

ПРЕПРИНТЫ ПОМИ РАН

ГЛАВНЫЙ РЕДАКТОР

С.В. Кисляков

РЕДКОЛЛЕГИЯ

В.М.Бабич, Н.А.Вавилов, А.М.Вершик, М.А.Всемирнов, А.И.Генералов, И.А.Ибрагимов,

Л.Ю.Колотилина, Б.Б.Лурье, Ю.В.Матиясевич, Н.Ю.Нецветаев, С.И.Репин, Г.А.Серегин

Учредитель: Федеральное государственное бюджетное учреждение науки

Санкт-Петербургское отделение Математического института

им. В. А. Стеклова Российской академии наук

Свидетельство о регистрации средства массовой информации: ЭЛ №ФС 77-33560 от 16

октября 2008 г. Выдано Федеральной службой по надзору в сфере связи и массовых

коммуникаций

Контактные данные: 191023, г. Санкт-Петербург, наб. реки Фонтанки, дом 27

телефоны:(812)312-40-58; (812) 571-57-54

e-mail: admin@pdmi.ras.ru

http://www. pdmi.ras.ru /preprint/

Заведующая информационно-издательским сектором Симонова В.Н

mailto:admin@pdmi.ras.ru

PDMI PREPRINT � 12/2015

Simultaneous separation of regular resolution,

treelike resolution and exponent of resolution

depth∗

Dmitry Itsykson

St. Petersburg Department of V.A. Steklov Institute of Mathematics
of Russian Academy of Sceinces
E-mail: dmitrits@pdmi.ras.ru

December, 2015

Abstract

Every unsatisfiable CNF formula φ has the following parameters: the size of
the minimal regular resolution proof SR(φ), the size of the minimal treelike reso-
lution proof ST (φ), the minimal depth of a resolution proof d(φ). The following
inequality is trivially satisfied: 2d(φ) ≥ ST (φ) ≥ SR(φ). Bonet, Esteban, Galesi
and Johannsen in 2000 showed that there exists family of formulas Fn such that

ST (Fn) = 2Ω(
√
SR(Fn)). Urquhart in 2011 gave a family of 3-CNF formulas Hn

such that ST (Hn) = O(n) and d(Hn) = Ω(n/ log n). We observe that formulas H⊕n
which is the xorification of Hn has ST (H⊕n) = 2Ω(n/ logn) and SR(H⊕n) = O(n); this
improves the separation given by Bonet et al.

We present a family of 6-CNF formulas Φn such that any two values from
{2d(Φn), ST (Φn), SR(Φn)} differ superpolynomially. Our formulas are based on the
Pebbling contradictions on the n× n square graph. Our proof is elementary and is
based on the game interpretation of the resolution depth and the xorification.

∗Supported in part by Russian Foundation for Basic Research (grant 14-01-00545-a).

ÏÐÅÏÐÈÍÒÛ
Ñàíêò-Ïåòåðáóðãñêîãî îòäåëåíèÿ

Ìàòåìàòè÷åñêîãî èíñòèòóòà èì. Â. À. Ñòåêëîâà
Ðîññèéñêîé àêàäåìèè íàóê

PREPRINTS
of the St. Petersburg Department of Steklov Institute of Mathematics

ÃËÀÂÍÛÉ ÐÅÄÀÊÒÎÐ
Ñ. Â. Êèñëÿêîâ

ÐÅÄÊÎËËÅÃÈß
Â. Ì. Áàáè÷, Í. À. Âàâèëîâ, À. Ì. Âåðøèê, Ì. À. Âñåìèðíîâ, À. È. Ãåíåðàëîâ,
È. À. Èáðàãèìîâ, Ë. Þ. Êîëîòèëèíà, Ã. Â. Êóçüìèíà, Ï. Ï. Êóëèø, Á. Á. Ëóðüå,
Þ. Â. Ìàòèÿñåâè÷, Í. Þ. Íåöâåòàåâ, Ñ. È. Ðåïèí, Ã. À. Ñåðåãèí, Â. Í. Ñóäàêîâ,

Î. Ì. Ôîìåíêî

1 Introduction

Resolution proof system is one of the simplest and well studied proof systems for propositional
logic. The interest in propositional proof systems comes from SAT solving. For today the
fastest algorithms are based on CDCL (Conflict Driving Clause Learning). The running time
of CDCL algorithms is close to the size of the shortest resolution proof of the input formula.
[2], [12]. The classical DPLL algorithms [7, 6] that are in the basis of many others SAT solvers
correspond to treelike resolution proofs.

