[�;DN ℄ < Cr−d+1(�[DN ; r℄)2: (11.9)If r = Lt−1, then the bound (11.9) oinides with the bound (3.8).Referenes[1℄ J. R. Alexander, On the sum of distanes between n points on a sphere.Ata Math. Hungar. 23 (3{4) (1972), 443{448.52
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