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Abstract

A collection of finite number of interacting bosonic atoms in a double-well trap
is considered and studied by using the two-site Bose-Hubbard Hamiltonian. The
application of the Quantum Inverse Method allows to obtain the exact expressions
for the time-dependent correlation functions.
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The recent interest to the bimodal Bose-Hubbard model is caused by the possibility
of its applications in the studies of weakly interacting ultracold atoms in a double-well
traps [1, 2, 3, 4, 5], quantum dynamics in the bosonic Josephson junctions [6, 7], quantum
metrology [8] and quantum information processing [9].

The Quantum Inverse Method (QIM) [10, 11] allowed to solve the model exactly
[12, 13]. In this paper we shall use the QIM approach to the calculation of the time-
dependent correlation functions of the model.

Consider a collection of N bosonic atoms at zero temperature in a double-well optical
trap su�ciently deep that only the lowest state in each well is populated. In this so-
called two mode approximation, the atoms' dynamics is described by the Bose-Hubbard
Hamiltonian

Ĥ = ϵ(nb − na)− J(a†b+ ab†) +
U

2
(na(na − 1) + nb(nb − 1)) , (1)

where a, a† and b, b† are bosonic annihilation and creation operators in the ath and bth
wells respectively [a, a†] = [b, b†] = 1, and operators in di�erent wells mutually commute.
The number operators of particles in the wells na = a†a, nb = b†b. The bias potential,
coupling, and interaction energies are denoted as ε, J , and U , respectively. The bias ε
may be positive or negative, depending on the energy detuning between the two modes,
U > 0 corresponding to repulsive inter- actions and vice versa. The total number operator
of particles

N̂ = a†a+ b†b (2)

is conserved: [Ĥ, N̂ ] = 0.
Eliminating insigni�cant c-number terms, we can rewrite (1) as a spin Hamiltonian,

ĤL = εL̂z − JL̂x + UL̂2
z , (3)

where the SU(2) generators in the Schwinger representation

L̂x =
1

2
(a†b+ ab†) , L̂y =

1

2i
(a†b− ab†) , L̂z =

1

2
(a†a− b†b) (4)

are de�ned in terms of the boson annihilation and creation operators a, a†, b, b†. In the
spin form (3) the bimodal Bose-Hubbard model is equivalent to the Lipkin-Meshkov-Glick
model [14] of the nuclear physics.

The conservation of the total number operator allows us to set

Ĥ = −J−1

{
Ĥ − U

2
N̂(N̂ − 1)− ϵN̂

}
,

and [Ĥ, Ĥ] = 0. We can, therefore, write

Ĥ = ∆b†b+ (a†b+ ab†) + c2a†ab†b , (5)

where ∆ = 2J−1ϵ, c2 = J−1U . Henceforth, we shall consider Ĥ and give its exact solution,
but the same results can immediately be extended to the model with Hamiltonian (1)
through the mapping given above.
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To apply QIM to the solution of the model we consider the two 2×2 matrix operators
La(λ) and Lb(λ):

La(λ) =

(
λ− c−1∆− ca†a a†

a −c−1

)
, (6)

Lb(λ) =

(
λ− cb†b b†

b −c−1

)
, (7)

in which λ is a complex number. Note that the elements of La(λ) each commute with
each of the elements of Lb(λ). These L-operators were introduced in [15, 16] and may be
obtained as a special limit of a general boson L-operator [17]. For the monodromy matrix
T (λ) we can now set

T(λ) = La(λ)Lb(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
, (8)

so that

B(λ) = λb† −X; (9)

X = c−1∆b† + ca†ab† + c−1a†;

[b†,X] = 0,

and

C(λ) = λa−Y; (10)

Y = c−1b+ cab†b ;

[a,Y] = 0 .

We also have

A(λ) = λ2 − λ(ca†a+ cb†b+∆c−1) + ∆b†b+ a†b+ c2a†ab†b ; (11)

D(λ) = ab† + c−2 .

The trace of the monodromy matrix (8)

τ(λ) = TrT(λ) = A(λ) +D(λ) (12)

in the explicite form
τ(λ) = λ2 − λ(cN̂ +∆c−1) + Ĥ + c−2, (13)

where N̂ is the number operator (2) and Ĥ is the Hamiltonian (5). It can be checked that

Ĥ = τ(0)− c−2, (14)

N̂ = − c−1∂τ(λ)

∂λ

∣∣∣∣
λ=0

− c−1∆

We can de�ne the monodromy matrix of the model multiplying L-operators in the
opposite order

T̃(λ) = Lb(λ)La(λ) =

(
Ã(λ) B̃(λ)

C̃(λ) D̃(λ)

)
. (15)
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Note that TrT(λ) = TrT̃(λ) = τ(λ), and

B̃(λ) = C+(λ), C̃(λ) = B+(λ). (16)

The introduced L-operators satisfy the intertwining relations

R(λ, µ)La, b(λ)⊗ La, b(µ) = La, b(µ)⊗ La, b(λ)R(λ, µ) (17)

with the rational R-matrix

R(λ, µ) =


f(µ, λ) 0 0 0

0 g(µ, λ) 1 0
0 1 g(µ, λ) 0
0 0 0 f(µ, λ)

 , (18)

with the enries
f(µ, λ) = 1− c

µ− λ
, g(µ, λ) = − c

µ− λ
.