Query complexity, decision trees and read-once branching programs. Consider some computa-
tional problem F : given an input x ∈ {0, 1}n find a solution y ∈ {0, 1}∗. We assume that there
is some fixed predicate Sol such that Sol(x, y) = 1 iff y is a solution for x. The query complex-
ity of a problem F (we denote it D(F)) is the maximum over all x ∈ {0, 1}n of the minimum
possible number of bits of x that is sufficient to know in order to find a correct solution for x. A
decision tree for a problem F is a binary tree such that its leaves are labeled by binary strings
(solutions); every internal vertex is marked by a variable from the set {x1, x2, . . . , xn}, one of
outgoing edge is labeled by 1 and other by 0. For every a ∈ {0, 1}n if we start a path in the
root of the tree and on every step if we go from the vertex labeled by xi along an edge that is
labeled by ai, we finally reach a leaf labeled by a correct solution for the input a. The query
complexity of F may be equivalently defined as the minimal possible depth of decision trees for
F . A read-once branching program for F is defined by a similar way but instead of tree we have
a directed acyclic graph that has one source, outdegree 2 for all internal vertices and the sinks
that are labeled by solutions. On every path from the source to a sink all variables in vertices
are distinct.

Let us denote the size of the minimum decision tree for a problem F as DT (F) and the size
of the minimal read-once branching program for F as 1-BP (F). It is easy to show that in the
minimal decision tree on every path from the root to a leaf all variables are distinct, therefore
we get the following inequality: 1-BP (F) ≤ DT (F) ≤ 2D(F). Consider the case where F is a
problem of computing a boolean function F : {0, 1}n → {0, 1}. In this case it is easy to separate
1-BP (F), DT (F) and D(F). Consider the following examples:

� Fn,0(x1, x2, . . . , xn) = x1 ∨ x2 · · · ∨ xn: D(Fn,0) = n, DT (Fn,0) = O(n) and 1-BP (Fn,0) =
O(n).

� Fn,n(x1, x2, . . . , xn) = x1⊕x2⊕· · ·⊕xn, D(Fn,n) = n, DT (Fn,n) = 2n and 1-BP (Fn,n) =
O(n).

� For 0 ≤ k ≤ n we denote Fn,k(x) = (x1 ⊕ x2 ⊕ · · · ⊕ xk) ∨ xk+1 ∨ · · · ∨ xn, D(Fn,k) = n,
1-BP (Fn,k) = O(n) and 2k + Ω(n) ≤ DT (Fn,k) ≤ 2k +O(n).

Thus 2D(Fn,log2 n), DT (Fn,log2 n) and 1-BP (Fn,log2 n) differs superpolynomially.
Consider another computational problem, that is parametrized with unsatisfiable CNF for-

mula φ with n variables. An input of the problem is an assignment to variables of φ; a solution
is a clause of φ that is falsified by the assignment. For this problem the query complexity is
equal to the minimal depth of a resolution proof of φ (we denote it d(φ)), the size of the minimal
decision tree for this problem is equal to the minimal size of treelike resolution proof of φ (we
denote it ST (φ)) and the size of the minimal read-once branching program is equal to the size
of the minimal regular resolution proof of φ (we denote it SR(φ)) [10], [9]. As in general case
the following inequalities hold: 2d(φ) ≥ ST (φ) ≥ SR(φ). The superpolynomial separation for
any of this two values is nontrivial. The goal of this paper is to give an example of formulas
that simultaneously superpolynomially separates 2d(φ) and ST (φ) and also ST (φ) and SR(φ).

3

Known results. The first exponential separation of treelike and regular resolutions was proved by
Bonet, Esteban, Galesi and Johannsen [4]. The paper [3] gave a family of formulas φn such that
S(φn) = O(n) and ST (φn) = 2Ω(n/ logn), where S denotes the minimal size of general resolution
proof and the [3] showed that this separation is nearly optimal. It is not clear whether φn has
short regular resolution proof or not.

There is a trivial example that separates ST (φ) and 2d(φ): formula Qn = (x1∨x2∨· · ·∨xn)∧
(¬x1) ∧ (¬x2) ∧ · · · ∧ (¬xn) has d(Qn) = n and ST (Qn) = n + 2. Thus the most interesting
examples have bounded number of literals in clauses. Urquhart [14] gave an example of family
of 3-CNF formulas Hn such that d(Hn) = Ω(n/ log n) and ST (Hn) = O(n).

There are results about separations of regular and general resolutions: superpolynomial sep-
aration [8], exponential separation [1] and near optimal separation [15].

Our results. We observe the following theorem:

Theorem 1.1. There exists a family of 6-CNF formulas H ′n with O(n) variables such that
SR(H ′n) = O(n) and ST (H ′n) = 2Ω(n/ logn).

