HPEITPUHTBI IIOMU PAH

I'JTABHBIN PEJIAKTOP

C.B. Kucnsaxos

PEAKOJUIEI'NA

B.M.ba6wuu, H.A.BaBunos, A.M.Bepmuk, M.A.Bcemupnos, A.W.I'enepanos, U.A.MGparumos,
JLYO.Konotununa, b.b.JIypse, F0.B.Marusicesny, H.}O.Heueraes, C.U.Penun, I'.A.Ceperun

Yupenutens: OenepanbHOe rOCYyJapCTBEHHOE OIOKETHOE YUPEIKICHUE HAYKU
Cankr-IlerepOyprckoe oTaeneHne MareMaTH4eCKOro HHCTUTYTA
uM. B. A. Creknoa Poccuiickoil akageMun HayK

CBHIETENBCTBO O pErucTpanuu cpeactsa maccoBoit nHpopmaruu: IJI NedC 77-33560 ot 16
okTs10ps 2008 r. Bergano ®enepanbHoil ciyk00i 1o Haa30py B cpepe CBA3H U MACCOBBIX
KOMMYHUKaIUN

Konraktueie qannsie: 191023, r. Cankr-IletepOypr, Ha6. peku PoHTaHKH, T0M 27
tenedonsr:(812)312-40-58; (812) 571-57-54

e-mail: admin@pdmi.ras.ru

http://www. pdmi.ras.ru /preprint/

3aBeayromnas HHPOPMAITMOHHO-U3AaTeNbCKUM cekTopoM Cumonosa B.H


mailto:admin@pdmi.ras.ru

PDMI preprint 14/2014

Time-dependent correlation functions for a
bimodal Bose-Hubbard model *

N. M. Bogoliubov*,

Steklov Mathematical Institute, St.-Petersburg Department, RAS
Fontanka 27, St.-Petersburg, 191023, Russia, and
ITMO University, Kronverkskiy 49, 197101, St.Petersburg, Russia.

* e-mail: bogoliub@pdmi.ras.ru

Abstract

A collection of finite number of interacting bosonic atoms in a double-well trap
is considered and studied by using the two-site Bose-Hubbard Hamiltonian. The
application of the Quantum Inverse Method allows to obtain the exact expressions
for the time-dependent correlation functions.
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The recent interest to the bimodal Bose-Hubbard model is caused by the possibility
of its applications in the studies of weakly interacting ultracold atoms in a double-well
traps |1, 2, 3, 4, 5], quantum dynamics in the bosonic Josephson junctions |6, 7|, quantum
metrology [8] and quantum information processing [9)].

The Quantum Inverse Method (QIM) [10, 11| allowed to solve the model exactly
[12, 13]. In this paper we shall use the QIM approach to the calculation of the time-
dependent correlation functions of the model.

Consider a collection of N bosonic atoms at zero temperature in a double-well optical
trap sufficiently deep that only the lowest state in each well is populated. In this so-
called two mode approximation, the atoms’ dynamics is described by the Bose-Hubbard
Hamiltonian

~

H = e(ny — ng) — J(a'b+ ab') + % (ng(ng — 1) + np(ny — 1)) (1)

where a,a’ and b, b are bosonic annihilation and creation operators in the ath and bth
wells respectively [a,a'] = [b,b'] = 1, and operators in different wells mutually commute.
The number operators of particles in the wells n, = a'a,n, = b'b. The bias potential,
coupling, and interaction energies are denoted as ¢,J, and U, respectively. The bias €
may be positive or negative, depending on the energy detuning between the two modes,
U > 0 corresponding to repulsive inter- actions and vice versa. The total number operator

of particles )
N =dla+b'b (2)

is conserved: [H, N] = 0.
Eliminating insignificant c-number terms, we can rewrite (1) as a spin Hamiltonian,

Hy=¢elL,—JL,+UL?, (3)
where the SU(2) generators in the Schwinger representation

- 1 - 1 -1
L,= i(aTb +ab'), L, = 2—i(aTb —ab'), L, = é(aTa —b'D) (4)

are defined in terms of the boson annihilation and creation operators a,af,b,bt. In the
spin form (3) the bimodal Bose-Hubbard model is equivalent to the Lipkin-Meshkov-Glick
model [14] of the nuclear physics.

The conservation of the total number operator allows us to set

X U .
H=—-J"! {7{ — EN(N —1) - eN} ,
and [H,H] = 0. We can, therefore, write
H = AbTb + (a'b + ab’) + 2afab'p (5)
where A = 2J e, ¢ = J~'U. Henceforth, we shall consider H and give its exact solution,

but the same results can immediately be extended to the model with Hamiltonian (1)
through the mapping given above.



To apply QIM to the solution of the model we consider the two 2 X 2 matrix operators
L,(A) and Ly()\):

Loy = (TR ), ©)
Ly(\) — ( Al b ) , 7)

in which X is a complex number. Note that the elements of L,(\) each commute with
each of the elements of Ly(\). These L-operators were introduced in |15, 16] and may be
obtained as a special limit of a general boson L-operator [17]. For the monodromy matrix
T(\) we can now set

_ (AN BN
T = La(MTo(2) = ( C(A) D(\) ) (8)
so that
B(\) = M —X; (9)
X = ¢ AV +calabt 4+ ¢ Lal;
[bT7X] — 07
and
C(\) = Xa-Y,; (10)
Y = ¢ 'b+cab'd;
[a, Y] = 0.
We also have
A(N) = M= Xca'a+cb'b+ Ac™h) + AbTb + a'b + c*alabh; (11)

D(\) = abl +c2.

