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Abstract

Let n = (2k− 1)t+ 2`, where k, t, ` are positive integers, such that k ≥ 3
and 2 ≤ ` < 8k+1

9
. It is proved that any minimal k-connected graph on n

vertices has at least ⌈
(k − 1)v(G) + 2k

2k − 1

⌉
+ 1

vertices of degree k. An infinite series of graphs, for which this bound is
attained are constructed.
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1 Introduction

We consider undirected graphs without loops and multiple edges and use
standard notation.

For a graph G we denote the set of its vertices by V (G) and the set of its
edges by E(G). We use notation v(G) and e(G) for the number of vertices
and edges of G, respectively.

For disjoint sets A,B ⊂ V (G) we denote by EG(A,B) the set of all edges
incident to vertices of both sets A and B. Let eG(A,B) = |EG(A,B)|.

The degree of a vertex x in the graph G is denoted by dG(x). The maximal
vertex degree of the graph G is denoted by ∆(G).

The neighborhood of a vertex x in the graph G (i.e., the set of all vertices
adjacent to x) is denoted by NG(x).

Definition 1. 1) A graph G is called k-connected if v(G) ≥ k + 1 and G
remains connected after deleting any its k − 1 vertices.

2) A k-connected graph is called minimal, if it becomes not k-connected
after deleting any edge.

Clearly, all vertices of a k-connected graph have degree at least k. We
denote by vk(G) the number of vertices of degree k of a graph G.

In 1967 minimal biconnected graphs were considered in the papers [1]
and [2]. It can be deduced from the results of these papers that

v2(G) ≥ v(G) + 4

3

for a minimal biconnected graph G.
In 1979 W. Mader [6, 5] proved a very strong result that generalizes for

arbitrary k the one written above:

vk(G) ≥ (k − 1)v(G) + 2k

2k − 1
(1)

for a minimal k-connected graph G. This bound is tight: there is infinite
series of graphs for which the inequality (1) turns to equality.

Definition 2. Let k ≥ 2 and T be a tree with ∆(T ) ≤ k + 1. The graph
Gk,T is constructed from k disjoint copies T1, . . . , Tk of the tree T . For any
vertex a ∈ V (T ) we denote by ai the corresponding vertex of the copy Ti. If
dG(a) = j then we add k + 1− j new vertices of degree k that are adjacent
to {a1, . . . , ak}.
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Ðèñ. 1: A tree T and corresponding minimal biconnected graph G2,T .

Clearly, if v(T ) = n then v(Gk,T ) = (2k − 1)n + 2. It is not difficult
to verify that Gk,T is a minimal k-connected graph and equality in (1) is
attained for Gk,T . A tree T with ∆(T ) = 3 and corresponding graph G2,T are
shown on the picture 1.

Definition 3. 1) Denote by GMk(n) the set of all minimal k-connected
graphs G on n vertices, such that

vk(G) =

⌈
(k − 1)v(G) + 2k

2k − 1

⌉
. (2)

2) The defect of a minimal k-connected graph G is

f(G) = (2k − 1)vk(G)− (k − 1)v(G)− 2k.

Remark 1. Let G be a minimal k-connected graph.
1) It follows from inequality (1) that f(G) ≥ 0.
2) It is easy to prove, that G satisfies (2) if and only if f(G) < 2k − 1.
3) If G satisfies (2) then its defect f(G) is equal to the residue of

−(k − 1)v(G)− 2k

modulo 2k− 1. For G ∈ GMk((2k− 1)n+ 2`), where 1 ≤ ` ≤ k− 1, we have
f(G) = `− 1.

Equality in (1) can be attained only for v(G) ≡ 2 (mod 2k − 1). It was
shown in [13] that GMk((2k−1)t+2) consists of graphs of type Gk,T , where T
is a tree with ∆(T ) ≤ k + 1 and v(T ) = t.

In 1982 Oxley [7] presented an algorithm of constructing biconnected
graphs of the sets GM2(3t + 1) and GM2(3t). Both sets GM2(3t+ 1)
and GM2(3t) are nonempty for every positive integer t. In [12] the author
has described extremal biconnected graphs in terms of the graphs G2,T .

The situation is quite different for k ≥ 3. Let

n = (2k − 1)t+ p ≥ 2k + 1, where 0 ≤ p ≤ 2k − 2 and t ≥ 0.
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In 1979 W. Mader [5] has constructed graphs satisfying equality (2) for
p /∈ {4, 6, . . . , 2k − 2}. Therefore, GM(n) is nonempty in this case. However,
for p ∈ {4, 6, . . . , 2k − 2} such graphs were not constructed. One can con-
struct in this case a minimal k-connected graph G such that vk(G) is greater
by 1 than the bound from (2). Examples of minimal k-connected graphs with
small number of vertices of degree k are discussed in the end of this paper.

W. Mader [5] has conjectured that

vk(G) ≥
⌈

(k − 1)v(G) + 2k

2k − 1

⌉
+ 1 (3)

for v(G) = (2k − 1)t+ 2`, where 2 ≤ ` ≤ k − 1 and t > 0

(i.e., GMk((2k− 1)t+ 2`) = ∅). Mader has proved this conjecture for ` = 2.
We prove Mader’s conjecture in some cases. The following theorem is the
main result of this paper.

Theorem 1. Let k ≥ 3 and G be a minimal k-connected graph with
v(G) = (2k − 1)t+ 2`, where t ≥ 1 and 2 ≤ ` < 8k+1

9
. Then

vk(G) ≥
⌈

(k − 1)v(G) + 2k

2k − 1

⌉
+ 1.

Remark 2. If k ≤ 9, then k−1 < 8k+1
9

. Hence, Mader’s conjecture for k ≤ 9
is completely proved.

The following results are direct consequences of Theorem 1 and Remark 1.

Corollary 1. Let integers k, `, t satisfy the conditions of Theorem 1. Then
the following statements hold.

1) GMk((2k − 1)t+ 2`) = ∅.
2) The defect of a minimal k-connected graph G with v(G) = (2k−1)t+2`

satisfies the inequality f(G) ≥ `+ 2k − 2.

At the end of the paper we construct minimal k-connected graphs with
small number of vertices of degree k and prove the following simple result,
which shows, that the bound from Theorem 1 is tight.

Theorem 2. Let n = (2k − 1)t + p ≥ 2k + 1. Then there exists a minimal
k-connected graph G with v(G) = n, satisfying the following conditions.

1) If p is odd and 1 ≤ p ≤ 2k − 1 or p = 2, then

vk(G) =

⌈
(k − 1)n+ 2k

2k − 1

⌉
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(i.e., G ∈ GMk(n)).
2) If p is even and 4 ≤ p ≤ 2k − 2, then

vk(G) =

⌈
(k − 1)n+ 2k

2k − 1

⌉
+ 1.

In addition, we formulate a conjecture that complements Mader’s one.
Let G be a minimal k-connected graph. Item 3 of Remark 1 implies that
f(G) = `− 1 (where 1 ≤ ` ≤ k− 1) if and only if G ∈ GMk((2k − 1)t+ 2`).
Therefore, Mader’s conjecture means that if f(G) > 0 then f(G) ≥ k−1. By
Remark 1 we have that f(G) = k− 1 if and only if G ∈ GMk((2k− 1)t+ 1).

Conjecture. For t ≥ 2 the set GMk((2k − 1)t + 1) consists of graphs of
type Gk,T · xy, where T is a tree with ∆(T ) ≤ k + 1, v(T ) = t, and x, y are
two adjacent vertices of the graph Gk,T with dGk,T

(x) = dGk,T
(y) = k + 1.

This statement is proved in [12] for k = 2.

1.1 The structure of the paper

In Section 2 we define a cut and a decomposition of a graph by a cut or by
a set of several cuts. We also list some properties of cuts proved in [14]. In
Section 3 we discuss properties of cuts of a minimal k-connected graph. In
this section important Lemma 5 about wry cuts is proved. In Section 4 we
prove properties of the defect of a minimal k-connected graph. In Section 5
we prove the main theorem of this paper — Theorem 1. Finally, in Section 6
we construct extremal examples showing that the bound proved in Theorem 1
is tight.

2 Cuts

Note that in our paper a connected component of a graph is a vertex set of
its maximal up to inclusion connected subgraph.

Definition 4. Let R ⊂ V (G) ∪ E(G).
1) We denote by G−R the graph obtained from G upon deleting all

vertices and edges of the set R and all edges incident to vertices of R.
2) The set R is called a cutset, if the graph G−R is disconnected.
3) Let X, Y ⊂ V (G), X 6⊂ R, Y 6⊂ R. We say that R separates the set X

from Y , if any two vertices vx ∈ X \ R and vy ∈ Y \ R are disconnected in
the graph G−R.

4) We say that R splits a set X ⊂ V (G), if the set X \ R is nonempty
and disconnected in the graph G−R.

6



Definition 5. Let G be a k-connected graph.
1) A cut is a cutset consisting of k elements and containing at least one

edge. The set of all cuts of the graph G is denoted by T(G).
2) For a cut T ∈ T we denote by V (T ) the set of all vertices that belong

to T and by W (T ) the set of all vertices that belong to T or are incident to
edges of the cut T .

Remark 3. 1) No vertex of the set V (T ) is adjacent to an edge of the cut T .
2) For any cut T ∈ T(G) the graph G−T has exactly two connected com-

ponents, let it be U1 and U2. For any edge e ∈ T each of the components U1

and U2 contains an end of e.

Definition 6. 1) Let T ∈ T(G) and let U1 and U2 be connected components
of the graph G− T . The sets Ai = Ui ∪ V (T ) are parts of decomposition of
the graph G by the cut T . We use the notation Part(T ) = {A1, A2}.

2) The sets A1 ∩W (T ) and A2 ∩W (T ) are boundaries of the cut T .

Remark 4. Let T ∈ T(G), Part(T ) = {A1, A2}. The following statements
hold.

1) A1 ∪ A2 = V (G), A1 ∩ A2 = V (T ).
2) Both boundaries R1 and R2 of the cut T contain the set V (T ). For

every edge e ∈ T one of its ends belongs to R1 and the other belongs to R2.
3) If the set A′ = A1 \ W (T ) is nonempty, then R1 = A1 ∩ W (T ) (a

boundary of the cut T ) separates A′ from V (G)\A1 and every vertex x ∈ R1

is adjacent to at least one vertex of A′.

Definition 7. Let S ⊂ T(G).
1) Parts of decomposition of the graph G by the set of cuts S are maximal

up to inclusion sets of type

A =
⋂
S∈S

AS, where AS ∈ Part(S). (4)

We denote the set of all such parts by Part(S).
2) The boundary of a part A ∈ Part(S) is the set Bound(A) consisting of

all vertices of the part A which belong to a cut of S (i.e., to a set V (S) for
some cut S ∈ S).

3) The interior of a part A ∈ Part(S) is the set Int(A) = A \ Bound(A).

