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Abstract

In the present paper we consider random walks over the multi-dimensional sim-

plicial lattices. Our approach is based on the analysis of the dynamical cor-

relation functions of the integrable phase model describing strongly correlated

bosons on a chain. Random walks with the re�ecting boundary conditions cor-

respond to the Hermitian Hamiltonian of this model, while the directed ran-
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symmetric functions.
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1 Introduction

Random walks [1, 2] as well as quantum walks, [3�5], are of considerable recent in-
terest due to their role in quantum computations, [6�8], and in quantum information
processing [9�11]. The walks on multi-dimensional lattices were studied by many
authors [12�16]. In the present paper we consider random walks over the multi-
dimensional simplicial lattices. Our approach is based on the analysis of the dynamical
correlation functions of the integrable phase model. Certain quantum integrable mod-
els solvable by the Quantum Inverse Scattering Method, [17, 18], demonstrate close
relationship [19�21] with the di�erent objects of the enumerative combinatorics [22]
and the theory of the symmetric functions [23].

In the present paper we consider the exactly solvable model describing the so-
called phase operators governed by the non-Hermitian Hamiltonian on a chain with
M+1 nodes. The phase operators were introduced in [24] and are connected with the
quantum optics and the quantum phase problem [25]. The model considered in [24]
is related to the exactly solvable model describing strongly correlated bosons [26,27].
We shall demonstrate that the non-Hermitian model in question provides a natural
description of the random walks on M -dimensional simplicial lattices.

The paper is organised as follows. Section 1 is introductory. In Section 2 ran-
dom walks over M -dimensional simplicial lattice with free and retaining boundary
conditions are introduced. The quantum generalized model and its solution in the
approach of the Bethe Ansatz are presented in Sections 3 and 4, respectively. The
Totally Asymmetric Zero Range Model and the Phase Model are correspondingly
considered in Sections 5 and 6.

2 The walks on a simplicial lattice in general dimen-

sionality

Starting from (M + 1)-dimensional hypercubical lattice with unit spacing ZM+1 3
m ≡ (m0,m1, . . . ,mM), let us consider the non-negative orthant NM+1

0 ≡ {m | 0 ≤
mi, i ∈ M} as a subspace of ZM+1 (hereafterM ≡ {0, 1, . . .M}). Consider a set of
points with coordinates constrained by the requirement m0 +m1 + . . .+mM = N :

Hyp(N)(ZM+1) ≡
{

(m0,m1, . . . ,mM) ∈ ZM+1
∣∣∣∑
i∈M

mi = N
}
.

We call simplicial lattice the compact M -dimensional set of points belonging to the
intersection of two sets

Simp(N)(ZM+1) = Hyp(N)(ZM+1)
⋂

NM+1
0 .

Random walks of a particle (a walker) over sites of Simp(N)(ZM+1) are de�ned by

a set of admissible steps ΩM such that at each step an ith coordinate mi increases
by unity while a nearest neighboring coordinate decreases by unity. Namely, ΩM is
the set of steps with coordinates (e0, e2, . . . , eM) such that for all pairs (i, i+ 1) with
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0 ≤ i ≤ M and M + 1 = 0( mod 2), ei = ±1 , ei+1 = ∓1 and ej = 0 for all j ∈ M
and j 6= i, i + 1. The step-set ΩM ≡ ΩM(m0) ensures that trajectory of a random
walk determined by the starting point m0 lies in M -dimensional set Simp(N)(ZM+1).

Directed random walks on M -dimensional orientated simplicial lattice are de�ned
by a step-set ΓM = (k0, k1, . . . , kM) such that for all pairs (i, i + 1) with i ∈ M and
M + 1 = 0( mod 2), ki = −1, ki+1 = 1, and kj = 0 for all j ∈M\{i, i+ 1}.

