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Abstract

Let a subdivision of the complete graph Kn be any graph, which can be
constructed from Kn by substituting some edges of Kn with chains of two
edges (every such chain adds to a graph a new vertex of degree 2).

Let d ≥ 6 and G be a connected graph different from Kd+1 and its sub-
divisions with maximal vertex degree at most d. We prove that there is a
proper dynamic vertex coloring of G with d colors.
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1 Introduction

In this paper, we consider undirected graphs without loops and multiple
edges. We study proper vertex colorings of such graphs.

The set of vertices of a graph G is denoted by V (G). We denote by NG(v)
the neighborhood of a vertex v in the graph G, i.e., the set of all vertices
that are adjacent to v.

The degree of a vertex v ∈ V (G) in the graph G is denoted by dG(v). We
denote by ∆(G) the maximal vertex degree of a graph G.

We study vertex colorings of a graph and always denote the color of a
vertex v in a coloring ρ by ρ(v).

Definition 1. A vertex coloring is proper, if any two adjacent vertices have
different colors.

A vertex coloring of a graph G is called dynamic, if for any vertex
v ∈ V (G) of degree at least 2 the neighborhood NG(v) contains two vertices
of distinct colors.

Recall, that a vertex coloring of a hypergraph is called proper, if any its
hyperedge contains two vertices of different colors.

Consider a hypergraph G on the vertex set V (G), which hyperedges are
neighborhoods of all vertices of degree at least two in the graph G. Thus, a
proper dynamic coloring of the graph G is a proper vertex coloring of G and,
at the same time, a proper vertex coloring of the hypergraph G.

We define the dynamic chromatic number of a graph similarly to the
classic chromatic number.

Definition 2. The dynamic chromatic number χ2(G) of a graph G is the
least natural number such that there exists a dynamic proper coloring of
vertices of G with χ2(G) colors.

The classic Brooks theorem [1] states that for d ≥ 3 and any connected
graph G, such that ∆(G) ≤ d and G is not isomorphic to a complete graph
Kd+1 on d+ 1 vertices, we have χ(G) ≤ d.

In [2] it is proved, that χ2(G) ≤ ∆(G)+1 for any connected graph G with
∆(G) ≥ 3. Moreover, for the case ∆(G) ≤ 3 the inequality χ2(G) ≤ 4 holds
with the only exclusion: χ2(C5) = 5 (here C5 denotes a cycle on 5 vertices).
In [3] similar bounds on the list dynamic chromatic number are proved.

In [5] the author has proved an analog of Brooks’ theorem for dynamic
colorings: for any connected graph G with ∆(G) ≤ d and d ≥ 8, except for
some exclusions, described in the paper, the inequality χ2(G) ≤ d holds. In
this paper, we decrease the bound on the number of colors we need from 8
to 6.
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It is interesting, that the constant 6 appears in one more paper on dynamic
colorings. In [6] it is proved, that if χ(G) ≥ 6, than there is a proper vertex
coloring of G with χ(G) colors, where the set of bad vertices is independent
(a vertex v is bad if dG(v) ≥ 2 and NG(v) is colored with one color).

In several papers dynamic chromatic numbers of special classes of graphs
are studied. In [4] it is proved, that any regular bipartite graph has a dynamic
proper coloring with 4 colors and some other bounds.

In [7] it is proved, that for any connected planar graph, different from C5,
its dynamic chromatic number is at most 4. It is also proved here, that the
list dynamic chromatic number of any planar graph is at most 5.

2 Main results and definitions

We formulate two main theorems of this paper similarly to the paper [5], but
with new bound on d.

Theorem 1. Let d ≥ 6 be an integer and G be a connected graph without
vertices of degree 2, such that ∆(G) ≤ d. Assume, that G is different from a
complete graph on d+ 1 vertices. Then χ2(G) ≤ d.

In the second theorem we add vertices of degree 2. We need to define our
class of exclusions.

Definition 3. Let n ≥ 3 and let Kn be a complete graph. We say that a
graph H is a subdivision of Kn if it is obtained from Kn by the following
operation: we replace several edges of the graph Kn by chains of length 2
(and add with any such chain a new vertex of degree 2).

Denote by Kn the class of graphs that consists of Kn and all its subdivi-
sions.

Theorem 2. Let d ≥ 6.
1) If a graph H ∈ Kd+1, then χ2(H) = d+ 1.
2) If G is a connected graph with ∆(G) ≤ d that is not isomorphic to a

graph of the class Kd+1, then χ2(G) ≤ d.

The main result of the paper is Theorem 2. Its derivation from Theorem 1,
written in [5] is rather easy and requires the number of colors to be at least 5.
In this paper, the number of colors is at least 6, hence, this derivation is valid
in our case, too. We will not repeat the text from [5].

In what following, we prove the new variant of theorem 1. We start with
some necessary definitions.
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Definition 4. Let G be a graph and ρ be its vertex coloring.
1) A vertex v ∈ V (G) is bad in the coloring ρ, if dG(v) ≥ 2 and NG(v) is

colored in ρ with one color.
2) Let a and b be adjacent vertices. The vertex b is a dangerous neighbor

of the vertex a in the coloring ρ of the graph G, if dG(b) > 1 and the vertices
of the set NG(b) \ {a} are colored in ρ with one color different from ρ(a).

Definition 5. Let ρ and ρ′ be two colorings of a graph G. We write ρ′ ≤G ρ
if the following two conditions are satisfied.

(1) If u and v are adjacent vertices and ρ′(u) = ρ′(v), then ρ(u) = ρ(v).
(2) Any vertex that is bad in ρ′ is bad in ρ as well.
We write ρ′ <G ρ if there exists a bad vertex in the coloring ρ that is not

bad in ρ′.

Remark 1. 1) It is easily seen that if dG(b) 6= 2, then the vertex b can be a
dangerous neighbor for at most one other vertex.

2) Assume that dG(a) > 2 and we can make the vertex a bad by changing
color of one of its neighbors. Obviously, such a neighbor of a is unique and
is a dangerous neighbor of a.

3) If ρ ≤G ρ1 and ρ1 ≤G ρ2 for some colorings ρ, ρ1, and ρ2, then ρ ≤G ρ2.
If at least one of the “inequalities” above is strict, then ρ <G ρ2.

Let us write down a plan of the proof of Theorem 1. This plan coincides
with the plan of the proof in [5]. However, almost all details of these proofs
are different.

Let G be a connected graph different from the complete graph on d+ 1
vertices, without vertices of degree 2 and such that ∆(G) ≤ d. By Brooks
Theorem, there exist proper colorings of vertices of the graph G with d colors.
Unfortunately, such colorings may contain bad vertices. We select a proper
coloring ρ with d colors having the minimal number of bad vertices.

Let a be a bad vertex in the coloring ρ. We want to change the coloring
so that the vertex a is not bad in the new coloring and we get no new bad
vertices. For this purpose, we use a method that reminds the construction of
a classical alternating chain in the proof of the Brooks Theorem. At the same
time, we meet really more difficulties constructing our chain of prohibitions.
In Brooks Theorem, the only prohibition on coloring a vertex a with color
i is the existence of a neighbor of color i; in our case, the existence of a
dangerous neighbor b such that all the vertices in NG(b) \ {a} have color i
is also a prohibition. This fact doubles the number of potential prohibitions.
However, we do not increase the number of colors.

For this reason, the main algorithm of constructing the chain of prohibi-
tions calls several times an auxiliary algorithm DN that changes the coloring
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and reduces the number of prohibitions on the required color for the next
considered vertex. We describe the algorithm DN in Sec. 3. In Sec. 4, we
describe the main algorithm of constructing the chain of prohibitions.

In the new proof, we managed to save one necessary color in the new
algorithm DN and one necessary color in the new main algorithm. Thus, the
lower bound on the number of necessary colors is decreased from 8 to 6.

In what follows we need some notation for digraphs.

Definition 6. Let F be a digraph. The set of its vertices is denoted by V (F ),
the set of its arcs (i.e., directed edges) is denoted by A(F ).

For a vertex v ∈ V (F ) we use the following notation:
• N+

F (v) = {x ∈ V (F ) : vx ∈ A(F )};
• N−F (v) = {x ∈ V (F ) : xv ∈ A(F )}.

3 Algorithm DN

3.1 Setting of the problem

In this section, we write down an auxiliary algorithm DN(H, ρ, a, J), which
will be often called by the main algorithm.

Given:

• A graph H and a coloring ρ of vertices of H with at least 4 colors (this
coloring can be not proper).

• A bad vertex a in the coloring ρ of the graph H. For convenience, set
the following notation: ρ(a) = j0 and j1 is the color of vertices of the set
NH(a) in ρ.

• Ordered set of different colors J = (j2, j3, j4, j5), such that the color j0
can coincide only with j4 and the color j1 can coincide only with j5.

The aim of the algorithm DN is changing the coloring ρ to the col-
oring ρ′, such that ρ′ ≤H ρ and one of the conditions (DN1) and (DN2)
holds.

(DN1). ρ′(a) = j2. If x 6= a and ρ′(x) 6= ρ(x), then {ρ(x), ρ′(x)} =
{j2, j4}.

(DN2). There exists unique vertex v ∈ NH(a), such that ρ′(v) = j3.
Any different from v vertex of the set NH(a) has color j1 in ρ′. If x 6= v and
ρ′(x) 6= ρ(x), then {ρ(x), ρ′(x)} = {j3, j5}.
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3.2 Construction of the set D

First, we construct a sequence of colors (jn). For n ∈ {0, 1, 2, 3, 4, 5} this
sequence is defined. For each positive integer k we set:

j4k+2 = j2, j4k+3 = j3, j4k+4 = j4, j4k+5 = j5.

We pass to constructing auxiliary sets D and D∗ ⊂ D, and a digraph D on
the vertex set D.

We will put into D and into D∗ some vertices of H and give orientation
to some edges between vertices of the set D. Arcs of the digraph D will start
only at vertices of the set D∗.

The beginning. First, we set D = {a}∪NH(a), D∗ = {a}, A(D) =
{ax : x ∈ NH(a)}.