Definition 8. Cuts S, T ∈ T(G) are independent, if the notation Part(S) =
{A1, A2}, Part(T ) = {B1, B2} can be chosen such that A1 ⊃ B2 and B1 ⊃ A2.
Otherwise, the cuts S and T are dependent.
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Definition 9. Let G be a k-connected graph and S ⊂ T(G) be a set con-
sisting of pairwise independent cuts.

1) The bipartite graph BT(G;S) is defined as follows. One partition of
this graph is the set S and the other partition is Part(S). A cut S ∈ S and
a part A ∈ Part(S) are adjacent if and only if A contains a boundary of the
cut S.

2) A part A ∈ Part(S) is called pendant, if it corresponds to a pendant
vertex of the graph BT(G;S).

3) The graph T(G;S) is defined as follows. Its vertex set is Part(S).
Parts A,B ∈ Part(S) are adjacent if and only if these parts contain bound-
aries of the same cut of the set S.

The following results are proved in [14, Theorem 1 and Corollary 1].

Theorem 3. Let G be a k-connected graph and S ⊂ T(G) be a set consisting
of pairwise independent cuts, such that no cuts of S contain a common edge.
Then the following statements hold.

1) Both graphs BT(G;S) and T(G;S) are trees.
2) Any cut S ∈ S is adjacent in BT(G;S) to exactly two parts of Part(S),

these two parts are contained in different parts of Part(S) and contain dif-
ferent boundaries of the cut S.

3) If a pendant part A is adjacent in Part(S) to the cut T , then
A ∈ Part(T ).

4) Let

Part′(S) =
⋃
S∈S

Part(S).

Then pendant parts of Part(S) are exactly minimal up to inclusion parts
of Part′(S).

5) Assign to each edge AB of the tree T(G;S) the cut of S, which bound-
aries are contained in the parts A and B. Then this is a one-to-one corre-
spondence between edges of the tree T(G;S) and cuts of the set S.

6) |Part(S)| = |S|+ 1.
7) Let R be a boundary of a cut of the set S. Then there exists exactly

one part of Part(S), which contains R.

3 Minimal k-connected graphs

3.1 Notation

In what follows we study a minimal k-connected graph G and use for this
graph the following notation:

8



Vk is the set of all vertices of degree k of the graph G,

Vk+1 = V (G) \ Vk, Gk = G(Vk), Gk+1 = G(Vk+1),

Ek = E(Gk), ek = |Ek|, Ek+1 = E(Gk+1).

In the case where the name of a graph discussed is not clear we will write
it in brackets (Vk(G) and similarly for others).

Definition 10. Denote by c the number of connected components of the
graph Gk+1.

For every edge e ∈ Ek+1 there exists a cut which contains e and k − 1
vertices. Let R be the set of all such cuts. We pass to studying properties of
cuts of the set R.

3.2 Cuts in a minimal k-connected graphs

The following Lemma and Corollary are proved by Mader [4]. Proofs of these
statements are also written in [13, Lemma 4 and Corollary 2].

Lemma 1. Let G be a minimal k-connected graph, xy, xz ∈ Ek+1. Let
Txy 3 xy and Txz 3 xz be cuts of the set R,

x ∈ Hx ∈ Part(Txy) and z ∈ Fz ∈ Part(Txz).

Then |Hx| > |Fz|.

Corollary 2. If G is a minimal k-connected graph then Gk+1 is a forest.

Definition 11. A cut S ∈ R is called wry, if there exists a part A ∈ Part(S),
such that |Int(A)| < k

2
. Otherwise, this cut is called normal.

The first item of the following lemma is proved in Lemma 8 and the
second — in Lemma 10 of the paper [13].

Lemma 2. Let G be a minimal k-connected graph, and the set E ⊂ Ek+1 be
such that every cut of R, which contains an edge of E, is normal. Then the
following statements hold.

1) There exists a set S = {Se}e∈E ⊂ R, where e ∈ Se, that consists of
pairwise independent cuts.

2) Let R be a boundary of a cut S ∈ S. Then any simple path with ends
in R contains an edge which does not belong to the set E.

9



Lemma 3. Let G be a minimal k-connected graph, E ⊂ Ek+1, and let the
set S = {Se}e∈E ⊂ R, where e ∈ Se, consist of pairwise independent cuts.
Let A ∈ Part(S) be a pendant part. Then the following statements hold.

1) There exists an edge ab ∈ E, such that A ∈ Part(Sab).
2) Let xy ∈ E and x ∈ Int(A). Then xy = ab.

Proof. 1) A direct consequence of item 3 of Theorem 3.
2) Let xy 6= ab. Then y ∈ A and the cut Sxy ∈ S splits the set {x, y}.

Since {x, y} ⊂ A ∈ Part(S), this is impossible.

Before the main lemma of this section we formulate a simple generaliza-
tion of Menger’s theorem proved in [8].

Lemma 4. Let X, Y ⊂ V (G), |X| ≥ k, |Y | ≥ k and let any set R ⊂ V (G),
separating X from Y , contain at least k vertices. Then there exist k noninter-
secting XY -paths. (Any two of these paths have no common ends. A vertex
of the set X ∩ Y is an XY -path.)

Definition 12. 1) An edge y1y2 ∈ E(Gk+1) is wry, if there is a wry cut
Sy1y2 ∈ R, which contains y1y2. If

y1 ∈ Y1 ∈ Part(Sy1y2) and |Int(Y1)| <
k

2
,

then we call the arc (i.e. directed edge) y2y1 a wry arc and the part Y1 — a
wry part for the wry arc y2y1.

2) If y2y1 is a wry arc and y1 is a leaf of Gk+1 then y1 is a wry leaf of Gk+1.

The following lemma strengthens the result proved in [13].

Lemma 5. Let G be a minimal k-connected graph. Assume, that there is at
least one wry cut in the set R. Then ek + c ≥ 3k−1

2
.

Proof. The proof of Lemma is long and complicated. During the proof we
formulate and prove several claims, which will be used only in the proof of
Lemma. All these claims are formulated and proved under the condition of
Lemma.

Claim 1. Let a1 be a wry leaf, a2a1 be a wry arc and A1 be a wry part
for a2a1. Then one of the two following statements holds.

(1) ek + c ≥ 3k−1
2

, i.e., Lemma is proved.
(2) Int(A1) = {a1, x} and k − 1 edges of the set Ek connect x with

vertices of S (see figure 2c). In particular, ek ≥ k − 1.
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Proof. Let

a1a2 ∈ Sa1a2 ∈ R, a1 ∈ A1 ∈ Part(Sa1a2), S = V (Sa1a2),

|Int(A1)| = p, M = Int(A1) ∩ Vk, m = |M |

(see figure 2a). Then

|S| = k − 1, p ≤ k − 1

2
, m ≤ p− 1 ≤ k − 3

2
. (5)

Since dG(a1) ≥ k+1 and a1 ∈ Int(A1), we have p = |Int(A1)| ≥ 2. Therefore,
2 ≤ k−1

2
, whence

k ≥ 5. (6)

Clearly, the vertex a1 is not adjacent to vertices of the set Vk+1 ∩ A1.
Hence, a1 is adjacent to at most m vertices of the set Int(A1). Since
dG(a1) ≥ k + 1, the vertex a1 is not adjacent to at most m − 1 vertices
of the set S. All vertices of the set S, that are adjacent to a1, belong to Vk.
Thus,

|S ∩ Vk+1| ≤ m− 1. (7)

It follows from |Int(A1) ∩ Vk+1| = p−m and inequality (7), that

|A1 ∩ Vk+1| ≤ p− 1. (8)

Set the notation

Y = (Int(A1) \ {a1}) ∩ Vk+1, Y ′ = (A1 \ {a1}) ∩ Vk+1, T ′ = G(Y ′).

By Corollary 1 the graph T ′ is a forest. Consider several cases.

1. m ≥ 3.
A vertex of the set M is adjacent only to vertices of A1. Then by inequality (8)
any vertex of M is adjacent to at most p − 1 vertices of the set Vk+1, and,
therefore, it is adjacent to at least k − p + 1 vertices of Vk. Summing edges
from vertices of M to vertices of Vk, we obtain at least m(k−p+1) ≥ m · k+3

2

edges (by inequality (5)). However, edges between vertices of the set M were

counted twice. Since the number of such edges does not exceed m(m−1)
2

, we
can write the following:

ek ≥ m · k + 3

2
− m(m− 1)

2
≥ m

2
· (k + 4−m) ≥ 3k + 3

2
. (9)

(The last inequality in (9) follows from m2 − (k + 4)m+ (3k + 3) ≤ 0. This
inequality is true, since 3 ≤ m < k + 1.) Hence, in this case ek + c ≥ 3k+5

2

and Lemma is proved.

11



a b

S

b

b

a1

a2

r
r

r

A1

r

r

r

r

b

b

S
b

ba1
a2

r

A1
r

r

r

r

r

r

x
b

a

bb

b

b

z
b1

b2

S
b

ba1
a2

r

A1

r

r

r

r

r

x

c

T’

M
r

b b
b b

Ðèñ. 2: The wry cut Sa1a2 and the part A1.

2. m = 1.
Let M = {x}. In this case, a1 is adjacent to exactly one vertex of Int(A1) (the
vertex x), hence, a1 is adjacent to all vertices of S. Thus, S ⊂ Vk and Y = Y ′.

Assume that Y 6= ∅. Let a ∈ Y and dT ′(a) ≤ 1. Since dG(a) ≥ k + 1, the
vertex a must be adjacent to x and all k − 1 vertices of S and dT ′(a) = 1.
Hence, the forest T ′ has no isolated vertices.

Let a be a leaf of T ′, adjacent in T ′ to a vertex b of degree dT ′(b) = ` (see
figure 2b). Then the forest T ′ contains ` − 1 paths P1, . . . , P`−1 from b to
distinct leaves b1,. . . , b`−1 which are different from a. Any two of these paths
have no common vertex different from b.

Consider a cut Sab ∈ R, such that ab ∈ Sab. Note, that b is adjacent to at
least k− `+ 1 vertices of the set S ∪ {x}, and all these vertices must belong
to Sab. The cut Sab contains k − 1 vertices, hence, it doesn’t contain a certain
vertex z ∈ S ∪ {x}.

As it was proved above, a and each of vertices b1,. . . , b`−1 is adjacent
to z. Hence, the cut Sab which separates a from b must contain a vertex on
each of paths P1, . . . , P`−1. However, then Sab contains at least k vertices.
We obtain a contradiction.

Thus, Int(A1) = {a1, x} (see figure 2c). In this case k− 1 edges connect x
with vertices of S and all these edges belong to Ek. Hence, ek ≥ k − 1 and
we have case (2) of Claim.

3. m = 2.
Then |Y | = p− 3. Inequality (7) implies |S ∩ Vk+1| ≤ 1. Set the notation

U = A1 ∩ Vk.

Consider three cases.