It might occur that some points on the boundary of the simplicial lattice belong
also to a random walk trajectory. Therefore the walker's movements should be sup-
plied with appropriate boundary conditions. The re�ecting boundary conditions are
de�ned by the requirement that when certain points of the trajectory and of the
boundary are coinciding the corresponding admissible steps are still taken from the
step-sets ΩM or ΓM . The retaining boundary conditions are the conditions under
which the walker on the boundary continues to move in accordance with the elements
of the step-sets ΩM or ΓM either stays on the boundary. The boundary of the simpli-
cial lattice consists ofM+1 faces of highest dimensionalityM−1. To each component
of the boundary a weight gs, s ∈M, is assigned.

0

N

N

0

N
0

1

Figure 1: The hopping processes for the one-dimensional nearest-neighbor random
walk on a segment [0,N].

As an example, the walks on Z2 are de�ned by a step-set Ω1 = {(1,−1), (−1, 1)}
that ensures that the walks lie on lines {(n0, n1) ∈ Z2 | n0 + n1 = N}. The step-set
Ω2 = {(−1, 1, 0), (1,−1, 0), (0,−1, 1), (0, 1,−1), (1, 0,−1), (−1, 0, 1)} of the random
walks, or Ω2 = {(−1, 1, 0), (0,−1, 1), (1, 0,−1)} of the directed walks, ensures that
trajectories of random walks belong to Simp(N)(Z3).

Consider the case of the retaining boundary conditions. The exponential generat-
ing function of lattice walks is de�ned as a formal series

F (N)(l, j|t) =
∞∑
k=0

tk

k!
G

(N)
k (l, j) , (1)

where the coe�cientsG
(N)
k (l, j) characterize the k-step walks at a node l = (l0, l1, . . . , lM) ∈

Hyp(N)(ZM+1) when starting at j = (j0, j1, . . . , jM) ∈ Hyp(N)(ZM+1). The generating
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Figure 2: A two-dimensional triangular simplicial lattice.

function (1) satis�es the master equation

∂tF
(N)(l, j|t) =

M∑
s=0

F (N)(l, j0, j1, . . . , js − 1, js+1 + 1, . . . jM)

+
M∑
s=0

F (N)(l, j0, j1, . . . , js + 1, js+1 − 1, . . . jM)

+
M∑
s=0

gsF
(N)(l, j0, j1, . . . , js−1, 0, js+1, . . . jM) δ(N,

∑
0≤k≤M

′
jk) ,

(2)

where δ(n,m) is the Kronecker symbol, and
∑′ implies that k = s is omitted. The

equation for the directed walks is obtained by removing the second sum in right-hand
side of (2). Substituting (1) into (2), we obtain the system of equations for G

(N)
k (l, j):

G
(N)
k (l, j) =

M∑
s=0

G
(N)
k−1(l, j0, j1, . . . , js − 1, js+1 + 1, . . . jM)

+
M∑
s=0

G
(N)
k−1(l, j0, j1, . . . , js + 1, js+1 − 1, . . . jM)

+
M∑
s=0

gsG
(N)
k−1(l, j0, j1, . . . , js−1, 0, js+1, . . . jM) δ(N,

∑
0≤k≤M

′
jk) ,

(3)

where k ≥ 1, while it is natural to impose the condition G
(N)
0 (l, j) = δl0j0δl1j1 · · · δlM jM .

3 The quantum generalized phase model

To give the problem a quantum �avour we shall interpret the coordinates nj of a par-
ticle n = (n0, n1, . . . , nM) ∈ ZM+1 as the occupation numbers of (M + 1)-component
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Figure 3: The orientated two-dimensional bounded simplicial lattice de�ned by the
step-set Γ2. The walks are allowed only in the direction of arrows.

Fock space and describe the dynamics of a particle with the help of the Fock state-
vectors | n〉 ≡| n0, n1, . . . , nM〉. To this end, let us introduce a description in terms
of N bosonic particles on a cyclic chain consisting of M + 1 nodes. The number of
particles on any site is arbitrary, and each con�guration of the particles is character-
ized by a collection of the occupation numbers (nM , . . . , n1, n0),

∑
l∈M nl = N . Each

particle is hopping with probability 1
2
to one of the nearest sites.