The mutual commutativity of the entries of the operator valued matrices LB and LS leads
to the relation

R(λ, µ)T(λ)⊗T(µ) = T(µ)⊗T(λ)R(λ, µ) (19)

which de�nes the algebra of the entries A,B,C,D. The consequence of this relation is
the commutativity of the transfer matrices (12) for arbitrary complex numbers λ, µ:

[τ(λ), τ(µ)] = 0. (20)

It can be shown that N̂B(λ) = B(λ)(N̂ + 1). So as it is already evident B(λ) acts
as a creation operator for the quasi-particles of the theory while C(λ) is an annihilation
operator.

The N -particle state vectors are constructed in the usual fashion for the QIM method

| ΨN({λ})⟩ =
N∏
j=1

B(λj) | Ω⟩ =
N∏
j=1

(λjb
† −X) | Ω⟩, (21)

where the vacuum state | Ω⟩ =| 0⟩a⊗ | 0⟩b (a | 0⟩a = 0; b | 0⟩b = 0) is the eigenstate of the
operators A,D (11):

A(λ) | Ω⟩ = a(λ) | Ω⟩ = λ(λ−∆c−1),
D(λ) | Ω⟩ = d(λ) | Ω⟩ = −c−1,

(22)

while
C(λ) | Ω⟩ = 0.

Throughout the paper we shall use as short-hand notations for appropriate N -tuples of
parameters {x} ≡ (x1, x2, . . . , xN).

It follows from (21) that the state vector (21) may be written as

| ΨN({λ})⟩ =
N∑

m=0

(−1)m+1em(b
†)mXN−m | Ω⟩, (23)
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where
em =

∑
i1<i2<...<im

λi1λi2 . . . λim

is the elementary symmetric function [18].
The conjugated N -particle state vectors is equal to

⟨ΨN({µ}) |= ⟨Ω |
N∏
j=1

C(µj) = ⟨Ω |
N∑

m=0

(−1)m+1ema
mYN−m (24)

and
⟨Ω | B(µ) = 0.

It can be shown that the state vector (21) is the eigenvector of the transfer matrix (12)

τ(µ)| ΨN({λ})⟩ = θN(µ)| ΨN({λ})⟩ (25)

and thus of the Hamiltonian if {λ} are, in fact, the roots of the Bethe equations which
here take the form, for n = 1, 2, . . . , N ,

cλn(cλn −∆) =
N∏

j=1,j ̸=n

λn − λj + c

λn − λj − c
. (26)

Taking the complex conjugation of these equations we �nd that the complex conjugated
{λ∗} satisfy the same equations. It means that there are real and complex-valued solutions
of the equations. The complex valued roots are pairwise conjugate. Thus {λ∗} = {λ}.

This way we can �nd the eigenvalues of the transfer matrix (12)

θN(µ) = a(µ)
N∏
j=1

f(µ, λj) + d(µ)
N∏
j=1

f(λj, µ) (27)

= µ(µ−∆c−1)
N∏
j=1

(
1− c

µ− λj

)
+ c−2

N∏
j=1

(
1 +

c

µ− λj

)
.

The conjugated N -particle state vector (24) is the eigenvector of the transfer matrix (12)

⟨ΨN({λ}) | τ(µ) = θN(µ)⟨ΨN({λ}) | (28)

with the same eigenvalue (27) if {λ} are the roots of Bethe equations (26).
From the equation (14) we �nd that the N -particle eigenenergies of the Hamiltonian

(5) are equal to:

Ĥ | ΨN({λ})⟩ = EN | ΨN({λ})⟩ (29)

EN = −c−2 + c−2

N∏
j=1

(
1− c

λj

)
.

