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Abstract

Let a subdivision of the complete graph K, be any graph, which can be
constructed from K, by substituting some edges of K, with chains of two
edges (every such chain adds to a graph a new vertex of degree 2).

Let d > 6 and G be a connected graph different from K, . and its sub-
divisions with maximal vertex degree at most d. We prove that there is a
proper dynamic vertex coloring of G with d colors.
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1 Introduction

In this paper, we consider undirected graphs without loops and multiple
edges. We study proper vertex colorings of such graphs.

The set of vertices of a graph G is denoted by V(G). We denote by Ng(v)
the neighborhood of a vertex v in the graph G, i.e., the set of all vertices
that are adjacent to v.

The degree of a vertex v € V(G) in the graph G is denoted by dg(v). We
denote by A(G) the maximal vertex degree of a graph G.

We study vertex colorings of a graph and always denote the color of a
vertex v in a coloring p by p(v).

Definition 1. A vertex coloring is proper, if any two adjacent vertices have
different colors.

A vertex coloring of a graph G is called dynamic, if for any vertex
v € V(G) of degree at least 2 the neighborhood Ng(v) contains two vertices
of distinct colors.

Recall, that a vertex coloring of a hypergraph is called proper, if any its
hyperedge contains two vertices of different colors.

Consider a hypergraph G on the vertex set V(G), which hyperedges are
neighborhoods of all vertices of degree at least two in the graph G. Thus, a
proper dynamic coloring of the graph G is a proper vertex coloring of G and,
at the same time, a proper vertex coloring of the hypergraph G.

We define the dynamic chromatic number of a graph similarly to the
classic chromatic number.

Definition 2. The dynamic chromatic number x2(G) of a graph G is the
least natural number such that there exists a dynamic proper coloring of
vertices of G with x5(G) colors.

The classic Brooks theorem [1] states that for d > 3 and any connected
graph G, such that A(G) < d and G is not isomorphic to a complete graph
K1 on d+ 1 vertices, we have x(G) < d.

In [2] it is proved, that y2(G) < A(G)+1 for any connected graph G with
A(G) > 3. Moreover, for the case A(G) < 3 the inequality x2(G) < 4 holds
with the only exclusion: x2(C5) = 5 (here C5 denotes a cycle on 5 vertices).
In [3] similar bounds on the list dynamic chromatic number are proved.

In [5] the author has proved an analog of Brooks’ theorem for dynamic
colorings: for any connected graph G' with A(G) < d and d > 8, except for
some exclusions, described in the paper, the inequality y2(G) < d holds. In
this paper, we decrease the bound on the number of colors we need from 8
to 6.



It is interesting, that the constant 6 appears in one more paper on dynamic
colorings. In [6] it is proved, that if x(G) > 6, than there is a proper vertex
coloring of G with x(G) colors, where the set of bad vertices is independent
(a vertex v is bad if dg(v) > 2 and Ng(v) is colored with one color).

In several papers dynamic chromatic numbers of special classes of graphs
are studied. In [4] it is proved, that any regular bipartite graph has a dynamic
proper coloring with 4 colors and some other bounds.

In [7] it is proved, that for any connected planar graph, different from Cj,
its dynamic chromatic number is at most 4. It is also proved here, that the
list dynamic chromatic number of any planar graph is at most 5.

2 Main results and definitions

We formulate two main theorems of this paper similarly to the paper [5], but
with new bound on d.

Theorem 1. Let d > 6 be an integer and G be a connected graph without
vertices of degree 2, such that A(G) < d. Assume, that G is different from a
complete graph on d + 1 vertices. Then x2(G) < d.

In the second theorem we add vertices of degree 2. We need to define our
class of exclusions.

Definition 3. Let n > 3 and let K,, be a complete graph. We say that a
graph H is a subdivision of K, if it is obtained from K, by the following
operation: we replace several edges of the graph K, by chains of length 2
(and add with any such chain a new vertex of degree 2).

Denote by KC,, the class of graphs that consists of K,, and all its subdivi-
sions.

Theorem 2. Let d > 6.

1) If a graph H € Kgy1, then xo(H) =d + 1.

2) If G is a connected graph with A(G) < d that is not isomorphic to a
graph of the class Kqy1, then x2(G) < d.

The main result of the paper is Theorem 2. Its derivation from Theorem 1,
written in [5] is rather easy and requires the number of colors to be at least 5.
In this paper, the number of colors is at least 6, hence, this derivation is valid
in our case, too. We will not repeat the text from [5].

In what following, we prove the new variant of theorem 1. We start with
some necessary definitions.



Definition 4. Let G be a graph and p be its vertex coloring.

1) A vertex v € V(QG) is bad in the coloring p, if dg(v) > 2 and Ng(v) is
colored in p with one color.

2) Let a and b be adjacent vertices. The vertex b is a dangerous neighbor
of the vertex a in the coloring p of the graph G, if dg(b) > 1 and the vertices
of the set Ng(b) \ {a} are colored in p with one color different from p(a).

Definition 5. Let p and p’ be two colorings of a graph G. We write p’ <g p
if the following two conditions are satisfied.

(1) If u and v are adjacent vertices and p'(u) = p/(v), then p(u) = p(v).

(2) Any vertex that is bad in p’ is bad in p as well.

We write p/ < p if there exists a bad vertex in the coloring p that is not
bad in p'.

Remark 1. 1) It is easily seen that if dg(b) # 2, then the vertex b can be a
dangerous neighbor for at most one other vertex.

2) Assume that dg(a) > 2 and we can make the vertex a bad by changing
color of one of its neighbors. Obviously, such a neighbor of a is unique and
is a dangerous neighbor of a.

3) If p <g p1 and p; <¢ p2 for some colorings p, p1, and py, then p <g ps.
If at least one of the “inequalities” above is strict, then p <g ps.

Let us write down a plan of the proof of Theorem 1. This plan coincides
with the plan of the proof in [5]. However, almost all details of these proofs
are different.

Let G be a connected graph different from the complete graph on d + 1
vertices, without vertices of degree 2 and such that A(G) < d. By Brooks
Theorem, there exist proper colorings of vertices of the graph GG with d colors.
Unfortunately, such colorings may contain bad vertices. We select a proper
coloring p with d colors having the minimal number of bad vertices.

Let a be a bad vertex in the coloring p. We want to change the coloring
so that the vertex a is not bad in the new coloring and we get no new bad
vertices. For this purpose, we use a method that reminds the construction of
a classical alternating chain in the proof of the Brooks Theorem. At the same
time, we meet really more difficulties constructing our chain of prohibitions.
In Brooks Theorem, the only prohibition on coloring a vertex a with color
1 is the existence of a neighbor of color 7; in our case, the existence of a
dangerous neighbor b such that all the vertices in Ng(b) \ {a} have color i
is also a prohibition. This fact doubles the number of potential prohibitions.
However, we do not increase the number of colors.

For this reason, the main algorithm of constructing the chain of prohibi-
tions calls several times an auxiliary algorithm DN that changes the coloring



and reduces the number of prohibitions on the required color for the next
considered vertex. We describe the algorithm DN in Sec. 3. In Sec. 4, we
describe the main algorithm of constructing the chain of prohibitions.

In the new proof, we managed to save one necessary color in the new
algorithm DN and one necessary color in the new main algorithm. Thus, the
lower bound on the number of necessary colors is decreased from 8 to 6.

In what follows we need some notation for digraphs.

Definition 6. Let I’ be a digraph. The set of its vertices is denoted by V (F),
the set of its arcs (i.e., directed edges) is denoted by A(F).

For a vertex v € V(F') we use the following notation:

e NL(v)={x e V(F) : vz € A(F)};

o No(v)={z e V(F) : 2ve A(F)}.

3 Algorithm DN

3.1 Setting of the problem

In this section, we write down an auxiliary algorithm DN (H, p, a, J), which
will be often called by the main algorithm.

Given:

e A graph H and a coloring p of vertices of H with at least 4 colors (this
coloring can be not proper).

e A bad vertex a in the coloring p of the graph H. For convenience, set
the following notation: p(a) = jo and j; is the color of vertices of the set
Ny (a) in p.

e Ordered set of different colors J = (jo, J3, J4, j5), such that the color jy
can coincide only with j; and the color j; can coincide only with 7js.

The aim of the algorithm DN is changing the coloring p to the col-
oring p', such that p’ <y p and one of the conditions (DN1) and (DN2)
holds.

(DN1). p'(a) = jo. f & # a and p'(x) # p(x), then {p(z), p'(x)} =
{2, ja}-

(DN2). There exists unique vertex v € Ng(a), such that p'(v) = js.
Any different from v vertex of the set Ny (a) has color j; in p'. If © # v and

p'(x) # p(x), then {p(x), p'(x)} = {Js, J5}-



3.2 Construction of the set D

First, we construct a sequence of colors (j,). For n € {0,1,2,3,4,5} this
sequence is defined. For each positive integer k we set:

Jak+2 = J2,  Jak+3 = J3y  Jak+a = J4y  Jak+s = J5-

We pass to constructing auxiliary sets D and D* C D, and a digraph D on
the vertex set D.

We will put into D and into D* some vertices of H and give orientation
to some edges between vertices of the set D. Arcs of the digraph D will start
only at vertices of the set D*.