Let us describe a step of construction. Consider a vertex u ∈ D \D∗,
let ρ(u) = jk. Denote by M the set of all vertices x ∈ NH(u), such that
xu 6∈ A(D). If M = ∅ or M 6= ∅ and ρ(v) = jk+1 for every vertex v ∈ M ,
then we put the vertex u into D∗ and all vertices of the set M \D — into D.
In this case, we add into A(D) arcs from u to all vertices of the set M .

If D \ D∗ = ∅ or the step described above can be performed with no
vertex of the set D \D∗, the construction is finished.

Clearly, since the graph H is finite, the construction will be finished. Let
D, D∗ and D be the sets and the digraph obtained after the construction is
finished.

Remark 2. 1) By constructing, all vertices of the set D are reachable in the
digraph D from the root a.

2) If x ∈ D∗, then NH(x) = ND(x) = N−
D

(x) ∪ N+

D
(x). If x 6= a, then the

set N−
D

(x) is nonempty.

3) If x ∈ D \D∗, then ND(x) = N−
D

(x) 6= ∅.

Definition 7. Let us divide vertices of the set D into several levels: level Dk

consists of all vertices x, for which the length of the shortest ax-path in D is
equal to k.

Note, that D0 = {a}.
Remark 3. Let u ∈ Dk.

1) By constructing, for each arc xy ∈ A(D) if ρ(x) = jm, then ρ(y) =
jm+1. Since D0 = {a} and ρ(a) = j0, we have ρ(u) = jk.

2) All vertices of the set N−
D

(u) have color jk−1 and all vertices of the set

N+

D
(u) have color jk+1.
3) If u ∈ D∗, then by remark 2 the set NH(x) is colored in ρ with two

colors: jk−1 and jk+1 (maybe, one of these colors is absent).
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4) If x ∈ D \D∗, then the set ND(x) is colored in ρ with the color jk−1.
Moreover, NH(x) \ ND(x) 6= ∅ and there is a vertex in this set which have
color different from jk+1 in the coloring ρ (otherwise, we can continue the
construction of D).

Definition 8. 1) For each vertex u ∈ D∗ different from a we choose one arc
which comes to u from a vertex of previous level. Let A′ be the set of all
chosen arcs.

2) If uv ∈ A′, then u is the ancestor of v and v is a descendant of u.

3) Denote by D
′

the digraph with set of vertices D∗ and set of arcs A′

(see figure 1).

b

b b b b

b b b b

a

b b

b b b b b b b

b b b b b

b b b b b b

u

D(u)

j0
j

j

j

j

j

1

2

3

4

5

Ðèñ. 1: The digraph D and the directed tree D
′
. Arcs of the set A′ are bold.

Remark 4. 1) Note, that D
′

is a directed tree rooted at a.
2) Any vertex of D∗, different from a, has unique ancestor.

Definition 9. For a vertex u ∈ D∗ denote by D(u) the set of all vertices

of D∗, which are reachable from u in the digraph D
′

(see figure 1).

Clearly, D(a) = D∗.

3.3 Recoloring vertices of D∗

In this section, ρ is the given coloring. Studying a certain new coloring ρ∗,
we say that a vertex v is recolored if ρ∗(v) 6= ρ(v).

Lemma 1. Let v ∈ Dk. Then there exists a coloring ρ′v of vertices of the set
D(v), satisfying the conditions (P1), (P2) and one of the conditions (DN1′)
and (DN2′).
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(P1). If ρ(x) 6= ρ′(x), then x ∈ D(v).
(P2). For any vertex x ∈ D(v), x 6= v either no vertex of the set ND

′(x)
is recolored or exactly two vertices are recolored: the ancestor of v and one
of the descendants of v.

(DN1′). ρ′v(v) = jk+2. If x 6= v and ρ′v(x) 6= ρ(x), then {ρ(x), ρ′v(x)} =
{jk+2, jk+4}.

(DN2′). There exists unique vertex u ∈ N+

D
′(v), such that ρ′v(u) = jk+3.

Any different from u vertex of the set NH(v) has color jk+1 in ρ′v. If x 6= u
and ρ′v(x) 6= ρ(x), then {ρ(x), ρ′v(x)} = {jk+3, jk+5}.

Proof. We call the changing of the coloring ρ, described above, a recoloring
of type 1, if the condition (DN1′) holds and a recoloring of type 2, if the
condition (DN2′) holds.

We prove Lemma by induction.
Base of induction. The vertex v ∈ D∗ has no descendants.

In this case, we change color of the vertex v: let ρ′v(v) = jk+2. All other
vertices have the same colors in ρ and ρ′v. Clearly, the conditions (P1), (P2)
and (R1) hold.

Induction step. The vertex v ∈ D∗ has descendants.
Recall, that ρ(v) = jk. Let u1, . . . , um be all descendants of v.

Note, that the vertex sets D(u1), . . . , D(um) are pairwise disjoint and their
union is D(v) \ {v} (see figure 2).

Consider two cases.

j
bv

b b bu1 uu2
m

k

D(u )1 D(u )2
mD(u )

Ðèñ. 2: The vertex v and the sets D(u1), . . . , D(um).

1. For a vertex ui there exists a recoloring of type 1.
Perform this recoloring of type 1. Let ρ′v be obtained coloring. Clearly, for
D(v) the conditions (P1) and (DN2′) hold. It remains to verify that condition
(P2) also holds. Consider a vertex x ∈ D(v), x 6= v. Assume, that there
are recolored vertices in ND′(x). It is clear that then x ∈ D(ui). Since all
recolored vertices belong to levels of the same parity and ui is recolored, we
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have x 6= ui. Then by induction assumption the condition (P2) holds for the
vertex x.

2. For each of the vertices u1, . . . , um there exists a recoloring of type 2.
Perform all these recolorings of type 2 simultaneously, and, after that, change
color of the vertex v to jk+2. Prove, that the coloring ρ′v obtained as a result
is what we want.

It is clear, that for D(v) and ρ′v conditions (P1) and (DN1′) hold. It
remains to verify condition (P2). Consider a vertex x ∈ D(v), x 6= v. Assume,
that there are recolored vertices in ND′(x) and x ∈ D(ui). Then only vertices
of the set D(ui) and the vertex v can be the ancestor and descendants of x.
Thus, we can consider only vertices of the set Di and their recoloring of
type 2. If x 6= ui, then condition (P2) for x holds by induction assumption
for the recoloring of vertices of D(ui). Consider the vertex ui. Exactly one
of its descendants changed its color in recoloring of type 2 of D(ui). The
ancestor of ui is v and this vertex is also recolored. Hence, condition (P2)
holds for ui.

3.4 Recoloring for the algorithm DN

Consider a coloring ρ′a from Lemma 1 and define a coloring ρ′ as follows:

ρ′(x) =

{
ρ′a(x), if a ∈ D∗,
ρ(x), if a ∈ V (H) \D∗.

Let us verify that this coloring satisfies requirements of the algorithm DN .
Conditions (P1) and (DN1′) for the coloring ρ′a imply condition (DN1)
for the coloring ρ′. Conditions (P1) and (DN2′) for the coloring ρ′a imply
condition (DN2) for the coloring ρ′.

It remains to check, that ρ′ ≤H ρ. Assume, that the vertex x ∈ V (H) is
bad in ρ′, but is not bad in ρ. Then NH(x) contains at least one recolored
vertex y. By condition (P1) only vertices of the set D∗ can be recolored. All
vertices adjacent to D∗ belong to D. Hence, x ∈ D. Let x ∈ Dk. Consider
two cases.

1. x ∈ D \D∗.
By remark 3, then all vertices of the set ND(x) are colored in ρ with
color jk−1. As we know, among these vertices there is a recolored one, which
has color jk+1 in ρ′. Thus, there is a vertex of color jk+1 in the coloring ρ′

in NH(x). By remark 3, the set M = NH(x)\ND(x) 6= ∅ and this set contains
a vertex colored in ρ with a color s 6= jk+1. The colorings ρ and ρ′ coincide
on the set M , hence, there is a vertex of color s in the coloring ρ′ in NH(x).
Thus, the vertex x is not bad in ρ′. We obtain a contradiction.
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2. x ∈ D∗.
By remark 2, then NH(x) = ND(x) = N−

D
(x) ∪ N+

D
(x). By remark 3, all

vertices of N−
D

(x) have color jk−1 in ρ and all vertices of N+

D
(x) have color

jk+1 in ρ.
Since the vertex x is not bad in ρ, we have x 6= a. Then by condition (P2)

for the coloring ρa exactly two vertices of the set NH(x) are recolored in ρ′:
the ancestor y and one of descendants z. Since ρ(y) = jk−1 and ρ(z) = jk+1,
we have ρ′(y) = jk+1 and ρ′(z) = jk+3. Thus, the vertex x is not bad in the
coloring ρ′. We obtain a contradiction.

Thus, we have proved that ρ′ ≤H ρ. The coloring ρ′ is the result of work
of the algorithm DN(H, ρ, a, J).

3.5 Algorithm DN : properties

We start with useful property of recoloring from algorithm DN .

Lemma 2. Assume, that the algorithm DN(H, ρ, u, J) has changed the col-
oring ρ to the coloring ρ′. Then there is no bad vertex all neighbors of which
are recolored.

Proof. Assume that x is such vertex. Clearly, x 6= a. Note, that
NH(x) ⊂ D∗, since all recolored vertices belong to D∗. Hence, x ∈ D. Since
ND(x) = NH(x), we have that x ∈ D∗ (see Remark 2).

Without loss of generality assume, that x ∈ Dk. Since x ∈ D∗, we know,
that NH(x) = N−

D
(x) ∪ N+

D
(x). Moreover, N−

D
(x) 6= ∅ and all vertices of

this set have color jk−1 in the coloring ρ and vertices of the set N+

D
(x) have

color jk+1 6= jk−1 in ρ. Since the vertex x is bad in the coloring ρ, we obtain
N+

D
(x) = ∅.
Thus, the vertex x has the ancestor, but has no descendants. Recall the

construction of the coloring ρ′: on vertices of the set D∗ the coloring ρ′ co-
incides with ρ′a, and ρ′a satisfies condition (P2) (see Lemma 1). For the ver-
tex x ∈ D∗, having no descendants, condition (P2) means that the ancestor
of x is not recolored. We obtain a contradiction.

