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1 Introduction

Random walks [1,2] as well as quantum walks, [3}-5], are of considerable recent in-
terest due to their role in quantum computations, [6-8|, and in quantum information
processing [9-11]. The walks on multi-dimensional lattices were studied by many
authors [12-16]. In the present paper we consider random walks over the multi-
dimensional simplicial lattices. Our approach is based on the analysis of the dynamical
correlation functions of the integrable phase model. Certain quantum integrable mod-
els solvable by the Quantum Inverse Scattering Method, [17,/18|, demonstrate close
relationship [19-21] with the different objects of the enumerative combinatorics [22]
and the theory of the symmetric functions [23].

In the present paper we consider the exactly solvable model describing the so-
called phase operators governed by the non-Hermitian Hamiltonian on a chain with
M +1 nodes. The phase operators were introduced in [24] and are connected with the
quantum optics and the quantum phase problem [25]. The model considered in [24]
is related to the exactly solvable model describing strongly correlated bosons [26,27].
We shall demonstrate that the non-Hermitian model in question provides a natural
description of the random walks on M-dimensional simplicial lattices.

The paper is organised as follows. Section 1 is introductory. In Section 2 ran-
dom walks over M-dimensional simplicial lattice with free and retaining boundary
conditions are introduced. The quantum generalized model and its solution in the
approach of the Bethe Ansatz are presented in Sections 3 and 4, respectively. The
Totally Asymmetric Zero Range Model and the Phase Model are correspondingly
considered in Sections 5 and 6.

2 The walks on a simplicial lattice in general dimen-
sionality

Starting from (M + 1)-dimensional hypercubical lattice with unit spacing ZM*! >
m = (mg,my,...,my), let us consider the non-negative orthant NJ’™ = {m | 0 <
m;,i € M} as a subspace of ZMT! (hereafter M = {0,1,... M?}). Consider a set of
points with coordinates constrained by the requirement mg + mq + ... +my; = N:

Hyp(N)(ZMH) = {(mo,m1,...,mu) € ZMH‘ Z m; =N} .
ieM
We call simplicial lattice the compact M-dimensional set of points belonging to the
intersection of two sets

SimP(N) (ZMH) = HYP(N)<ZMH) ﬂN(])WH :

Random walks of a particle (a walker) over sites of Simp y(Z"*") are defined by
a set of admissible steps Qj, such that at each step an i** coordinate m, increases
by unity while a nearest neighboring coordinate decreases by unity. Namely, €2, is

the set of steps with coordinates (eg, €s, ..., ey) such that for all pairs (¢,7 + 1) with
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0<i<Mand M+1=0( mod?2), e ==x1,e,4; =Flande; =0forall j €6 M
and j # i, 4+ 1. The step-set Qy = Qp(mg) ensures that trajectory of a random
walk determined by the starting point my lies in M-dimensional set Simpy,(Z**1).

Directed random walks on M-dimensional orientated simplicial lattice are defined
by a step-set I'y; = (ko, k1, ..., kar) such that for all pairs (¢,7 + 1) with i € M and
M+1= 0( mod 2), kz = —]_, ki+1 = 17 and k’j = 0 for all] S M\{Z,Z + ]_}

It might occur that some points on the boundary of the simplicial lattice belong
also to a random walk trajectory. Therefore the walker’s movements should be sup-
plied with appropriate boundary conditions. The reflecting boundary conditions are
defined by the requirement that when certain points of the trajectory and of the
boundary are coinciding the corresponding admissible steps are still taken from the
step-sets y; or I'y;. The retaining boundary conditions are the conditions under
which the walker on the boundary continues to move in accordance with the elements
of the step-sets {2y, or I'); either stays on the boundary. The boundary of the simpli-
cial lattice consists of M + 1 faces of highest dimensionality M —1. To each component
of the boundary a weight g,, s € M, is assigned.

Figure 1: The hopping processes for the one-dimensional nearest-neighbor random
walk on a segment [0,N].

As an example, the walks on Z? are defined by a step-set Q; = {(1,—1),(-1,1)}
that ensures that the walks lie on lines {(ng,n;) € Z* | ng + n; = N}. The step-set
Q, = {(—1,1,0),(1,-1,0),(0,—1,1),(0,1,—1),(1,0,—1),(=1,0,1)} of the random
walks, or Qy = {(—1,1,0),(0,—1,1),(1,0,—1)} of the directed walks, ensures that
trajectories of random walks belong to Simpy(Z?).