The beginning. First, we set D = {a} UNg(a), D*={a}, A(D)=
{axz : v € Ng(a)}.

Let us describe a step of construction. Consider a vertex u € D \ D*,
let p(u) = jg. Denote by M the set of all vertices x € Ny(u), such that
vu g AD). If M = @ or M # @ and p(v) = jry1 for every vertex v € M,
then we put the vertex u into D* and all vertices of the set M \ D — into D.
In this case, we add into A(D) arcs from u to all vertices of the set M.

If D\ D* = @ or the step described above can be performed with no
vertex of the set D\ D*, the construction is finished.

Clearly, since the graph H is finite, the construction will be finished. Let
D, D* and D be the sets and the digraph obtained after the construction is
finished.

Remark 2. 1) By constructing, all vertices of the set D are reachable in the
digraph D from the root a.

2) If x € D*, then Ny(z) = Np(2) = N5 (2) UNE(z). If 2 # a, then the
set N (z) is nonempty.

3) If x € D\ D*, then Ng(z) = N5(z) # @.

Definition 7. Let us divide vertices of the set D into several levels: level_ Dy,
consists of all vertices z, for which the length of the shortest az-path in D is
equal to k.

Note, that Dy = {a}.
Remark 3. Let u € Dy,.

1) By constructing, for each arc zy € A(D) if p(x) = jm, then p(y) =
Jm+1- Since Dy = {a} and p(a) = jo, we have p(u) = jy.

2) All vertices of the set N (u) have color ji_; and all vertices of the set
NZ(u) have color jj1.

3) If u € D*, then by remark 2 the set Ny (z) is colored in p with two
colors: jx_1 and jry1 (maybe, one of these colors is absent).
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4) If x € D\ D*, then the set Ny(x) is colored in p with the color ji_;.
Moreover, Ny (z) \ Np(z) # @ and there is a vertex in this set which have
color different from jjy; in the coloring p (otherwise, we can continue the
construction of D).

Definition 8. 1) For each vertex u € D* different from a we choose one arc
which comes to u from a vertex of previous level. Let A’ be the set of all
chosen arcs.

2) If wv € A’, then u is the ancestor of v and v is a descendant of wu.

3) Denote by D' the digraph with set of vertices D* and set of arcs A’
(see figure 1).

Puc. 1: The digraph D and the directed tree D'. Arcs of the set A’ are bold.

Remark 4. 1) Note, that D' is a directed tree rooted at a.
2) Any vertex of D*, different from a, has unique ancestor.

Definition 9. For a vertex u € D* denote by D(u) the set of all vertices
of D*, which are reachable from u in the digraph D’ (see figure 1).

Clearly, D(a) = D*.

3.3 Recoloring vertices of D*

In this section, p is the given coloring. Studying a certain new coloring p*,
we say that a vertex v is recolored if p*(v) # p(v).

Lemma 1. Let v € Dy. Then there exists a coloring p, of vertices of the set
D(v), satisfying the conditions (P1), (P2) and one of the conditions (DN1')
and (DN2').



(P1). If p(z) # p'(x), then x € D(v).
(P2).  For any vertex x € D(v), v # v either no vertex of the set N (x)
15 recolored or exactly two vertices are recolored: the ancestor of v and one

of the descendants of v.

(DNY).  p,(v) = jiso. If x # v and p,(x) # p(x), then {p(z), p,(x)} =
{kvas Jrral-

(DN2').  There exists unique vertex u € N%, (v), such that pl (u) = Jris-
Any different from w vertex of the set Ngy(v) has color jiy1 in pl. If x # u
and pi,(x) # p(x), then {p(z), p,(z)} = {jr+3: Jr+s}-

Proof. We call the changing of the coloring p, described above, a recoloring
of type 1, if the condition (DN1’) holds and a recoloring of type 2, if the
condition (DN2') holds.

We prove Lemma by induction.

Base of induction. The vertex v € D* has no descendants.
In this case, we change color of the vertex v: let p/(v) = jgio. All other
vertices have the same colors in p and p. Clearly, the conditions (P1), (P2)
and (R1) hold.

Induction step. The vertexr v € D* has descendants.
Recall, that p(v) = jg. Let uy, ..., u,, be all descendants of v.

Note, that the vertex sets D(uy), ..., D(u,,) are pairwise disjoint and their
union is D(v) \ {v} (see figure 2).

Consider two cases.

Puc. 2: The vertex v and the sets D(uy), ..., D(uy,).

1. For a vertex u; there exists a recoloring of type 1.
Perform this recoloring of type 1. Let p! be obtained coloring. Clearly, for
D(v) the conditions (P1) and (DN2') hold. It remains to verify that condition
(P2) also holds. Consider a vertex « € D(v), x # v. Assume, that there
are recolored vertices in Ny (). It is clear that then x € D(u;). Since all
recolored vertices belong to levels of the same parity and w; is recolored, we



have = # u;. Then by induction assumption the condition (P2) holds for the
vertex x.

2. For each of the vertices uy, ..., u,, there exists a recoloring of type 2.
Perform all these recolorings of type 2 simultaneously, and, after that, change
color of the vertex v to jii2. Prove, that the coloring p! obtained as a result
is what we want.

It is clear, that for D(v) and p! conditions (P1) and (DN1’) hold. It
remains to verify condition (P2). Consider a vertex x € D(v), x # v. Assume,
that there are recolored vertices in N7 (2) and € D(w;). Then only vertices
of the set D(u;) and the vertex v can be the ancestor and descendants of x.
Thus, we can consider only vertices of the set D; and their recoloring of
type 2. If x # wu;, then condition (P2) for x holds by induction assumption
for the recoloring of vertices of D(u;). Consider the vertex w;. Exactly one
of its descendants changed its color in recoloring of type 2 of D(w;). The
ancestor of u; is v and this vertex is also recolored. Hence, condition (P2)
holds for u;. O

3.4 Recoloring for the algorithm DN

Consider a coloring p/, from Lemma 1 and define a coloring p’ as follows:

: o), if a€ D,
ple) = { olz),  if aeV(H)\ D"
Let us verify that this coloring satisfies requirements of the algorithm DN.
Conditions (P1) and (DN1') for the coloring p) imply condition (DN1)
for the coloring p'. Conditions (P1) and (DN2') for the coloring p/, imply
condition (DN?2) for the coloring p'.

It remains to check, that p’ <y p. Assume, that the vertex x € V(H) is
bad in p/, but is not bad in p. Then Ny (x) contains at least one recolored
vertex y. By condition (P1) only vertices of the set D* can be recolored. All
vertices adjacent to D* belong to D. Hence, x € D. Let x € Dy. Consider
two cases.

1.z € D\ D"

By remark 3, then all vertices of the set Ny(z) are colored in p with
color jr_1. As we know, among these vertices there is a recolored one, which
has color jiy1 in p'. Thus, there is a vertex of color ji,1 in the coloring p’
in Ny (z). By remark 3, the set M = Ny (x)\Np(x) # @ and this set contains
a vertex colored in p with a color s # j.1. The colorings p and p’ coincide
on the set M, hence, there is a vertex of color s in the coloring p’ in Ny (z).
Thus, the vertex z is not bad in p’. We obtain a contradiction.
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2.z € D"
By remark 2, then Ny(z) = Np(z) = NZ(z) UNG(z). By remark 3, all
vertices of No(x) have color j,_ in p and all vertices of NJ(z) have color
Jk+1 10 p.

Since the vertex z is not bad in p, we have « # a. Then by condition (P2)
for the coloring p, exactly two vertices of the set Ny (x) are recolored in p':
the ancestor y and one of descendants z. Since p(y) = jr—1 and p(z) = Jri1,
we have p/(y) = jry1 and p'(2) = jrrs. Thus, the vertex x is not bad in the
coloring p’. We obtain a contradiction.

Thus, we have proved that p’ <y p. The coloring p’ is the result of work
of the algorithm DN (H, p,a,J).

3.5 Algorithm DN: properties
We start with useful property of recoloring from algorithm DN.

Lemma 2. Assume, that the algorithm DN (H, p,u,J) has changed the col-
oring p to the coloring p'. Then there is no bad vertex all neighbors of which
are recolored.

Proof. Assume that x is such vertex. Clearly, * # a. Note, that
Ny (x) C D*, since all recolored vertices belong to D*. Hence, x € D. Since
N5(z) = Ng(z), we have that © € D* (see Remark 2).

Without loss of generality assume, that x € Dy. Since x € D*, we know,
that Ny (r) = N5(x) U NEL(x). Moreover, NZ(z) # @ and all vertices of
this set have color j,_; in the coloring p and vertices of the set N%(a:) have
color jry1 # jr_1 in p. Since the vertex x is bad in the coloring p, we obtain
N%(a:) = Q.

Thus, the vertex x has the ancestor, but has no descendants. Recall the
construction of the coloring p’: on vertices of the set D* the coloring p’ co-
incides with p/, and p/, satisfies condition (P2) (see Lemma 1). For the ver-
tex x € D*, having no descendants, condition (P2) means that the ancestor
of x is not recolored. We obtain a contradiction. O

Let us return to our initial graph G and fix a vertex b € V(G), dg(b) > 3.
Let B C Ng(b). Consider a new graph G’, obtained from G upon deleting
edges, joining b with B. Consider a coloring p of vertices of the graph G.
Clearly, p is also a coloring of G’. The coloring p may be not proper.