Let us return to our initial graph G and fix a vertex b ∈ V (G), dG(b) ≥ 3.
Let B ⊂ NG(b). Consider a new graph G′, obtained from G upon deleting
edges, joining b with B. Consider a coloring ρ of vertices of the graph G.
Clearly, ρ is also a coloring of G′. The coloring ρ may be not proper.

Lemma 3. Let u ∈ B, ρ(u) = j0, all vertices of the set NG′(u) are colored
in ρ with color j1, j0 6= j1. Consider an ordered set of different colors J =
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(j2, j3, j4, j5), which is suited to algorithm DN (i.e., j0 can coincide only
with j4, and j1 can coincide only with j5).

Assume, that ρ(b) /∈ J and the following condition hold:

(J) there exists a vertex x ∈ NG(b), such that ρ(x) /∈ {j0, j2, j4}.
Assume that the algorithm DN(G′, ρ, u, J) changes the coloring ρ to ρ′.

Then ρ′ ≤G ρ and ρ′(b) = ρ(b).

Proof. By properties of algorithm DN , we have ρ′ ≤G′ ρ. Since ρ(b) 6∈ J ,
the vertex b can be recolored only if b = u or b ∈ NG′(u). Since none of these
conditions holds, ρ′(b) = ρ(b).

Let x and y be adjacent in G, ρ′(x) = ρ′(y), but ρ(x) 6= ρ(y). Since
ρ′ ≤G′ ρ, the vertices x and y are not adjacent in G′. Hence without loss
of generality we can set x = b, y ∈ B. Since s = ρ′(b) = ρ(b) 6∈ J , and all
recolored vertices have in ρ′ colors of the set J , the vertex y must have color s
in ρ. Thus, ρ(b) = ρ(y), we obtain a contradiction. Hence, if the vertices x
and y are adjacent in G and ρ′(x) = ρ′(y), then ρ(x) = ρ(y).

Let us prove than no new bad vertex appears in ρ′. If we consider ρ′ and ρ
as colorings of the graph G′, then all vertices bad in ρ′ are bad in ρ (recall,
that ρ′ ≤G ρ).

Now consider ρ′ and ρ as colorings of the graph G. Let a vertex x be bad
in ρ′, but not bad in ρ (as in colorings of the graph G). Clearly, x has in G
and G′ different neighborhoods. Thus, it is enough to verify vertices of the
set B and the vertex b.

Check of the vertex b.
By condition (J) there exists a vertex x ∈ B, such that ρ(x) /∈ {j0, j2, j4}.
Then ρ′(x) /∈ {j0, j2, j4}. On the other side, the vertex u ∈ B has color
ρ(u) = j0, consequently, ρ′(u) ∈ {j0, j2}. Thus, the set NG(b) contains vertices
having different colors in ρ′. Hence, the vertex b is not bad in the coloring ρ′

of the graph G.

Check of the set B.
Consider a vertex x ∈ B. It is adjacent to b and ρ′(b) = ρ(b). In the coloring ρ′

no new vertices of color ρ(b) appear. Hence, if x is bad in the coloring ρ′ of
the graph G, then x is bad in the coloring ρ of the graph G.

Thus, ρ′ ≤G ρ.
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4 Construction of a dynamic coloring for a

graph without vertices of degree 2

In this section, d ≥ 6 is an integer andG is a connected graph without vertices
of degree 2, such that ∆(G) ≤ d and G differs from the complete graph Kd+1.
This section is devoted to a proof of Theorem 1; i.e., we construct a dynamic
coloring of the graph G with d colors.

4.1 Algorithm for construction of a chain. Basic prin-
ciples of choice of vertices and the start of the con-
struction

By Brooks Theorem, there exists a proper coloring of the graph G with d
colors. Assume that the coloring ρ contains a bad vertex a. Let ρ(a) = 0,
let all the vertices in NG(a) have color 1, and let color 2 be different from 0
and 1. We want to replace the coloring ρ by a coloring ρ′ ≤G ρ such that some
(but not all) of the vertices in NG(a) have color 2 in ρ′, while the remaining
vertices in NG(a) preserve their color. Then the vertex a is not bad in the
coloring ρ′; hence, ρ′ <G ρ.

Set c(k) = 1 for odd k and c(k) = 2 for even k. We construct a sequence of
different vertices b1, b2, . . . , bk, . . . . For any vertex bk we will define a unique
ancestor asc(bk), which will be always a vertex adjacent to bk.

Definition 10. 1) Set N′(bk) = NG(bk) \ {asc(bk)}.
2) For u ∈ N′(bk) set N′(u) = NG(u) \ {bk}.

The idea of our construction reminds the classical method of alternating
chains: every next vertex bk+1 is a “prohibition” that forbids to recolor bk
with color c(k + 1). At the same time, the construction is significantly more
complicated than in the classical proof of the Brooks theorem.

Definition 11. Let i 6= c(k).
1) If there exists a vertex v ∈ N′(bk) of color ρ(v) = i, then such a

situation is called a prohibition of type 1 on color i for the vertex bk.
2) If a vertex u ∈ N′(bk) is such that all vertices of the set N′(u) are colored

with color i in the coloring ρ, then such a situation is called a prohibition of
type 2 on color i, and the vertex u is called the basic vertex of this prohibition.

In this situation, we will use the notation z2(ρ, u) = i. In the case where
it is clear what coloring we deal with, we will write simply z2(u).

Remark 5. A vertex bk can have several prohibitions of type 2 on color i
with different basic vertices.

13



Let us pass to construction of the chain. We take as b1 an arbitrary vertex
in NG(a); the vertex a0 = a is the ancestor of b1. For k ≥ 1, the vertex bk+1

satisfies the following conditions:
— ρ(bk+1) = c(k + 1);
— one of the following two situations is possible.
• the vertices bk and bk+1 are adjacent, asc(bk+1) = bk, and the vertex

bk+1 ∈ N′(bk) is a prohibition of type 1 on color c(k + 1) for the vertex bk;
• asc(bk+1) = ak 6= bk, the vertex ak ∈ N′(bk) is the basic vertex of a

prohibition of type 2 on color c(k + 1) for the vertex bk and bk+1 ∈ N′(ak).

Definition 12. A sequence of vertices b1, . . . , bp constructed for a coloring ρ
according to the above rules is called a chain of prohibitions in the coloring ρ.

In Fig. 3, c(k) = 1 and c(k + 1) = 2. On the left, bk+1 is a prohibition of
type 1 on color c(k + 1) = 2 for the vertex bk; on the right, a prohibition of
type 2 with basic vertex ak is shown.

bk

a b

b

b

b bk+1

1

2 b b b

bk

b

b

b

bk+1

1

2

b b b

b b b b

ak

2 22

Ðèñ. 3: Prohibitions of type 1 and of type 2.

Remark 6. If asc(bk) = ak−1 6= bk−1, then the vertex ak−1 is adjacent to
both vertices bk−1 and bk; hence, ρ(ak−1) 6∈ {c(k − 1), c(k)} = {1, 2}.

4.2 Gluing and ungluing of colors 1 and 2

Definition 13. Construct a new coloring ρI for a coloring ρ by joining col-
ors 1 and 2 into one new color I.

We will say that the coloring ρI is obtained from ρ by gluing colors 1
and 2.

Note some properties of gluing colors.

• The coloring ρI may be not proper. If x, y are two adjacent vertices of the
same color in ρI , then ρI(x) = ρI(y) = I, one of vertices x and y has color 1
in ρ and the other has color 2.
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• If v is a bad vertex in ρI then either v is a bad vertex in ρ, or vertices of
the set NG(v) are colored in ρ with colors 1 and 2.

Definition 14. Let a coloring ρ′I is obtained from a coloring ρI upon recol-
oring some vertices and no new vertices of color I are added.

Since each vertex x of color ρ′I(x) = I has color ρI(x) = I, this vertex
also has color ρ(x) ∈ {1, 2}. For each such vertex we set ρ′(x) = ρ(x). For
each vertex y of color ρ′I(y) 6= I we set ρ′(y) = ρ′I(y).

We say that the coloring ρ′ defined above is obtained from ρ′I by ungluing
of the color I.

The following lemma will be often used, sometimes without reference.

Lemma 4. Let a coloring ρ′I is obtained from ρI upon recoloring some ver-
tices. Assume that no vertex was recolored with color I and at most one ver-
tex of color I was recolored with another color. Let a coloring ρ′ is obtained
from ρ′I by ungluing of the color I. Assume, that ρ′I ≤G ρI . Then ρ′ ≤G ρ.

Proof. Let xy ∈ E(G) and ρ′(x) = ρ′(y). If ρ′(x) ∈ {1, 2}, then ρ′(x) = ρ(x)
and ρ′(y) = ρ(y), hence, ρ(x) = ρ(y).

Let ρ′(x) /∈ {1, 2}. Then ρ′I(x) = ρ′(x) = ρ′(y) = ρ′I(y). It follows from
ρ′I ≤G ρI , that ρI(x) = ρI(y). If ρI(x) = ρI(y) = I, then at least two vertices
of color I were recolored with color i 6= I. We have a contradiction. Hence,
ρI(x) = ρI(y) = j 6= I and, therefore, ρ(x) = ρI(x) = ρI(y) = ρ(y).

Assume, that w is a bad vertex in the coloring ρ′ of the graph G and all
vertices of the set NG(w) have in ρ′ color i. If i ∈ {1, 2}, then all vertices of
the set NG(w) have color i in the coloring ρ, too.

Let i /∈ {1, 2}. Then all vertices of the set NG(w) in the coloring ρ′I also
have color i, i.e., w is a bad vertex in the coloring ρ′I of the graph G. It follows
from ρ′I ≤G ρI , that w is a bad vertex in the coloring ρI of the graph G.
Assume, that vertices of NG(w) have color I in ρI . Since dG(w) ≥ 3, at
least three vertices of color I were recolored. This contradicts the condition
of Lemma. Hence, vertices of NG(w) have color j 6= I in ρI . Then in the
coloring ρ vertices of the set NG(w) also have color i, i.e., w is a bad vertex
in the coloring ρ of the graph G.