Almost all key ingredients for Theorem 1.1 were already given by Urquhart [14]. Let Hn be
a family of formulas from [14] such that d(Hn) = Ω(n/ log n) and ST (Hn) = O(n). Let H⊕n be
a xorification of Hn; namely for every variable x in Hn we substitute it by x′⊕x′′, where x′ and
x′′ are new variables and convert the resulting formula in CNF. This operation was described in
the paper of Ben-Sasson, where the author refer to personal communication with Alekhnovich
and Razborov. Urquhart [14] noted that ST (φ⊕) ≥ 2d(φ) for all formulas φ, hence we get that
ST (H⊕n) = 2Ω(n/ logn). We show that SR(H⊕n) = O(n).

We also prove the following theorem:

Theorem 1.2. There is a family of unsatisfiable 6-CNF formulas Φn,k for all n and 1 ≤ k ≤ n
such that Φn,k contains O(n2) variables and O(n2) clauses, SR(Φn,k) = O(n2), d(Φn,k) = Ω(n)
and max{n2, 2k/2} ≤ ST (Φn,k) ≤ 26k + 2k(n2 + 1).

We start the proof of Theorem 1.2 from the example of family of 3-CNF formulas Φn and
prove that d(Φn) = Θ(n), ST (Φn) = Θ(n2) and SR(Φn) = Θ(n2).

In order to construct formulas Φn,k we apply partial xorification, namely we make substitution
of kind x ← x′ ⊕ x′′ for some k2 variables. By the structure of the formula we prove that
ST (Φn,k) = Θ(n2) + 2Θ(k), d(Φn,k) = Θ(n) and SR(Φn,k) = Θ(n2).

Comparison with other approaches. The paper [3] introduced formulas based on so-called Peb-
bling games. Consider a directed acyclic graph G. Let S contain all sources of G and T contain
all sinks of G. In the game we may put a pebble on every vertex from S; we may put a pebble
on a vertex v if there are pebbles on all immediate predecessors of v and we may remove any
pebble. The goal of the game is to put a pebble to some vertex from T . A pebbling number
peb(G,S, T) is the minimal number of pebbles that is necessary to have simultaneously to win
the game. Ben-Sasson, Impagliazzo and Wigderson [3] presented formulas based on graph G
and sets S and T that has linear resolution complexity and treelike resolution complexity at
least 2Ω(peb(G,S,T)). Urquhart [14] used the same graphs but slightly different formulas; Urquhart
showed that treelike resolution complexity of this formulas is O(n) and resolution depth is at
least Ω(peb(G,S, T)). The papers [3] and [14] used graphs from the paper [11] that has O(n)
vertices and pebbling number peb(G,S, T) = Ω(n/ log n).

Formulas from [14] are as follows: for every vertex v of graph G we have propositional
variable xv. If u1, u2, . . . , uk are immediate predecessors of v, then the formula has the clause
¬xv ∨ xu1 ∨ xu2 ∨ · · · ∨ xuk . Also formula contains clauses xt for all t ∈ T and ¬xs for all s ∈ S.
Formulas that we use in the proof of Theorem 1.2 have the same structure and is based on the

4

specific graph. The vertices of our graph are cells of n × n square; edges connect cells with
their left or lower neighbours, S consists of the topmost and rightmost cell and T consists of
the leftmost lowermost cell. Our proof of lower bound on the resolution depth in Theorem 1.2
is elementary; we use game interpretation of the depth and don’t use estimations of pebbling
number.

The paper [4] used formulas based on pyramid graphs that are very similar to the graph of
the n × n square, namely pyramid graph correspond to the half of n × n square bounded by
the main diagonal. The lower bound on the pebbling number of pyramid graphs was actually
proved by Cook in 1974 [5].

In Section 2 we give the definitions of the basic notions and formulate previously known
results. In Section 3.1 we prove Theorem 1.1 and in Section 3.2 we prove Theorem 1.2.

2 Preliminaries

Propositional variable is one that has 0/1-value, literal is either a variable or its negation. A
clause is a disjunction of literals, a CNF formula is a conjunction of clauses. A k-CNF formula
is a CNF formula in which all clauses contain at most k literals. The formula is satisfiable if
there exists a substitution for its variables such that the value of the formula becomes 1 (we
call such substitution a satisfying assignment).

A resolution proof of formula φ is a sequence of clauses C1, C2, . . . , Ck, where Ck =⊥ is an
empty clause (contradiction) and for all i, Ci is either a clause of φ or may be obtained from Cj
and Cl with j, l < i by the resolution rule. The resolution rule allows to derive a clause (A∨B)
from x ∨A and ¬x ∨B. The size of the resolution proof is the number of clauses in it. S(φ) is
the size of the minimal resolution proof of CNF formula φ. The width of the resolution proof
is the maximal number of literals in the clause from the proof.