Lemma 3. Let u € B, p(u) = jo, all vertices of the set Ng/(u) are colored
in p with color ji, jo # j1. Consider an ordered set of different colors J =

11



(72, 3, Ja, Js), which is suited to algorithm DN (i.e., jo can coincide only
with js, and j; can coincide only with js ).

Assume, that p(b) ¢ J and the following condition hold:

(J) there exists a vertex x € Ng(b), such that p(z) € {jo., j2, ja}

Assume that the algorithm DN(G', p,u,J) changes the coloring p to p'.
Then p' <g p and p'(b) = p(b).

Proof. By properties of algorithm DN, we have p’ < p. Since p(b) & J,
the vertex b can be recolored only if b = u or b € N/ (u). Since none of these
conditions holds, p'(b) = p(b).

Let x and y be adjacent in G, p'(z) = p'(y), but p(z) # p(y). Since
P <g p, the vertices x and y are not adjacent in G’. Hence without loss
of generality we can set x = b, y € B. Since s = p/'(b) = p(b) € J, and all
recolored vertices have in p’ colors of the set J, the vertex y must have color s
in p. Thus, p(b) = p(y), we obtain a contradiction. Hence, if the vertices x
and y are adjacent in G and p'(z) = p/(y), then p(z) = p(y).

Let us prove than no new bad vertex appears in p'. If we consider p’ and p
as colorings of the graph G’, then all vertices bad in p’ are bad in p (recall,
that p' <g p).

Now consider p’ and p as colorings of the graph G. Let a vertex x be bad
in p/, but not bad in p (as in colorings of the graph G). Clearly, z has in G
and G’ different neighborhoods. Thus, it is enough to verify vertices of the
set B and the vertex b.

Check of the vertex b.
By condition (J) there exists a vertex = € B, such that p(x) ¢ {Jjo, ja, ja}-
Then p'(z) ¢ {jo,j2,ja}- On the other side, the vertex u € B has color
p(u) = jo, consequently, p'(u) € {jo, j2}. Thus, the set Ng(b) contains vertices
having different colors in p’. Hence, the vertex b is not bad in the coloring p’
of the graph G.

Check of the set B.
Consider a vertex = € B. It is adjacent to b and p'(b) = p(b). In the coloring p/
no new vertices of color p(b) appear. Hence, if x is bad in the coloring p’ of
the graph G, then z is bad in the coloring p of the graph G.

Thus, p' <g p. ]
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4 Construction of a dynamic coloring for a
graph without vertices of degree 2

In this section, d > 6 is an integer and G is a connected graph without vertices
of degree 2, such that A(G) < d and G differs from the complete graph K, .
This section is devoted to a proof of Theorem 1; i.e., we construct a dynamic
coloring of the graph G with d colors.

4.1 Algorithm for construction of a chain. Basic prin-
ciples of choice of vertices and the start of the con-
struction

By Brooks Theorem, there exists a proper coloring of the graph G with d
colors. Assume that the coloring p contains a bad vertex a. Let p(a) = 0,
let all the vertices in Ng(a) have color 1, and let color 2 be different from 0
and 1. We want to replace the coloring p by a coloring p/ < p such that some
(but not all) of the vertices in Ng(a) have color 2 in p/, while the remaining
vertices in Ng(a) preserve their color. Then the vertex a is not bad in the
coloring p'; hence, p’ <g p.

Set ¢(k) = 1 for odd k and ¢(k) = 2 for even k. We construct a sequence of
different vertices by, bs, ..., bg,.... For any vertex b, we will define a unique
ancestor asc(by), which will be always a vertex adjacent to by.

Definition 10. 1) Set N/(bk) = NG(bk) \ {asc(bk)}.
2) For u € N'(by) set N'(u) = Ng(u) \ {bx}.

The idea of our construction reminds the classical method of alternating
chains: every next vertex bg,q is a “prohibition” that forbids to recolor by
with color ¢(k + 1). At the same time, the construction is significantly more
complicated than in the classical proof of the Brooks theorem.

Definition 11. Let i # c(k).

1) If there exists a vertex v € N'(b) of color p(v) = i, then such a
situation is called a prohibition of type 1 on color i for the vertex by.

2) If a vertex u € N'(by) is such that all vertices of the set N'(u) are colored
with color ¢ in the coloring p, then such a situation is called a prohibition of
type 2 on color i, and the vertex u is called the basic vertex of this prohibition.

In this situation, we will use the notation 22(p,u) = 4. In the case where
it is clear what coloring we deal with, we will write simply 22(u).

Remark 5. A vertex by can have several prohibitions of type 2 on color @
with different basic vertices.

13



Let us pass to construction of the chain. We take as b; an arbitrary vertex
in Ng(a); the vertex ag = a is the ancestor of b;. For k > 1, the vertex by 1
satisfies the following conditions:
— pbry1) = c(k +1);
— one of the following two situations is possible.
e the vertices by and byyq are adjacent, asc(bgr1) = bg, and the vertex
brr1 € N'(by,) is a prohibition of type 1 on color ¢(k + 1) for the vertex by;
e asc(byy1) = ap # by, the vertex a € N'(by) is the basic vertex of a
prohibition of type 2 on color ¢(k + 1) for the vertex by and by 1 € N'(ay).

Definition 12. A sequence of vertices by, ..., b, constructed for a coloring p
according to the above rules is called a chain of prohibitions in the coloring p.

In Fig. 3, ¢(k) = 1 and ¢(k 4+ 1) = 2. On the left, by, is a prohibition of
type 1 on color ¢(k + 1) = 2 for the vertex by; on the right, a prohibition of
type 2 with basic vertex ay is shown.

2 bk+1

a

Puc. 3: Prohibitions of type 1 and of type 2.

Remark 6. If asc(by) = ar_1 # br_1, then the vertex ay_; is adjacent to
both vertices by_1 and by; hence, p(ax_1) & {c(k —1),c(k)} = {1,2}.

4.2 Gluing and ungluing of colors 1 and 2

Definition 13. Construct a new coloring p; for a coloring p by joining col-
ors 1 and 2 into one new color /.

We will say that the coloring p; is obtained from p by gluing colors 1
and 2.

Note some properties of gluing colors.

e The coloring p; may be not proper. If x,y are two adjacent vertices of the
same color in py, then p;(x) = p;(y) = I, one of vertices = and y has color 1
in p and the other has color 2.
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e If v is a bad vertex in p; then either v is a bad vertex in p, or vertices of
the set Ng(v) are colored in p with colors 1 and 2.

Definition 14. Let a coloring p/; is obtained from a coloring p; upon recol-
oring some vertices and no new vertices of color I are added.

Since each vertex z of color pf(z) = I has color p;(x) = I, this vertex
also has color p(x) € {1,2}. For each such vertex we set p'(z) = p(x). For
each vertex y of color p}(y) # I we set p'(y) = p(y).

We say that the coloring p’ defined above is obtained from p’ by ungluing
of the color I.

The following lemma will be often used, sometimes without reference.

Lemma 4. Let a coloring p} is obtained from pr upon recoloring some ver-
tices. Assume that no vertex was recolored with color I and at most one ver-
tex of color I was recolored with another color. Let a coloring p' is obtained
from p'; by ungluing of the color I. Assume, that p; < pr. Then p' <g p.

Proof. Let zy € E(G) and p'(z) = p'(y). If p/(x) € {1,2}, then p'(z) = p(x)
and p'(y) = p(y), hence, p(z) = p(y).

Let p/(x) ¢ {1,2}. Then p}(x) = p/(x) = p'(y) = p)(y). It follows from
07 <g p1, that pr(x) = pr(y). If p;(x) = pr(y) = I, then at least two vertices
of color I were recolored with color ¢ # I. We have a contradiction. Hence,
pr(x) = pi(y) = j # I and, therefore, p(z) = pr(x) = pr(y) = p(y).

Assume, that w is a bad vertex in the coloring p’ of the graph G and all
vertices of the set Ng(w) have in p’ color ¢. If i € {1,2}, then all vertices of
the set Ng(w) have color ¢ in the coloring p, too.

Let i ¢ {1,2}. Then all vertices of the set Ng(w) in the coloring p) also
have color 7, i.e., w is a bad vertex in the coloring p of the graph G. It follows
from p} <g pr, that w is a bad vertex in the coloring p; of the graph G.
Assume, that vertices of Ng(w) have color I in p!. Since dg(w) > 3, at
least three vertices of color I were recolored. This contradicts the condition
of Lemma. Hence, vertices of Ng(w) have color j # I in p’. Then in the
coloring p vertices of the set Ng(w) also have color i, i.e., w is a bad vertex
in the coloring p of the graph G. m

4.3 Conditions (C1) and (C2)

Let by, ..., b, be a chain of prohibitions for a coloring p. Before describing a
step of the algorithm (choice of the next vertex of the sequence), we formu-
late two important conditions and indicate several properties of a chain of
prohibitions that satisfies these conditions.
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(C1(p)) Forany i € {1,...,p} there exists a unique prohibition on color
c(i+ 1) for the vertex b;.