4.3 Conditions (C1) and (C2)

Let b1, . . . , bp be a chain of prohibitions for a coloring ρ. Before describing a
step of the algorithm (choice of the next vertex of the sequence), we formu-
late two important conditions and indicate several properties of a chain of
prohibitions that satisfies these conditions.
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(C1(p)) For any i ∈ {1, . . . , p} there exists a unique prohibition on color
c(i+ 1) for the vertex bi.

(C2(p)) Assume that i ∈ {1, . . . , p}, v ∈ N′G(bi), and all neighbors of v
have colors 1 and 2. Then v is a basic vertex for a prohibition of type 2 on color
c(i+ 1) for the vertex bi.

Before the step of algorithm, choosing a vertex bk, we assume, that con-
ditions C1(k − 1) and C2(k − 1) hold for the current coloring and the
chain b1, . . . , bk−1.

The following two lemmas, proved in [5], show possibilities of recoloring
vertices in the chain of prohibitions.

Lemma 5. Let b1, . . . , bs be a chain of prohibitions for a proper coloring ρ
that satisfies conditions (C1(s−1)) and (C2(s−1)). Let ρ′ be a new coloring
such that ρ′(bi) = c(i + 1) for i ∈ {1, . . . , s} and the colors of the remaining
vertices are the same as in the coloring ρ. Then the following statements
hold.

1) If vertices u and v are adjacent and ρ′(v) = ρ′(u), then either u = bs,
v ∈ N′(bs) and ρ′(v) = ρ(v) = c(s + 1), or v = bs, u ∈ N′(bs) and ρ′(u) =
ρ(u) = c(s+ 1).

2) The vertex a is not bad in the coloring ρ′.
3) If a vertex v is bad in ρ′ and is not bad in ρ, then v ∈ N′(bs), and v is

the basic vertex of a prohibition of type 2 on color c(s+ 1) for the vertex bs
in ρ.

Lemma 6. Let b1, . . . , bs be a chain of prohibitions for a proper coloring ρ
that satisfies conditions (C1(s−1)) and (C2(s−1)). Assume that there is no
prohibition on color c(s+ 1) for the vertex bs. Then there exists a coloring ρ′

of vertices of the graph G such that ρ′ <G ρ.

We need one more lemma.

Lemma 7. Let b1, . . . , bs be a chain of prohibitions for a proper coloring ρ
that satisfies conditions (C1(s − 1)) and (C2(s − 1)). Let G′ be a subgraph
of G, obtained upon deleting several edges, such that a is not an isolated
vertex in G′ (maybe, G′ = G).

Let a coloring ρ′ ≤G ρ be obtained from ρ upon recoloring some vertices.
Assume, that ρ′(v) ∈ {1, 2} implies ρ(v) ∈ {1, 2}. Then the following state-
ments hold.

1) Either b1, . . . , bs is a chain of prohibitions for the coloring ρ′, satisfying
conditions (C1(s− 1)) and (C2(s− 1)), or there exists a coloring ρ′′ <G ρ.

2) If one of the vertices b1, . . . , bs is recolored, then there exists a coloring
ρ′′ <G ρ.
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3) Assume, that a proper coloring ρ∗ is obtained from ρ′ upon recoloring
the vertex bs with a color i /∈ {1, 2} and ρ∗ ≤G ρ

′. Then there exists a coloring
ρ′′ <G ρ.

Proof. 1) and 2) Recall, that ρ′ ≤G ρ. Since the vertex a is not isolated
in the graph G′, it is a bad vertex in the coloring ρ of the graph G′. By
Lemma 2, there is a vertex in NG(a) which is not recolored. Thus, if at least
one vertex of the set NG(a) is recolored, then a is not a bad vertex in the
coloring ρ′ of the graph G. Then ρ′ <G ρ and both statements 1 and 2 are
proved. Thus, in what follows we assume that for any vertex x ∈ NG(a) we
have ρ′(x) = ρ(x) = 1.

Let t be a maximal index such that t ≤ s and all vertices b1, . . . , bt were
not recolored. Prove by induction for ` < t, that either conditions C1(`)
and C2(`) hold, or there exists a coloring ρ′′, such that ρ′′ <G ρ. Assume,
that for all m < ` conditions C1(m) and C2(m) hold and prove the statement
for `.

Consider the vertex b`, where ` < t. This vertex has unique prohibition
on color c(` + 1) in the coloring ρ. Assume, that this is a prohibition of
type 1 and a vertex w ∈ N′(bk) is such that ρ(w) = c(`+ 1). The vertex w is
adjacent to b`, which is not recolored and has color c(`) ∈ {1, 2}. Recall, that
ρ(w) ∈ {1, 2} implies ρ′(w) ∈ {1, 2}. Hence, ρ(w) = ρ′(w) (otherwise, the
coloring ρ′ is not proper). By conditions C1(`) and C2(`) for the coloring ρ,
in the case we consider there is no vertex v ∈ N′G(bi), all neighbors of which
have colors 1 and 2 in ρ. Hence, there is no such vertex in the coloring ρ′.
Thus, conditions C1(`) and C2(`) hold for the coloring ρ′.

Assume, that the prohibition on color c(` + 1) for the vertex b` in ρ has
type 2 and basic vertex v. Then all neighbors of v have colors 1 and 2 in ρ and
such vertex in N′(bi) is unique up to condition C2(`) for the coloring ρ. Hence,
if a vertex of N′G(b`) have in the coloring ρ′ all neighbors of colors 1 and 2,
then this vertex is v. Thus, condition C2(`) holds for ρ′ and the vertex b` has
at most one prohibition on color c(` + 1) in ρ′. If there is such prohibition,
then condition C1(`) holds for ρ′. If there is no such prohibition, then by
lemma 6 there exists a coloring ρ′′ <G ρ.

In the case where t = s Lemma is proved. If t < s, then we consider
the vertex bt+1, which was recolored. Hence, the only prohibition on the
color c(t + 1) for the vertex bt disappears in ρ′. By condition C2(t) for the
coloring ρ, a new prohibition on color c(t+1) for the vertex bt cannot appear.
Hence, by lemma 6 there exists a coloring ρ′′ <G ρ.

3) The only case remaining is where conditions (C1(s − 1)) and
(C2(s− 1)) hold for ρ′. In the coloring ρ∗, all vertices of colors 1 and 2, ex-
cept for bs, preserve their colors. We may assume, that conditions (C1(s−2))
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and (C2(s − 2)) hold for the coloring ρ∗ (otherwise, for a certain vertex bt
its prohibition on color c(t + 1) disappears and one can apply Lemma 6).
Upon recoloring bs the prohibition on color c(s) for bs−1 disappears and by
Lemma 6 there is a coloring ρ′′ <G ρ.

Remark 7. Let ρ and ρ′ be vertex colorings of a graph G and G′ be a
subgraph suitable for the algorithm DN . Let the coloring ρ′ is obtained from
the coloring ρ in one of the following ways:
• as a result of applying the algorithm DN(G′, ρ, x, J), where either

1, 2 /∈ J or {j0 = j4, j2} = {1, 2}, or {j1 = j5, j3} = {1, 2};
• as a result of applying the algorithm DN(G′, ρI , x, J), where I /∈ J ,

and unglying of the color I.
Then the pair of colorings ρ and ρ′ satisfies the condition of Lemma 7.

4.4 A step of the main algorithm

The current coloring of vertices which the algorithm deals with we denote
by ρ1. Before the beginning of the first step (choice of the vertex b2), set
ρ1 = ρ. On some steps, the algorithm will change the current coloring such
that the condition ρ1 ≤G ρ always holds.

Assume, that vertices b1, . . . , bk−1 (where k ≥ 2) are chosen, pairwise dif-
ferent and ρ1(bi) = c(i) for all i ∈ {1, . . . , k − 1}. The chain of prohibitions is
constructed such that before the beginning of step on which bk will be chosen
conditions (C1(k − 1)) and (C2(k − 1)) hold for the current coloring ρ1.

There are two possible results of the step of the main algorithm:
• a vertex bk will be chosen and the coloring ρ1 will be changed such

that the chain of prohibitions b1, . . . , bk will satisfy conditions (C1(k)) and
(C2(k));

• a coloring ρ′′ will be constructed, such that ρ′′ <G ρ.

In the second case the algorithm stops, in the first case the algorithm will
pass to the next step — choice of bk+1.

A. Choice of the vertex bk

By condition (C1(k − 1)), the vertex bk−1 has unique prohibition on the
color c(k). Consider this prohibition.

If it is a prohibition of type 1, then there exists a unique vertex u ∈
N′G(bk−1), colored with c(k). In this case, set bk = u, asc(bk) = bk−1.

Let bk−1 has a prohibition of type 2 on color c(k) with basic vertex v.
Then all vertices of the set N′(v) have color c(k). We choose as bk any of
these vertices and set asc(bk) = ak−1 = v.
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If vertices b1, . . . , bk are pairwise different, we pass to step B. Otherwise,
we pass to step A.1, where the algorithm will stop.

A.1. Repetition of a vertex
Assume that bk = bt, where t < k. Recall that the vertices b1, . . . , bk−1 are
pairwise different. Consider the following coloring ρ′: we set ρ′(bi) = c(i+ 1)
for i from 1 to k − 1 and ρ′(v) = ρ1(v) for the remaining vertices v.

Since the coloring ρ1 satisfies conditions (C1(k−1)) and (C2(k−1)), the
coloring ρ′ satisfies the conditions of Lemma 5 for s = k−1. We claim that ρ′

is a proper coloring and ρ′ <G ρ.
Assume that the coloring ρ′ contains two adjacent vertices of the same

color. By lemma 5, one of these vertices is bk−1 whose color became c(k) and
the second vertex is a vertex v ∈ N′(bk−1) such that ρ′(v) = ρ1(v) = c(k),
i.e., the vertex v imposes a prohibition of type 1 on color c(k) for the vertex
bk−1 in the coloring ρ1. By our construction, this means that v = bk = bt,
and this vertex was recolored with color c(t + 1) = c(k + 1). Then lemma 5
implies, that ρ′ is a proper coloring.