It is easy to see that if φ has a resolution proof, then φ is unsatisfiable. Indeed if an assignment
satisfies two clauses then it satisfies the result of the resolution rule. If formula φ is satisfiable,
then all clauses from its resolution proof are also satisfiable, but empty clause can not be
satisfied, we get the contradiction. It is known that Resolution is complete: if φ is unsatisfiable,
then there is a resolution proof of φ.

A treelike resolution proof of formula φ is a binary tree with vertices labeled by clauses.
Leaves are labeled with clauses of φ and internal vertices are labeled by the result of resolution
rule of clauses in their children. The root of the tree is labeled by the empty clause. We denote
the size of the minimal treelike resolution proof of φ as ST (φ). A depth of a tree is a length
of the maximal path from the root to a leaf. A depth of a resolution proof of formula φ is the
depth of the minimal treelike resolution refutation of φ. We denote it as d(φ).

A regular resolution proof is a directed acyclic graph with one source and several sinks with
vertices labeled by clauses. Every internal vertex has outdegree 2. Sinks are labeled by clauses
of φ and every internal vertex is labeled by the result of resolution rule of clauses in immediately
following vertices. The source of the graph is labeled by the empty clause. On every path from
the source to a sink resolution rules are applied by distinct variables. We denote the size of the
minimal regular resolution proof of φ as SR(φ).

A decision tree for an unsatisfiable formula φ is a binary tree such that its leaves are marked
by clauses of φ, every internal vertex is marked by a variable of formula φ {x1, x2, . . . , xn}, one
of outgoing edges is marked by 1 and the other by 0. For every assignment σ of variables of φ,
if we start a path in the root of the tree and on every step in the vertex labeled by x we move
along an edge that is labeled by value of x in σ, then we finally will reach a leaf that is labeled
by a clause of φ that is falsified by σ. DT (φ) denotes the minimal size of a decision tree for

5

φ. A read-once branching program for F is defined by a similar way but instead of a tree we
have a directed acyclic graph that has one source and outdegree 2 for all internal vertices. On
every path from the source to a sink all variables in vertices are distinct. 1-BP (φ) denotes the
minimal size of a read-once branching program for φ.

Proposition 2.1. [9] For any unsatisfiable CNF formula φ, ST (φ) = DT (φ), SR(φ) =1-BP (φ)
and d(φ) is the minimal depth over the all decision trees for φ.

Let φ be a CNF formula, x be a variable of φ and c ∈ {0, 1}. We denote φ[x = c] the result
of substitution of x by c. To get φ[x = c] from φ we delete all clauses that are satisfied by x = c
and delete occurrence of x on all other clauses.

Lemma 2.1. 1) For every unsatisfiable formula φ if x is a variable of φ, then for all c ∈ {0, 1}
the following holds: SR(φ[x = c]) ≤ SR(φ), ST (φ[x = c]) ≤ ST (φ) and d(φ[x = c]) ≤ d(φ). 2)
ST (φ) ≤ ST (φ[x = 1]) + ST (φ[x = 0]) + 1 and d(φ) ≤ max{d(φ[x = 1]), d(φ[x = 0])}+ 1.

Proof. 1. It is sufficient to prove that a substitution of a variable can’t increase the size
and the depth of a decision tree or a read-once branching program. Indeed if we have a
decision tree for φ with vertex v labeled by x, then we remove a subtree corresponding
an edge that is labeled by 1 − c and also join v with the remain child. We repeat it for
all such v. We also should make a substitution x = c to clauses in leaves. In case of
read-once branching program the proof is the same.

2. A decision tree for φ can be easily constructed from decision trees for φ[x = 0] and
φ[x = 1]: we add new root w labeled by x and add edge labeled by 0 connected w and the
root of the decision tree for φ[x = 0] and edge labeled by 1 connected w and the roof of
the decision tree for φ[x = 1]. We also change clauses in leaves by their preimages before
substitution.

We consider the following game: we have two players Interrogator and Witness. They are
given an unsatisfiable CNF formula φ. On each step Interrogator chooses a variable of formula
φ and Witness gives a value for this variable. The game ends if the current substitution refutes
some clause of φ. For every move Witness earns a coin. The goal of Witness is to earn the
maximum number of coins and the goal of Interrogator is to minimize the number of coins
earned by Witness.

Lemma 2.2 ([14]). If for some unsatisfiable formula φ there exists a strategy for Witness that
allows Witness to earn t coins, then d(φ) ≥ t.

Proof. Assume that d(φ) < t, then by Proposition 2.1 there exists a decision tree T for φ with
depth less than t. We describe a strategy for Interrogator that guarantees that Witness earns
less than t coins; the latter contradicts the statement of the lemma. Interrogator plays according
the tree T : he put a pebble on the root of the tree and on each step Interrogator requests the
value of a variable in the vertex with the pebble. After the answer of Witness Interrogator
moves the pebble along an edge that is labeled by the answer of Witness. The game ends after
less than t steps since the depth of T is less than d. We get a contradiction, hence d(φ) ≥ t.