3.1. Y = ∅ or Y ′ is an independent set of the graph G.
In this case all p − 3 vertices of the set Y are isolated in the graph Gk+1,
therefore, c ≥ p−2. Vertices of the set M are adjacent only to vertices of the

12



set A1, which contains at most p − 1 vertices of Vk+1. Summing edges from
two vertices of the set M to vertices of Vk, we obtain at least 2(k − p+ 1).
If two vertices of M are adjacent, the edge between them is counted twice.
Hence, ek ≥ 2k − 2p+ 1 and

ek + c ≥ (2k − 2p+ 1) + (p− 2) ≥ 2k − p− 1 ≥ 3k − 1

2
(10)

(the last inequality follows from (5)). We have case (1) of Claim.

3.2. Y is an independent set and Y ′ is not an independent set of the graph
G.
By inequality (7) the set S contains exactly one vertex of Vk+1, denote it
by w. Then

U = M ∪ (S \ {w}), |U | = k.

The vertex w is incident to all edges of the forest T ′. Thus every vertex of
the set Y must be adjacent to w and all vertices of the set U . Therefore, T ′

is a tree and all vertices of Y are its leaves, adjacent to w (see figure 3a).

a b

b

ba1
a2

r
A1

r

r

r

r

r

r
b

b

b

b

w

r

U
A2

Q
S

c
b

T’
a

b

b
a1

a2

r

A1 r

r

r

r

r

r

b

b

w

r U
A2

S
b

a

A
b

ba1

a2
r

A1
r

r

r

r

r

r
b

b

b

b

w

r

U

A2

S

b

T’
a

b
b

b

b

U’

Ðèñ. 3: The wry cut Sa1a2 . Case 3.2.

Let a ∈ Y and a cut Saw ∈ R contain aw. Assume that a vertex a′ ∈ Y
is different from a and does not belong to the cut Saw. Since U 6⊂ Saw, the
vertices a′ and a have a common adjacent vertex in the graph G − Saw. At
the same time, a′ is adjacent to w. Hence, the graph G − Saw is connected.
We obtain a contradiction. Thus, Y \ {a} ⊂ Saw.

Every vertex of the set U which is adjacent to w is also adjacent to a
and, therefore, belongs to Saw. Denote by F the set of all vertices of A1 \{a}
which are adjacent to w, let f = |F |. We have proved that F ⊂ Saw.

Recall, that a1a2 ∈ Ek+1, w ∈ Vk+1, dG(a1) ≥ k + 1 and dGk+1
(a1) = 1.

Hence, the vertex a1 is not adjacent to w and, therefore, a1 /∈ F . Moreover,
NG(a1) = U ∪ {a2}.
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Let S ′ be the set of all vertices of S \ {w} which are not adjacent to w.
If w is adjacent to both vertices of M , then we set U ′ = S ′. Otherwise, we
set U ′ = S ′ ∪ {v}, where v ∈ M is a vertex not adjacent to w (if no vertex
of M is adjacent to w we choose any of them). Let Q be the set of all vertices
of the set Int(A2), which are adjacent to w (see figure 3b). Set the notation
s′ = |S ′|, q = |Q|.

Consider the graph G′ = G − (S \ S ′). This graph is (s′ + 1)-connected,
and the set U ′ has s′ or s′+ 1 vertices. Thus by Lemma 4 there exist at least
` = min(q, |U ′|) pairwise nonintersecting paths P1, . . . , P` from Q to U ′ in
the graph G′, such that no inner vertex of these paths belongs to Q ∪ U ′.

At most one of the paths P1,. . . , P` can contain the vertex a1. If such a
path exists, let it be P1 and let u ∈ U ′ be the end of P1. Since NG(a1) ⊃ U ′ 3 u,
the vertex a1 is adjacent to u. Therefore, we can replace the part of P1 from a1
to u by the edge a1u. Denote by P the path obtained. Since Q ⊂ NG(w) and
u ∈ NG(a), at least one vertex of the path P must belong to Saw. This
vertex belong to Int(A2) ∪ S ′ ∪ {a1} and, therefore, doesn’t belong to F .
Since all vertices of the path P belong to P1, the path P intersects none of
the paths P2, . . . , P`.

Consider a path Pi, which does not contain a1. Since w is not adjacent
to Int(A2) \ Q, we have w /∈ V (Pi). Recall, that S ′ ∪ {a1, w} separates
Int(A2) ⊃ Q from Int(A1) ⊃ M in the graph G′. Hence the path Pi con-
nects Q to S ′ and V (Pi) ⊂ A2. Since all vertices of the set S ′ are adjacent
to a, the path Pi must have a vertex in Saw. This vertex belongs to Int(A2)∪S ′
and, consequently, do not belong to F .

Thus, the cut Saw contains at least ` vertices on the paths P1 (or P ),
P2, . . . , P`. Hence,

k − 1 = |V (Saw)| ≥ f + ` = f + min(q, |U ′|).

Since f + q = dG(w)− 1 ≥ k, we have

min(q, |U ′|) = |U ′| ≤ k − 1− f. (11)

Recall, that w is adjacent to all k − s′ − 2 vertices of the set S \ (S ′ ∪ {w}).
Consider two cases.

3.2.1. The vertex w is adjacent to both vertices of M .
Then

f ≥ (k − s′ − 2) + 2 = k − s′ and |U ′| = s′.

Therefore, |U ′| ≥ k − f , that contradicts (11).

3.2.2. The vertex w is adjacent to at most one vertex of M .

14



Then |U ′| = s′ + 1. Thus, inequality (11) implies, that f ≤ k − s′ − 2.
Therefore, w is adjacent to no vertex of the set Int(A1)\{a}. Thus, Y = {a}
and w is not adjacent to vertices of M . In this case

S ′aw = (S \ {w}) ∪ {a1} ∪ {aw} ∈ R

is a cut which separates a part A with Int(A) = M ∪ {a} (see figure 3c).
Clearly, |Int(A)| < |Int(A1)|, therefore the cut S ′aw is wry. Let’s repeat rea-
sonings of the proof for the cut S ′aw and the part A instead of the cut Sa1a2
and the part A1. It is easy to see that for the part A we have m = 2 and
Case 3.1, in this case Lemma is proved.

3.3. Y is not an independent set of the graph G.
Consider two subcases.

3.3.1. S ∩ Vk+1 6= ∅.
By inequality (7) the set S contains exactly one vertex of Vk+1, denote it
by w. Then

U = M ∪ (S \ {w}), |U | = k.

The forest T ′ has an edge which is not incident to w. Hence, T ′ has a
leaf a 6= w, adjacent in T ′ to a vertex b 6= w. Let dT ′(b) = `. Consider a
cut Sab ∈ R, which contains ab. Note that the vertex b ∈ Int(A1) is adjacent
to at least k − `+ 1 vertices of the set U and all these vertices must belong
to Sab. The cut Sab contains k − 1 vertices, hence, it does not contain a certain
vertex z ∈ U . Note, that a1 is adjacent to all k vertices of the set U and, in
particular, to z.

In the forest T ′ there are `−1 paths P1, . . . , P`−1 from b to distinct leaves
b1,. . . , b`−1, different from a. Any two of these paths have no common vertex
different from b (see figure 4a).

One of these leaves can coincide with w. Let b1 = w. Since G is a
k-connected graph the vertex w is adjacent to Int(A2). The graph G(Int(A2))
is connected. Hence, there is a wa2-path Q, all inner vertices of which lie
in Int(A2). Recall, that a1 is adjacent to z and is not a vertex of the tree T ′.
Hence, a1 does not belong to paths P1, . . . . P`−1. Therefore, P ′1 = P1Qa2a1z
is a simple bz-path that has no common inner vertex with P2,. . . , P`−1. Since
the vertex z /∈ Sab is adjacent to a, the cut Sab must contain at least one
inner vertex of path P ′1.

Let bi 6= w. Then both vertices a and bi are adjacent to z /∈ Sab. Hence, the
cut Sab must contain a different from b vertex of the path Pi. Therefore, Sab
contains at least k−`+1 vertices of the set U and `−1 vertices on the paths
P1 (or P ′1), P2, . . . , P`. Thus, Sab contains at least k vertices. We obtain a
contradiction. The case is impossible.
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Ðèñ. 4: The wry cut Sa1a2 . Case 3.3.

3.3.2. S ∩ Vk+1 = ∅.
Then U = M ∪ S and |U | = k + 1. Let a be a leaf of the forest T ′. In our
case, a ∈ Int(A1). Let a be adjacent in T ′ to a vertex b, dT ′(b) = `.

The vertex a must be adjacent to at least k vertices of the set U . There-
fore, a is not adjacent to at most one vertex of U . If this vertex exists we
denote it by v.

Consider a cut Sab ∈ R which contains ab. We have two subcases.

3.3.2.1. Sab ∩ Int(A2) 6= ∅.
A vertex b is adjacent to at least k− `+ 1 vertices of U . At most one of them
coincides with v, hence, at least k − ` vertices of the set U are adjacent to
both vertices a and b. All these vertices must belong to Sab.

Let Z = U \Sab (see figure 4b). Recall, that Sab contains k−1 vertices, at
least one of them lies in Int(A2) (i.e. does not belong to U) and |U | = k+ 1.
Hence, |Z| ≥ 3.

In the forest T ′ there exist ` − 1 paths P1, . . . , P`−1 from b to distinct
leaves b1,. . . , b`−1, different from a. Any two of these paths have no common
vertex different from b. All vertices of these paths lie in Int(A1).

Both a and any vertex bi are adjacent to k vertices of the set U . Hence,
each of the vertices a and bi can be not adjacent to at most one vertex of the
set Z. Thus, there exists a vertex z ∈ Z, adjacent to both vertices a and bi.
Since z /∈ Sab, the cut Sab must contain at least one vertex different from b of
each path Pi. Consequently, Sab contains k − ` vertices of the set U (which
are adjacent to b), at least one vertex of the set Int(A2) and at least ` − 1
vertices on the paths P1, . . . , P`−1. Hence, Sab contains at least k vertices.
We obtain a contradiction. The case is impossible.

3.3.2.2. Sab ∩ Int(A2) = ∅.
Then Sab does not split A2, and, consequently, there exists a part
B2 ∈ Part(Sab), such that B2 ⊃ A2. Since W (Sab) ⊂ A1, the second part
B1 ∈ Part(Sab) is a subset of A1 and does not contain one of the vertices a
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and b. Hence,

|Int(B1)| ≤ |Int(A1)| − 1 = p− 1 ≤ k − 3

2
. (12)

We will define a cut Sa′b′ and a part B′1 ∈ Part(Sa′b′). Consider several cases.
a. If a ∈ B1, we set

a′ = a, b′ = b, B′1 = B1.

b. Assume, that b ∈ B1. Consider two cases.
b.1. If dT ′(b) = 1, we set

a′ = b, b′ = a, B′1 = B1.

b.2. Let dT ′(b) 6= 1. Then in the forest T ′ − ab there is a path from b to
a leaf a′ different from a (see figure 4c). In this case we set

a′b′ ∈ E(T ′), a′b′ ∈ Sa′b′ ∈ R, a′ ∈ B′1 ∈ Part(Sa′b′).