(C2(p)) Assume that i € {1,...,p}, v € Ng(b;), and all neighbors of v
have colors 1 and 2. Then v is a basic vertex for a prohibition of type 2 on color
c(i+ 1) for the vertex b;.

Before the step of algorithm, choosing a vertex by, we assume, that con-
ditions C1(k — 1) and C2(k — 1) hold for the current coloring and the
chain by, ..., bg_1.

The following two lemmas, proved in [5], show possibilities of recoloring
vertices in the chain of prohibitions.

Lemma 5. Let by,...,bs be a chain of prohibitions for a proper coloring p
that satisfies conditions (C'1(s—1)) and (C2(s—1)). Let p' be a new coloring
such that p'(b;) = c(i + 1) fori € {1,...,s} and the colors of the remaining
vertices are the same as in the coloring p. Then the following statements
hold.

1) If vertices u and v are adjacent and p'(v) = p'(u), then either u = by,
v € N'(bs) and p'(v) = p(v) = c(s+ 1), orv =bs, u € N'(bs) and p'(u) =
plu) = c(s +1).

2) The vertez a is not bad in the coloring p'.

3) If a vertex v is bad in p’' and is not bad in p, then v € N'(by), and v is
the basic vertex of a prohibition of type 2 on color c(s+ 1) for the vertex b
in p.

Lemma 6. Let by, ..., b, be a chain of prohibitions for a proper coloring p
that satisfies conditions (C1(s—1)) and (C2(s—1)). Assume that there is no
prohibition on color c(s+ 1) for the vertex bs. Then there exists a coloring p
of vertices of the graph G such that p' <g p.

We need one more lemma.

Lemma 7. Let by,...,bs be a chain of prohibitions for a proper coloring p
that satisfies conditions (C1(s — 1)) and (C2(s — 1)). Let G" be a subgraph
of G, obtained upon deleting several edges, such that a is not an isolated
vertez in G' (maybe, G' = G).

Let a coloring p' <g p be obtained from p upon recoloring some vertices.
Assume, that p'(v) € {1,2} implies p(v) € {1,2}. Then the following state-
ments hold.

1) Either by, ..., bs is a chain of prohibitions for the coloring p', satisfying
conditions (C1(s — 1)) and (C2(s — 1)), or there exists a coloring p" <g p.

2) If one of the vertices by, . .., bs is recolored, then there ezists a coloring

o' <a p.
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3) Assume, that a proper coloring p* is obtained from p' upon recoloring
the vertex by with a colori ¢ {1,2} and p* <g p’. Then there exists a coloring

P’ <a p-

Proof. 1) and 2) Recall, that o <g p. Since the vertex a is not isolated
in the graph G’, it is a bad vertex in the coloring p of the graph G’. By
Lemma 2, there is a vertex in Ng(a) which is not recolored. Thus, if at least
one vertex of the set Ng(a) is recolored, then a is not a bad vertex in the
coloring p' of the graph G. Then p’ <g p and both statements 1 and 2 are
proved. Thus, in what follows we assume that for any vertex € Ng(a) we
have p'(z) = p(z) = 1.

Let t be a maximal index such that ¢ < s and all vertices by, ..., b; were
not recolored. Prove by induction for ¢ < ¢, that either conditions C1(¢)
and C2(¢) hold, or there exists a coloring p”, such that p” <& p. Assume,
that for all m < ¢ conditions C'1(m) and C'2(m) hold and prove the statement
for ¢.

Consider the vertex b,, where ¢ < t. This vertex has unique prohibition
on color ¢(¢ 4+ 1) in the coloring p. Assume, that this is a prohibition of
type 1 and a vertex w € N’(b) is such that p(w) = ¢(£ + 1). The vertex w is
adjacent to by, which is not recolored and has color ¢(¢) € {1,2}. Recall, that
p(w) € {1,2} implies p'(w) € {1,2}. Hence, p(w) = p'(w) (otherwise, the
coloring p is not proper). By conditions C'1(¢) and C2(¢) for the coloring p,
in the case we consider there is no vertex v € Ni;(b;), all neighbors of which
have colors 1 and 2 in p. Hence, there is no such vertex in the coloring p'.
Thus, conditions C'1(¢) and C2(¢) hold for the coloring p'.

Assume, that the prohibition on color ¢(¢ + 1) for the vertex b, in p has
type 2 and basic vertex v. Then all neighbors of v have colors 1 and 2 in p and
such vertex in N’(b;) is unique up to condition C2(¢) for the coloring p. Hence,
if a vertex of Nj,(by) have in the coloring p" all neighbors of colors 1 and 2,
then this vertex is v. Thus, condition C'2(¢) holds for p’ and the vertex b, has
at most one prohibition on color ¢(¢ 4+ 1) in p’. If there is such prohibition,
then condition C'1(¢) holds for p'. If there is no such prohibition, then by
lemma 6 there exists a coloring p” <g p.

In the case where t = s Lemma is proved. If ¢ < s, then we consider
the vertex b;y1, which was recolored. Hence, the only prohibition on the
color ¢(t + 1) for the vertex b, disappears in p’. By condition C2(t) for the
coloring p, a new prohibition on color ¢(t+ 1) for the vertex b, cannot appear.
Hence, by lemma 6 there exists a coloring p” <¢g p.

3) The only case remaining is where conditions (C1l(s — 1)) and
(C2(s — 1)) hold for p'. In the coloring p*, all vertices of colors 1 and 2, ex-
cept for by, preserve their colors. We may assume, that conditions (C'1(s—2))
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and (C2(s — 2)) hold for the coloring p* (otherwise, for a certain vertex b;
its prohibition on color ¢(t + 1) disappears and one can apply Lemma 6).
Upon recoloring b, the prohibition on color ¢(s) for b;_; disappears and by
Lemma 6 there is a coloring p” <¢g p. O

Remark 7. Let p and p’ be vertex colorings of a graph G and G’ be a
subgraph suitable for the algorithm DN. Let the coloring p’ is obtained from
the coloring p in one of the following ways:

e as a result of applying the algorithm DN(G',p,x,J), where either
1,2.¢ Jor {jo = ju, jo} = {1,2}, or {j1 = j5. 5} = {1,2};

e as a result of applying the algorithm DN(G’, p;, x,J), where I ¢ J,
and unglying of the color I.

Then the pair of colorings p and p’ satisfies the condition of Lemma 7.

4.4 A step of the main algorithm

The current coloring of vertices which the algorithm deals with we denote
by p'. Before the beginning of the first step (choice of the vertex by), set
pt = p. On some steps, the algorithm will change the current coloring such
that the condition p' < p always holds.

Assume, that vertices by, ...,bg_1 (where k > 2) are chosen, pairwise dif-
ferent and p'(b;) = c(4) for all s € {1, ...,k — 1}. The chain of prohibitions is
constructed such that before the beginning of step on which b, will be chosen
conditions (C1(k — 1)) and (C2(k — 1)) hold for the current coloring p'.

There are two possible results of the step of the main algorithm:

e a vertex by, will be chosen and the coloring p' will be changed such
that the chain of prohibitions by, ..., b, will satisfy conditions (C1(k)) and
(C2(k));

e a coloring p” will be constructed, such that p” <g p.

In the second case the algorithm stops, in the first case the algorithm will
pass to the next step — choice of by ;.

A. Choice of the vertex b,

By condition (C'1(k — 1)), the vertex by_; has unique prohibition on the
color ¢(k). Consider this prohibition.

If it is a prohibition of type 1, then there exists a unique vertex u €
NG (bk—1), colored with ¢(k). In this case, set by = u, asc(by) = b_1.

Let by has a prohibition of type 2 on color ¢(k) with basic vertex v.
Then all vertices of the set N’(v) have color ¢(k). We choose as by any of
these vertices and set asc(by) = ax_1 = v.
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If vertices by, ..., b, are pairwise different, we pass to step B. Otherwise,
we pass to step A.1, where the algorithm will stop.

A.1. Repetition of a vertex
Assume that b, = b;, where t < k. Recall that the vertices by,..., by_; are
pairwise different. Consider the following coloring p’: we set p/(b;) = ¢(i + 1)
for ¢ from 1 to k — 1 and p'(v) = p'(v) for the remaining vertices v.

Since the coloring p! satisfies conditions (C'1(k—1)) and (C2(k —1)), the
coloring p’ satisfies the conditions of Lemma 5 for s = k— 1. We claim that p’
is a proper coloring and p’ <g p.

Assume that the coloring p’ contains two adjacent vertices of the same
color. By lemma 5, one of these vertices is by_; whose color became c(k) and
the second vertex is a vertex v € N’(by_;) such that p'(v) = p'(v) = c(k),
i.e., the vertex v imposes a prohibition of type 1 on color ¢(k) for the vertex
bp_1 in the coloring p'. By our construction, this means that v = b, = by,
and this vertex was recolored with color ¢(t + 1) = ¢(k + 1). Then lemma 5
implies, that p’ is a proper coloring.

Assume that a new bad vertex v appeared in the coloring p’. By Lemma 5,
v = ay_1, and all vertices in N’(ax_1) have color ¢(k) in the coloring p'. By
construction, the vertex ay_; is adjacent to b, = by, and p'(by) = ¢(t + 1) =
c(k 4+ 1) # c(k). Then the vertices b, by_1 € Ng(v) have different colors in
the coloring p/, and we get a contradiction.