To describe the hoppings of the particles let us introduce the so-called phase
operators φn, φ

†
n, [24], which satisfy the commutation relations

[N̂i, φj] = −φiδij , [N̂i, φ
†
j] = φ†iδij , [φi, φ

†
j] = πiδij , (4)

where N̂j is the number operator, and πi = 1 − φ†iφi is the vacuum projector:

φjπj = πjφ
†
j = 0. We introduce the Fock state-vectors |nl〉l = (φ†l )

nl |0〉l, where
|0〉l is the vacuum state |0〉 at lth site de�ned by the relation φl|0〉 = 0, l ∈ M. The
representation of the algebra of the phase operators is given by the relations:

φ†l |nl〉l = |nl + 1〉l , φl |nl〉l = |nl − 1〉l , N̂l |nl〉l = nl |nl〉l . (5)

We introduce the (M + 1)-dimensional vacuum vector

|0〉 ≡
M⊗
l=0

|0〉l (6)

and de�ne, taking into account (5), an appropriate state-vector |n〉:

|n〉 ≡
M⊗
l=0

|nl〉l , (7)

where n ∈ Simp(N)(ZM+1). The Fock state-vectors |n〉 are generated from the vacuum

state |0〉 by action of the rising operators φ†j:

|n〉 =
( M∏
j=0

(
φ†j
)nj

)
|0〉 . (8)
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This algebra has a representation on the Fock space:

φj | n0, . . . , 0j, . . . , nM〉 = 0,

φ†j | n0, . . . , nj, . . . , nM〉 = | n0, . . . , nj + 1, . . . , nM〉,
φj| | n0, . . . , nj, . . . , nM〉 = |n0, . . . , nj − 1, . . . , nM〉, (9)

N̂j | n0, . . . , nj, . . . , nM〉 = nj|n0, . . . , nj, . . . , nM〉
πj | n0, . . . , 0j, . . . , nM〉 = | n0, . . . , 0j, . . . , nM〉.

The states |n0, . . . , nM〉 are orthogonal, 〈p0, . . . , pM |n0, . . . , nM〉 = δp0n0 · · · δpMkM .
As the generator of the directed walks with the retaining boundary conditions we

can consider the following non-Hermitian Hamiltonian, [24, 28]:

H =
M∑
m=0

(
φmφ

†
m+1 + gmπm

)
, (10)

where M + 1 = 0( mod 2) and the periodic boundary conditions are imposed. The
Hamiltonian (10) commutes with the number operator

[H, N̂ ] = 0 , N̂ =
M∑
j=0

N̂j . (11)

This ensures that walks themselves lie in the hyperplanes Hyp(N)(ZM+1).
The exponential generating function of the directed walks (1) is expressed as the

dynamical correlation function:

F (N)(l, j|t) = 〈l | etH | j〉 , (12)

where H is the Hamiltonian (10), the coordinates of a particle moving over sites
of Hyp(N)(ZM+1) coincide with the occupation numbers of the Fock states. Di�er-
entiating (12) by t and taking into account (9) we obtain Eq. (2) for the directed
walks. Expanding the correlator in powers of t we obtain expression for the coe�-
cients G

(N)
k (l, j) characterizing the lattice walks from the node j to the node l in k

steps:
G

(N)
k (l, j) = 〈l | Hk | j〉 (13)

To �nd the analytical answers for F (N) and G
(N)
k , we shall apply the Quantum

Inverse Scattering Method.