Now the definition is finished. Note, that a′ ∈ B′1 ∈ Part(Sa′b′) Applying
several times Lemma 1, we obtain

|Int(B′1)| < |Int(B1)| <
k − 3

2
.

Hence in all cases the cut Sa′b′ is wry and |B′1| < |A1|. We repeat the reason-
ings of the proof of our Claim for the cut Sa′b′ and the part B′1 instead of Sab
and A1. Let Int(B′1) contain m′ vertices of degree k. If m′ ≥ 3, then we have
Case 1 and Lemma is proved.

If m′ = 1, then we have Case 2. In this case statement (2) of our Claim
holds: Int(B′1) ∩ Vk = {x′} and this vertex is incident to k − 1 edges of the
set Ek. Let’s return to the part A1: there is a vertex x∗ 6= x′ in the set M
and this vertex is incident to

k − |A1 ∩ Vk+1| ≥ k − p+ 1 ≥ k + 3

2

edges of the set Ek (we used inequalities (5) and (8)). Since at most one of
these edges is incident to x′, we have

ek ≥ k − 1 +
k + 3

2
− 1 ≥ 3k − 1

2

and statement (1) of Claim holds (i.e., Lemma is proved).
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Finally, let m′ = 2. In this case we repeat the reasonings of Case 3 with
the part B′1 and either prove Lemma or obtain Case 3.3.2.2 for the part B′1
(note, that |B′1| < |A1|). In the last case we find a part B′2 which is less
than B′1, repeat the reasonings for this part, and so on. Since the size of the
part we consider is decreased on each step, this process will be finished and we
obtain statement (1) of our Claim (the proof of Lemma will be finished).

Claim 2. Let ynyn−1 . . . y1 be a simple path in Gk+1 and let ynyn−1 be a wry
arc. Then y2y1 is a wry arc.

Proof. Induction by n. The base for n = 2 is clear.
The induction step. Assume, that Claim is proved for any path shorter

than our one. Let yn−1yn−2 ∈ Syn−1yn−2 ∈ R, yn−2 ∈ Yn−2 ∈ Part(Syn−1yn−2)
and let Yn−1 be a wry part for the wry arc ynyn−1. By Lemma 1 we have
|Int(Yn−2)| < |Int(Yn−1)| < k

2
, hence yn−1yn−2 is a wry arc. Now by induction

assumption for a shorter path yn−1yn−2 . . . y1 we have that y2y1 is a wry
arc.

Claim 3. One of the two following statements hold.
(1) ek + c ≥ 3k−1

2
, i.e., Lemma is proved.

(2) All wry edges of the graph Gk+1 are edges of a simple path
Q = an . . . a2a1, where n ≤ k−1

2
, a1 is a wry leaf of Gk+1 and all inner vertices

of Q have degree 2 in the graph Gk+1.

Proof. Let y2y1 be a wry arc. Consider any path from y1 to a leaf a1 of the
forest Gk+1 which does not pass the edge y2y1. By Claim 2 we have that a1
is a wry leaf of Gk+1.

Let a2a1 be a wry arc, and let A1 be a wry part for this arc. By Claim 1
for the wry arc a2a1 and the wry part A1 we obtain that either Lemma is
proved (i.e. statement (1) of our Claim holds), or statement (2) of Claim 1
holds: Int(A1) = {a1, x} and k − 1 edges of the set Ek are incident to the
vertex x. Consider two cases.

1. There exists a wry leaf a′1, different from a1.
Let a′2a

′
1 be a wry arc and let A′1 be a wry part for this arc. By Claim 1 either

statement (1) of our Claim holds, or Int(A′1) = {a′1, x′} and k − 1 edges of
the set Ek are incident to the vertex x′. Clearly, a1x, a

′
1x
′ ∈ E(G), whence it

follows x 6= x′.
Since at most one edge can be incident to both vertices x and x′, we

obtain ek ≥ 2k − 3. By inequality (6) we have

ek + c ≥ (2k − 3) + 1 ≥ 3k + 1

2
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and statement (1) holds.

2. There exists exactly one wry leaf a1.
Let Q be the subgraph of Gk+1 induced by the set of wry edges (edges of Q
are all wry edges and vertices of Q are ends of these edges).

Consider any wry arc y2y1 and any path from y1 to a leaf a of the for-
est Gk+1 which doesn’t pass the edge y2y1. By Claim 2 the vertex a is a wry
leaf, hence, a = a1. Thus any path from an end of wry arc to a leaf of Gk+1

ends at a1. Therefore dGk+1
(y1) = 2 and the graph Q is connected.

If there is a vertex y ∈ Q with dGk+1
(y) > 2 then by proved above all

wry arcs incident to y begin at y. If there are at least two such arcs, say yz1
and yz2, then there are two paths from y to different leaves of Gk+1 starting
at z1 and z2. That contradicts proved above. Hence, the graph Q is a simple
path Q = an . . . a2a1, all inner vertices of which have degree 2 in Gk+1.

Let Ai be a wry part for the wry arc ai+1ai. By Lemma 1, then

2 = Int(A1) < Int(A2) < · · · < Int(An−1) ≤
k − 1

2
.

Since all these numbers are integers, n ≤ k−1
2

.

Let’s return to the proof of Lemma. In what follows we consider the case
where Lemma is not proved. Hence, statement (2) of Claim 1 and statement
(2) of Claim 3 hold. We formulate and prove some new claims.

Claim 4. If c ≥ k+1
2

, then ek + c ≥ 3k−1
2

, i.e., Lemma is proved.

Proof. By claim 1 we have ek ≥ k − 1, whence our Claim follows.

In what follows we assume that c ≤ k
2
. Recall, that I(A1) = {a1, x} and

the vertex x is incident to k − 1 edges of the set Ek by Claim 1. We need to
find at least k+1

2
− c edges in Ek, which are not incident to x.

Let E be the set of all edges of Gk+1, which are not wry. Consider two
cases.

1. E 6= ∅.
By Lemma 2 one can choose a set S = {Se}e∈E ⊂ R, where e ∈ Se, such
that all these cuts are pairwise independent. By Theorem 3 there are at least
two pendant parts in Part(S).

Let D1, . . . , Dm be all pendant parts of Part(S), Pi ∈ S be the cut such
that Di ∈ Part(Pi), fi ∈ Pi be the edge of E with the end di ∈ Int(Di), Ri

be a boundary of the cut Pi which is contained in Di,

D′i = Di \Ri, ri = |Ri ∩ Vk+1|.
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Denote by Wi the set of all vertices of Vk ∩ Int(Di), adjacent to di (see

figure 5).
Let’s formulate two obvious properties.

Claim 5. Int(Di) ∩ Int(Dj) = ∅ for i 6= j.

Claim 6. Either di is a leaf of the forest Gk+1, or di = an (the end of the
path Q) and in this case dGk+1

(an) = 2.

Proof. By Lemma 3, the vertex di is incident to exactly one edge of the
set E — the edge fi. Whence the claim follows.

Set new notation:

U = Vk+1 \ V (Q), ci = |U ∩Di|, qi = |V (Q) ∩Di|.

Continue studying pendant parts.

Claim 7. ci ≤ c. If U ∩D′i 6= ∅, then cj ≤ c− 1 for all j 6= i.

Proof. Assume that a connected component of the forest Gk+1 contains two
vertices y, y′ ∈ U ∩Di. It follows from Claim 3, that the path P between y
and y′ in the graph Gk+1 consists of edges of the set E. Let y ∈ D′i. There
exists an edge xy ∈ E (an edge of the path P ). Hence, by Lemma 3 we
have y = di, but di /∈ D′i. We obtain a contradiction. Therefore, y, y′ ∈ Ri,
but this is impossible by item 2 of Lemma 2.

Thus, ci ≤ c. Assume, that v ∈ U ∩D′i. Then by Lemma 3 the vertex v
cannot be incident to an edge of E, hence, {v} is a connected component of
the forest Gk+1, and this component does not intersect any different from Di

pendant part.

Claim 8. If Int(Di) ∩ V (Q) 6= ∅, then qj ≤ n− 1 for all j 6= i.

bb
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b

b
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Ðèñ. 5: A pendant part Di
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Proof. A vertex v ∈ V (Q) ∩ Int(Di) doesn’t belong to another pendant
part.

Claim 9. A vertex z ∈ Wi is incident to at least

k − ci − qi > 0

edges of the set Ek. At most one of these edges is incident to the vertex x,
and this edge can exist only if x ∈ Di.

Proof. Note, that NG(z) ⊂ Di and |Di∩Vk+1| = ci + qi. It remains to write,
that

ci + qi ≤ c+ n ≤ k

2
+
k − 1

2
< k.

Claim 10. |Wi| ≥ 1− dGk+1
(di) + ri and x /∈ Wi.

Proof. A vertex di ∈ Int(Di) is adjacent to at least k+1−dGk+1
(di) vertices

of the set Vk, denote the set of them by Mi. Clearly, Mi ⊂ Di and

Mi \Wi ⊂Mi \ Int(Di) = Mi ∩Ri ⊂ Vk ∩Ri.

Since Ri ∩ Vk ≤ |Ri| − ri = k − ri, we have

|Wi| ≥ k + 1− dGk+1
(di)− (k − ri) = 1− dGk+1

(di) + ri.

All vertices of the set Wi are adjacent to di 6= a1, hence they are different
from x.

Claim 11. If ci + qi ≤ c+ k−3
2

, then ek + c ≥ 3k−1
2

, i.e., Lemma is proved.

Proof. Let w ∈ Wi. By Claim 9, the vertex w is incident to at least

k − ci − qi ≥
k + 3

2
− c

edges of the set Ek. At most one of these edges is incident to x. Hence, taking
into account k − 1 edges of Ek incident to x, we obtain

ek + c ≥ (k − 1) +

(
k + 3

2
− c
)
− 1 + c ≥ 3k − 1

2
.
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We pass to finishing the proof of Lemma. Assume, that d1 = an.
Then d2 6= an and q2 ≤ n − 1 ≤ k−3

2
by Claim 8. Since c2 ≤ c, the part D2

satisfies the condition of Claim 11 and the proof is finished.

In what follows we assume that none of the vertices d1 and d2 coincides
with an, hence,

dGk+1
(d1) = dGk+1

(d2) = 1.

Moreover,

c1 = c2 = c and q1 = q2 = n ≥ k − 2

2
,

otherwise one of the parts D1 and D2 satisfies the condition of Claim 11.
Then, by Claims 7 and 8, each of the the boundaries R1 and R2 must contain c
vertices of the set U ,

V (Q) ⊂ V (P1) ∩ V (P2) and D′1, D
′
2 ⊂ Vk.

Thus,

r1 = r2 = n+ c ≥ k

2
.