Assume that a new bad vertex v appeared in the coloring ρ′. By Lemma 5,
v = ak−1, and all vertices in N′(ak−1) have color c(k) in the coloring ρ′. By
construction, the vertex ak−1 is adjacent to bk = bt, and ρ′(bt) = c(t + 1) =
c(k + 1) 6= c(k). Then the vertices bt, bk−1 ∈ NG(v) have different colors in
the coloring ρ′, and we get a contradiction.

By Lemma 5, we have ρ′ <G ρ
1 ≤G ρ. The algorithm stops.

In what follows we consider the case where the vertices b1, . . . , bk−1, bk are
pairwise different.

B. The counter p and the collection Z

Consider a coloring ρ1I , obtained from ρ1 upon gluing colors 1 and 2.
Denote by U the set of all vertices of N′(bk), which are basic vertices of

prohibitions of type 2 for bk in the coloring ρ1I . Set T = N′(bk)\U and p = |U |.
Remark 8. In particular, if y ∈ N′(bk) is such that all vertices of the set
N′(y) have colors 1 and 2 in ρ1, then y ∈ U and z2(ρ1I , y) = I.

Definition 15. Define a collection of colors Z as follows: for each vertex
u ∈ U we put in Z the color z2(ρ1I , u), and for each vertex t ∈ T we put in Z
its color ρ1I(t).

Remark 9. Clearly, |Z| = |N′(bk)| ≤ d− 1. Note, that a color can occur in
the collection Z more than once.

C. Changing the coloring ρ1

The step C will provide one of the three following results:
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• the coloring ρ1 will be modified such that bk has exactly one prohi-
bition on color I in ρ1I ;

• the coloring ρ1 will be modified such that bk has no prohibition on a
certain color i in ρ1I ;

• a coloring ρ′′ <G ρ will be constructed, the algorithm will stop.

Step C has complicated structure shown on figure 4. In what follows we
write down details of this step.

define:

C
counter
color

pb

b i

C.1
define: counter q
choose: vertex u
perform: algorithm DN

i=I

define: counter q
choose: vertex u
perform: algorithm DN

C.2

q=0

C.3
define: counter q
choose: vertex u
perform: algorithm DN

i=I
q

p

q

p

p

p

p

q

p

F

q=0

q=0

Ðèñ. 4: Scheme of Step C

Let us start. If the color I occurs in Z at most once, we set i = I. Let I
occurs in Z at least twice. Since |Z| ≤ d− 1, and the number of colors in ρ1I
is d− 1 (recall, that colors 1 and 2 are glued together into the color I), one
of the colors does not occur in Z, let it be i.

Remark 10. During Step C we will many times change the current coloring,
applying algorithm DN to the coloring ρ1 or to the coloring ρ1I . In all cases,
the set of colors J contains none of colors 1, 2 and I. Such set J satisfies
the conditions of remark 7. Hence, Lemma 7 can be applied to current and
new colorings. We will always consider the case, where b1, . . . , bk is a chain of
prohibitions in the new coloring, satisfying conditions (C1(k− 1)) and (C2(k−
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1)). In the other case, by Lemma 7 there exists a coloring ρ′, such that ρ′ <G ρ
and the algorithm stops.

C.1. i 6= I, part 1
Denote by q the number of vertices u ∈ U such that ρ1I(u) = i and
z2(ρ1I , u) 6= I.

If q = 0, then we pass to step C.2. If q 6= 0, then we choose a vertex u ∈ U
such that ρ1(u) = i and z2(u) 6= I.

We want to change the coloring ρ1 such that in a new coloring b1, . . . , bk
will be a chain of prohibitions satisfying conditions C1(k−1) and C2(k−1),
and either p will decrease, or p will be preserved and q will decrease (note,
that the color i can be changed in one of the cases).

C.1.1. Choice of colors for the algorithm DN
Set j4 = j0 = i, j5 = j1 = z2(u). It remains to choose colors j2 and j3. We
want to do it such that condition (J) holds and condition (P ) doesn’t hold.

(P ) There exists a vertex x ∈ T , such that ρ1(x) = j2 and vertices of the
set N′(x) are colored in ρ1I with colors j1 and j3.

Let T ∗ be the set of all vertices of T which color in ρ1I is not I. Since bk
has at least two prohibitions on color I and at least one prohibition of type 2
on color j1 6= I (with basic vertex u), then |T ∗| ≤ d− 4. Let C∗ be the set of
all colors, except for I, j0 and j1. Then |C∗| = d− 4.

If there is a color of the set C∗ which is not presented in the coloring ρ1

among vertices of the set T ∗, let j2 be this color. Since we have at least 5
colors, we can choose color j3 /∈ {I, j0, j1, j2}. Clearly, condition (P ) does
not hold. Recall, that color j4 = i /∈ Z. Hence, there is no prohibition of
type 1 on this color, and, consequently, j4 is not presented in the coloring ρ1

in T ∗ ⊂ T . Thus, in this case condition (J) holds.
In the remaining case, all colors of the set C∗ are presented in ρ1I among

vertices of the set T ∗. Then |T ∗| = |C∗| = d− 4 and for any color of C∗ there
is exactly one vertex of this color in T ∗. Since |C∗| = d− 4 ≥ 2 and j4 /∈ C∗,
in this case, condition (J) holds for any choice of j2 and j3.

Lemma 8. Assume, that for any choice of colors j2 and j3 condition (P )
holds. Then the number of colors d = 6 and one can enumerate vertices
in N′(bk) and colors such, that

N′(x) = {x1, x2, x3, x4, x5}, i = j0 = 3, j1 = 6, ρ1(x3) = i = 3,

T ∗ = {x4, x5}, ρ1(x4) = 4, ρ1(x5) = 5. (1)

Moreover, in the coloring ρ1I :
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• all vertices of the set N′(x3) have color j1 = 6;

• all vertices of the set N′(x4) have colors 5 and 6;

• all vertices of the set N′(x5) have colors 4 and 6;

• each of vertices x1 and x2 either imposes a prohibition of type 1 on
color I for bk or is a basic vertex of prohibition of type 2 on color I for bk.

Proof. Since for any choice of colors j2 and j3 condition (P ) holds, for any
vertex x ∈ T ∗ the set N′(x) is colored in ρ1 with two colors and j1 is among
them. We choose any color of the set C∗ as j2, let x ∈ T ∗, ρ1(x) = j2.
If condition (P ) holds for a certain choice of the color j3, then this color
must be the color presented in the coloring ρ1 among vertices of N′(x) and
different from j1. There is only one such color. Hence, if we cannot choose j3
such that (P ) does not hold, the number of colors is 6 (we have colors 1, 2,
j0, j1, j2 and the only variant for j3).

Let’s enumerate colors and vertices. Set u = x3, i = j0 = ρ1(u) = 6,
z2(u) = 6 (see figure 5a). Recall, that x3 /∈ T ∗ and |T ∗| = d − 4. Therefore,
N′(bk) contains at most two vertices outside T ∗ ∪ {x3}. However, bk has
at least two prohibitions on color I and vertices of the set T ∗ ∪ {x3} can
neither impose a prohibition of type 1 on color I for bk, nor be a basic vertex
of a prohibition of type 2 on color I for bk. Hence, there are exactly two
prohibitions on color I for bk, let each of vertices x1 and x2 either imposes a
prohibition of type 1 on color I for bk or is a basic vertex of a prohibition of
type 2 on color I for bk.

Moreover, now we can enumerate the remaining two vertices, which form
the set T ∗ = {x4, x5} and say, that ρ1(x4) = 4, ρ1(x5) = 5.

As we know, N′(x4) is colored in ρ1 with two colors, one of them is j1 = 6.
The other belong to C∗, i.e., it is different from I and i = 3. Moreover, it is
also different from ρ1(x4) = 4, therefore, this color is 5. Similarly, N′(x5) is
colored in ρ1 with colors 4 and 6.

The resulting configuration is shown on fig. 5a.

In the case described in lemma 8, we set j2 = 4, j3 = 5.

C.1.2. Construction of the graph G′ and applying the algorithm DN
Let T ′ be the set of all vertices x ∈ T , such that vertices of the set N′(x) are
colored in ρ1 with colors j0 and j2. Let U ′ be the set of all vertices x ∈ U ,
such that z2(x) = j2. Set

F = {bku} ∪ {bkx : x ∈ T ′ ∪ U ′}, G′ = G− F.

Let the algorithm DN(G′, ρ1I , J, u) change the coloring ρ1I to ρ2I . Note,
that ρ1I(bk) = I /∈ J and condition (J) holds. Hence by lemma 3 we have
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Ðèñ. 5: Problems with condition (P ). On the left side the coloring ρ1I is shown,
on the right — the coloring ρ2I .

ρ2I(bk) = ρ1I(bk) and ρ2I ≤G ρ
1
I . Since I /∈ J , we can unglue the color I and by

Lemma 4 obtain a proper coloring ρ2 of the graph G, such that ρ2 ≤G ρ
1.

Consider two cases.

C.1.2.1. Condition (DN1) holds.
Then ρ2I(u) = j2. In this case, only vertices of the color j2 can be recolored
with color i. Moreover, the neighborhood of any such vertex must be colored
with colors j1 = j5 and j3, which are different from I. Thus, in N′(bk) only
vertices which are not adjacent in G′ to the vertex bk of color I can be
recolored with color i — namely, the vertex u and vertices of the set T ′ ∪U ′.
But each vertex of the set T ′ ∪ U ′ is adjacent to at least one vertex having
in ρ1I color j2. Hence, vertices of T ′ ∪ U ′ cannot have in ρ1I color j2.

Therefore, no new prohibition of type 1 on color i for bk appears in ρ2I .
Prove, that no new prohibition of type 2 for bk appears in ρ2I . Assume the

converse, let such prohibition with basic vertex x appears. Clearly, x ∈ T .
By condition (DN1), the only possible recolorings are from the color i = j4
to the color j2 and vice versa. Then NG′(x) must be colored in ρ1I with colors
i and j2, i.e., x ∈ T ′. Hence, in the coloring ρ2I of the graph G′, a new bad
vertex x appears after applying the algorithm DN . This is impossible.