By Lemma 5, we have p’ <g p* <g p. The algorithm stops.

In what follows we consider the case where the vertices by, ..., b._1, by are
pairwise different.

B. The counter p and the collection Z

Consider a coloring p}, obtained from p' upon gluing colors 1 and 2.
Denote by U the set of all vertices of N’(by), which are basic vertices of
prohibitions of type 2 for by, in the coloring pt. Set T'= N'(b;,)\U and p = |U]|.

Remark 8. In particular, if y € N’(b;) is such that all vertices of the set
N’(y) have colors 1 and 2 in p', then y € U and 22(p},y) = I.

Definition 15. Define a collection of colors Z as follows: for each vertex
u € U we put in Z the color 22(p}, u), and for each vertex t € T we put in Z
its color pl(t).

Remark 9. Clearly, |Z| = |N/(b;)| < d — 1. Note, that a color can occur in
the collection Z more than once.

C. Changing the coloring p!
The step C will provide one of the three following results:
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e the coloring p' will be modified such that b, has exactly one prohi-
bition on color I in pi;

e the coloring p! will be modified such that b, has no prohibition on a
certain color 7 in p};

e a coloring p” <g p will be constructed, the algorithm will stop.

Step C has complicated structure shown on figure 4. In what follows we
write down details of this step.

C

define: ® counter.l?
e color i

- o/
P4 C.1 7 N
define: counter ¢ r I q)

choose: vertex u
perform: algorithm DN C.3 pt

-0 define: counter q
l 9= choose: vertex

1 perform: algorlthm DN

p -f— C2 pJ
define: counter q
choose: vertex u
perform: algorithm DN

q=0
F

Puc. 4: Scheme of Step C

Let us start. If the color I occurs in Z at most once, we set ¢ = I. Let [
occurs in Z at least twice. Since |Z| < d — 1, and the number of colors in p}
is d — 1 (recall, that colors 1 and 2 are glued together into the color I), one
of the colors does not occur in Z, let it be 7.

Remark 10. During Step C we will many times change the current coloring,
applying algorithm DN to the coloring p' or to the coloring p}. In all cases,
the set of colors J contains none of colors 1, 2 and I. Such set J satisfies
the conditions of remark 7. Hence, Lemma 7 can be applied to current and
new colorings. We will always consider the case, where by, ..., by is a chain of
prohibitions in the new coloring, satisfying conditions (C'1(k — 1)) and (C2(k —
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1)). In the other case, by Lemma 7 there exists a coloring o/, such that p’ <¢g p
and the algorithm stops.

C.l1. i#1I partl
Denote by ¢ the number of vertices u € U such that p}(u) = ¢ and
22(py,u) # 1.

If ¢ = 0, then we pass to step C.2. If ¢ # 0, then we choose a vertex u € U
such that p'(u) =i and 22(u) # I.

We want to change the coloring p' such that in a new coloring by, ..., by
will be a chain of prohibitions satisfying conditions C1(k—1) and C2(k—1),
and either p will decrease, or p will be preserved and ¢ will decrease (note,
that the color i can be changed in one of the cases).

C.1.1.  Choice of colors for the algorithm DN
Set j4s = jo =1, J5 = j1 = 2z2(u). It remains to choose colors js and j;. We
want to do it such that condition (J) holds and condition (P) doesn’t hold.

(P) There exists a vertex x € T, such that p'(z) = j, and vertices of the
set N’(z) are colored in p} with colors j; and j3.

Let T* be the set of all vertices of T' which color in p} is not I. Since by,
has at least two prohibitions on color I and at least one prohibition of type 2
on color j; # I (with basic vertex u), then |T%| < d — 4. Let C* be the set of
all colors, except for I, jo and j;. Then |C*| = d — 4.

If there is a color of the set C* which is not presented in the coloring p
among vertices of the set T™, let j5 be this color. Since we have at least 5
colors, we can choose color js ¢ {I,jo,j1,J2}. Clearly, condition (P) does
not hold. Recall, that color j4 = i ¢ Z. Hence, there is no prohibition of
type 1 on this color, and, consequently, j4 is not presented in the coloring p?
in 7" C T. Thus, in this case condition (J) holds.

In the remaining case, all colors of the set C* are presented in p} among
vertices of the set 7*. Then |T*| = |C*| = d — 4 and for any color of C* there
is exactly one vertex of this color in T*. Since |C*| =d —4 > 2 and j4 ¢ C*,
in this case, condition (/) holds for any choice of j5 and js.

Lemma 8. Assume, that for any choice of colors js and j3 condition (P)
holds. Then the number of colors d = 6 and one can enumerate vertices
in N'(bg) and colors such, that

N'(z) = {x1, 2,23, 74,25}, i=jo=3, j1=06, p'(x3)=1i=3
T ={zs, a5}, p'(za) =4, p'a5)=5. (1)

Moreover, in the coloring p}:
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e all vertices of the set N'(x3) have color j; = 6;
e all vertices of the set N'(x4) have colors 5 and 6;
e all vertices of the set N'(x5) have colors 4 and 6;

e cach of vertices x1 and xy either imposes a prohibition of type 1 on
color I for by, or is a basic vertex of prohibition of type 2 on color I for by.

Proof. Since for any choice of colors js and j3 condition (P) holds, for any
vertex x € T* the set N’(z) is colored in p! with two colors and j; is among
them. We choose any color of the set C* as jy, let © € T*, pl(x) = 7js.
If condition (P) holds for a certain choice of the color js, then this color
must be the color presented in the coloring p' among vertices of N'(x) and
different from j;. There is only one such color. Hence, if we cannot choose j3
such that (P) does not hold, the number of colors is 6 (we have colors 1, 2,
Jo, j1, j2 and the only variant for js).

Let’s enumerate colors and vertices. Set u = x3, 1 = jo = p'(u) = 6,
22(u) = 6 (see figure 5a). Recall, that x3 ¢ T* and |T™*| = d — 4. Therefore,
N’(br) contains at most two vertices outside 7% U {x3}. However, by has
at least two prohibitions on color I and vertices of the set 7% U {x3} can
neither impose a prohibition of type 1 on color I for by, nor be a basic vertex
of a prohibition of type 2 on color I for b;. Hence, there are exactly two
prohibitions on color I for by, let each of vertices x; and x5 either imposes a
prohibition of type 1 on color I for by or is a basic vertex of a prohibition of
type 2 on color I for by.

Moreover, now we can enumerate the remaining two vertices, which form
the set T* = {x4, x5} and say, that p'(z4) = 4, p'(x5) = 5.

As we know, N’(z,) is colored in p' with two colors, one of them is j; = 6.
The other belong to C*, i.e., it is different from I and ¢ = 3. Moreover, it is
also different from p'(x,) = 4, therefore, this color is 5. Similarly, N’(x5) is
colored in p' with colors 4 and 6.

The resulting configuration is shown on fig. Ha. [

In the case described in lemma 8, we set jo =4, j3 = 5.

C.1.2.  Construction of the graph G' and applying the algorithm DN
Let 7" be the set of all vertices = € T', such that vertices of the set N'(x) are
colored in p! with colors jy and j,. Let U’ be the set of all vertices z € U,
such that 22(z) = js. Set

F={bu}U{bpx : xeT'UU'}, G'=G-F.

Let the algorithm DN(G’, p}, J,u) change the coloring p} to p?. Note,
that pl(by) = I ¢ J and condition (J) holds. Hence by lemma 3 we have
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Puc. 5: Problems with condition (P). On the left side the coloring p} is shown,
on the right — the coloring p?.

p2(b) = pi(by) and p? <g p}. Since I ¢ J, we can unglue the color I and by
Lemma 4 obtain a proper coloring p? of the graph G, such that p? <g p'.
Consider two cases.

C.1.2.1. Condition (DN1) holds.
Then p?(u) = jo. In this case, only vertices of the color jp can be recolored
with color i. Moreover, the neighborhood of any such vertex must be colored
with colors j; = js and js, which are different from 7. Thus, in N’(bs) only
vertices which are not adjacent in G’ to the vertex b, of color I can be
recolored with color i — namely, the vertex u and vertices of the set 7" U U".
But each vertex of the set 7" U U’ is adjacent to at least one vertex having
in p} color j,. Hence, vertices of 7" U U’ cannot have in p} color js.

Therefore, no new prohibition of type 1 on color ¢ for by appears in p?.

Prove, that no new prohibition of type 2 for b appears in p?. Assume the
converse, let such prohibition with basic vertex x appears. Clearly, x € T.
By condition (DN1), the only possible recolorings are from the color i = j,
to the color j, and vice versa. Then N (x) must be colored in p} with colors
i and jo, i.e., x € T'. Hence, in the coloring p? of the graph G’, a new bad
vertex x appears after applying the algorithm DN. This is impossible.

Prove, that no new prohibition of type 2 on color i for by, appears in p?.
Assume the converse, let such prohibition with basic vertex x appears. By
the proved above, z € U. Then, clearly, 22(p},x) = js, i.e. x € U'. Thus,
is a bad vertex in the coloring p} of the graph G’ and the algorithm DN has
recolored all vertices in Ng/(z). This is impossible by Lemma 2.