Set r = n+ c and consider vertices of the sets W1 and W2. By Claim 10, we
have |W1| ≥ r. By Claim 9, each vertex of the set W1 is incident to at least
k− c1− q1 = k− r edges of the set Ek. Similarly, each vertex of the set W2 is
incident to at least k − r edges of the set Ek. Since each of these edges have
two ends, we obtain

ek ≥
1

2
· 2r(k − r) = r(k − r).

If k − r ≥ 2 we have

ek ≥ r(k − r) ≥ 2k − 4 and ek + c ≥ 2k − 3 ≥ 3k − 1

2
,

that is enough. In the remaining case |W1| ≥ k − 1 and |W2| ≥ k − 1. By
Claim 9, each vertex of the set W1 ∪W2 is adjacent to at least one edge of
the set Ek. Since the vertex x is adjacent to at most k − 1 of these vertices
and each edge has two ends, we have at least k−1

2
edges in Ek, which are

not incident to x. Taking into account edges of the set Ek incident to x, we
obtain

ek ≥ k − 1 +
k − 1

2
≥ 3k − 1

2
− 1 and ek + c ≥ 3k − 1

2
,

Lemma is proved.
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2. E = ∅.
Then Ek+1 consists of edges of the path Q, hence, an is a leaf of the for-
est Gk+1. Let anan−1 ∈ Sn−1 ∈ R and an ∈ D ∈ Part(Sn−1). The set
{a1, . . . , an} is a connected component of the forest Gk+1 and other c − 1
connected components of Gk+1 are isolated vertices. Thus, |Vk+1| = n+c−1.
Since an−1 /∈ D,

|D ∩ Vk+1| ≤ n+ c− 2 ≤ c+
k − 1

2
− 2. (13)

The vertex an is adjacent to k vertices of Vk ∩ D, denote the set of them
by W . Since an 6= a1, we have x /∈ W . It follows from |V (Sn−1)| = k−1, that
the set Int(D) ∩W contains at least one vertex, let it be w.

The vertex w is adjacent to k vertices of D. By inequality (13), among
these vertices there are at least k+5

2
− c vertices of degree k. Therefore, w is

incident to at least k+5
2
−c edges of Ek. At most one of these edges is incident

to x. Consequently,

ek ≥ k − 1 +
k + 5

2
− c− 1 and ek + c ≥ 3k + 1

2
.

The proof of Lemma is completed.

4 The defect of a graph

Recall that the defect of a minimal k-connected graph G is

f(G) = (2k − 1)vk(G)− (k − 1)v(G)− 2k.

Definition 13. 1) The decreased degree of a vertex v ∈ Vk+1 is

d−(v) = dG(v)− k − 1.

Denote by s(G) the sum of decreased degrees of all vertices of the set Vk+1.
2) The semi-defect of the graph G is ϕ(G) = ek + c− k.

Lemma 6. Let G be a minimal k-connected graph. Then the following state-
ments hold.

1) vk(G) = (k−1)v(G)+s(G)+2(c+ek)
2k−1 .

2) f(G) = 2(c+ ek − k) + s(G) = 2ϕ(G) + s(G).
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Proof. 1) A vertex x ∈ Vk+1 is incident to k + 1 + d−G(x) edges. The sum of
degrees of vertices of the forest Gk+1 is equal to 2vk+1 − 2c. Therefore, the
number of edges going from Vk+1 to Vk is (k − 1)vk+1 + 2c + s(G). Exactly
kvk−2ek edges go from Vk to Vk+1. Hence, (k−1)vk+1+2c+s(G) = kvk−2ek,
whence the statement we prove immediately follows.

2) A direct consequence of item 1 and the definitions of defect and
semi-defect.

Corollary 3. Let G ∈ GMk(n). Then there is no wry cut in R.

Proof. If G has a wry cut, then by Lemma 5 we have ek + c ≥ 3k−1
2

. Thus,
by item 2 of Lemma 6 we have f(G) ≥ k− 1, that contradicts remark 1.

5 The proof of theorem 1

Let’s write a plan of the proof of the main theorem. First, in Subsection 5.1
we define a set of pairwise independent cuts S and the tree T . In Subsec-
tion 5.2 we study properties of pendant parts of Part(S).

In Subsection 5.3 we define a rooted orientation of the tree T , ranks of
parts of Part(S) and vertices of the set Vk+1. Several properties of the rank
are proved.

In Subsection 5.4 we divide vertices of Vk into two subsets: good and
bad vertices (the latter consists of all vertices of Vk which belong to cuts
of S). Several properties of bad vertices are proved.

In Subsection 5.5 we prove a lemma about dividing the set Vk+1 into k
ordinary and one extra groups. In Subsection 5.6 we finish the proof of the
main theorem by counting vertices in the groups obtained in the previous
section and edges between these groups.

5.1 The set of cuts S

Let G be a minimal k-connected graph, satisfying the condition f(G) ≤ k−2.
By Corollary 3 the set R contains no wry cut. Then by Lemma 2 we can
choose the set S = {Se}e∈Ek+1

⊂ R, where e ∈ Se and all these cuts are
pairwise independent. In what follows we work only with cuts of the set S.

Since cuts of the set S are pairwise independent, the following statement
is a particular case of item 2 of Lemma 2.

Corollary 4. Let G be a minimal k-connected graph and R be a boundary of
a cut Se ∈ S. Then any two vertices of the set Vk+1 ∩ R belong to different
connected components of the forest Gk+1.
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Let T = T(G,S) be the tree, which vertices are parts of Part(S) and
edges correspond to cuts of the set S (see definition 9). For each edge
e ∈ Ek+1 the edge of the tree T , corresponding to the cut Se 3 e, will be
also denoted by e.

5.2 Properties of pendant parts

Let’s study properties of pendant parts of Part(S).

Definition 14. 1) The vertices of the set Vk+1, which are isolated vertices
of the forest Gk+1, are called single vertices.

2) Let A ∈ Part(S) be a pendant part. Denote by ek,A the number of
edges of the set Ek, which are incident to vertices of Int(A). Denote by cA
the number of single vertices lying in Int(A).

Remark 5. Any single vertex is a connected component of the graph Gk+1.

Recall, that by item 3 of Theorem 3 for a pendant part A ∈ Part(S) there
exists an edge ab ∈ Ek+1, such that A ∈ Part(Sab). We reformulate item 3 of
Lemma 10 of the paper [13] in our notation.

Lemma 7. Let G be a minimal k-connected graph, such that no edge of the
set Ek+1 belongs to a wry cut. Let A ∈ Part(S) be a pendant part, such that
Bound(A) contains p > 0 vertices of degree k. Then cA + ek,A ≥ p.

We need a stronger statement.

Lemma 8. Let G be a minimal k-connected graph, such that no edge of the
set Ek+1 belongs to a wry cut. Let A ∈ Part(S) be a pendant part, such that
Bound(A) contains p > 0 vertices of degree k. Then cA ≥ p.

Proof. Let A′ be a pendant part of Part(S) different from A,
p′ = |Bound(A′) ∩ Vk|. Then cA′ + ek,A′ ≥ p′ by Lemma 7. Recall that k − p′
vertices of the set Bound(A′)∩Vk+1 belong to k−p′ different connected com-
ponents of the graph Gk+1 by Corollary 4. Hence, the sum of ek,A′ and the
number of connected components of Gk+1, which intersect the part A′ 6= A
is at least k. Therefore, ek + c − k ≥ ek,A + cA. Applying Lemmas 6 and 7,
we obtain:

k − 2 ≥ f(G) ≥ 2(ek + c− k) ≥ 2(ek,A + cA) ≥ 2p. (14)

Let ab ∈ Ek+1, A ∈ Part(Sab), a ∈ Int(A). By Lemma 3 we have
dGk+1

(a) = 1. Then the vertex a is adjacent to at least k vertices of the
part A and all these vertices belong to Vk. Since Bound(A) contains p ≤ k−2

2

vertices of Vk, the set Q = Int(A) ∩ Vk contains at least k − p > 0 vertices.
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Let W = Int(A)∩ Vk+1. By Lemma 3 all vertices of the set W are single,
i.e., |W | = cA. Assume, that cA = t < p. Every vertex x ∈ Q is adjacent to k
vertices of the part A, and at most k − p + t of these vertices have degree
more than k. Then x is adjacent to at least p− t vertices of degree k. Thus,
ek,A ≥ (k−p)(p−t)

2
. Continue the chain of inequalities (14) as follows:

k − 2 ≥ 2(cA + ek,A) ≥ 2t+ (k − p)(p− t). (15)

If p− t ≥ 2, then by inequalities (15) and (14) it follows, that

k − 2 ≥ 2t+ (k − p)(p− t) ≥ 2k − 2p ≥ k + 2.

We obtain a contradiction. In the case where t = p − 1 we write down the
following:

k − 2 ≥ 2t+ (k − p)(p− t) = 2p− 2 + k − p = k + p− 2 ≥ k − 1,

that is also impossible. The contradictions obtained show us, that cA ≥ p.

5.3 A rooted orientation of the tree T and the for-
est Gk+1. Ranks of vertices and parts

Let us fix a pendant part A0 ∈ Part(S) as a root of the tree T . We orient
every edge of the tree T from the end that is closer to the root to the other
end. Denote by A(T ) the set of all obtained arcs.

Definition 15. 1) The rank of a part A ∈ Part(S) is the distance from the
root to A in the tree T . Denote it by rank(A).

2) For any part A ∈ Part(S) different from A0 there exists exactly one
incoming arc in A(T ). Let the part B be the beginning of this arc. Then B
is the ancestor of the part A and A is a descendant of the part B.

3) The rank of a vertex a ∈ Vk+1 is the minimal rank of a part of Part(S),
that contains a. Denote it by rank(a).

Remark 6. 1) Let A,B ∈ Part(S) and AB ∈ A(T ). Then rank(A) =
rank(B)− 1.

2) Let a ∈ Vk+1 and A ∈ Part(S) be such that a ∈ A. Then
rank(A) ≥ rank(a).

By construction of the tree T , for any its edge e each of two incident to e
parts of Part(S) contains a boundary of the cut Se and these two boundaries
are different.
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Definition 16. 1) Let A 6= A0 and e be the edge of the tree T , connecting A
to its ancestor. Then the upper boundary of A is the boundary of the cut Se
which lies in A. Denote it by UBound(A).

2) Denote by A− the set of all vertices of the part A, which do not belong
to descendants of A.

Definition 17. 1) Consider an arbitrary edge e = ab ∈ Ek+1. Let the corre-
sponding edge of T connect parts A 3 a and B 3 b. If AB ∈ A(T ), then we
orient the edge ab of the graph Gk+1 from a to b. Denote by A(Gk+1) the set
of all obtained arcs.

2) Let a, b ∈ Vk+1, ab ∈ A(Gk+1). Then b is a descendant of a and a is
an ancestor of b.

3) Let U be a connected component of the forest Gk+1. Then a root of
the component U is a vertex of minimal rank that lies in U .

Lemma 9. 1) For any vertex a ∈ Vk+1 there exists exactly one part
A ∈ Part(S), such that a ∈ A and rank(a) = rank(A).