Prove, that no new prohibition of type 2 on color i for bk appears in ρ2I .
Assume the converse, let such prohibition with basic vertex x appears. By
the proved above, x ∈ U . Then, clearly, z2(ρ1I , x) = j2, i.e. x ∈ U ′. Thus, x
is a bad vertex in the coloring ρ1I of the graph G′ and the algorithm DN has
recolored all vertices in NG′(x). This is impossible by Lemma 2.

Thus, the new coloring ρ2 ≤G ρ1 has the same value of counter p as ρ1.
For the same color i we have the counter q decreased by 1 (recall, that u is
recolored). Set ρ1 = ρ2 and return to Step C.1.

C.1.2.2. Condition (DN2) holds.
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In this case, the only possible recolorings are from the color j1 = j5 to the
color j3 and vice versa. Moreover, the neighborhood of any recolored vertex
must be colored in ρ1I with colors j2 and j4 = j0 = i, different from I.

By condition (DN2), in the coloring ρ2I exactly one vertex of the set N′(u)
has color j3, all others are colored with j1. Therefore, u is not a basic vertex
of a prohibition of type 2 on color j1 for bk in the coloring ρ2I . If no new
prohibition of type 2 appears in ρ2I , then the counter p = |U | is decreased
by 1. In this case, set ρ1 = ρ2 and return to Step C.

Assume, that a new prohibition of type 2 for bk appears, let x ∈ T be
its basic vertex. Then in the coloring ρ1 the set N′(x) must be colored with
colors j1 and j3. Since neighbors of a recolored vertex have colors j2 and i = j4
in the coloring ρ1I , and color i is not presented in the coloring ρ1I among
the vertices of T , we have ρ1I(x) = j2. Therefore, condition (P ) holds. By
the choice of colors for the algorithm DN and Lemma 8, this is possible
only in the case described in this lemma. Hence, the number of colors d =
6. Moreover, vertices of N′(bk) and colors can be enumerated such that we
obtain the configuration shown on figure 5a. Then the vertex u = x3 for the
coloring ρ2 occurs in the set T and the vertex x = x4 occurs in the set U (see
figure 5b). Thus, the counter p = |U | for colorings ρ1 and ρ2 is the same.

Vertices of the set N′(x4) in ρ1I have colors j1 and j3. Let’s return to
details of the algorithm DN (Lemma 1) and remember, that only vertices
of the set D∗ were recolored, and all neighbors of such vertices belong to
the set D. In particular, x4 ∈ D. However, the vertex x4 /∈ T ′ is adjacent
in the graph G′ to bk and ρ1I(bk) = I /∈ {j1, j3}. Therefore, x4 /∈ D∗. Hence,
only neighbors of x4 having in ρ1I color j1 = j5 can belong to D∗ (recall,
that ρ1(x) = j2). Therefore, in the coloring ρ2I all vertices of the set N′(x4)
have color j3 = 5. The configuration obtained is shown on fig. 5b.

Now set ρ1 = ρ2. As it was written above, the counter p is not changed.
Construct the collection of colors of prohibitions Z for the new coloring (as in
Step B). Clearly, color 4 is absent in this collection. Then we set i = 4 6= I,
u = x4. Note, that we have q = 1 as in the previous coloring. Thus, the
parameters p and q are preserved. Since u = x4, we have j0 = 4 and j1 = 5.

Return to Step C.1.1 with the new coloring. Now T ∗ = {x3, x5} (see
figure 5b) and color 6 /∈ {j0, j1, I} is not presented among vertices of T ∗. Then
we can set j2 = 6, j3 = 3 and condition (P ) does not hold. Let us perform
Step C.1.2 (i.e., the next algorithm DN). Since condition (P ) does not hold,
by the proved above in this case we can either decrease p or preserve p and,
at the same time, decrease q.

Remark 11. Let us show, that each Step C.1 finishes its work. The main
operation of the step is applying of the algorithm DN . Except for the case
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described in lemma 8, each applying of DN in Step C.1 either leads to de-
crease of the counter p (in this case, we return to the beginning of the step C),
or leads to decrease of the counter q together with preserving p (in this case,
we return to the beginning of Step C.1). The only case when no counter de-
creases is the case described in Lemma 8 and shown on fig. 5a. However, in
this case, we perform one more algorithm DN which leads to desired decrease
of counters.

C.2. i 6= I, part 2
Denote by q the number of vertices u ∈ U , such that ρ1I(u) = i. If q = 0,
then we pass to step F. If q 6= 0, we choose a vertex u ∈ U of color i. Let
j1 = z2(u). Since Step C.1 is performed, the only possible variant is j1 = I.

We want to modify the coloring ρ1, such that in the new coloring b1, . . . , bk
will be a chain of prohibitions satisfying conditions C1(k−1) and C2(k−1),
and either p will decrease, or p will be preserved and q will decrease (the
color i in this case will be preserved).

C.2.1. Choice of colors for the algorithm DN
Set j4 = j0 = i. In our case, j1 = I. We want to choose colors j2, j3 and j5,
such that condition (J) holds.

Let T ∗ be the set of all vertices of T , which color in ρ1I is not I. Since bk
has at least two prohibitions on color I, we have |T ∗| ≤ d− 3.

Let C∗ be the set of all colors, different from I and i. Then |C∗| = d− 3.
Assume, that there is a color of the set C∗ which is not presented in the

coloring ρ1I among vertices of the set T ∗. Then let j2 be this color. Since we
have at least 5 colors, we can choose colors j3, j5 /∈ {I, j0, j2}. Recall, that
color j4 = i /∈ Z. Hence, there is no prohibition of type 1 on this color for
the vertex bk in ρ1I , and, consequently, j4 is not presented in the coloring ρ1I
in T ∗ ⊂ T . Thus, in this case condition (J) holds.

In the remaining case, all colors of the set C∗ are presented in ρ1I among
vertices of the set T ∗. Then |T ∗| = |C∗| = d − 3 and for any color of C∗

there is exactly one vertex of this color in T ∗. Since |C∗| = d− 3 ≥ 3, in this
case, condition (J) will be satisfied for any choice of j2, j3 and j5. Choose
any three different colors j2, j3, j5 ∈ C∗.

C.2.2. Construction of the graph G′ and applying the algorithm DN
Let T ′ be the set of all vertices x ∈ T , such that vertices of the set N′(x)
are colored in ρ1I with two colors: j0 and j2. Let U ′ be the set of all vertices
x ∈ U , such that z2(ρ1I , x) = j2. Set

F = {bku} ∪ {bkx : x ∈ T ′ ∪ U ′}, G′ = G− F.

Let the algorithm DN(G′, ρ1I , J, u) change the coloring ρ1I to ρ2I . Note,
that ρ1I(bk) = I /∈ J and condition (J) holds. Hence by Lemma 3 we have
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ρ2I(bk) = ρ1I(bk) and ρ2I ≤G ρ
1
I . Since I /∈ J , we can unglue the color I and by

Lemma 4 obtain a proper coloring ρ2 of the graph G, such that ρ2 ≤G ρ
1.

Consider two cases.

C.2.2.1. Condition (DN1) holds
In this case, ρ2I(u) = j2. Only vertices of the color j2 can be recolored with
color i. Recall, that ρ1I(bk) = I and bk is not adjacent in the graph G′ to u.
Therefore, the neighborhood of any vertex recolored with color i cannot con-
tain the vertex bk. Thus, in N′(bk) only vertices which are not adjacent in G′

to the vertex bk of color I can be recolored with color i — namely, the vertex
u and vertices of the set T ′∪U ′. But each vertex of the set T ′∪U ′ is adjacent
to at least one vertex having in ρ1I color j2. Hence, vertices of T ′ ∪U ′ cannot
have in ρ1I color j2.

Therefore, no new prohibition of type 1 on color i for bk appears in ρ2I .
Prove, that no new prohibition of type 2 for bk appears in ρ2I . Assume the

converse, let such prohibition with basic vertex x appears. Clearly, x ∈ T . By
condition (DN1), the only possible recolorings are from the color i = j0 = j4
to the color j2 and vice versa. Then NG′(x) must be colored in ρ1I with colors
i and j2, i.e., x ∈ T ′. Hence, in the coloring ρ2I of the graph G′, a new bad
vertex x appears after applying the algorithm DN . This is impossible.

Prove, that no new prohibition of type 2 on color i for bk appears in ρ2I .
Assume the converse, let such prohibition with basic vertex x appears. By
the proved above, x ∈ U . Then, clearly, z2(ρ1I , x) = j2, i.e. x ∈ U ′. Thus, x
is a bad vertex in the coloring ρ1I of the graph G′ and the algorithm DN has
recolored all vertices in NG′(x). This is impossible by Lemma 2.

Thus, the new coloring ρ2 ≤G ρ
1 has the same value of the counter p as ρ1.

For the same color i we have the counter q decreased by 1 (recall, that u is
recolored). Set ρ1 = ρ2 and return to Step C.2.

C.2.2.2. Condition (DN2) holds
In this case, the only possible recolorings are from colors j1 and j5 to the
color j3 and from color j3 to color j5. Moreover, the neighborhood of any
recolored vertex must be colored in ρ1I with colors j2 and j4 = j0 = i, different
from I.

By condition (DN2), in the coloring ρ2I exactly one vertex of the set N′(u)
have color j3, all others are colored with j1 = I. Therefore, u is not a basic
vertex of a prohibition of type 2 on color I for bk in the coloring ρ2I . If no new
prohibition of type 2 appears in ρ2I , then the counter p = |U | is decreased
by 1. In this case, set ρ1 = ρ2 and return to the Step C.

Assume, that a new prohibition of type 2 for bk appears, let x ∈ T be its
basic vertex. Since neighbors of a recolored vertex have colors j2 and i = j4
in the coloring ρ1I , and color i is not presented in the coloring ρ1I among the
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vertices of T , we have ρ1I(x) = j2. By the construction, it is possible only in
the case, where |T ∗| = d − 3 and for each color j ∈ C∗ there is exactly one
vertex in T ∗ colored with j in the coloring ρ1I . Then |N′(bk) \ T ∗| = 2.