The ground state of the Hamiltonian (5) corresponds to the minimal value of egenenergy.
The set of solutions of Bethe equations that de�nes this state will be labeled by σg: {λσg}.
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Consider the state vectors constructed by operators (16)

| Ψ̃N({λ})⟩ =
N∏
j=1

B̃(λj) | Ω⟩, ⟨Ψ̃N({µ}) |= ⟨Ω |
N∏
j=1

C̃(µj) . (30)

It was proved in [17] that on the solutions of Bethe equations

| Ψ̃N({λ})⟩ = νN | ΨN({λ})⟩, ⟨Ψ̃N({µ}) |= ν−1
N ⟨ΨN({µ}) | , (31)

where for the model under consideration

νN =
N∏

n=1

(∆− cλn) = (−1)N
N∏

n=1

1

cλn

. (32)

To calculate the correlators we shall use the well known formula [19, 20] for the
scalar product of the state vectors of integrable models adopted for the model under
consideration:

SN({µ}, {λ}) = ⟨ΨN({µ}) | ΨN({λ})⟩ (33)

= cN
∏N

j=1

∏N
α=1(µj − λα)∏

j>k(µk − µj)
∏

α<β(λβ − λα)
detT ({µ}, {λ}),

where the entries of the N ×N matrix T are

Tab = c−1 ∂

∂λa

τ(µb, {λ}) (34)

=
1

(µb − λa)2

{
−a(µb)

N∏
j=1,j ̸=a

(1− c

µb − λj

) + d(µb)
N∏

j=1,j ̸=a

(1 +
c

µb − λj

)

}
.

It is supposed here that {λ} are the solutions of Bethe equations, while {µ} is the set
of arbitrary parameters. The square of the norm of the eigenvectors is calculated by the
Gaudin formula [21]:

N 2 = SN({λ}, {λ}) = cN
N∏
j=1

d2(λj)
∏
α ̸=β

λα − λβ + c

λα − λβ

detΦ({λ}), (35)

where the entries of the N ×N matrix Φ are

Φab = − ∂

∂λb

ln
a(λa)

d(λa)

M∏
k=1,k ̸=a

λa − λk − c

λk − λa − c
. (36)

The Bethe state vectors form a complete orthogonal set

⟨ΨN({λσ1}) | ΨN({λσ2})⟩ = δσ1,σ2 , ∑
σ

| ΨN({λσ})⟩⟨ΨN({λσ}) |
N 2

σ

= 1 . (37)
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Index σ denotes the sets of solutions of Bethe equations (26), and the summation is over
all K sets of independent solutions.

The determinant representation (33) may be used in calculation of the transition
element of the photon annihilation operator

⟨ΨN−n({λ′}) | an | ΨN({λ})⟩ , (38)

where {λ} and {λ′} are the solutions of Bethe equations (26) for N and N − n particles
respectively. Really, notice that from the de�nition (10) it follows that limλ→∞ λ−1C(λ) =
a and hence

⟨ΨN−n({µ}) | an | ΨN({λ})⟩ =
1

µn
lim

µ1,µ2,...,µn→∞
SN({µ}, {λ}). (39)

Replacing the arbitrary parameters {µ} by the solutions of Bethe equations {λ′} we
obtain the answer for (38). The limit in (39) may be found with the help of the formula

lim
v1,v2,...,vn→∞

det{G(vj, uk)}∏
M≥j>k≥1(vk − vj)

=
det
{

1
(j−1)!

∂j−1

∂vj−1G(v, uk) |v→∞

}∣∣∣n
j=1∏

M≥j>k>n(vk − vj)
, (40)

where G(u, v) is an arbitrary di�erentiable for at least M times function of two variables.

Denoting Vjk ≡ 1
(j−1)!

µ
n(n−1)
j

∂j−1

∂µj−1
j

T (µj, uk) |µj→∞ we obtain the answer

AN,n({µ}, {λ}) ≡ ⟨ΨN−n({µ}) | an | ΨN({λ})⟩

= cN
∏N

j=n+1

∏N
α=1(µj − λα)∏

j>k>n(µk − µj)
∏

α<β(λβ − λα)
detT(n)({µ}, {λ}) . (41)

The entries of the N × N matrix T(n) are equal to Vab for a ≤ n and are Tab (34) for
a > n, 1 ≤ b ≤ N . To obtain the answer for the transition element (38) we have to change
parameters {µ} on the solutions of Bethe equations for N − n particles.

For instance, for n = 1 the answer for the transition element is

⟨ΨN−1({λ′}) | a | ΨN({λ})⟩

= cN
∏N

j=3

∏N
α=1(λ

′
j − λα)∏

j>k>2(λ
′
k − λ′

j)
∏

α<β(λβ − λα)
detT(1)({λ′}, {λ}) , (42)

where matrix

T(1)({λ′}, {λ}) =


−1 T12 . . . T1N

−1 T22 . . . T2N
...

...
. . .

...
−1 TN2 . . . TNN

 .