2) Let ab ∈ A(Gk+1). Then ab is the only arc entering b in A(Gk+1) and
rank(a) < rank(b).

3) Each connected component U of the forest Gk+1 has unique root. Arcs of
A(Gk+1) induce on U a rooted tree which root is the root of the component U .

Proof. 1) Let A,A′ ∈ Part(S) be two such parts. Consider a cut Se ∈ S,
that separates A from A′ and is incident to A in the tree BT(S) and corre-
sponding edge e of the tree T . Note, that a ∈ V (Se). Let e connects A to its
ancestor D. Then D separates A \D from A′ \D in the graph G. Therefore,
a ∈ D and rank(D) < rank(A) = rank(a). This is impossible. Hence, e con-
nects A to its descendant. In this case all parts separated by the cut Se from
the part A have rank less than rank(A), i.e. the part A′ cannot be among
them.

2) There exists a cut Sab ∈ S and two parts A,B ∈ Part(S), such that
a ∈ A, b ∈ B and each of these parts contains a boundary of Sab. Since
ab ∈ A(Gk+1), we have AB ∈ A(T ). Hence, rank(B) = rank(A) + 1. The
cut Sab separates the part B from its ancestor A and, therefore, from all
other parts which rank is at most rank(B). Thus,

rank(b) = rank(A) + 1 > rank(A) ≥ rank(a).

Since b ∈ Int(B), all other edges of the forest Gk+1, which are incident to b,
join b with vertices which do not belong to parts of rank less than rank(b).
Hence, any different from ab arc of A(Gk+1), which is incident to b, begins
at b.
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3) Since for any vertex b ∈ U there is at most one arc in A(Gk+1) that
enters b, arcs of A(Gk+1) induce on U a rooted tree TU . If ab ∈ A(Gk+1),
then rank(a) < rank(b). Therefore, the minimal rank over all vertices of U
has the root of TU and only it.

Definition 18. Let U be a connected component of the graph Gk+1 and x
be its root. Let A ∈ Part(S) be the part of minimal rank, that contains x.
Then we say, that the component U begins at the part A.

Corollary 5. For each connected component U of Gk+1 the part of Part(S),
at which U begins, is unique.

Proof. Let x be the root of U . By Lemma 9 this root is unique and there
exists unique part A ∈ Part(S), such that x ∈ A and rank(x) = rank(A).
Then a part at which the component U begins must coincide with A.

Definition 19. Let S ∈ S, A0 ∈ Part(S) (such cut exists by Theorem 3).
Let R be the bound of S contained in A0. By Lemma 8, the part A0 intersects
k0 ≥ k connected components of the forest Gk+1. If k0 > k, then we choose k
of these components, such that all components which contain vertices of R
will be chosen. We call k chosen components basic, and all other connected
components of the forest Gk+1 — additional.

Remark 7. 1) All connected components of Gk+1, which begin at different
from A0 parts, are additional.

2) Let A 6= A0 and x be a root of an additional component which begins
at A. Then x /∈ UBound(A).

3) The number of additional components is equal to c− k.

5.4 Good and bad vertices

Definition 20. Consider a part A ∈ Part(S).
1) Denote by T [A] the subtree of a rooted tree T with the root A.
2) Set the notation P [A] = V (T [A]).
3) Denote by V [A] the union of parts which belong to Part(S) ∩ P [A].

Definition 21. 1) A vertex x ∈ Vk is bad, if x belongs to a boundary of a
cut of the set S. Otherwise, the vertex x is good. Denote by b(G) the number
of bad vertices of the graph G.

2) Denote by E ′k the set of all edges of Ek, both ends of which are good
vertices, let e′k(G) = |E ′k|.
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Definition 22. 1) Set for a part A ∈ Part(S) the following notation:
— c(A) is the number of additional connected components of the for-

est Gk+1, that begin at the part A;
— c∗(A) = max(|A ∩ Vk+1| − k, 0);
— B(A) is the set of all bad vertices contained in A− and b(A) = |B(A)|;
— e′k(A) is the number of edges of the set E ′k, both ends of which lie in

the part A.
2) Let

c∗(G) =
∑

A∈Part(S)

c∗(A), c∗(P [A]) =
∑

B∈P[A]

c∗(B).

Remark 8. Every bad vertex of the set Vk belongs to the set B(A) for at
least one part A ∈ Part(S). By Corollary 5, each additional component of
the forest Gk+1 begins at exactly one part A ∈ Part(S). Hence,

b(G) ≤
∑

A∈Part(S)

b(A), c− k =
∑

A∈Part(S)

c(A).

Lemma 10. For a part A ∈ Part(S) the following statements hold.
1) B(A) ⊂ UBound(A) and B(A0) = ∅.
2) A ∩ Vk+1 is an independent set of the graph G.
3) The part A intersects |A ∩ Vk+1| connected components of the

graph Gk+1.
4) c∗(A) ≤ c(A).

Proof. 1) Any bad vertex x ∈ B(A) belongs to Bound(A) and belongs to
no descendant of A. Hence, B(A) ⊂ UBound(A). Since UBound(A0) = ∅ we
have B(A0) = ∅.

2) Let two vertices of the set A ∩ Vk+1 be connected by an edge e. Then
the cut Se separates one of them from the other, but that is impossible.

3) A direct consequence of item 2.
4) Let A = A0. Then by the definition 19 we have c(A) = c∗(A). In what

follows assume, that A 6= A0.
If c∗(A) = 0 the statement is clear. Let c∗(A) 6= 0. Then by item 3 we

have at least |A ∩ Vk+1| − |UBound(A)| = |A ∩ Vk+1| − k = c∗(A) roots of
different additional components of the graph Gk+1, which begin at A. Hence,
c∗(A) ≤ c(A).
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Lemma 11. e′k(G) =
∑

A∈Part(S) e
′
k(A)

Proof. Let xy ∈ E ′k. Since vertices x and y are good, there is exactly one
part A ∈ Part(S), that contains both vertices x and y. Hence, the edge xy
is counted in exactly one summand e′k(A).

Lemma 12. Let A ∈ Part(S) be such that B(A) 6= ∅. Then there exists a
matching L(A), which satisfies the following two conditions:

1◦ any vertex of the set B(A) is incident to an edge of L(A);
2◦ any edge of L(A) connects B(A) with A \ UBound(A).

Proof. Let P = B(A). Denote by Q the set of all vertices of
V [A] \ UBound(A), which are adjacent to P . Since P ⊂ A−, vertices of the
set P are not adjacent to V [A] \ A. Hence, Q ⊂ A. For X ⊂ P denote by
Q(X) the set of all vertices of Q, adjacent to X (see figure 6a).
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Ðèñ. 6: Bad vertices in the part A and matching that covers them.

Let’s prove, that for every X ⊆ P

|Q(X)| ≥ |X|. (16)

Recall, that UBound(A) is a k-vertex cutset in a k-connected graph G, that
separates a nonempty set V [A] \ UBound(A) from other vertices of G. Let

AX = V [A] \ (UBound(A)∪Q(X)) and RX = (UBound(A) \X)∪Q(X).

If AX 6= ∅ then RX separates AX from other vertices of the graph G. There-
fore, |RX | ≥ k, whence inequality (16) follows.

Let AX = ∅. Since Q ⊂ A, we have V [A] = A, i.e., A is a pendant part.
Moreover, Int(A) = Q = Q(X). By Theorem 3 there is a cut Se ∈ S, such
that A ∈ Part(Se). By Lemma 8 then Int(A) contains at least b(A) single
vertices and one end of the edge e. Thus,

|Int(A)| ≥ b(A) + 1 > |P | and |Q(X)| = |Int(A)| > |P | ≥ |X|.
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Inequality (16) means, that by Hall’s theorem there exists a desired
matching L(A) (see figure 6b).

Now let G ∈ GMk((2k − 1)t+ 2`), where 2 ≤ ` ≤ k − 1 and t > 0 is an
integer. We know, that f(G) = `− 1, whence it follows that

vk+1 = kt+ `− 1, vk = (k − 1)t+ `+ 1, ϕ(G) =
`− 1− s(G)

2
. (17)

Lemma 13. b(G) + c∗(G) + e′k(G) ≤ ϕ(G) = `−1−s(G)
2

.

Proof. 1. Let A ∈ Part(S). If b(A) 6= 0 then by Lemma 12 there exists a
matching L(A), which covers the set B(A), such that edges of L(A) connect
B(A) with A \ UBound(A).

Denote by fk(A) the number of edges of the matching L(A), both ends
of which belong to Vk (if b(A) = 0, then we set L(A) = ∅ and fk(A) = 0).

Our first aim is to prove the following inequality for every part
A ∈ Part(S):

b(A) + c∗(A) ≤ c(A) + fk(A). (18)

If b(A) = 0, then item 4 of Lemma 10 implies inequality (18). In what follows
b(A) 6= 0 and, consequently, A 6= A0. Consider two cases.

1.1. c∗(A) > 0.
Then |Vk+1 ∩ A| = k + c∗(A) > k. Since |UBound(A)| = k, the set
UBound(A) \ B(A) consists of k − b(A) vertices of the set Vk+1. All these
vertices belong to connected components of Gk+1 which intersect the ances-
tor of A. Hence, vertices of UBound(A) \ B(A) are not roots of additional
components that begin at A. Therefore,

c(A) = |Vk+1 ∩ A| − |UBound(A) \B(A)| =
k + c∗(A)− (k − b(A)) = c∗(A) + b(A),

whence inequality (18) follows.

1.2. c∗(A) = 0.
Let y1, . . . , ym be all vertices of the set Vk+1 which are incident to edges of
the matching L(A). Clearly, fk(A) = b(A)−m. The vertices y1, . . . , ym are
roots of additional connected components of Gk+1, which begin at A. Hence,
c(A) ≥ m and

b(A) = fk(A) +m ≤ fk(A) + c(A).

2. Let
fk =

∑
A∈Part(S)

fk(A). (19)
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If A 6= A′ then L(A) ∩ L(A′) = ∅. Hence, each edge was counted in the
sum (19) at most once. Note, that edges, counted in fk, have a bad end, and
both ends of edges counted in e′k are good. Therefore, fk + e′k ≤ ek. Sum
up inequalities (18) for all parts of Part(S). Applying the proved above, we
obtain:

e′k(G) + b(G) + c∗(G) ≤ e′k(G) +
∑

A∈Part(S)

(
b(A) + c∗(A)

)
≤

e′k(G) +
∑

A∈Part(S)

(
c(A) + fk(A)

)
= c(G)− k + fk(G) + e′k(G) ≤

c(G)− k + ek(G) = ϕ(G),

whence the statement of Lemma follows.

5.5 Dividing the set Vk+1 into k + 1 groups

Lemma 14. Vertices of the set Vk+1 can be divided into sets M1, . . . , Mk

and W , satisfying the following conditions:
(1) vertices of the set W are roots of additional connected components,

|W | = c∗(G);
(2) if B ∈ Part(S) then every set of M1, . . . , Mk contains at most one

vertex of B ∩ Vk+1;
(3) if a ∈ Mi for a certain i ∈ {1, . . . , k} then all descendants of a also

belong to Mi.