Thus, the new coloring p? <g p' has the same value of counter p as p'.
For the same color i we have the counter g decreased by 1 (recall, that u is
recolored). Set p! = p? and return to Step C.1.

C.1.2.2. Condition (DN2) holds.
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In this case, the only possible recolorings are from the color j; = j5 to the
color j3 and vice versa. Moreover, the neighborhood of any recolored vertex
must be colored in p} with colors j, and j, = jo = 4, different from I.

By condition (DN2), in the coloring p? exactly one vertex of the set N’(u)
has color js3, all others are colored with j;. Therefore, u is not a basic vertex
of a prohibition of type 2 on color j; for by in the coloring p?. If no new
prohibition of type 2 appears in p?, then the counter p = |U| is decreased
by 1. In this case, set p! = p? and return to Step C.

Assume, that a new prohibition of type 2 for b, appears, let x € T be
its basic vertex. Then in the coloring p' the set N’(z) must be colored with
colors 7; and js. Since neighbors of a recolored vertex have colors j, and i = j4
in the coloring p!, and color i is not presented in the coloring p} among
the vertices of T, we have p}(x) = jo. Therefore, condition (P) holds. By
the choice of colors for the algorithm DN and Lemma 8, this is possible
only in the case described in this lemma. Hence, the number of colors d =
6. Moreover, vertices of N'(b) and colors can be enumerated such that we
obtain the configuration shown on figure 5a. Then the vertex u = x3 for the
coloring p? occurs in the set T and the vertex # = x4 occurs in the set U (see
figure 5b). Thus, the counter p = |U| for colorings p! and p? is the same.

Vertices of the set N'(x4) in p} have colors j; and js. Let’s return to
details of the algorithm DN (Lemma 1) and remember, that only vertices
of the set D* were recolored, and all neighbors of such vertices belong to
the set D. In particular, z4 € D. However, the vertex x4 ¢ T’ is adjacent
in the graph G’ to by and p}(by) = I ¢ {j1,js}. Therefore, x4 ¢ D*. Hence,
only neighbors of x; having in p} color j; = js can belong to D* (recall,
that p'(z) = j»). Therefore, in the coloring p? all vertices of the set N'(z4)
have color j3 = 5. The configuration obtained is shown on fig. 5b.

Now set p!' = p?. As it was written above, the counter p is not changed.
Construct the collection of colors of prohibitions Z for the new coloring (as in
Step B). Clearly, color 4 is absent in this collection. Then we set ¢ = 4 # I,
u = x4. Note, that we have ¢ = 1 as in the previous coloring. Thus, the
parameters p and ¢ are preserved. Since u = x4, we have jo = 4 and j; = 5.

Return to Step C.1.1 with the new coloring. Now 7% = {x3,x5} (see
figure 5b) and color 6 ¢ {jo, j1, [ } is not presented among vertices of T*. Then
we can set j, = 6, j3 = 3 and condition (P) does not hold. Let us perform
Step C.1.2 (i.e., the next algorithm DN). Since condition (P) does not hold,
by the proved above in this case we can either decrease p or preserve p and,
at the same time, decrease ¢.

Remark 11. Let us show, that each Step C.1 finishes its work. The main
operation of the step is applying of the algorithm DN. Except for the case
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described in lemma 8, each applying of DN in Step C.1 either leads to de-
crease of the counter p (in this case, we return to the beginning of the step C),
or leads to decrease of the counter ¢ together with preserving p (in this case,
we return to the beginning of Step C.1). The only case when no counter de-
creases is the case described in Lemma 8 and shown on fig. 5a. However, in
this case, we perform one more algorithm DN which leads to desired decrease
of counters.

C.2. i#1, part 2
Denote by ¢ the number of vertices u € U, such that pl(u) = i. If ¢ = 0,
then we pass to step F. If ¢ # 0, we choose a vertex u € U of color i. Let
J1 = z2(u). Since Step C.1 is performed, the only possible variant is j; = I.

We want to modify the coloring p', such that in the new coloring by, . . . , by,
will be a chain of prohibitions satisfying conditions C1(k—1) and C2(k—1),
and either p will decrease, or p will be preserved and ¢ will decrease (the
color i in this case will be preserved).

C.2.1.  Choice of colors for the algorithm DN
Set j4 = jo = . In our case, j; = I. We want to choose colors jo, j3 and Js,
such that condition (J) holds.

Let T* be the set of all vertices of T, which color in p} is not I. Since by,
has at least two prohibitions on color I, we have |T%| < d — 3.

Let C* be the set of all colors, different from I and i. Then |C*| = d — 3.

Assume, that there is a color of the set C* which is not presented in the
coloring p} among vertices of the set T*. Then let j, be this color. Since we
have at least 5 colors, we can choose colors js, js ¢ {I, jo,j2}- Recall, that
color j, = i ¢ Z. Hence, there is no prohibition of type 1 on this color for
the vertex by, in pl, and, consequently, j, is not presented in the coloring p}
in 7" C T. Thus, in this case condition (.J) holds.

In the remaining case, all colors of the set C* are presented in p} among
vertices of the set T*. Then |T*| = |C*| = d — 3 and for any color of C*
there is exactly one vertex of this color in 7. Since |C*| = d —3 > 3, in this
case, condition (J) will be satisfied for any choice of js, j3 and js. Choose
any three different colors 7, 73, j5 € C*.

C.2.2.  Construction of the graph G' and applying the algorithm DN
Let 7" be the set of all vertices x € T, such that vertices of the set N'(x)
are colored in p} with two colors: jo and jo. Let U’ be the set of all vertices
x € U, such that 22(p}, z) = jo. Set

F={bu}U{byz : z€T'UU'}, G'=G-F.
Let the algorithm DN(G’, p}, J,u) change the coloring p} to p?. Note,
that pi(by) = I ¢ J and condition (J) holds. Hence by Lemma 3 we have
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p2(b) = ph(by) and p? <g p}. Since I ¢ J, we can unglue the color I and by
Lemma 4 obtain a proper coloring p? of the graph G, such that p? <g p*.
Consider two cases.

C.2.2.1. Condition (DN1) holds
In this case, p?(u) = jo. Only vertices of the color j, can be recolored with
color 4. Recall, that p}(b,) = I and by, is not adjacent in the graph G’ to u.
Therefore, the neighborhood of any vertex recolored with color ¢ cannot con-
tain the vertex bg. Thus, in N’(b;) only vertices which are not adjacent in G’
to the vertex by of color I can be recolored with color ¢ — namely, the vertex
u and vertices of the set 7"UU’. But each vertex of the set 7"UU’ is adjacent
to at least one vertex having in p} color j,. Hence, vertices of 7" U U’ cannot
have in p} color js.

Therefore, no new prohibition of type 1 on color i for by appears in p?.

Prove, that no new prohibition of type 2 for b appears in p?. Assume the
converse, let such prohibition with basic vertex x appears. Clearly, x € T'. By
condition (DN1), the only possible recolorings are from the color i = jo = j,
to the color j, and vice versa. Then N/ (x) must be colored in p} with colors
i and jo, i.e., z € T'. Hence, in the coloring p? of the graph G’, a new bad
vertex x appears after applying the algorithm DN. This is impossible.

Prove, that no new prohibition of type 2 on color i for b, appears in p?.
Assume the converse, let such prohibition with basic vertex x appears. By
the proved above, x € U. Then, clearly, 22(p}, ) = jp, i.e. x € U’. Thus, =
is a bad vertex in the coloring p} of the graph G’ and the algorithm DN has
recolored all vertices in Ngv/(x). This is impossible by Lemma 2.

Thus, the new coloring p? < p' has the same value of the counter p as p'.
For the same color i we have the counter g decreased by 1 (recall, that u is
recolored). Set p' = p? and return to Step C.2.

C.2.2.2. Condition (DN2) holds
In this case, the only possible recolorings are from colors j; and j5 to the
color j3 and from color j3 to color j;. Moreover, the neighborhood of any
recolored vertex must be colored in p! with colors j, and j; = jo = 1, different
from 1.

By condition (DN2), in the coloring p? exactly one vertex of the set N’(u)
have color j3, all others are colored with j; = I. Therefore, u is not a basic
vertex of a prohibition of type 2 on color I for by, in the coloring p?. If no new
prohibition of type 2 appears in p?, then the counter p = |U| is decreased
by 1. In this case, set p! = p? and return to the Step C.

Assume, that a new prohibition of type 2 for b, appears, let © € T be its
basic vertex. Since neighbors of a recolored vertex have colors j, and ¢ = j4
in the coloring p}, and color ¢ is not presented in the coloring p} among the
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vertices of T, we have p}(x) = j,. By the construction, it is possible only in
the case, where |T*| = d — 3 and for each color j € C* there is exactly one
vertex in T* colored with j in the coloring p}. Then |N'(b) \ T*| = 2.