Lemma 2.3 ([14]). If for some unsatisfiable formula φ there exists such strategy of Interrogator
that guarantees that Witness earns at most t coins, then d(φ) ≤ t.

Proof. A strategy of Interrogator is actually a decision tree for φ. And if Witness earns at most
t coins, then the depth of the decision tree is at most t.

6

Now consider another but similar game, in this game we have Prover instead of Interrogator
and Delayer instead of Witness. Prover chooses the variable and Delayer may return a value
from {0, 1} or return ∗. If Delayer returns ∗, then Prover chooses a value by himself. Now
Delayer earns coins only for stars.

Lemma 2.4 ([13]). If for some unsatisfiable formula φ there exists a strategy for Delayer that
allows Delayer to earn t coins, then ST (φ) ≥ 2t.

Proof. Consider some decision tree T for φ. We construct probabilistic distribution on the
leaves of T that corresponds to Delayer’s strategy and the following randomized strategy of
Prover. Prover uses the tree T , initially it asks the question for variable in the root, if Delayer
moves ∗, Prover chooses a value at random with equal probabilities and go to the next vertex
along an edge labeled with the chosen value. By the statement of the Lemma the probability
that the game will finish in every particular leaf is at most 2−t. Since with probability 1 the
game will finish in a leaf, the number of leafs of T is at least 2t.

Ler φ be a CNF formula. A xorification of φ is a formula φ⊕, that is obtained from φ by
substitutions of x by x′ ⊕ x′′ for all variables x from φ, here x′ and x′′ are new variables that
have no occurrences in φ and this new variables are distinct for all x.

Lemma 2.5 ([14]). ST (φ⊕) ≥ 2d(φ) for every unsatisfiable φ.

Proof. Lemma 2.3 implies that Witness has a strategy that guarantees him to earn at least d(φ)
coins.

Now we describe the strategy for Delayer in Prover-Delayer game for the formula φ⊕. Delayer
uses the strategy of Witness from the first game; he simulates Interrogator using moves of Prover.
Assume that for all variables x xorification substitute x′⊕x′′ instead of x. Consider the following
cases: 1) Prover asks for the value of x′ and did not ask for the value of x′′ before this step.
In this case Delayer answers ∗. 2) Prover asks for x′ and asked for x′′ before. The variable x′′

has a value c ∈ {0, 1}. In this case Delayer simulates the step of Interrogator that asks for x. If
Witness reports a value b, then Delayer returns b⊕ c.

Note that Prover-Delayer game can not finish before Interrogator-Witness game finishes since
every clause E of φ⊕ is a clause of C⊕, there C is a clause of φ. If E is refuted in Prover-
Delayer game, then C⊕ is also refuted, hence all copies of variables from C have value, by the
construction C should be refuted in Interrogator-Witness game.

For every step Witness earns a coin, Delayer earns a coin then Prover asks for the value of
the first copy of the variable, hence every coin of Witness corresponds to a coin of Delayer.
Thus Delayer earns at least d(φ) coins, therefore ST (φ) ≥ 2d(φ) by Lemma 2.4.

Theorem 2.1 (Theorem 4.6, [14]). There is a family of 3-CNF formulas Hn such that d(Hn) =
Ω(n/ log n), ST (Hn) = O(n) and Hn has a regular resolution proof of size O(n) and width 3.

Formally Theorem 4.6 from [14] does not claim that the resolution proof of Hn with width
3 is regular, but in fact the resolution proof is a unit-clause propagation and therefore it is
regular.

3 Results

3.1 Improved separation of regular and treelike resolution

Lemma 3.1. Let an unsatisfiable CNF formula φ have a regular resolution proof of size N and
width s. Then φ⊕ has a regular resolution proof of size at most 3 · 2sN .

7

Proof. Let C1, C2, . . . , CN be a regular resolution proof of φ.
For every literal ` we denote the CNF representation of `⊕ as `(0) ∧ `(1), where `(0) and `(1)

are clauses. Consider a clause C = `1 ∨ `2 ∨ · · · ∨ `t that consists of t literals, the formula C⊕

has the following CNF representation: C⊕ =
∧
w∈{0,1}t `

(w1)
1 ∨ `(w2)

2 ∨ · · · ∨ `(wt)
t . We will show

that the sequence of clauses C⊕1 , C
⊕
2 , . . . , C

⊕
N may be extended to a regular resolution proof of

φ⊕.
Note that for every literal ` we may derive the empty clause from (¬`)(0) ∧ (¬`)(1) ∧ `(0) ∧ `(1)

using 3 applications of resolution rules (and this derivation is regular). Similarly for any two
clauses D1 and D2 there is a regular derivation of D1 ∨ D2 from D1 ∨ (¬`)(0), D1 ∨ (¬`)(1),
D2 ∨ `(0) and D2 ∨ `(1) that consists of three applications of resolution rule by variables of `⊕.
Therefore if Ci is a result of resolution rule applied to Cj and Ck, then every clause from C⊕i
may be obtained from two clauses of C⊕j and two clauses of C⊕k by the derivation of size 3.