Let’s study the coloring ρ1I . As we know, the vertex bk has at least two
prohibitions on color I in ρ1I . Vertices of the set T ∗ do not impose such prohi-
bitions. Hence, bk has exactly two prohibitions on color I in the coloring ρ1I ,
and each of two vertices of the set N′(bk) \T ∗ either imposes a prohibition of
type 1 on color I for bk in the coloring ρ1I , or is a basic vertex of a prohibition
of type 2 on color I for bk in the coloring ρ1I (the vertex u is just such basic
vertex). In particular, in the coloring ρ1I there is no vertex of color I in the
set U (see figure 6a).
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Ðèñ. 6: Prohibitions on color I in the colorings ρ1I (on the left) and ρ2I (on
the right)

Thus, the vertex bk in the coloring ρ1I has exactly two prohibitions on
color I. One of these prohibitions (of type 2 with basic vertex u) disappears
in the coloring ρ2I (see figure 6b). Since no vertex was recolored with color I,
no new prohibition on color I appears in ρ2I . Moreover, in the coloring ρ2I
no vertex of the set U has color I. Thus, bk has exactly one prohibition on
color I in the coloring ρ2I . Then set ρ1 = ρ2, i = I and pass to Step F.

Remark 12. Let us show, that each Step C.2 finishes its work. The main
operation of the step is applying of the algorithm DN . Except for one ex-
clusion, each applying of DN in Step C.2 either leads to decrease of the
counter p (in this case, we return to the beginning of the step C), or leads to
decrease of the counter q together with preserving of color i and counter p
(in this case, we return to the beginning of Step C.2). The only case when
no counter decreases is the case shown on fig. 6a. However, in this case, we
obtain a coloring in which the vertex bk has exactly one prohibition on color I
and we pass to Step F with this coloring.

C.3. i = I
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Denote by q the number vertices u ∈ U , such that ρ1I(u) = I. If q = 0,
then we pass to step F. If q 6= 0, we choose a vertex u ∈ U of color I. Let
j1 = z2(u).

We want to modify the coloring ρ1, such that in a new coloring b1, . . . , bk
will be a chain of prohibitions satisfying conditions C1(k−1) and C2(k−1),
and either p will decrease, or p will be preserved and q will decrease.

Consider two cases.

C.3.1. j1 6= I.
Set j0 = I and j5 = j1. It remains to choose colors j2, j3 and j4, different
from I and j1, such that condition (J) holds.

Let C∗ be the set of all colors, different from I and j1. Then |C∗| = d−3.
If there are two colors of the set C∗, which are not presented in the coloring ρ1I
among vertices of T , let j2 and j4 be these colors. In this case, we choose j3
among other colors of C∗ arbitrary.

If there is exactly one color of the set C∗, which is not presented in ρ1I in
the set T , let j2 be this color. In this case, we choose colors j3 and j4 among
other colors of C∗ arbitrary.

If all colors of C∗ are presented in the coloring ρ1I in the set T , then we
choose different colors j2, j3 and j4 in C∗ arbitrary.

Since |C∗| ≥ 3, in each of these three cases condition (J) holds.
Let G′ be the graph obtained from G upon deleting all edges joining bk

to vertices of T .
Let the algorithm DN(G′, ρ1I , J, u) change the coloring ρ1I to ρ2I . Since

condition (J) holds, by Lemma 3 we have ρ2I(bk) = ρ1I(bk) and ρ2I ≤G ρ1I .
Since I /∈ J , we can unglue the color I and by Lemma 4 obtain a proper
coloring ρ2 of the graph G, such that ρ2 ≤G ρ

1.
Prove, that no new prohibition of type 2 for the vertex bk appears in the

coloring ρ2I . Assume the converse, let such a prohibition with basic vertex x
appears. Then x ∈ T . Hence a new bad vertex x appears in the graph G′

after applying the algorithm DN . This is impossible.
Consider two cases.

C.3.1.1. Condition (DN1) holds
Since J 63 I, no new vertex of color I appears. Hence, no new prohibition of
type 1 or type 2 on color I for the vertex bk appears in the coloring ρ2I . Since
ρ2I(u) = j2, the counter q is decreased by 1.

It is proved above, that no new prohibitions of type 2 for bk appears
in ρ2I . Thus, we obtained the new coloring ρ2I ≤G ρ1I with the same value of
the counter p as ρ1I . For the same color i = I we have the counter q decreased
by 1 (recall, that u is recolored). Set ρ1 = ρ2 and return to Step C.3.

C.3.1.2. Condition (DN2) holds
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In the coloring ρ2I exactly one vertex of the set N′(u) has color j3 /∈ {1, 2}
all other vertices are colored with j1 = I. Hence u is not a basic vertex of a
prohibition of type 2 for bk in the coloring ρ2I .

It is proved above, that no new prohibitions of type 2 for bk appears in ρ2I .
Hence, p = |U | is decreased by 1. Then set ρ1 = ρ2 and return to Step C.

C.3.2. j1 = I.
Since ρ1 is a proper coloring of the graph G, in this case ρ1(u) = c(k + 1)
and all vertices of the set NG(bk) have the same color as bk — color c(k).

In this case we will apply the algorithm DN to the coloring ρ1. Set j0 =
c(k+1), j1 = c(k+1). Having 6 colors, we can choose pairwise distinct colors
j2, j3, j4 and j5, different from 1 and 2. We want to do this choice such that
condition (J) will hold.

Let C∗ is the set of all colors, except for 1 and 2. Then |C∗| = d− 2 ≥ 4. If
at least three colors of C∗ are presented among vertices of T in the coloring ρ1,
then condition (J) holds for any choice of colors. Let at most two colors of C∗

be presented among vertices of T in the coloring ρ1. Then at least two colors
are not presented, we choose j2 and j4 among them. In this case, we choose
j3 and j5 in C∗ \ {j2, j4} arbitrary. Clearly, condition (J) holds.

Let G′ be the graph obtained from G upon deleting all edges joining bk
to vertices of the set T .

Let the algorithm DN(G′, ρ1, J, u) change the coloring ρ1 to ρ2. By
Lemma 3 we have ρ2(bk) = ρ1(bk) and ρ2 ≤G ρ

1.
Prove, that no new prohibition of type 2 for the vertex bk appears in the

coloring ρ2I . Assume the converse, let such a prohibition with basic vertex x
appears. Then x ∈ T . Hence a new bad vertex x appears in the graph G′

after applying the algorithm DN . This is impossible.
Consider two cases.

C.3.2.1. Condition (DN1) holds
Since 1, 2 /∈ J , no new vertices of colors 1 and 2 appear. Hence, no new pro-
hibition of type 1 or 2 on color I for the vertex bk appears in the coloring ρ2I .
Since ρ2I(u) = j2, the counter q is decreased by 1.

It is proved above, that no new prohibition of type 2 for bk appears in ρ2I .
Thus, we obtained the new coloring ρ2 ≤G ρ1 with the same value of the
counter p as ρ1. For the same color i = I we have the counter q decreased
by 1 (recall, that u is recolored). Set ρ1 = ρ2 and return to Step C.3.

C.3.2.2. Condition (DN2) holds
In the coloring ρ2, exactly one vertex of the set N′(u) has color j3 /∈ {1, 2},
all other vertices are colored with j1 ∈ {1, 2}. Hence u is not a basic vertex
of a prohibition of type 2 for bk in the coloring ρ2I .
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It is proved above, that no new prohibition of type 2 for bk appears in ρ2I .
Hence, p = |U | is decreased by 1. Then set ρ1 = ρ2 and return to Step C.

Remark 13. Let us show, that each Step C.3 finishes its work. The main
operation of the step is applying of the algorithm DN . Each applying of DN
in Step C.3 either leads to decrease of the counter p (in this case, we return
to the beginning of the step C), or leads to decrease of the counter q to-
gether with preserving of color i and counter p (in this case, we return to the
beginning of Step C.3), see figure 4.

Remark 14. Every return from one of the steps C.1, C.2 and C.3 to the
beginning of Step C decreases the counter p by at least 1. Since p ≤ d − 1,
Step C is repeated at most d− 2 times.

Look at the last applying of Step C. If i 6= I, we begin with Step C.1.
Since we don’t return to the beginning of Step C, each iteration of Step C.1
decreases the inner counter q (the number of all vertices u ∈ U , such that
ρ1I(u) = i and z2(ρ1I , u) 6= I) of Step C.1 by at least 1 (see figure 4). Since
q ≤ p, after at most p steps C.1 we obtain q = 0 and pass on to Step C.2.

Before the first applying of Step C.2 we have the color i 6= I. Consider
all vertices u ∈ U , such that ρ1(u) = i. Their number is denoted by q. Since
the Step C.1 is performed and its counter q was equal to 0, z2(ρ1I , u) = I.
Each iteration of Step C.2 decreases the counter q (otherwise, we must return
to the beginning of Step C, but we have done the last return before). Since
q ≤ p, after at most p steps C.2 we obtain q = 0 and pass on to Step F with
the coloring ρ1, such that i /∈ Z and no vertex u ∈ U has ρ1(u) = i.

If i = I, we perform only Step C.3. Since we don’t return to Step C, each
iteration of Step C.3 decreases the inner counter q (the number of all vertices
u ∈ U , such that ρ1I(u) = I) by at least 1. Since q ≤ p, after at most p steps
C.3 we obtain q = 0 and pass on to Step F with the coloring ρ1, such that
each color I occurs in the collection Z at most once and no vertex u ∈ U has
ρ1(u) = I.

F. End of the Step of the main algorithm
We pass to this step after performing Step C, in the case, where the vertex bk
has in the coloring ρ1I no prohibition on some color i or exactly one prohibition
on color I.

Recall, that the coloring ρ1 satisfies conditions (C1(k−1)) and (C2(k−1)).
Consider three cases.

F.1. The vertex bk has exactly one prohibition on color I
A prohibition of type 1 on color c(k + 1) in the coloring ρ1 corresponds to a
vertex t ∈ T , such that ρ1I(t) = I. A prohibition of type 2 on color c(k+ 1) in
the coloring ρ1 has basic vertex u ∈ U , such that z2(ρ1I , u) = I. Thus, each
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prohibition on color c(k+1) for the vertex bk in ρ1 corresponds to an inclusion
of color I in the collection Z. Recall, that there is at most one such inclusion.
Hence, there is at most one prohibition on color c(k+ 1) for the vertex bk in
the coloring ρ1. Thus, if such prohibition exists, the condition C1(k) holds.