Consider the case of the retaining boundary conditions. The exponential generat-
ing function of lattice walks is defined as a formal series

ML, jlt) = Zk_ (1)

where the coefficients G,S,N)(l,j) characterize the k-step walks at anodel = (lo, ly,...,ly) €
Hyp ) (Z"*") when starting at j = (jo, j1, ..., jm) € Hypyy(Z"*'). The generating



Figure 2: A two-dimensional triangular simplicial lattice.

function satisfies the master equation

M
OFM W1t =Y F™M 1 jo, 1,1 js — Ljer + 1o i)
s]\:40
+Y F™ o, jrs G+ 1 der = 1) (2)
v s=0 /
+ g FN W oy jrs - Jam1, 0, Jagrs - ) 6N, Y i) s
s=0 0<k<M

where §(n,m) is the Kronecker symbol, and " implies that k = s is omitted. The
equation_for the directed walks is obtained by removing the second sum in right-hand
side of . Substituting into , we obtain the system of equations for G,gN)(l,j):

M
MWL) = S G o de — L + Lo jar)
s]:\/[U
+3 G (Lo gus g+ L s — L) (3)
o s=0
+30.GN W dos i Gots 0 urts o) SN, S i)
s=0 0<k<M

where k > 1, while it is natural to impose the condition GéN)(l,j) = 0ljoOtijn = Olngjng -

3 The quantum generalized phase model

To give the problem a quantum flavour we shall interpret the coordinates n; of a par-
ticle n = (ng,ny,...,ny) € ZM! as the occupation numbers of (M + 1)-component



Figure 3: The orientated two-dimensional bounded simplicial lattice defined by the
step-set I's. The walks are allowed only in the direction of arrows.

Fock space and describe the dynamics of a particle with the help of the Fock state-
vectors | n) =| ng,nq,...,ny). To this end, let us introduce a description in terms
of N bosonic particles on a cyclic chain consisting of M + 1 nodes. The number of
particles on any site is arbitrary, and each configuration of the particles is character-
ized by a collection of the occupation numbers (nys,...,n1,70), > ey = N. Each
particle is hopping with probability % to one of the nearest sites.

To describe the hoppings of the particles let us introduce the so-called phase
operators ¢,, ¢!, [24], which satisfy the commutation relations

[Nm ¢jl = —¢idi [Nn(b;] = ¢;'r(5ij> [¢i>¢;‘] = mi0ij , (4)

where Nj is the number operator, and m; = 1 — gbi(b,- is the vacuum projector:
;T = 7Tjgz5;r- — 0. We introduce the Fock state-vectors |n;); = (¢)™|0);, where
|0); is the vacuum state |0) at I*" site defined by the relation ¢|0) = 0, [ € M. The
representation of the algebra of the phase operators is given by the relations:

oF i)y = |y + 1), ¢ i) = |ni — 1), Ny = ng ) (5)

We introduce the (M + 1)-dimensional vacuum vector

10) =) 10); (6)

and define, taking into account (), an appropriate state-vector |n):

M

n) = @) ), (7)

=0

where n € Simp yy(Z**"). The Fock state-vectors |n) are generated from the vacuum

state |0) by action of the rising operators gzﬁ}:

M

m) = (TT(e})™ ) 10). (®)

j=0
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This algebra has a representation on the Fock space:

¢j]n0,...,0j,...,nM> = O,

¢;|n0,...,nj,...,nM> = |ng,...,n;+1,...,nu),
il | noy - smy, oo ny) = ngy .. my — 1,000 ), (9)
Nj|n0,...,nj,...,nM> = nj|n0,...,nj,...,nM>
7Tj|n0,...,0j,...,nM> = |n0,...,0j,...,nM>.