Proof. Let A ∈ Part(S). We prove by induction on rank(A) the following
statement.

Claim. Vertices of the set V [A] ∩ Vk+1 can be divided into sets M1(A), . . . ,
Mk(A) and W (A), satisfying the following conditions:

(1′) vertices of the set W (A) are roots of additional connected components,
|W (A)| = c∗(P [A]);

(2′) if B ∈ P [A] then every set of M1(A), . . . , Mk(A) contains at most
one vertex of B ∩ Vk+1;

(3′) if a ∈ Mi(A) for a certain i ∈ {1, . . . , k} then all descendants of a,
which lie in V [A], also belong to Mi(A);

Proof. We begin with the base of induction for the case where A 6= A0 is
a pendant part. Let Sab ∈ S be the cut such that a ∈ A ∈ Part(Sab). Then
UBound(A) = Bound(A) ∪ {a} and a ∈ Vk+1.

Let |Bound(A) ∩ Vk| = p. We put k − p vertices of the set UBound(A) ∩
Vk+1 into the sets M1(A), . . . , Mk−p(A) such that each set contains exactly
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one vertex. Lemma 8 implies that Int(A) contains at least p single vertices.
We put p of them into the sets Mk−p+1(A), . . . , Mk(A), such that each set
contains exactly one vertex. We put in W (A) all other single vertices which
lie in Int(A) (if such vertices remain, their number is equal to c∗(A) and each
of them is the root of an additional component). All conditions are satisfied.

Induction step. Let B1, . . . , Bn ∈ Part(S) be all descendants of A. For
these parts the Claim is proved. First, we set W (A) = ∪nα=1W (Bα).

Let α ∈ {1, . . . , n} and Sα ∈ S be the cut that separates Bα from A,
aαbα ∈ Sα, aα ∈ A, bα ∈ Bα. Then bα ∈ UBound(Bα), therefore, it is not a
root of an additional component, which begins at Bα. Hence, by condition (1′)
one of the sets M1(Bα), . . . , Mk(Bα) contains bα, let it be M1(Bα). We add
the vertex aα to M1(Bα) (see figure 7). We perform such operations for all
α ∈ {1, . . . , n}.

S
bb

b

b

a

b

M1( )B b

M ( )B2 A

b

b

Ðèñ. 7: Adding the vertex aα.

Set the notation Mα = {M1(Bα), . . . ,Mk(Bα)} and M = ∪nα=1Mα.
We will join some sets of M. Let A ∩ Vk+1 = {x1, . . . , xp}. If A 6= A0

and p ≥ k then let

{x1, . . . , xk} ⊃ UBound(A) ∩ Vk+1.

If A = A0 then let x1, . . . , xk be all roots of basic components. Consider
vertices x1, . . . , xk in ascending order. If xi belongs to no set of M, then Mxi =
{xi}. If some sets of M contain xi, we join all these sets into the set Mxi . Let

M1(A) = Mx1 , . . . ,Mk(A) = Mxk

be new sets (if p < k, then the sets Mp+1(A),. . . , Mk(A) are empty). If p > k,
then we add the vertices xk+1, . . . , xp to W (A) and delete them from the sets
of M. Note, that we have added to W (A) exactly c∗(A) vertices, i.e.,

|W (A)| =
∑

B∈P[A]

c∗(B) = c∗(P [A]).
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Moreover, all these vertices are roots of additional components, which begin
at the part A, i.e. condition (1′) holds.

Consider all α ∈ {1, . . . , n} in ascending order. Let M ′
1, . . . ,M

′
s ∈Mα be

all sets, that are not contained in new sets. Both the number of sets in Mα

before joining and the number of new sets are equal to k. Hence, there exist s
new sets, that contain no sets of Mα, let it be new sets M1(A), . . . , Ms(A).
Then we substitute M1(A), . . . , Ms(A) by M1(A) ∪M ′

1, . . . , Ms(A) ∪M ′
s.

We perform such operations for each α and obtain after that sets M1(A), . . . ,
Mk(A), that contain all vertices of Vk+1 ∩ V [A].

Let’s prove that condition (2′) holds. If B = A then it is clear. If B 6= A
then B ∈ P [Bα] for unique α ∈ {1, . . . , n}. Then each set of Mα contains at
most one vertex of Vk+1 ∩ B. Each of the sets M1(A), . . . , Mk(A) intersects
at most one set of Mα, whence condition (2′) follows.

Let’s prove, that condition (3′) holds. Consider a vertex y ∈ Mi(A) and
its descendant z ∈ V [A].

Assume, that one of the vertices y and z belongs to A. Since by Lemma 10
the set A∩Vk+1 is independent, exactly one of these two vertices belong to A.
By Lemma 9 we have rank(z) < rank(y), therefore, y ∈ A and z /∈ A.

Thus, in any case z /∈ A. Hence, z ∈ V [Bα]\A for a certain α ∈ {1, . . . , n}.
Let z ∈Mj(Bα) for a certain j ∈ {1, . . . , k}.

Consider two cases.

1. y ∈ A.
In this case, y ∈ A ∩Mi(A), hence y = xi. Consider two subcases.

1.1. y ∈ V [Bα].
By induction assumption (statement (3′) for the part Bα) we have
y, z ∈Mj(Bα). Since y = xi, by constructing in this case Mj(Bα) ⊂ Mi(A).
Hence, y, z ∈Mi(A).

1.2. y /∈ V [Bα].
Then the cut Sα separates y from (V [Bα] \ A) 3 z. Since yz ∈ E(G) we have
y = aα and z = bα. During the constructing of our sets, we have added y = aα
to the set Mj(Bα). Since y = xi, after that the whole set Mj(Bα) ∪ {y} was
included into Mi(A). Thus, y, z ∈Mi(A).

2. y /∈ A.
Assume, that y ∈ V [Bβ] \ A. Let β 6= α. Then the cut Sα separates
(V [Bα] \ A) 3 z from (V [Bβ] \ A) 3 y and yz /∈ Sα. Therefore, y and z
cannot be adjacent. The contradiction obtained implies that β = α.

Then by induction assumption for the part Bα we have y, z ∈Mj(Bα)\A.
By constructing Mj(Bα)\A is included in one of the sets M1(A), . . . , Mk(A).
Since y ∈Mj(Bα) \ A this set is Mi(A), i.e. y, z ∈Mi(A).
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Recall that V (G) = V [A0]. Therefore, the sets M1 = M1(A0), . . . ,
Mk = Mk(A0) and W = W (A0) satisfy conditions (1) − (3). The proof of
Lemma is finished.

Corollary 6. Let M1, . . . ,Mk be the sets defined in Lemma 14. Then the
following statements hold.

1) For distinct i, j ∈ {1, . . . , k} there is no edge connecting Mi and Mj.
2) For every i ∈ {1, . . . , k} any good vertex is adjacent to at most one

vertex of the set Mi.
3) Each of the sets M1, . . . , Mk contains a certain basic component of

the graph Gk+1.

Proof. 1) A direct consequence of condition (3) of Lemma 14.
2) Consider a good vertex x. Clearly, x ∈ Int(B) for a certain part

B ∈ Part(S). Then NG(x) ⊂ B. Hence, NG(x) ∩ Mi ⊂ B ∩ Mi. By con-
dition (2) of Lemma 14 we have |B ∩ Mi| ≤ 1, whence the statement we
prove follows.

3) By condition (1) of Lemma 14 all roots of basic components belong to
M1, . . . , Mk. By condition (2) of Lemma 14 for the part A0, each set contains
exactly one of these roots. Hence, condition (3) of Lemma 14 implies the
statement we prove.

5.6 The end of the proof of Theorem 1

Let c∗ = c∗(G), b = b(G), s = s(G), ek = ek(G) and e′k = e′k(G). Let X
and Y be the sets of good and bad vertices of the graph G, respectively. By
formula (17),

|Y | = b, |X| = (k − 1)t+ `+ 1− b. (20)

Let the set Mi contain ti vertices and si be the sum of reduced degrees of
vertices of the set Mi. We know that G(Mi) is a forest, let it have ci + 1
connected components. Hence, this forest has ti − 1 − ci edges. For each
vertex x ∈ Mi we have dG(x) = k + 1 + d−(x). Since by Lemma 14 a vertex
of Mi cannot be adjacent to vertices of any set Mj (where j 6= i),

eG(Mi, X∪Y ∪W ) = (k+1)ti+si−2e(G(Mi)) = (k−1)ti+2+2ci+si. (21)

Definition 23. 1) A set Mi is called small, if ti ≤ t (see formula (17)).
Otherwise the set Mi is called big.

2) Let M1, . . . , Mp be small sets and Mp+1, . . . , Mk be big sets.
3) The lack of a set Mi is t′i = t+ 1− ti.
4) For a small set Mi denote by qi the number of good vertices which are

not adjacent to the set Mi.

35



5) Set the notation

M =

p⋃
i=1

Mi, M ′ =
k⋃

i=p+1

Mi, q =

p∑
i=1

qi, sM =

p∑
i=1

si, cM =

p∑
i=1

ci.

Remark 9. The lack of a small set is at least 1. The lack of a big set is at
most 0.

We need two technical lemmas.

Lemma 15. q + sM + 2cM − eG(M,Y ∪W ) ≥ (k + 1 + c∗ − `)(`− 1− b).

Proof. It follows from formula (17) and Lemma 14, that the sets M1, . . . ,
Mk have together kt + ` − 1 − c∗ vertices. Then by Remark 9 we have the
following inequality:

p∑
i=1

t′i ≥
k∑
i=1

t′i = k(t+ 1)− (kt+ `− 1− c∗) = k + 1 + c∗ − `. (22)

By Corollary 6 and formulas (21) and (20),

qi = |X| − eG(Mi, X) = |X| − eG(Mi, X ∪ Y ∪W ) + eG(Mi, Y ∪W ) =

`− 1− b− si − 2ci + (k − 1)(t′i − 1) + eG(Mi, Y ∪W ),

whence summing over all small sets M1, . . . , Mp we obtain:

q = p(`− 1− b) + (k − 1)

p∑
i=1

(t′i − 1)− sM − 2cM + eG(M,Y ∪W ). (23)

Consider two cases.

1. p ≥ k + 1 + c∗ − `.
By Remark 9 we have t′i− 1 ≥ 0 for all i ∈ {1, . . . , p}. By Lemma 13 we have
`− 1− b ≥ 0. Hence, the equality (23) implies:

q + sM + 2cM − eG(M,Y ∪W ) = p(`− 1− b) + (k − 1)

p∑
i=1

(t′i − 1) ≥

(k + 1 + c∗ − `)(`− 1− b).
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2. p < k + 1 + c∗ − `.
By formulas (23), inequality (22) and an obvious inequality k− 1 > `− 1− b
we obtain:

q + sM + 2cM − eG(M,Y ∪W ) = p(`− 1− b) + (k − 1)

p∑
i=1

(t′i − 1) ≥

p(`− 1− b) + (k + 1 + c∗ − `− p)(k − 1) ≥ (k + 1 + c∗ − `)(`− 1− b).