4 Solution of the model

4.1 Generalities

To apply the scheme of the Quantum Inverse Scattering Method to the solution of the
Hamiltonian (10) we de�ne L-operator [24] which is 2× 2 matrix with the operator-
valued entries acting on the Fock states according to (9):

L(n|u) ≡
(
u−1 + ugnπn φ†n

φn u

)
, (14)

7



where u ∈ C is a parameter and gn ∈ R. This L-operator satis�es the intertwining
relation

R(u, v) (L(n|u)⊗ L(n|v)) = (L(n|v)⊗ L(n|u))R(u, v) , (15)

in which R(u, v) is the R-matrix

R(u, v) =


f(v, u) 0 0 0

0 g(v, u) 1 0
0 0 g(v, u) 0
0 0 0 f(v, u)

 , (16)

where

f(v, u) =
u2

u2 − v2
, g(v, u) =

uv

u2 − v2
, u, v ∈ C . (17)

The monodromy matrix is the matrix product of L-operators

T (u) = L(M |u)L(M − 1|u) · · ·L(0|u) =

(
A(u) B(u)
C(u) D(u)

)
. (18)

The commutation relations of the matrix elements of the monodromy matrix are given
by the same R-matrix (16):

R(u, v) (T (u)⊗ T (v)) = (T (v)⊗ T (u))R(u, v) . (19)

The transfer matrix τ(u) is the trace of the monodromy matrix in the auxiliary space:

τ(u) = trT (u) = A(u) +D(u) . (20)

The relation (19) means that [τ(u), τ(v)] = 0 for arbitrary u, v ∈ C.
The de�nitions of the L-operator (14) and the monodromy matrix (18) enable

to obtain by direct calculation that the entries of the monodromy matrix T (u) are
characterized by the relations:

uM+1A(u) = 1 + u2
(M−1∑
m=0

φmφ
†
m+1 +

M∑
m=0

gmπm

)
+ . . .

+u2(M+1)

M∏
m=0

gmπm ,

uM+1D(u) = u2φ†0φM + . . .+ u2(M+1) ,

(21)

and

uMB(u) = φ†0 + . . .+ u2MPR ≡ B̃(u) , (22)

uMC(u) = φM + . . .+ u2MPL ≡ C̃(u) , (23)

where

PR =
M∑
k=0

φ†kgk+1πk+1 . . . gMπM , (24)

PL =
M∑
k=0

g0π0 . . . gk−1πk−1φk . (25)
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The representation (21) allows to express the Hamiltonian (10) through the transfer
matrix (20):

H =
∂

∂u2
uM+1τ(u)

∣∣∣
u=0

=
∂

∂u2
uM+1(A(u) +D(u))

∣∣∣
u=0

. (26)

By construction this Hamiltonian commutes with the transfer matrix:

[H, τ(u)] = 0.

Since the Hamiltonian (10) is non-Hermitian we have to distinguish between its
right and left eigen-vectors. The N -particle right state-vectors are taken in the form

|ΨN(u)〉 =
( N∏
j=1

B̃(uj)
)
|0〉, (27)

where B̃(u) is de�ned in (22), and u implies a collection of arbitrary complex param-
eters uj ∈ C: u = (u0, u1, . . . , uN). The left state-vectors are equal to

〈ΨN(u)| = 〈0|
( N∏
j=1

C̃(uj)
)
, (28)

where C̃(u) is given by (23). The vacuum state | 0〉(6) is an eigen-vector of A(u) and
D(u),

A(u)|0〉 = α(u)|0〉, D(u)|0〉 = δ(u)|0〉 (29)

with the eigen-values

α(u) =
M∏
j=0

(u−1 + gju), δ(u) = uM+1. (30)

The state-vectors (27) and (28) are the eigen-vectors both of the Hamiltonian (10)
and of the transfer matrix τ(u) (20), if and only if the variables uj satisfy the Bethe
equations:

u−2Nn

M∏
j=0

(
gj + u−2n

)
= (−1)N−1

N∏
j=1

u−2j . (31)

The eigen-values ΘN(v) of τ(v) are equal to

vMΘN(v) =
M∏
j=0

(1 + gjv
2)

N∏
m=1

u2m
u2m − v2

+ v2(M+1)

N∏
m=1

v2

v2 − u2m
. (32)

Equation (26) enables to obtain the spectrum of the Hamiltonian (10). The N -particle
eigen-energies are equal to

EN(u) =
∂

∂v2
vMΘN(v)