The states |ng, ...,ny) are orthogonal, (po, ..., pam|"0s -, 1) = Spono =+ Oparkas -

As the generator of the directed walks with the retaining boundary conditions we
can consider the following non-Hermitian Hamiltonian, [24}28|:

M
H = Z((bmgbjn—ﬁ-l + gmﬂ'm) ) (10)
m=0

where M + 1 = 0( mod 2) and the periodic boundary conditions are imposed. The
Hamiltonian ((10)) commutes with the number operator

M
[HN]=0, N=>) N. (11)
j=0

This ensures that walks themselves lie in the hyperplanes Hyp y,(Z"*1).
The exponential generating function of the directed walks is expressed as the
dynamical correlation function:

FM ) = (e 1), (12)

where H is the Hamiltonian , the coordinates of a particle moving over sites
of Hypy(Z"*") coincide with the occupation numbers of the Fock states. Differ-
entiating by ¢ and taking into account (9) we obtain Eq. for the directed
walks. Expanding the correlator in powers of ¢ we obtain expression for the coeffi-
cients GlgN)(l,j) characterizing the lattice walks from the node j to the node 1 in k
steps:

G g) = (L] HE ) (13)

To find the analytical answers for F") and G,(CN), we shall apply the Quantum
Inverse Scattering Method.

4 Solution of the model

4.1 Generalities

To apply the scheme of the Quantum Inverse Scattering Method to the solution of the
Hamiltonian (10)) we define L-operator [24] which is 2 x 2 matrix with the operator-
valued entries acting on the Fock states according to (9):

1 i
L(n|u) = (“ tb:gn”” fj) , (14)



where u € C is a parameter and g, € R. This L-operator satisfies the intertwining
relation

R(u,v) (L(nju) ® L(n|v)) = (L(n|v) ® L(n|u)) R(u,v), (15)
in which R(u,v) is the R-matrix
f(v,u) 0 0 0
B 0 g(v,u) 1 0
R(“?”) - 0 0 g(U,U) 0 ) (16)
0 0 0 f(v,u)
where )
u U
flouw =—ms—73  dvu=—m—73, uwveC. (17)
The monodromy matrix is the matrix product of L-operators
_ _ (Aw) B)
T(u) = L(M|u)L(M — 1|u) - - - L(0Ju) = (C(u) D)) (18)

The commutation relations of the matrix elements of the monodromy matrix are given
by the same R-matrix ((16]):

R(u,v) (T(u) © T(v)) = (T(v) @ T(u)) R(u,v) . (19)
The transfer matrix 7(u) is the trace of the monodromy matrix in the auxiliary space:
T(u) =trT'(u) = A(u) + D(u) . (20)

The relation (19) means that [7(u),7(v)] = 0 for arbitrary u,v € C.

The definitions of the L-operator and the monodromy matrix enable
to obtain by direct calculation that the entries of the monodromy matrix 7'(u) are
characterized by the relations:

M-1 M
uMHA() = 1+ u2<z ¢m¢1n+1 + ngﬁm> +...
m=0 m=0

M 21
+u2(M+1) H gmﬂ_m ’ ( )
m=0
UM—HD(U) — U2¢$¢M 4o 2MD :
and
WMB) = ¢ +...+u*MPgr = Bu), (22)
WMCOMW) = ¢y +...+u*MPL=Cu), (23)
where
M
Pr=_ SLgkamrir. . gumu, (24)
k=0
M
Pr = Zgoﬂo c GE—1Th—1 Pk - (25)
k=0

8



The representation allows to express the Hamiltonian through the transfer
matrix (20)):

0
H = 52 M (u) o @UMH(A(U) + D(u))

By construction this Hamiltonian commutes with the transfer matrix:

0

(26)

u=0

[H,7(u)] = 0.

Since the Hamiltonian is non-Hermitian we have to distinguish between its
right and left eigen-vectors. The N-particle right state-vectors are taken in the form

Ty (u (HB u;))10). (27)

where B (u) is defined in 1) and u implies a collection of arbitrary complex param-
eters u; € C: u = (up, uq,...,uy). The left state-vectors are equal to

(W (w)] = (0] (f[ Cluy)) (28)

where C(u) is given by . The vacuum state | 0}@ is an eigen-vector of A(u) and
D(u),

A(u)|0) = a(u)|0),  D(u)|0) = d(u)|0) (29)
with the eigen-values
H ), O(u) = uMH (30)

The state-vectors and are the eigen-vectors both of the Hamiltonian ((10)
and of the transfer matrix 7(u) (20)), if and only if the variables u; satisfy the Bethe
equations:

M N
N ] (g5 +wi?) = 0N [ (31)
=0 j=1
The eigen-values Oy (v) of 7(v) are equal to
M 2
MOy (v) = H (1+ g;v H e p2(M+1) = i "R (32)
=0 m=1 m=1 m