To �nd the transition element of the creation operator one can take the complex
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conjugation of the transition element of the annihilation operator:

⟨ΨN−n({λ′}) | an | ΨN({λ})⟩∗ = ⟨Ω |
N−n∏
j=1

C(λ′
j)a

n

N∏
j=1

B(λj) | Ω⟩∗

= ⟨Ω |
N∏
j=1

B+(λj)(a
†)n

N−n∏
j=1

C+(λ′
j) | Ω⟩

= ⟨Ω |
N∏
j=1

C̃(λj)(a
†)n

N−n∏
j=1

B̃(λ′
j) | Ω⟩

=
ν ′
N−n

νN
⟨ΨN({λ}) | (a†)n | ΨN−n({λ′})⟩ , (43)

where the de�nition (30) and the property (31) have been used, and λ′ are the solutions
of Bethe equations (26) for N − n particles. The obtained formula allows to express the
transition element of the creation operator in the determinantal form:

A+
N,n({λ}, {λ

′}) ≡ ⟨ΨN({λ}) | (a†)n | ΨN−n({λ′})⟩

= cN
νN
ν ′
N−n

∏N
j=n+1

∏N
α=1(λ

′
j − λα)∏

j>k>n(λ
′
k − λ′

j)
∏

α<β(λβ − λα)
detT+

(n)({λ
′}, {λ}) , (44)

where T+
(n)({λ′}, {λ}) is the Hermitian conjugated matrix (41) on the solutions of Bethe

equations.
The obtained representations for the transition elements (41) and (44) allow us to

calculate di�erent n-photon time-dependent correlation functions.
We de�ne the n-photon Green function ⟨(a†)nan(t)⟩N as the average taken over the

N -particle ground state of the model | ΨN({λσg})⟩:

⟨(a†)nan(t)⟩N =
1

N 2
σg

⟨ΨN({λσg}) | (a†)ne−iHtaneiHt | ΨN({λσg})⟩

=
∑
σ

eit(E
σg
N −Eσ

N−n)

N 2
σg
N 2

σ

⟨ΨN({λσ}) | (a†)n | ΨN−n({λσg})⟩

× ⟨ΨN−n({λσg}) | an | ΨN({λσ})⟩

=
∑
σ

eit(E
σg
N −Eσ

N−n)

N 2
σg
N 2

σ

∣∣∣⟨ΨN−n({λσg}) | an | ΨS,N({λσ})⟩
∣∣∣2νσ

N−n

ν
σg

N

, (45)

where the sum is taken over the sets of solutions of Bethe equations (26) forM+n particles
λσ labeled by σ , and the complete orthogonal set (37) of eigenstates of the Hamiltonian
(5) was used. Substituting formulas (29), (32), (35) and (41) into (45) we obtain the �nal
answer.

From (9) it follows that limλ→∞ λ−1B(λ) = b†. Repeating the derivation of the transition
element of the operator a (38) we �nd that

B+
N,n({λ}, {λ

′}) ≡ ⟨ΨN({λ}) | (b†)n | ΨN−n({λ′})⟩

= cN
∏N

j=n+1

∏N
α=1(λ

′
j − λα)∏

j>k>n(λ
′
k − λ′

j)
∏

α<β(λβ − λα)
detT+

(n)({λ
′}, {λ}) , (46)
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where matrix T is de�ned in (41), (44), and λ, λ′ are the solutions of corresponding Bethe
equations. The expression (46) di�ers from (44) by the factor νN/ν

′
N−n and thus

⟨ΨN({λ}) | (b†)n | ΨN−n({λ′})⟩ = ⟨ΨN−n({λ′}) | an | ΨN({λ})⟩ .

The Green function

⟨(b†)nan(t)⟩N =
1

N 2
σg

⟨ΨN({λσg}) | (b†)ne−iHtaneiHt | ΨN({λσg})⟩

=
∑
σ

eit(E
σg
N −Eσ

N−n)

N 2
σg
N 2

σ

∣∣∣⟨ΨN−n({λσg}) | an | ΨS,N({λσ})⟩
∣∣∣2 , (47)

An important resource in quantummetrology is the Einstein-Podolsky-Rosen entanglement
which is characterized by the sign of the observable

E = ⟨a†b⟩N⟨b†a⟩N − ⟨a†ab†b⟩N .

The wells are said to be spatially entangled whenever E > 0.
The other important quantity which measures the visibility of the interference fringes

is given by

α =
2|⟨a†b⟩N |

N
(48)

where the expectation value is taken with respect to the ground state. This quantity
characterizes the degree of coherence between the two wells, related to the left-right (and
back) tunneling.

The obtained results for the time-dependent correlation functions will allow to study
the dynamics of entanglement and visibility in details.
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