∣∣
v=0

=
M∑
m=0

gm +
N∑
m=1

u−2m . (33)

9



4.2 Correlation functions and their calculation

For the models associated with the R-matrix (16) the scalar product of the state-
vectors (27) and (28) is given by the formula [29]:

〈ΨN(v)|ΨN(u)〉 = V−1N (v2)V−1N (u−2)
N∏
j=1

(vj
uj

)M+N−1
detQ , (34)

where VN(x) is the Vandermonde determinant,

VN(x) ≡ VN(x1, x2, . . . , xN) =
∏

1≤i<k≤N

(xk − xi) , (35)

and the matrix Q is characterized by the entries Qjk, 1 ≤ j, k ≤ N :

Qjk =

α(vj)δ(uk)
(uk
vj

)N−1
− α(uk)δ(vj)

(uk
vj

)−N+1

uk
vj
− vj
uk

, (36)

with α(u) and δ(u) given by (30).

There is Ω = (N+M)!
N !M !

sets of solutions of the Bethe equations (31), and the state-
vectors belonging to the di�erent sets of the solutions of the Bethe equations are
orthogonal. The eigen-vectors (27) and (28) provide the resolution of the identity
operator

I =
∑
{u}

|ΨN(u)〉〈ΨN(u)|
N 2(u)

, (37)

where the summation
∑
{u} is over all independent solutions of the Bethe equations

(31).
To calculate the norms of the eigen-vectors, we put vk = uk equal to the solutions

of Bethe equations in (34). Non-diagonal entries of the matrix Q̃ are equal to

Q̃jk = (−1)Nδ(uj)δ(uk)u
N
k u

N
j U

−2(1− δjk) , (38)

where U2 ≡
∏N

n=1 u
2
n. The diagonal entries of this matrix should be understood in

the sense of L'H�ospital rule:

Q̃jj =
uj
2

[
α(uj)δ

′(uj)− α′(uj)δ(uj) + 2(N − 1)u−1j α(uj)δ(uj)
]
. (39)

The norm of the Bethe state-vectors is equal to

N 2(u) = 〈ΨN(u)|ΨN(u)〉 =
det Q̃

VN(u2)VN(u−2)
. (40)
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We put, as a special case, gs = γ, ∀i, and eventually obtain from (34), (36), (38),
and (39):

〈ΨN(v)|ΨN(u)〉 = V−1N (v2)V−1N (u−2)
N∏
j=1

u
2(1−M−N)
j (41)

× det

(
(1 + γv2j )

M+1u
2(M+N)
k − (1 + γu2k)

M+1v
2(M+N)
j

u2k − v2j

)
1≤k,j≤N

. (42)

The determinant (42) is a polynomial in powers of γ. It is appropriate to use this
to obtain several particular cases for the correlator 〈ΨN(v)|ΨN(u)〉 (34). First, we
obtain for M = 1 and arbitrary N :

〈ΨN(v)|ΨN(u)〉 =
N∑
k=0

(k + 1)γk

(
N−k∑
r=0

er+k(v
2) er(u

−2)

)
, (43)

where er(·) are the elementary symmetric functions [23]. Also we obtain for N = 1
and arbitrary M :

〈Ψ1(v)|Ψ1(u)〉 =
M∑
k=0

(
M + 1
k

)
γk
((
e1(v

2)
)k
e0(u

−2)

+
M−k∑
r=1

(
e1(v

2)
)r+k (

e1(u
−2)
)r)

, (44)

where er(·) are the elementary symmetric functions. Appendix provides the formula
for the correlator 〈Ψ2(v)|Ψ2(u)〉 (34) at M = N = 2.