Let x ∈ N′(bk) be a vertex, such that all vertices of the set NG(x) are
colored with colors 1 and 2 in the coloring ρ1. Then v is a basic vertex of a
prohibition of type 2 on color I for the vertex bk in the coloring ρ1I . Hence, v
corresponds to an inclusion of color I in the collection Z. Recall, that there
is exactly one such inclusion.

If a prohibition on the color c(k + 1) for the vertex bk in the coloring ρ1

exists, then conditions (C1(k)) and (C2(k)) hold (the only inclusion of color I
in the collection Z corresponds to a prohibition). In this case, the algorithm
returns to the beginning of Step A with the chain of prohibitions b1, . . . , bk
(its length is increased by 1 and is equal to k).

If the vertex bk has no prohibition on color c(k + 1) in the coloring ρ1,
then we apply Lemma 6 to s = k and the coloring ρ1 and obtain that there
exists a coloring ρ′, such that ρ′ <G ρ

1 ≤G ρ. In this case, the main algorithm
stops.

F.2. The vertex bk has no prohibition on color I
In this case, in the coloring ρ1 the vertex bk has no prohibition on color
c(k + 1) ∈ {1, 2}. Then by Lemma 6 there exists a coloring ρ′, such that
ρ′ <G ρ

1 ≤G ρ. The main algorithm stops.

F.3. The vertex bk has no prohibition on color i 6= I

Hence, bk has no prohibition on color i 6∈ {1, 2} in the coloring ρ1. However,
this does not mean that bk can be recolored with color i: the ancestor of bk
can prohibit this recoloring. We know, that current coloring ρ1 ≤G ρ. Our
aim is to present a coloring ρ′ <G ρ and stop the main algorithm.

Recall, that {c(k − 1), c(k)} = {1, 2} and consider two cases.

F.3.1. asc(bk) = bk−1

Consider a coloring ρ2, such that ρ2(bk) = i, and all other vertices are colored
as in ρ1 (the colorings ρ1 and ρ2 are shown on figures 7a and 7b, respectively).
Since ρ1(bk−1) = c(k − 1) 6= i, the coloring ρ2 is proper. If no new bad
vertex appears, then ρ2 ≤G ρ1 ≤G ρ. By item 3 of lemma 7, there exists a
coloring ρ′ <G ρ

2, in this case the main algorithm stops.
If a vertex x ∈ N′(bk) is not bad in the coloring ρ1, but is bad in the

coloring ρ2, then bk has a prohibition of type 2 on color i with the basic
vertex x. This contradicts the condition of Step F.3. Hence, the only vertex
which can be bad in ρ2 and not bad in ρ1 is bk−1 (in the case, where all
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vertices of the set NG(bk−1) \ {bk} have color i in the coloring ρ1). Consider
this case.

We will apply the algorithm DN to the graph G, the coloring ρ2 and the
bad vertex bk−1. Let’s choose the set of colors J . We have j0 = c(k − 1),
j1 = i. Set also j5 = i. Let j2, j3 and j4 be three pairwise distinct colors,
different from 1, 2 and i (recall, that there are d ≥ 6 colors). Note, that the
set of colors J satisfies the condition of lemma 7, which will be applied.

Let ρ3 be the coloring, obtained upon applying the algo-
rithm DN(G, ρ2, bk−1, J). Then ρ3 ≤G ρ

2. Consider two cases.
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Ðèñ. 7: The case asc(bk) = bk−1. Here c(k − 1) = 1, c(k) = 2

F.3.1.1. Condition (DN1) holds
In this case, ρ3(bk−1) = j2 /∈ {1, 2, i} (see figure 7c). Note, that no new
vertices of color c(k) /∈ J appear in ρ3. If we change color of the vertex bk
from i to c(k) in the coloring ρ2, then no new bad vertex appears and we
obtain the proper coloring ρ1. Hence, if we change color of the vertex bk from
i to c(k) in the coloring ρ3, then no new bad vertex appears and we also
obtain a proper coloring, let it be ρ4 (see figure 7d). The colorings ρ2 and ρ3

have one bad vertex which is not bad in ρ1 — this is the vertex bk−1. Since
in the coloring ρ4 the vertex bk−1 is not bad, ρ4 ≤G ρ

1.
Since ρ4(bk−1) = j2 6= c(k − 1), by item 2 of Lemma 7 there exists a

coloring ρ′, such that ρ′ <G ρ
4 ≤G ρ. The algorithm stops.

F.3.1.2. Condition (DN2) holds
In this case, exactly one vertex of the set NG(bk−1) was recolored with color j3
(see figure 7e). Hence, the vertex bk−1 is not bad in ρ3 and ρ3 ≤G ρ1. We
know, that ρ3(bk) ∈ {i, j3}, i.e., ρ3(bk) 6= c(k). Then by item 2 of Lemma 7
there exists a coloring ρ′, such that ρ′ <G ρ

3 ≤G ρ. The algorithm stops.

F.3.2. asc(bk) = ak−1 6= bk−1

Consider a coloring ρ2, such that ρ2(bk) = i and all other vertices are colored
as in ρ1. If ρ2 ≤ ρ1, then by item 3 of lemma 7 there exists a coloring ρ′, such
that ρ′ <G ρ

2 ≤G ρ. In this case the algorithm stops.
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Assume, that ρ2 6≤G ρ1. By the construction, bk−1 is the only vertex of
color different from c(k) in NG(ak−1) in the coloring ρ1 and dG(ak−1) ≥ 3.
Hence, the vertex ak−1 cannot be bad in ρ2. Other neighbors of bk are not
bad in ρ2, since bk has no prohibitions on color i in ρ1I . However, it is possible
that ρ2(ak−1) = ρ1(ak−1) = i (see figure 8a). In this case, the coloring ρ2 is
not proper.

Thus, the remaining case is where ρ1(ak−1) = i. In this case, we consider
a graph G′ = G− bk−1ak−1. In this graph, ak−1 is a bad vertex in coloring ρ1.
We will apply the algorithm DN to the graph G′, the vertex ak−1 and the
coloring ρ1.

Let’s choose the set of colors J . Set j0 = i, j1 = j5 = c(k − 1), j3 = c(k).
If NG(bk−1) \ {ak−1} is colored in ρ1 with one color, then we choose j2

and j4 different from this color, i, 1 and 2 (six colors is enough for this).
If NG(bk−1) \ {ak−1} is colored in ρ1 with two colors, then we choose j2

different from these colors, i, 1 and 2 (six colors is enough for this).
Finally, if at least three colors are presented among vertices of the set

NG(bk−1) \ {ak−1} in the coloring ρ1, then we choose arbitrary distinct colors
j2 and j4, different from i, 1 and 2.

It is easy to verify, that in all cases the condition (J) is satisfied. Moreover,
the set of colors J satisfies the condition of Lemma 7, which will be applied.

Let ρ′ be a coloring, obtained upon applying the algo-
rithm DN(G′, ρ1, bk−1, J). Since J 63 i and condition (J) holds, by
Lemma 3 we have ρ′ ≤G ρ

1 ≤G ρ.
By item 1 of lemma 7 either there exists a coloring ρ′′, such that ρ′′ <G ρ

(in this case, the algorithm stops), or b1, . . . , bk is a chain of prohibitions in
the coloring ρ′, satisfying conditions C1(k − 1) and C2(k − 1). In the last
case, consider two subcases.
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Ðèñ. 8: The case asc(bk) = ak−1. Here c(k − 1) = 1, c(k) = 2

F.3.2.1. Condition (DN1) holds
There is no prohibition on color i for the vertex bk in the coloring ρ′ (since
i /∈ J such prohibition cannot appear after applying the algorithm DN). We
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recolor bk with color i and obtain a coloring ρ∗. Recall, that in the case we
consider ρ′(ak−1) = j2 6= i, see figure 8b. Hence, ρ∗ is a proper coloring of the
graph G and ρ∗ ≤G ρ. Then by item 3 of Lemma 7 there exists a coloring ρ′′,
such that ρ′′ <G ρ

′ ≤G ρ. The algorithm stops.
F.3.2.2. Condition (DN2) holds

By condition C1(k− 1), there is exactly one prohibition on color c(k) for the
vertex bk−1 in the coloring ρ1: a prohibition of type 2 with basic vertex ak−1.
However, in the coloring ρ′ there is exactly one vertex of color j3 = c(k − 1)
in NG(ak−1)\{bk−1}, other vertices have color c(k) (see figure 8c). Hence, the
prohibition on the color c(k) for the vertex bk disappears in the coloring ρ′.

Recall, that any vertex of color c(k) in ρ′ has color c(k) or c(k− 1) in ρ1.
By condition C1(k − 1) for the coloring ρ1, there is no vertex of color c(k)
in N′G(bk−1) in the coloring ρ1. Since ρ1 is a proper coloring, in N′G(bk−1) there
is no vertex of color c(k−1) in the coloring ρ1. Finally, by condition C2(k−1)
for the coloring ρ1 there is exactly one vertex in N′G(bk−1), which neighbor-
hood is colored in the coloring ρ1 with colors 1 and 2 — this is ak−1. Hence,
no new prohibition on color c(k) can appear in ρ′. Thus, the vertex bk−1 has
no prohibition on color c(k) in the coloring ρ′ and by Lemma 6 there exists
a coloring ρ′′, such that ρ′′ <G ρ. The algorithm stops.

4.5 The end of the proof of theorem 1

Proof of theorem 1. Let us consider a proper coloring ρ of the graph G
with the minimal number of bad vertices; assume that a is a bad vertex in ρ.
Start the algorithm that constructs a chain of prohibitions beginning at the
bad vertex a. We have shown that vertices of the chain cannot repeat. Since
the graph is finite, this means that, after some time, the algorithm stops and
we get a coloring ρ′ <G ρ, which contradicts the minimality of ρ. It follows
that the coloring ρ does not contain bad vertices; hence, ρ is a dynamic
proper coloring.
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