Equation enables to obtain the spectrum of the Hamiltonian . The N-particle
eigen-energies are equal to

M N

Ex(u) = %v”f@m Noso= D gm+ D>ty (33)

m=0 m=1



4.2 Correlation functions and their calculation

For the models associated with the R-matrix the scalar product of the state-
vectors and is given by the formula [29):

—17 2\ =1 (y—2 5 v\ ML
Wy Wy) = V@ ) [I(2) T dere, (34)
=1
where Vy(x) is the Vandermonde determinant,
Vn(x) = Vn(z1,29,...,2x) = H () — x4), (35)
1<i<k<N

and the matrix () is characterized by the entries Q;, 1 < j,k < N:

o(0)3(u) (25) " au)a(o) ()
o) ()™

with a(u) and §(u) given by (30).

There is 2 = %Tﬂj\f,) sets of solutions of the Bethe equations , and the state-
vectors belonging to the different sets of the solutions of the Bethe equations are
orthogonal. The eigen-vectors and provide the resolution of the identity

operator

[V (u)) (W ()]
1_%; Vo) : (37)

where the summation (u} is over all independent solutions of the Bethe equations

B1).
To calculate the norms of the eigen-vectors, we put vy = uy equal to the solutions
of Bethe equations in . Non-diagonal entries of the matrix () are equal to

Qi = (—1)Vo(uy)d(wp)ul uY U2(1 — 6, (38)

where U2 = []"_, u2. The diagonal entries of this matrix should be understood in

the sense of L’Hospital rule:

Qs = 2 ()3 () — ' ()3(at) + 2(N = Dy a(ws)d(u)] - (39)

The norm of the Bethe state-vectors is equal to

det @

/\/'2(u) = (Un(u)|¥y(u)) = Vn(u2)Vy(u2)"

10



We put, as a special case, g, = 7, Vi, and eventually obtain from (34), (36), (38).

and ([39):

() [Ux(u)) = Vi )V ) [T (41)

J
2\M+1,,2(M+N) 2\M+1, 2(M+N)
< dot ((1 +yv35) uy, — (1 4+ yuy) v; )

u? — v? (42)
koo 1<k,j<N

The determinant is a polynomial in powers of . It is appropriate to use this

to obtain several particular cases for the correlator (Uy(v)|¥y(u)) (34). First, we

obtain for M = 1 and arbitrary N:

(U n (V)| U n(u Zk+1 (ka e 2)), (43)

=0

where e,.(-) are the elementary symmetric functions [23|. Also we obtain for N = 1
and arbitrary M:

+ 3 (@) (@) ) (44)

where e,(+) are the elementary symmetric functions. Appendiz provides the formula
for the correlator (Uy(v)|Wy(u)) at M = N = 2.

Let us consider the walker on Simpy,(Z**') under the condition that the starting
point is located at the node (N,0,...,0), and the walk terminates at (0,0,..., N).
The generating function of these walks is specified as follows:

FMN @) =(0,0,...,N || N,0,...,0) = (0] (par)Ve (41N | 0, (45)

where @ and have been used. Inserting the resolution of the identity operator
(37) into (45) we obtain:

etEn (u)

F() = ZN?( )<0 [ (6a0)™ | U () (T () | (&)Y | 0), (46)

where the summation is over all independent solutions of Eqgs. (31). Applying the
decomposition for B(u) and C(u), we obtain:

(O] (¢a)™ | Wy (w)) = lim (W (v)[Uy(w)) =1, (47)
(W (u) | (8h)™ | 0) = lim (W () [Ty (v)) = 1. (48)

11



The unities appear as the limiting values in (47) and (48). The point is as follows.
The determinant is a polynomial in ~. Its coefficients (expressible in terms of
the symmetric functions) at non-trivial powers of  are vanishing in the limit v — 0.
The free term of the polynomial in powers of v is given by the series in products
of the symmetric functions [20]. The free term is just responsible for the unities in
right-hand sides of and ([48). Eventually we obtain:

€2t Zszl (7+u;2)

N) (4 —
{u}
For instance, at N = 2 and M = 1 we obtain:

2) "y Z 2t (uy +u2 2

= : (50)
s N2 (u?,u3)