Let us consider the walker on Simp(N)(ZM+1) under the condition that the starting
point is located at the node (N, 0, . . . , 0), and the walk terminates at (0, 0, . . . , N).
The generating function (12) of these walks is speci�ed as follows:

F (N)(t) ≡ 〈0, 0, . . . , N | etH | N, 0, . . . , 0〉 = 〈0 | (φM)NetH(φ†M)N | 0〉 , (45)

where (6) and (8) have been used. Inserting the resolution of the identity operator
(37) into (45) we obtain:

F (N)(t) =
∑
{u}

etEN (u)

N 2(u)
〈0 | (φM)N | ΨN(u)〉〈ΨN(u) | (φ†M)N | 0〉 , (46)

where the summation is over all independent solutions of Eqs. (31). Applying the
decomposition (23) for B(u) and C(u), we obtain:

〈0 | (φM)N | ΨN(u)〉 = lim
v→0
〈ΨN(v)|ΨN(u)〉 = 1 , (47)

〈ΨN(u) | (φ†M)N | 0〉 = lim
v→0
〈ΨN(u)|ΨN(v)〉 = 1 . (48)
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The unities appear as the limiting values in (47) and (48). The point is as follows.
The determinant (42) is a polynomial in γ. Its coe�cients (expressible in terms of
the symmetric functions) at non-trivial powers of γ are vanishing in the limit v→ 0.
The free term of the polynomial in powers of γ is given by the series in products
of the symmetric functions [20]. The free term is just responsible for the unities in
right-hand sides of (47) and (48). Eventually we obtain:

F (N)(t) =
∑
{u}

e2t
∑N

k=1(γ+u
−2
k )

N 2(u)
. (49)

For instance, at N = 2 and M = 1 we obtain:

F (2)(t) = e4tγ
∑
{u21,u22}

e2t(u
−2
1 +u−2

2 )

N 2(u21, u
2
2)
, (50)

N 2(u21, u
2
2) = 4 +

u21
u22

+
u22
u21

+ 4γ(u22 + u21) + 3γ2u22u
2
1 . (51)

5 Totaly Asymmetric Zero Range Model

When all gi are equal to γ = 1, the Hamiltonian (10) is the Hamiltonian of Totally
Asymmetric Zero Range Model [24,28]:

Hzr =
M∑
m=0

(
φmφ

†
m+1 + πm

)
. (52)

The state-vector (27) enables the representation in the form

|ΨN(u)〉 =
∑

λ⊆{MN}

χRλ(u)
( M∏
j=0

(φ†j)
nj

)
|0〉 , (53)

where the function χRλ is equal, up to a multiplicative pre-factor, to

χRλ(x) = χRλ(x1, x2, . . . , xN) = V−1N (x) det

{(
xi

xi + x−1i

)λj
x
2(N−j)
i

}
. (54)

Here λ denotes the partition (λ1, . . . , λN) of non-increasing non-negative integers,

M ≥ λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0,

and VN(x) is the Vandermonde determinant (35). There is a one-to-one correspon-
dence between a sequence of the occupation numbers (nM , . . . , n1, n0),

∑
j∈M nj = N ,

and the partition
λ = (MnM , (M − 1)nM−1 , . . . , 1n1 , 0n0) ,

where each number S appears nS times (see Fig. 4). The sum in Eq. (53) is taken
over all partitions λ into at most N parts with N ≤M .

12



0 6

Figure 4: A con�guration of particles (N = 4) on a lattice (M = 6), the corresponding
partition λ = (61, 50, 40, 32, 20, 11, 00) ≡ (6, 3, 3, 1) and its Young diagram.

Acting by the Hamiltonian (52) on the state-vector (53), we �nd that the wave
function (54) satis�es the equation:

N∑
k=1

χRλ1,...,λk+1,...,λN
(u) = Ezr

N (u)χRλ1,...,λN (u) , (55)

together with the exclusion condition

χRλ1,...,λl−1=λl−1,λl,...,λN (u) = χRλ1,...,λl−1=λl,λl,...,λN
(u) , 1 ≤ l ≤ N. (56)

The energy Ezr
N is given by (33) with all gi = 1. The state-vector (53) is the eigen-

vector of the Hamiltonian (52) with the periodic boundary conditions if the parameters
uj satisfy the appropriate Bethe equations.