Let’s study the coloring pl. As we know, the vertex by has at least two
prohibitions on color I in p}. Vertices of the set T* do not impose such prohi-
bitions. Hence, by has exactly two prohibitions on color I in the coloring p},
and each of two vertices of the set N'(by) \ T* either imposes a prohibition of
type 1 on color [ for by, in the coloring pl, or is a basic vertex of a prohibition
of type 2 on color I for by, in the coloring p} (the vertex u is just such basic
vertex). In particular, in the coloring p} there is no vertex of color I in the
set U (see figure 6a).

Puc. 6: Prohibitions on color I in the colorings p} (on the left) and p? (on
the right)

Thus, the vertex by in the coloring p! has exactly two prohibitions on
color I. One of these prohibitions (of type 2 with basic vertex u) disappears
in the coloring p? (see figure 6b). Since no vertex was recolored with color I,
no new prohibition on color I appears in p?. Moreover, in the coloring p?
no vertex of the set U has color I. Thus, b, has exactly one prohibition on
color I in the coloring p?. Then set p' = p* i = I and pass to Step F.

Remark 12. Let us show, that each Step C.2 finishes its work. The main
operation of the step is applying of the algorithm DN. Except for one ex-
clusion, each applying of DN in Step C.2 either leads to decrease of the
counter p (in this case, we return to the beginning of the step C), or leads to
decrease of the counter ¢ together with preserving of color ¢ and counter p
(in this case, we return to the beginning of Step C.2). The only case when
no counter decreases is the case shown on fig. 6a. However, in this case, we
obtain a coloring in which the vertex by has exactly one prohibition on color /
and we pass to Step F' with this coloring.

C3. i=1
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Denote by ¢ the number vertices u € U, such that pl(u) = I. If ¢ = 0,
then we pass to step F. If ¢ # 0, we choose a vertex u € U of color I. Let
g1 = 22(u).

We want to modify the coloring p!, such that in a new coloring by, ..., by
will be a chain of prohibitions satisfying conditions C1(k —1) and C2(k—1),
and either p will decrease, or p will be preserved and ¢ will decrease.

Consider two cases.

C.3.1. g #1.

Set jo = I and j5 = j;. It remains to choose colors jo, j3 and j4, different
from I and j;, such that condition (J) holds.

Let C* be the set of all colors, different from I and j;. Then |C*| = d — 3.
If there are two colors of the set C*, which are not presented in the coloring p}
among vertices of T', let 75 and j; be these colors. In this case, we choose j3
among other colors of C* arbitrary.

If there is exactly one color of the set C*, which is not presented in p} in
the set T', let jo be this color. In this case, we choose colors j3 and j; among
other colors of C* arbitrary.

If all colors of C* are presented in the coloring p! in the set 7', then we
choose different colors j,, j3 and j, in C* arbitrary.

Since |C*| > 3, in each of these three cases condition (.J) holds.

Let G’ be the graph obtained from G upon deleting all edges joining by,
to vertices of T

Let the algorithm DN(G', p}, J,u) change the coloring p} to p%. Since
condition (J) holds, by Lemma 3 we have p?(by) = pi(b) and p? <g p:.
Since I ¢ J, we can unglue the color I and by Lemma 4 obtain a proper
coloring p? of the graph G, such that p? <g p'.

Prove, that no new prohibition of type 2 for the vertex b, appears in the
coloring p3. Assume the converse, let such a prohibition with basic vertex x
appears. Then = € T. Hence a new bad vertex x appears in the graph G’
after applying the algorithm DN. This is impossible.

Consider two cases.

C.3.1.1. Condition (DN1) holds
Since J Z I, no new vertex of color I appears. Hence, no new prohibition of
type 1 or type 2 on color I for the vertex by, appears in the coloring p?. Since
p3(u) = ja, the counter ¢ is decreased by 1.

It is proved above, that no new prohibitions of type 2 for b, appears
in p?. Thus, we obtained the new coloring p? < p} with the same value of
the counter p as pj. For the same color i = I we have the counter ¢ decreased
by 1 (recall, that u is recolored). Set p! = p? and return to Step C.3.

C.3.1.2. Condition (DN2) holds
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In the coloring p? exactly one vertex of the set N'(u) has color js ¢ {1,2}
all other vertices are colored with j; = I. Hence u is not a basic vertex of a
prohibition of type 2 for b, in the coloring p?.

It is proved above, that no new prohibitions of type 2 for b, appears in p?.
Hence, p = |U] is decreased by 1. Then set p' = p? and return to Step C.

C.3.2. j, =1
Since p' is a proper coloring of the graph G, in this case p'(u) = c(k + 1)
and all vertices of the set Ng(by) have the same color as by, — color ¢(k).

In this case we will apply the algorithm DN to the coloring p!. Set j, =
c(k+1), 71 = ¢(k+1). Having 6 colors, we can choose pairwise distinct colors
J2, J3, Ja and 7js5, different from 1 and 2. We want to do this choice such that
condition (J) will hold.

Let C* is the set of all colors, except for 1 and 2. Then |C*| =d — 2 > 4. If
at least three colors of C* are presented among vertices of T' in the coloring p?,
then condition (/) holds for any choice of colors. Let at most two colors of C*
be presented among vertices of T" in the coloring p'. Then at least two colors
are not presented, we choose jo and j4 among them. In this case, we choose
Js and js in C* \ {ja2, js} arbitrary. Clearly, condition (J) holds.

Let G’ be the graph obtained from G upon deleting all edges joining by,
to vertices of the set 7.

Let the algorithm DN(G’,p', J,u) change the coloring p' to p?. By
Lemma 3 we have p?(by) = p'(by) and p? <g p'.

Prove, that no new prohibition of type 2 for the vertex b, appears in the
coloring p?. Assume the converse, let such a prohibition with basic vertex x
appears. Then x € T. Hence a new bad vertex x appears in the graph G’
after applying the algorithm DN. This is impossible.

Consider two cases.

C.3.2.1. Condition (DN1) holds
Since 1,2 ¢ J, no new vertices of colors 1 and 2 appear. Hence, no new pro-
hibition of type 1 or 2 on color [ for the vertex bj, appears in the coloring p?.
Since p?(u) = ja, the counter ¢ is decreased by 1.

It is proved above, that no new prohibition of type 2 for by, appears in p?.
Thus, we obtained the new coloring p* <g p' with the same value of the
counter p as p'. For the same color i = I we have the counter ¢ decreased
by 1 (recall, that u is recolored). Set p' = p* and return to Step C.3.

C.3.2.2. Condition (DN2) holds
In the coloring p?, exactly one vertex of the set N'(u) has color j3 & {1,2},
all other vertices are colored with j; € {1,2}. Hence u is not a basic vertex
of a prohibition of type 2 for by, in the coloring p?.
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It is proved above, that no new prohibition of type 2 for by appears in p?.
Hence, p = |U] is decreased by 1. Then set p! = p? and return to Step C.

Remark 13. Let us show, that each Step C.3 finishes its work. The main
operation of the step is applying of the algorithm DN. Each applying of DN
in Step C.3 either leads to decrease of the counter p (in this case, we return
to the beginning of the step ('), or leads to decrease of the counter ¢ to-
gether with preserving of color 7 and counter p (in this case, we return to the
beginning of Step C.3), see figure 4.

Remark 14. Every return from one of the steps C.1, C.2 and C.3 to the
beginning of Step C decreases the counter p by at least 1. Since p < d — 1,
Step C is repeated at most d — 2 times.

Look at the last applying of Step C. If 7 £ I, we begin with Step C.1.
Since we don’t return to the beginning of Step C, each iteration of Step C.1
decreases the inner counter g (the number of all vertices u € U, such that
pH(u) = 1 and 22(p},u) # I) of Step C.1 by at least 1 (see figure 4). Since
q < p, after at most p steps C.1 we obtain ¢ = 0 and pass on to Step C.2.

Before the first applying of Step C.2 we have the color ¢ # I. Consider
all vertices u € U, such that p'(u) = i. Their number is denoted by ¢. Since
the Step C.1 is performed and its counter ¢ was equal to 0, z2(p},u) = I.
Each iteration of Step C.2 decreases the counter ¢ (otherwise, we must return
to the beginning of Step C, but we have done the last return before). Since
g < p, after at most p steps C.2 we obtain ¢ = 0 and pass on to Step F with
the coloring p!, such that i ¢ Z and no vertex u € U has p'(u) = i.

If i = I, we perform only Step C.3. Since we don’t return to Step C, each
iteration of Step C.3 decreases the inner counter ¢ (the number of all vertices
u € U, such that p}(u) = I) by at least 1. Since q < p, after at most p steps
C.3 we obtain ¢ = 0 and pass on to Step F with the coloring p!, such that
each color I occurs in the collection Z at most once and no vertex u € U has

pt(u) = 1.

F. End of the Step of the main algorithm
We pass to this step after performing Step C, in the case, where the vertex by
has in the coloring p} no prohibition on some color i or exactly one prohibition
on color [.

Recall, that the coloring p' satisfies conditions (C1(k—1)) and (C2(k—1)).

Consider three cases.

F.1. The vertex by has exactly one prohibition on color I
A prohibition of type 1 on color ¢(k + 1) in the coloring p' corresponds to a
vertex t € T, such that p}(t) = I. A prohibition of type 2 on color ¢(k+1) in
the coloring p' has basic vertex u € U, such that 22(p},u) = I. Thus, each
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prohibition on color ¢(k+1) for the vertex by, in p' corresponds to an inclusion
of color I in the collection Z. Recall, that there is at most one such inclusion.
Hence, there is at most one prohibition on color ¢(k + 1) for the vertex by in
the coloring p!'. Thus, if such prohibition exists, the condition C'1(k) holds.