In both cases Lemma is proved.

Lemma 16.

ek + e′k + 2cM + sM + eG(W,X)− eG(M,Y ∪W ) ≤ (k− 1)c∗ + `− 1− b.

Proof. By Corollary 6, each of the sets M1, . . . , Mk contains a basic compo-
nent. All other connected components of the forests G(M1), . . . , G(Mp) are
called small and all other connected components of the forests G(Mp+1), . . . ,
G(Mk) are called big. Then cM is the number of small components. Denote
by cB the number of big components. Each small or big component is either
an additional component of Gk+1 or a part of an additional component, which
root belongs to W .

Recall, that |W | = c∗. Let W = {w1, . . . , wc∗} and wi be adjacent
to fi small components and f ′i big components. Since G(Vk+1) is a forest,
fi = eG(wi,M) and f ′i = eG(wi,M

′). Recall, that the number of additional
components of the graph Gk+1 is equal to c− k. Hence,

cM + cB = c− k +
c∗∑
i=1

(
fi + f ′i − 1

)
= c− k − c∗ + eG(W,M ′) + eG(W,M)

and
cM − eG(W,M) = c− k − c∗ − cB + eG(W,M ′). (24)

Every vertex of the set W is a root of an additional component of the
graph Gk+1. Any big component U by Lemma 9 has unique root. Hence,
U is adjacent to at most one vertex of the set W (the root of U if it belongs
to W ). Thus,

cB ≥ eG(W,M ′). (25)

Consider a part A with b(A) > 0 and bad vertices of the set
B(A) = {y1, . . . , yb(A)}. By Lemma 12 these vertices are covered by a
matching L(A) = {y1v1, . . . , yb(A)vb(A)}. If vi ∈ Vk, then yivi ∈ Ek \ E ′k.
If vi ∈M ∪W , then the edge yivi ∈ EG(M ∪W,Y ). All remaining vertices vi

37



belong to M ′, denote the set of such vertices by M ′
A (if b(A) = 0 we set

M ′
A = ∅).
Consider a vertex v ∈ M ′

A. Clearly, v is a root of a big component,
which begins at the part A. The vertex v ∈ Int(A) is not covered by a
matching L(A′) for A 6= A′. Hence, summing |M ′

A| over all parts A ∈ Part(S)
we count each big component at most once and obtain at most cB.

Taking into account Remark 8 we can write down the following:

b = b(G) ≤
∑

A∈Part(S)

b(A) ≤ |Ek \E ′k|+ |EG(M ∪W,Y )|+
∑

A∈Part(S)

|M ′
A| ≤

ek − e′k + cB + eG(M ∪W,Y ). (26)

Let sW be the sum of reduced degrees of all vertices of the set W . Then
the sum of degrees of vertices of the set W is equal to (k+1)c∗+sW . Since W
is an independent set of the graph G,

eG(W,X) = (k + 1)c∗ + sW − eG(W,Y ∪M ′ ∪M). (27)

Applying formulas (24) − (27), an obvious inequality sW + sM ≤ s and
Lemma 6, we can write the following chain of inequalities:

ek + e′k + 2cM + sM + eG(W,X)− eG(M,Y ∪W ) =

ek + e′k + 2cM + sM +
(
(k + 1)c∗ + sW − eG(W,Y ∪M ′ ∪M)

)
− eG(M,Y ∪W ) =

(k+1)c∗+ek+e′k+
(
sW+sM

)
+2
(
cM−eG(W,M)

)
−
(
eG(W,Y ∪M ′)+eG(M,Y )

)
≤

(k+1)c∗+ek+e′k+s+2
(
c−k−c∗−cB+eG(W,M ′)

)
−
(
eG(W,M ′)+eG(M∪W,Y )

)
=

(k−1)c∗+
(
s+2(c−k)+2ek

)
−
(
ek−e′k+cB+eG(M∪W,Y )

)
+
(
eG(W,M ′)−cB

)
≤

(k − 1)c∗ + f(G)− b = (k − 1)c∗ + `− 1− b.

Consider edges, which are incident to good vertices (i.e., vertices of the
set X) and not incident to vertices of the set ∪ki=1Mi. Let’s divide each of
these edges into two halves and mark all obtained halves that have an end
at the set X. We have marked one half of each edge of the set EG(X,W ∪Y )
and two halves of each edge of the set E(G(X)).

Note, that any vertex of the set X has degree k and by Corollary 6 is
adjacent to at most one vertex of each of k sets M1, . . . , Mk. Recall, that
for all i ∈ {1, . . . , p} there are qi vertices in X which are not adjacent to the
small set Mi. Hence, at least q =

∑p
i=1 qi halves of edges were marked and

we can write the following inequality:

q ≤ eG(X,W ) + 2e(G(X)) + eG(X, Y ) ≤
eG(X,W ) + 2e′k + (ek − e′k) = eG(W,X) + ek + e′k. (28)
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Inequality (28) together with Lemmas 15 and 16 imply, that:

(k + 1 + c∗ − `)(`− 1− b) ≤ q + sM + 2cM − eG(M,Y ∪W ) ≤
eG(W,X) + ek + e′k + sM + 2cM − eG(M,Y ∪W ) ≤

(k − 1)c∗ + `− 1− b. (29)

Inequality (29) implies the following:

bc∗ ≥ (k − `)(`− 1− b− c∗).

By Lemma 13 we know, that b+c∗ ≤ `−1
2

. Hence,
(
`−1
4

)2 ≥ bc∗ and we obtain
the following: (

`− 1

4

)2

≥ (k − `) · `− 1

2
. (30)

Inequality (30) implies ` ≥ 8k+1
9
. That contradicts the condition of Theo-

rem 1. The proof of Theorem 1 is finished. 2

6 Extremal examples

Lemma 17. Let tk ≥ k + 1 and tk+1 ≥ k be integers, such that

ktk ≥ (k + 1)tk+1. (31)

Then there exists a bipartite minimal k-connected graph G with partitions Vk
(which consists of vertices of degree k) and Vk+1 (which consists of vertices
of degree more than k), such that |Vk| = tk and |Vk+1| = tk+1.

Proof. If tk+1 = k, then the statement is clear: the complete bipartite graph
Ktk,k satisfies all conditions. Let tk+1 > k, Vk+1 = {a1, . . . , atk+1

}. Clearly,
|Vk| = tk > tk+1. We choose in Vk vertices b1, . . . , btk+1

(the numeration is
cyclic modulo tk+1). The vertex bi ∈ Vk is adjacent to ai, . . . , ai+k−1 for all i.
In the obtained graph the degree of every vertex of the set Vk+1 is equal to k.
It follows from inequality (31) that vertices of the set Vk \ {b1, . . . , btk+1

} can
be connected with Vk+1 such that every vertex of Vk will have degree k and
every vertex of the set Vk+1 will have degree at least k + 1.

Let R ⊂ V (G), |R| = k − 1. We will prove, that vertices of the
set Vk+1 \ R are connected in the graph G− R. Assume the converse. Then
there exist two vertices am, am+i /∈ R, that are disconnected in G − R and
am+1, . . . , am+i−1 ∈ R. Hence, i− 1 ≤ |R| = k− 1. The vertices am and am+i

have k−i common neighbors (bm−k+i+1, . . . , bm) and all these neighbors must
belong to R. Thus, all k − 1 vertices of the set R are determined.
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Clearly, there exists another similar pair of vertices as, as+j ∈ Vk+1 (the
vertices as and as+j do not belong to R and are disconnected in G − R
and as+1, . . . , as+j−1 ∈ R). Since R separates as from as+j, the set R must
contain k− j common neighbors of as and as+j and vertices as+1, . . . , as+j−1.
Clearly, this set of k−1 vertices differs from the one found above. We obtain
a contradiction which shows that all vertices of Vk+1 \R are connected in the
graph G−R. Hence, the graph G−R is connected.

Since any edge of G is incident to a vertex of degree k, this graph is a
minimal k-connected graph.

Proof of theorem 2. The case p = 2 is completely analyzed in [13]: it was
proved that GMk((2k − 1)t+ 2) consists of graphs of type Gk,T , where T is
a tree with ∆(T ) ≤ k + 1 and v(T ) = t.

For p = 1 we must construct a minimal k-connected graph with

vk(G) = (k − 1)t+ 2 and vk+1(G) = kt− 1.

Consider any graph Gk,T ∈ GMk((2k−1)t+ 2). Since n ≥ 2k+ 1, then t ≥ 2
and the tree T has at least one edge. Hence, the graph Gk,T has two adjacent
vertices x, y of degree k + 1. It is easy to verify, that Gk,T · xy (the graph,
obtained from Gk,T upon contracting the edge xy) is a minimal k-connected
graph with desired parameters.

Let p ≥ 3. We prove by induction on t that the desired graph exists.
Moreover, we construct a graph G such that any edge of the set Ek+1(G) is
contained in a cut of the graph G, consisting of k edges.

The base of induction for t = 1 consists of two cases. In both cases
Ek+1(G) = ∅.

a. p = 2`− 1.
It can be verified with the help of equality (2), that the graph G must have
parameters vk(G) = k+ ` and vk+1(G) = k+ `− 2. These parameters satisfy
inequality (31). Hence, the desired example exists by Lemma 17.

b. p = 2`.
Then the graph G must have parameters vk(G) = k + ` + 1 and vk+1(G) =
k+`−2. These parameters satisfy inequality (31). Hence, the desired example
exists by Lemma 17.

Induction step t → t + 1. Let Gt be the graph constructed for t,
x ∈ Vk(Gt). We substitute the vertex x by a complete bipartite graph Kk,k,
one partition of which is joined by a matching to k vertices of NGt(x) (see
figure 8).

Clearly, the obtained graph Gt+1 is k-connected. The number of vertices
of degree k is increased by k − 1 and the number of vertices of degree more
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Ðèñ. 8: Substituting the vertex x by a complete bipartite graph Kk,k.

than k is increased by k. Hence, parameters of the new graph are what we
want. All edges of the set Ek+1(Gt) are contained in the graph Gt+1 in the
same cuts as in Gt. The set Ek+1(Gt+1)\Ek+1(Gt) is a subset of the matching
which join new vertices to Gt. Clearly, k edges of this matching form a cut
of the graph Gt+1. Hence, Gt+1 is a minimal k-connected graph.

Remark 10. 1) As it was shown in [13], examples for p = 2 also can be
constructed by several operations of substituting a vertex of degree k by a
graph Kk,k. The initial graph is Kk,k+1, which is the only extremal example
for t = 1 and p = 2.

2) An example for p = 1 cannot be constructed with the help of
Lemma 17, since for any t parameters of extremal graphs do not satisfy
the conditions of this lemma.
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