The relations (53), (55) and (56) can be viwed as an implementation of the coordi-
nate Bethe ansatz [18] which is an alternative to the approach of the algebraic Bethe
ansatz considered in Section 4 to solve the present bosonic model (10). Although
the model is solved by the algebraic Bethe ansatz, representations of the type of (53)
are especially useful to discuss the combinatorial implementations of the quantum
integrable models, [19�21].

Expanding the left state-vector (28), we obtain:

〈ΨN(u) |=
∑

λ⊆{MN}

χLλ(u) 〈0 |
( M∏
i=0

φni
i

)
, (57)

where the wave function is given by

χLλ(x) = V−1N (x) det
{(

1 + x−2i
)λj x2(N−j)i

}
. (58)

It satis�es the equations:

N∑
k=1

χLλ1,...,λk−1,...,λN (u) = Ezr
N (u)χLλ1,...,λN (u) , (59)

χLλ1,...,λl,λl+1=λl+1,...,λN
(u) = χLλ1,...,λl,λl+1=λl,...,λN

(u) , 1 ≤ l ≤ N. (60)
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From Eqs. (53), (57) one obtains:

〈l0, l1, . . . , lM | ΨN(u)〉 = χRλR
(u) (61)

〈ΨN(u) | j0, j1, . . . , jM〉 = χLλL
(u) , (62)

where λR =
(
M lM , (M − 1)lM−1 , . . . , 1l1 , 0l0

)
, and λL = (M jM , (M − 1)jM−1 , . . . , 1j1 , 0j0).

The exponential generating function (12) in the considered special case is equal to

F (N)
zr (l, j|t) =

∑
{u}

etE
zr
N (u)

N 2
zr(u)

χRλR
(u)χLλL

(u) . (63)

Here parameters uj satisfy Bethe equations (31) with gi = 1, andN 2
zr(u) is the squared

norm (40) in the same limit.
Let us consider the case M = 1. The trajectory of a particle on a bounded strip

form a modi�ed Dyck path. A Dyck path in a strip is a path that can go up and down
but can not cross the border. The modi�ed Dyck paths are the paths that can have
a horizontal steps along the borders.

(3,0)

(0,3)

0 K

Figure 5: Modi�ed Dyck path of the length K = 12.

The Schmidt decomposition of a quantum states associated with the lattice paths
plays an important role in the quantum information theory [6, 7]. In the considered
case each step of a particle is associated with a spin state in C3: the step up of a
particle is identi�ed with | +〉, the step down with | −〉, and the horizontal steps
along the borders with | 0〉. The modi�ed Dyck path of K steps on a strip of a length

N is then a spin state in (C3)
⊗K

. The spin state that corresponds to a modi�ed Dyck
path in Fig. 5 is | + − + + 00 − − − + + +〉. The Schmidt decomposition of the
normalized uniform superposition of all modi�ed Dyck paths starting from the node
(p,N − p) and terminating at (q,N − q) after K steps on a strip of the length N can
be written as

| DNK,p,q〉 =
N∑
m=0

√
pNm | DNk,p,m〉⊗ | DNK−k,m,q〉 . (64)

The parameters pNm in (64) are expressed through the averages G
(N)
k (13):

pNm =
G

(N)
k (m,N −m; p,N − p)G(N)

K−k(q,N − q;m,N −m)

G
(N)
K (q,N − q; p,N − p)

, (65)
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where G
(N)
k are of the form:

G
(N)
k (x,N − x; y,N − y) = 〈x,N − x | Hk

zr | y,N − y〉 (66)

=
∑
{u}

(Ezr
N (u))k

N 2
zr(u)

χRλR
(u)χLλL

(u) . (67)

The partitions λR = (1y, 0N−y) and λL = (1x, 0N−x) are used in (67), and the param-
eters uj satisfy the Bethe equations

u−2Nn

(
1 + u−2n

)2
= (−1)N−1

N∏
j=1

u−2j . (68)

The condition
∑N

m=0 p
N
m = 1 is following from

〈x,N − x | HK
zr | y,N − y〉

=
N∑
m=0

〈x,N − x | Hk
zr | m,M −m〉〈m,M −m | HK−k

zr | y,N − y〉 .