Therefore C⊕1 , C
⊕
2 , . . . , C

⊕
N may be extended to a resolution proof of φ⊕ by adding at most two

new clauses for every clause. The resulting proof is regular as the initial proof of φ was regular
and every application of the resolution rule by a new variable corresponds to the application of
the resolution rule by the old variable in the initial proof. For all i the formula C⊕i contains at
most 2s clauses since Ci has at most s literals. Hence the size of the resulting proof is at most
3 · 2sN .

Theorem 3.1. There exists a family of 6-CNF formulas H ′n that has O(n) variables, SR(H ′n) =
O(n) and ST (Hn) = 2Ω(n/ logn).

Proof. Let Hn be a family of 3-CNF formulas from Theorem 2.1 [14] such that d(Hn) =
Ω(n/ log n), ST (Hn) = O(n) and Hn has a regular resolution proof of size O(n) and width
3. Let H ′n = H⊕n . By Lemma 2.5 ST (H ′n) = 2Ω(n/ logn) and by Lemma 3.1 SR(H ′n) = O(n).

3.2 Simultaneous separation of ST (φ), SR(φ) and 2d(φ)

Consider the following formulas that are based on a cellular rectangle n × m. For every cell
(i, j) of the rectangle n×m we have a propositional variable xi,j . We assume that the leftmost
lowermost cell has coordinates (1, 1) and the rightmost topmost cell has coordinates (n,m). We
denote r(xi,j) = xi+1,j if i < n and r(xi,j) = 0 otherwise; and u(xi,j) = xi,j+1, if i < m and
u(xi,j) = 0 otherwise. r(xi,j) is the right neighbour of xi,j and u(xi,j) is the upper neighbour
of xi,j . By a path in the rectangle n×m we mean a sequence of cells such that the next cell is
either the right or the top neighbour of the previous one.

A formula Pebn×m is the conjunction of clauses ¬xi,j ∨ u(xi,j)∨ r(xi,j) for all i ∈ [n], j ∈ [m]
and clause x1,1. Formula Pebn×m states that if the value of some variable is 1, then its upper or
right neighbour also should have the value 1 and that the leftmost and lowermost variable has
value 1. This formula is unsatisfiable since otherwise there should be a path with values 1; it
starts in x1,1 and ends in xn,m. Note that xn,m has no upper or right neighbours (the formula
contains clause ¬xn,m) and therefore it can not have value 1.

Proposition 3.1. S(Pebn×m) ≥ mn+ 2.

Proof. It is sufficient to show that all clauses of Pebn×m must be used in the resolution refutation
of S(Pebn×m). Indeed there are exactly nm + 1 clauses and the empty clause is always in the
resolution refutation. We show that the removing of any clause makes formula satisfiable. If we
remove clause x1,1, then all zeros assignment satisfies all other clauses. If we remove a clause that
corresponds to (i, j), then the assignment that assigns 1 to cells x1,1, x1,2, . . . , x1,j , x2,j , . . . , xi,j
and zeros to other cells satisfies all clauses.

8

Proposition 3.2. ST (Pebn×m) ≤ nm+ 2.

Proof. We consequently apply resolution rule to clauses in cells: we start from the leftmost
and lowermost cell (1, 1) and go through all cells by diagonals: (1, 1), (2, 1), (1, 2), (3, 1), (2, 2),
(1, 3),. . . . We maintain one clause and on every step we change it by the result of the resolution
rule with the clause in the current cell. Finally we get a clause ¬x1,1 and then we resolve it
with x1,1 and get the empty clause.

Corollary 3.1. S(Pebn×m) = SR(Pebn×m) = ST (Pebn×m) = mn+ 2

Proof. By Proposition 3.1 we have mn+2 ≤ S(Pebn×m) and by Proposition 3.2, ST (Pebn×m) ≤
mn+ 2; the inequality S(φ) ≤ SR(φ) ≤ ST (φ) holds for all unsatisfiable φ.

In what follows we assume that m = n and we consider formulas based on squares.

Lemma 3.2. d(Pebn×n) ≥ n/2.