Let € N'(bg) be a vertex, such that all vertices of the set Ng(x) are
colored with colors 1 and 2 in the coloring p'. Then v is a basic vertex of a
prohibition of type 2 on color I for the vertex b in the coloring p}. Hence, v
corresponds to an inclusion of color I in the collection Z. Recall, that there
is exactly one such inclusion.

If a prohibition on the color ¢(k + 1) for the vertex by in the coloring p'
exists, then conditions (C'1(k)) and (C2(k)) hold (the only inclusion of color I
in the collection Z corresponds to a prohibition). In this case, the algorithm
returns to the beginning of Step A with the chain of prohibitions by, ..., by
(its length is increased by 1 and is equal to k).

If the vertex b, has no prohibition on color ¢(k + 1) in the coloring p?,
then we apply Lemma 6 to s = k and the coloring p! and obtain that there
exists a coloring p/, such that p’ <¢ p* <¢ p. In this case, the main algorithm
stops.

F.2. The vertex b, has no prohibition on color I
In this case, in the coloring p! the vertex b, has no prohibition on color
c(k+1) €{1,2}. Then by Lemma 6 there exists a coloring p’, such that
0 <a p' <g p. The main algorithm stops.

F.3.  The vertex by, has no prohibition on color i # I

Hence, by, has no prohibition on color 7 € {1,2} in the coloring p'. However,
this does not mean that b, can be recolored with color ¢: the ancestor of by
can prohibit this recoloring. We know, that current coloring p' <g p. Our
aim is to present a coloring p’ <g p and stop the main algorithm.

Recall, that {c(k —1),c(k)} = {1,2} and consider two cases.

F.3.1. asc(by) = b1

Consider a coloring p?, such that p?(by) = i, and all other vertices are colored
as in p! (the colorings p' and p? are shown on figures 7a and 7b, respectively).
Since p!(by_1) = c(k — 1) # i, the coloring p? is proper. If no new bad
vertex appears, then p? <g p' <g p. By item 3 of lemma 7, there exists a
coloring p’ <¢ p?, in this case the main algorithm stops.

If a vertex z € N’(b;,) is not bad in the coloring p', but is bad in the
coloring p?, then b, has a prohibition of type 2 on color 7 with the basic
vertex x. This contradicts the condition of Step F.3. Hence, the only vertex
which can be bad in p? and not bad in p' is by_; (in the case, where all
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vertices of the set Ng(by_1) \ {bx} have color i in the coloring p'). Consider
this case.

We will apply the algorithm DN to the graph G, the coloring p? and the
bad vertex by_;. Let’s choose the set of colors J. We have jo, = c(k — 1),
J1 = 1. Set also j5 = i. Let js, j3 and j, be three pairwise distinct colors,
different from 1, 2 and i (recall, that there are d > 6 colors). Note, that the
set of colors J satisfies the condition of lemma 7, which will be applied.

Let p*> be the coloring, obtained upon applying the algo-
rithm DN (G, p*, b,_1,J). Then p? <g p*. Consider two cases.

Puc. 7: The case asc(by) = by_1. Here ¢(k — 1) =1, c¢(k) = 2

F.3.1.1. Condition (DN1) holds
In this case, p*(by_1) = jo & {1,2,i} (see figure 7c). Note, that no new
vertices of color ¢(k) ¢ J appear in p*. If we change color of the vertex by
from 4 to c(k) in the coloring p?, then no new bad vertex appears and we
obtain the proper coloring p'. Hence, if we change color of the vertex by, from
i to c(k) in the coloring p?, then no new bad vertex appears and we also
obtain a proper coloring, let it be p* (see figure 7d). The colorings p* and p?
have one bad vertex which is not bad in p! — this is the vertex by_;. Since
in the coloring p* the vertex b,_; is not bad, p* <g p'.

Since p*(br_1) = j2 # c(k — 1), by item 2 of Lemma 7 there exists a
coloring p/, such that p' <g p* <g p. The algorithm stops.

F.3.1.2.  Condition (DN2) holds
In this case, exactly one vertex of the set Ng(by_1) was recolored with color js
(see figure 7e). Hence, the vertex by_; is not bad in p* and p3 <g p'. We
know, that p3(b.) € {i, s}, i.e., p3(by) # c(k). Then by item 2 of Lemma 7
there exists a coloring p’, such that p’ <g p® <g p. The algorithm stops.

F.3.2. asc(by) = ax_1 # br—1

Consider a coloring p?, such that p?(b) = 7 and all other vertices are colored
as in pl. If p* < p!, then by item 3 of lemma 7 there exists a coloring p’, such
that p' <g p? < p. In this case the algorithm stops.
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Assume, that p? ¢ p'. By the construction, b,_; is the only vertex of
color different from c(k) in Ng(ag_1) in the coloring p' and dg(ap_1) > 3.
Hence, the vertex ay_; cannot be bad in p?. Other neighbors of b, are not
bad in p?, since by has no prohibitions on color ¢ in p}. However, it is possible
that p*(ar_1) = p'(ax_1) = i (see figure 8a). In this case, the coloring p? is
not proper.

Thus, the remaining case is where p'(ax_1) = 4. In this case, we consider
a graph G’ = G — by_1a;_;. In this graph, a;_; is a bad vertex in coloring p.
We will apply the algorithm DN to the graph G’, the vertex a,_; and the
coloring p'.

Let’s choose the set of colors J. Set jo =i, j1 = j5 = c¢(k — 1), js = c(k).

If Ng(bp_1) \ {axr_1} is colored in p' with one color, then we choose jj
and j, different from this color, 4, 1 and 2 (six colors is enough for this).

If Ng(be_1) \ {axr_1} is colored in p' with two colors, then we choose 7,
different from these colors, 7, 1 and 2 (six colors is enough for this).

Finally, if at least three colors are presented among vertices of the set
Ne(br—1) \ {ax_1} in the coloring p', then we choose arbitrary distinct colors
J2 and jy4, different from ¢, 1 and 2.

It is easy to verify, that in all cases the condition (.J) is satisfied. Moreover,
the set of colors J satisfies the condition of Lemma 7, which will be applied.

Let p' be a coloring, obtained upon applying the algo-
rithm DN(G, p',by_1,J). Since J # i and condition (J) holds, by
Lemma 3 we have p' <qg p! <g p.

By item 1 of lemma 7 either there exists a coloring p”, such that p” <g p
(in this case, the algorithm stops), or by, ..., by is a chain of prohibitions in
the coloring p', satisfying conditions C'1(k — 1) and C2(k — 1). In the last
case, consider two subcases.

1tk
il by

Puc. 8: The case asc(by) = ag—1. Here ¢(k — 1) =1, ¢(k) =2
F.3.2.1. Condition (DN1) holds

There is no prohibition on color i for the vertex by in the coloring p’ (since
i ¢ J such prohibition cannot appear after applying the algorithm DN). We
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recolor b, with color ¢ and obtain a coloring p*. Recall, that in the case we
consider p'(ay_1) = ja # 1, see figure 8b. Hence, p* is a proper coloring of the
graph G and p* <g p. Then by item 3 of Lemma 7 there exists a coloring p”,
such that p” <g p’ <g p. The algorithm stops.

F.3.2.2. Condition (DN2) holds
By condition C'1(k — 1), there is exactly one prohibition on color ¢(k) for the
vertex by_; in the coloring p': a prohibition of type 2 with basic vertex aj_;.
However, in the coloring p’ there is exactly one vertex of color j; = c¢(k — 1)
in Ng(ag—1) \ {bk—1}, other vertices have color ¢(k) (see figure 8c). Hence, the
prohibition on the color ¢(k) for the vertex by disappears in the coloring p'.

Recall, that any vertex of color ¢(k) in p’ has color ¢(k) or ¢(k — 1) in p'.
By condition C1(k — 1) for the coloring p', there is no vertex of color c(k)
in N7, (bx_1) in the coloring p'. Since p' is a proper coloring, in Ni;(by._;) there
is no vertex of color ¢(k—1) in the coloring p'. Finally, by condition C2(k—1)
for the coloring p' there is exactly one vertex in NJ;(by_1), which neighbor-
hood is colored in the coloring p' with colors 1 and 2 — this is ay_;. Hence,
no new prohibition on color ¢(k) can appear in p'. Thus, the vertex by_; has
no prohibition on color ¢(k) in the coloring p’ and by Lemma 6 there exists
a coloring p”, such that p” <g p. The algorithm stops.

4.5 The end of the proof of theorem 1

Proof of theorem 1. Let us consider a proper coloring p of the graph G
with the minimal number of bad vertices; assume that a is a bad vertex in p.
Start the algorithm that constructs a chain of prohibitions beginning at the
bad vertex a. We have shown that vertices of the chain cannot repeat. Since
the graph is finite, this means that, after some time, the algorithm stops and
we get a coloring p/ <g p, which contradicts the minimality of p. It follows
that the coloring p does not contain bad vertices; hence, p is a dynamic
proper coloring. O
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