2/.2 2 ui | uj 2 2 2.2 2

N=(uj,up) =4+ 2 + 2 + 4y (uy +uy) + 3y upuy (51)
2 1

5 Totaly Asymmetric Zero Range Model

When all g; are equal to v = 1, the Hamiltonian is the Hamiltonian of Totally
Asymmetric Zero Range Model [24}28]:

M

H, = Z(¢m¢in+l + ﬂ-m) : (52)

m=0

The state-vector (27) enables the representation in the form
M
wy) = > &) (TT@h)0). (53)
AC{MN} Jj=0

where the function x¥ is equal, up to a multiplicative pre-factor, to

)\.
ZT; 7 i
Xf(x) = Xf(xl,xg, S TN) = V;,l(x) det { (—_1> x?(N J)} ) (54)
T; + T,

Here A denotes the partition (Aq,...,A\y) of non-increasing non-negative integers,
M>M2>2X2>...2 Ay 20,

and Vy(x) is the Vandermonde determinant (35). There is a one-to-one correspon-
dence between a sequence of the occupation numbers (ny, ..., ny,ng), Zje/\/t n; = N,

and the partition
A= (M"™ (M —1)"=1 1™ ")

where each number S appears ng times (see Fig. 4). The sum in Eq. is taken
over all partitions A into at most N parts with N < M.

12



Figure 4: A configuration of particles (N = 4) on a lattice (M = 6), the corresponding
partition A = (6',59 4% 32,20 1! (0Y) = (6,3, 3,1) and its Young diagram.

Acting by the Hamiltonian (52)) on the state-vector (53)), we find that the wave
function satisfies the equation:

N
Z Xfl,...,)\k—&-l,...,/\N(u) = EJZ\;(U)Xf\%l,A..,,\N (u), (55)
k=1

together with the exclusion condition

X§1:~~~7)‘171:>‘l_17)‘l’“~»)‘]\] (u> - X§1,...,/\171:)\17)\1,“.,)\]\] (u>7 ]' S l S N (56)

The energy E% is given by with all g; = 1. The state-vector is the eigen-
vector of the Hamiltonian (52)) with the periodic boundary conditions if the parameters
u; satisfy the appropriate Bethe equations.

The relations , and can be viwed as an implementation of the coordi-
nate Bethe ansatz [18] which is an alternative to the approach of the algebraic Bethe
ansatz considered in Section 4 to solve the present bosonic model . Although
the model is solved by the algebraic Bethe ansatz, representations of the type of
are especially useful to discuss the combinatorial implementations of the quantum
integrable models, [19-21].

Expanding the left state-vector , we obtain:

M
(Wxw) = > xkw o (TTer). (57)
AC{MN} i=0
where the wave function is given by
wh(x) = V' (x) et { (14 272 £}V (58)
It satisfies the equations:
N
Z Xfl,...,,\k—L.A.,,\N(u) = EJZ\I;(U)XI)El,...,)\N(u) ) (59)
k=1
Xil7--~7)\l7)\l+1:)\l+17-~7)\N (u) = X§1,...,)\17/\“,1:)\1,...,)\]\/(u) Y 1 S l S N (60)

13



From Egs. (53), one obtains:
(lo, v, ... L | Uy () = XX (u) (61)
<\I]N(u) |j07j1a"'7j]\/[> :XiL(u)ﬂ (62)

where Ap = (MZM, (M — 1)1 1h Olo), and Ay = (MM (M — 1)/m-1 171 (Jo).
The exponential generating function (12)) in the considered special case is equal to

PR ()

FN10 =) mxﬁ(u)xi(lﬂ : (63)
{u} zr

Here parameters u; satisfy Bethe equations with g; = 1, and A2 (u) is the squared
norm (40)) in the same limit.

Let us consider the case M = 1. The trajectory of a particle on a bounded strip
form a modified Dyck path. A Dyck path in a strip is a path that can go up and down
but can not cross the border. The modified Dyck paths are the paths that can have
a horizontal steps along the borders.