Proof. In order to use Lemma 2.2 we describe a strategy for Witness in the Interrogator-Witness
game. Witness maintains the following invariant:

� Witness maintains a path P from x1,1 to xr,r, where r ∈ [n] (recall that we consider paths
where the next cell is the upper or the right neighbour of the previous).

� If Interrogator asked the values of variables from P , Witness gave answer 1, for all other
variables Witness gave answer 0

� Interrogator did not make requests to cells xr,j and xj,r for r > i.

Initially P consist of one cell x1,1, i.e. r = 1. If Interrogator asks a value of cell from P , then
Witness gives answer 1, otherwise Witness gives answer 0. Witness changes P if Interrogator
makes query to the cell xr,j or xj,r for j > r. Assume that Interrogator asks a value of xr,j (the
second case is similar), where j > r. In that case Witness finds the minimal r′ > r such that
Interrogator did not make requests to all cells xr′,j and xj,r′ for all j ≥ r. If there are no such
r′, then Witness gives up. If there is such r′, then Witness prolongs the path P by the following
way: xr+1,r, . . . , xr′,r, xr′,r+1, . . . xr′,r′ and changes r := r′. We note that by this moment there
were no Interrogator’s request to new cells of P .

A cross with center k is the set of all cells xk,j and xj,k for all j ∈ [n]. Note that if in
some moment P ends in xr,r, then Interrogator made requests for every cross with centers in
1, 2, . . . r − 1. The game ends in two situations: 1) Witness gave up; in this case Interrogator
made requests for all crosses and thus Witness have already earned at least n

2 coins, since every
cell is in at most two crosses. 2) P ends in xn,n and Interrogator asks the value of xn,n. In this
case Witness already earned at least n−1

2 coins for crosses with centers 1, 2, . . . , n − 1 and will
earn 1 coin for the last step. Therefore Witness earns at least n

2 coin, thus d(Pebn×n) ≥ n/2 by
Lemma 2.2.

Corollary 3.2. ST (Peb⊕n×n) ≥ 2n/2.

Proof. Follows from Lemma 2.5.

Corollary 3.3. d(Peb⊕n×n) ≥ n/2.

Proof. Follows from Corollary 3.2 and inequality ST (φ) ≤ 2d(φ).

Proposition 3.3. 1) d(Pebn×n) ≤ 3n; 2) d(Peb⊕n×n) ≤ 6n.

9

Proof. 1) In order to use Lemma 2.3 we have to describe the strategy of the Interrogator that
guarantee that Witness earns at most 3n coins. The idea is the following: if we make several
requests to variables of unsatisfiable formula φ such that after substitution the formula will
split into two parts φ1 and φ2 that have no common variables, then at least one of φ1 and φ2 is
unsatisfiable and Interrogator may makes all further requests only to one of them. Two clauses
of Pebn×n has common variable if they correspond to adjacent cells. At first Interrogator makes
n requests to cells from the column number dn2 e. After it we choose unsatisfiable rectangle of
size at most n × bn/2c. This rectangle may be splitted on two of approximate equal size by
bn/2c requests. So Interrogator makes at most 3n

2 requests and reduce the rectangle n × n to
rectangle with sides at most n

2 . We continue decreasing the size of the rectangle in 2 times. In
some moment one of the clauses would be unsatisfiable. Totally Interrogator makes at most
3n
2 + 3n

4 + 3n
8 + · · · ≤ 3n request; therefore Witness earns at most 3n coins. 2) The proof is the

same as in previous case. Now every cell corresponds to two variables and hence Interrogator
need to make two times more requests.

Proposition 3.4. SR(Peb⊕n×n) = O(n2).

Proof. We will show that Pebn×n has a regular resolution proof of size O(n2) and width 3. We
go through all cells from the rightmost uppermost cell by diagonals and derive ¬xi,j initially
for i+ j = 2n, then for i+ j = 2n− 1 etc. Finally we get ¬x1,1 and using x1,1 derive the empty
clause. The proof is regular since it is a unit-clause propagation.

Lemma 3.1 implies that Peb⊕n×n has a regular proof of size O(n2).

We define formulas Pebk,⊕n×n, that can be obtained from Pebn×n by substitution of ⊕ of two
new variables for all variables from leftmost downmost square k × k (i.e. variables xi,j , where
i, j ≤ k).

Theorem 3.2. The following holds for all k ∈ [n]: 1) SR(Pebk,⊕n×n) = Θ(n2); 2) d(Pebk,⊕n×n) =

Θ(n); 3) max{n2, 2k/2} ≤ ST (Pebk,⊕n×n) ≤ 26k + 2k(n2 + 1);

Proof. 1) The upper bound follows from Proposition 3.4, since the formula Pebk,⊕n×n can be
obtained from Peb⊕n×n by the substitution of zeros instead of several variables. The lower bound

follows from Proposition 3.1, since Pebn×n can be obtained from Pebk,⊕n×n by the substitution of
zeros instead of several variables.