When K > N , the Schmidt rank is r = 1 + N . The entanglement entropy of the
modi�ed Dyck paths is

S = −
N∑
m=0

pNm log2 p
N
m . (69)

6 The Phase Model

In this section we shall consider the random walks on Simp(N)(ZM+1) which are de-
�ned by a step-set ΩM . The Hermitian Hamiltonian Hph of the phase model may be
considered as the generator of the walks :

Hph =
M∑
m=0

(
φmφ

†
m+1 + φ†mφm+1

)
. (70)

The phase model is de�ned by the L-operator (14) with gi = 0, and the Bethe equa-
tions are:

u−2(N+M+1)
n = (−1)N−1

N∏
j=1

u−2j . (71)

The state-vectors of the phase model are expressed in the form [29,30]:

|ΨN(u)〉 =
∑

λ⊆{MN}

Sλ(u2)

(
M∏
l=0

(φ†l )
nl

)
|0〉 . (72)
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The coe�cients of the expansion (72) are the Schur functions Sλ(u2) given by the
Jacobi-Trudi identity:

Sλ(u2) ≡
det(u

2(λk+N−k)
j )1≤j,k≤N

VN(u2)
, (73)

where the non-strict partition λ is connected with the coordinates of the Bose particles
as it was explained above. Besides, VN(u2) is the Vandermonde determinant (35)
(subscript N is equal to the �length� of sequence u). On the solutions of the Bethe
equations the state-vectors are the eigen-vectors of the Hamiltonian (70) with the
eigen-energies

Eph
N (u) =

N∑
k=1

(
u2k + u−2k

)
. (74)

The generating function of random walks on a Simp(N)(ZM+1) is similar to that
of the Totally Asymmetric Zero Range Model, (63):

F
(N)
ph (l, j|t) =

∑
{u}

etE
ph
N (u)

N 2
ph(u)

SλR
(u2)SλL

(u2) (75)

with the squared norm N 2
ph(u):

N 2
ph(u) =

∑
λ⊆{MN}

Sλ(u2)Sλ(u2) .

In the caseM = 1 the trajectory of a particle on a strip form an ordinary modi�ed
Dyck path. The detailed analyses of Bethe equations [31, 32] allows to rewrite the
answer for the generating function of Dyck paths on a strip in a conventional form:

F (N)
(
(l, 0), (0, j)|t

)
=

2

N + 1

N∑
k=1

e2t cos(πk/(N+1)) sin

[
πk(j + 1)

N + 1

]
sin

[
πk(l + 1)

N + 1

]
.

(76)
With the help of this formula it is possible �nd the coe�cients of the Schmidt decom-
position and to calculate the entanglement entropy of the Dyck paths on a strip.
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Appendix

The correlator 〈Ψ2(v)|Ψ2(u)〉 at M = N = 2 is of the form:

〈Ψ2(v)|Ψ2(u)〉 = e0(v
2)e0(u

−2) + e1(v
2)e1(u

−2) + e2(v
2)e2(u

−2)

+
(
e21(v

2)− e2(v2)
)(
e21(u

−2)− e2(u−2)
)

+ e22(v
2)e22(u

−2)

+3γ
(
e1(v

2)e0(u
−2) + e21(v

2)e1(u
−2) + e2(v

2)e1(v
2)e21(u

−2)

+e22(v
2)e2(u

−2)e1(u
−2)
)

+3γ2
((
e21(v

2) + e2(v
2)
)
e0(u

−2) + 3e2(v
2)e1(v

2)e1(u
−2)

+e22(v
2)
(
e21(u

−2) + e2(u
−2)
))

+8γ3
(
e2(v

2)e1(v
2)e0(u

−2) + e22(v
2)e1(u

−2)
)

+6γ4e22(v
2)e0(u

−2) .
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