0.3)

0 I I K
Figure 5: Modified Dyck path of the length K = 12.

The Schmidt decomposition of a quantum states associated with the lattice paths
plays an important role in the quantum information theory [6/7]. In the considered
case each step of a particle is associated with a spin state in C3: the step up of a
particle is identified with | 4), the step down with | —), and the horizontal steps
along the borders with | 0). The modified Dyck path of K steps on a strip of a length
N is then a spin state in (CS)®K. The spin state that corresponds to a modified Dyck
path in Fig. 5is | + — 4+ 4+ 00 — — — 4+ 4+ +). The Schmidt decomposition of the
normalized uniform superposition of all modified Dyck paths starting from the node
(p, N — p) and terminating at (¢, N — q) after K steps on a strip of the length N can
be written as

N
’ ,Dg,p,q> = Z V p% ’ ,Dl]c\,[p,m>® ’ ,DI]\(lfk,m,q> : (64)
m=0
The parameters p’\ in are expressed through the averages G,(CN) 1'

G,&N)(m,N —m;p, N —p)G%V_)k(q,N —q¢m,N —m)
G (¢, N —¢p,N —p)

p% = ) (65)

14



where GéN) are of the form:

G,gM(x,N_x;y,N_y):<x,N_x|H;|y,N_y> (66)
EZI‘

Z N B (w)xk, (u). (67)
{ Zr

The partitions Ag = (1%,0Y7¥) and Az = (17,0V72) are used in (67), and the param-
eters u; satisfy the Bethe equations

N

u, N (1+uy, )2 = (N l_Iuj_2 (68)

J=1

The condition S _ pN = 1 is following from
(v, N —a | Hy |y, N —y)

N

m=0

When K > N, the Schmidt rank is » = 1 + N. The entanglement entropy of the

modified Dyck paths is
N

== pnlog . (69)

m=0

6 The Phase Model

In this section we shall consider the random walks on Simpy, (ZM*1) which are de-
fined by a step-set 2;,. The Hermitian Hamiltonian H;, of the phase model may be
considered as the generator of the walks :

M

Hyp = Y (¢mh, 11 + 0hbmsr) - (70)

m=0

The phase model is defined by the L-operator with ¢; = 0, and the Bethe equa-
tions are:

N
u;?(N-’rM-‘rl N 1 H u . (71)
7j=1

The state-vectors of the phase model are expressed in the form [29}30]:

watw) = 3 st (e ) o) 72)

AC{MN}
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The coefficients of the expansion are the Schur functions Sy(u?®) given by the
Jacobi-Trudi identity:

1<j,k<N

VN(HQ) ’

det (2 FN=R)
S)\(UZ) ( J )

(73)

where the non-strict partition A is connected with the coordinates of the Bose particles
as it was explained above. Besides, Vy(u?) is the Vandermonde determinant
(subscript N is equal to the “length” of sequence u). On the solutions of the Bethe
equations the state-vectors are the eigen-vectors of the Hamiltonian with the
eigen-energies

N
ERM(u) = (uf +u.”) . (74)
k=1

The generating function of random walks on a Simpy,(Z"*!) is similar to that
of the Totally Asymmetric Zero Range Model, :

EPh(u>

l J|t Z 2 SAR )SAL(u2> (75)

with the squared norm A3 (u):

D Sa(u?)Sa(u?).

AC{MN}

In the case M = 1 the trajectory of a particle on a strip form an ordinary modified
Dyck path. The detailed analyses of Bethe equations [31},132] allows to rewrite the
answer for the generating function of Dyck paths on a strip in a conventional form:

N

F((,0), (0,5)]t) = et [ [

N+1 p N +1 N +1

(76)
With the help of this formula it is possible find the coefficients of the Schmidt decom-
position and to calculate the entanglement entropy of the Dyck paths on a strip.
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Appendix
The correlator (U5 (v)|Ws(u)) at M = N = 2 is of the form:
(Ta(V)|[W2(n)) = eo(vi)eo(u™) + er(v¥)er(u™?) + ea(v¥)ez(u)
+(el(v?) —ea(v?)) (ei(u™?) — ez(u™)) + ex(v¥)ey(u™)
+37(ex(v¥)eo(u™®) + ei(v)er(u™) + ex(v¥)er (v¥)ei (u™

)
+e5(v)ea(u?)er (u?))
4372 (A0 + v o) + 3ea(v)es (e (a?)

+e3(vE) (eF(u?) + ea(u?)))

+8+3 (62(V2>61(V2)€0(u_2) + e%(vQ)el(u_Q))

167 e3(v2)eo(u?).
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