2) The upper bound follows from Proposition 3.3 and the fact that Pebk,⊕n×n can be obtained
from Peb⊕n×n by the substitution of zeros instead of several variables. The lower bound follows

from Lemma 3.2 and the fact that Pebn×n can be obtained from Pebk,⊕n×n by the substitution of
zeros instead of several variables.

3) The lower bound 2k/2 follows from the fact that after substitution xi,j = 0 for all i > k

and j > k the formula Pebk,⊕n×n becomes Peb⊕k×k, the complexity of the latter is at least 2k/2 by
Corollary 3.2. Lower bound n2 follows from Proposition 3.1.

The upper bound. If k = n, then Pebk,⊕n×n = Peb⊕n×n. Then by Proposition 3.3, d(Pebn,⊕n×n) ≤

10

6n, therefore ST (Pebn,⊕n×n) ≤ 26n. Let k < n. Consider formulas

φ1 = Pebk,⊕n×n[xk+1,1 = 1], φ2 = Pebk,⊕n×n[xk+1,1 = 0, xk+1,2 = 1],

φ3 = Pebk,⊕n×n[xk+1,1 = 0, xk+1,2 = 0, xk+1,3 = 1], . . . ,

φk = Pebk,⊕n×n[xk+1,1 = 0, . . . , xk+1,k−1 = 0, xk+1,k = 1],

φk+1 = Pebk,⊕n×n[xk+1,1 = 0, . . . , xk+1,k = 0, x1,k+1 = 1],

φk+2 = Pebk,⊕n×n[xk+1,1 = 0, . . . , xk+1,k = 0, x1,k+1 = 0, x2,k+1 = 1], . . . ,

φ2k = Pebk,⊕n×n[xk+1,1 = 0, . . . , xk+1,k = 0, x1,k+1 = 0 . . . , xk−1,k+1 = 0, xk,k+1 = 1],

φ0 = Pebk,⊕n×n[xk+1,1 = 0, . . . , xk+1,k = 0, x1,k+1 = 0, . . . , xk,k+1 = 0].

Note that all formulas φi for i ∈ [k] contains a subformula that is isomorphic to
Peb(n−k)×(n−i+1); formulas φi for k + 1 ≤ i ≤ 2k contains a subformula that is isomorphic
to Peb(n−i+k+1)×(n−k). Hence by Proposition 3.2 formulas φi for i ∈ [2k] has treelike resolu-

tion proof of size at most n2. Formula φ0 has subformula that is isomorphic to Pebk,⊕k×k, in

the case n = k we show that this subformula has resolution proof of size at most 26k. By
Lemma 2.1 for all φ, ST (φ) ≤ ST (φ[x1 = 0])+ST (φ[x1 = 1])+1. We apply 2k times Lemma 2.1

to formulas φ0, φ2k, φ2k−1, . . . , φi and get a treelike resolution proof of Pebk,⊕n×n of size at most
26k + 2kn2 + 2k.

Acknowledgements. The author is grateful to Anna Malova and Alexander Knop for fruit-
ful discussions and to Dmitry Sokolov and Mikhail Slabodkin for useful comments.

References

[1] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An expo-
nential separation between regular and general resolution. THEORY OF COMPUTING,
3:81–102, 2007.

[2] A. Atserias, J. K. Fichte, and M. Thurley. Clause-learning algorithms with many restarts
and bounded-width resolution. Journal of Artificial Intelligence Research, 40:353–373,
2011.

[3] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-
like and general resolution. Combinatorica, 24:585–604, 2003.

[4] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative
complexity of resolution refinements and cutting planes proof systems. SIAM J. Comput.,
30(5):1462–1484, May 2000.

[5] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and
System Sciences, 9:308–317, 1974.

[6] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[7] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of
the ACM, 7:201–215, 1960.

11

[8] Andreas Goerdt. Regular resolution versus unrestricted resolution. SIAM J. Comput.,
22:661–683, 1993.

[9] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

[10] Jan Krajicek. Bounded Arithmetic, Propositional Logic and Complexity Theory, volume 60
of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.

[11] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game
on graphs. Mathematical Systems Theory, 11:85, 1977.

[12] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning sat solvers as
resolution engines. Artificial Intelligence, 175:512–525, 2011.

[13] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k -sat (prelim-
inary version). In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, January 9-11, 2000, San Francisco, CA, USA., pages 128–136, 2000.

[14] Alasdair Urquhart. The depth of resolution proofs. Studia Logica, 99(1-3):249–364, 2011.

[15] Alasdair Urquhart. A near-optimal separation of regular and general resolution. SIAM J.
Comput., 40:107–121, 2011.

12