The trace of the monodromy matrix (8)

7(A) =TrT(\) = A(\) + D()) (12)
in the explicite form R R
TA) =X =AeN+Ac )+ H+c? (13)
where N is the number operator (2) and H is the Hamiltonian (5). It can be checked that
o = 7(0)—c? (14)
N — C—laT()\) . C_lA
o |,_o

We can define the monodromy matrix of the model multiplying L-operators in the

opposite order B N
() = Ly(VL,(Y) = ( a0y By ) . (15)



Note that TrT(\) = TrT(\) = 7()\), and
B(\) = C*H(\), C(\) =B*(\). (16)
The introduced L-operators satisfy the intertwining relations
R(A, 11)La,(A) @ L, (1) = La,p (1) @ La, s (A R(A, 1) (17)

with the rational R-matrix

f(p,A) 0 0 0
_ 0 g(pwA) 1 0
R(\, ) = 0 L g(wA) 0 ’ (18)
0 0 0 flA)
with the enries . .
N=1— —— A)=— .
f(,A) Y g(p, A) T

The mutual commutativity of the entries of the operator valued matrices Lg and Lg leads
to the relation
R(A, )T (A) @ T(p) = T(p) @ T(AR(A, ) (19)

which defines the algebra of the entries A, B, C,D. The consequence of this relation is
the commutativity of the transfer matrices (12) for arbitrary complex numbers A, p:

[r(A), 7(u)] = 0. (20)

It can be shown that NB(\) = B(A)(N 4 1). So as it is already evident B()\) acts
as a creation operator for the quasi-particles of the theory while C(\) is an annihilation
operator.

The N-particle state vectors are constructed in the usual fashion for the QIM method

N

| Ty({AD) = HB(&') (@) =" =X) | ), (21)

J=1

where the vacuum state | Q) =| 0),® | 0); (a | 0), = 0;b | 0), = 0) is the eigenstate of the
operators A, D (11):

(22)

while
C\) | Q) =0.

Throughout the paper we shall use as short-hand notations for appropriate N-tuples of
parameters {x} = (1, 22,...,2N).
It follows from (21) that the state vector (21) may be written as

N(IAD) = D (1) e (1) " XN | ), (23)

m=0



where

Em — Z )\il )\1'2 e )‘im

11 <12<...<im

is the elementary symmetric function [18].
The conjugated N-particle state vectors is equal to

N N
(Tx({p}) = @[] Cluy) = (@1 Y (1) Hepa™ Y™ (24)
j=1 m=0
and
(@[ B(n) = 0.
It can be shown that the state vector (21) is the eigenvector of the transfer matrix (12)
T(W)] ¥y ({A}) = On ()| ®({A}) (25)

and thus of the Hamiltonian if {A} are, in fact, the roots of the Bethe equations which
here take the form, forn=1,2,..., N,

N

ek, —A) = ]

j=Lj#n

)\n — )\j +c . (26)

>\n — /\j — C

Taking the complex conjugation of these equations we find that the complex conjugated

{A*} satisfy the same equations. It means that there are real and complex-valued solutions

of the equations. The complex valued roots are pairwise conjugate. Thus {A*} = {A}.
This way we can find the eigenvalues of the transfer matrix (12)

On(p) = a(p) Hf(u, Aj) A+ d(p) Hf(&»u) (27)
- M(M—Acl)jli[l (1 —~ u—Aj) +02].Ul (1+ u—Aj> .

The conjugated N-particle state vector (24) is the eigenvector of the transfer matrix (12)

(Wn{AD) [ 7(1) = On () (TN ({A}) | (28)

with the same eigenvalue (27) if {A} are the roots of Bethe equations (26).
From the equation (14) we find that the N-particle eigenenergies of the Hamiltonian
(5) are equal to:

H{¥n({A}) = En|[¥n({A}) (29)
EN = —C2+021;[1 (1— )%) .

The ground state of the Hamiltonian (5) corresponds to the minimal value of egenenergy.
The set of solutions of Bethe equations that defines this state will be labeled by o,: {A%}.



Consider the state vectors constructed by operators (16)

N

| Tx({AD) = [[BOY) 19), (Tn({u}) |= (@[] Clu)- (30)

=1 =1
It was proved in [17] that on the solutions of Bethe equations

[ Tn({AD) = o | TN (D), (Tn({p)) = vy (Tx({u}) |, (31)

where for the model under consideration

vy =[J(A—ch) = (—1)NH$. (32)

To calculate the correlators we shall use the well known formula [19, 20| for the
scalar product of the state vectors of integrable models adopted for the model under
consideration:

Sv{p} A} = (Tn({p}) | Tx({A}) (33)
Hj‘vzl Hivzl(ﬂj — o)

= e — ) Taog g — Ay o T L (A,

where the entries of the N x N matrix T are

Tab = claia7'<,ub, {)\}) (34)
1 N c N .
— m {—a(,ub) j];][#l(l — = )\j> -+ d(,ub) j];][#a(l + T )\])} .

It is supposed here that {A} are the solutions of Bethe equations, while {u} is the set
of arbitrary parameters. The square of the norm of the eigenvectors is calculated by the
Gaudin formula |21]:

N
Ao — AgFc
N2 = Sn({ALAY) = M [T 0g) [T =5 det @({AD), (35)
j=1 azp o 7P
where the entries of the N x N matrix ¢ are
0 a()\a) M )\a - )\k —C
TN d() o M A (36)

The Bethe state vectors form a complete orthogonal set

(ON{AT ) [ ON{AT])) = do10s

S LMDy g



Index o denotes the sets of solutions of Bethe equations (26), and the summation is over
all K sets of independent solutions.

The determinant representation (33) may be used in calculation of the transition
element of the photon annihilation operator

(Un-n({N}) [a" [ TN({A}), (38)

where {A} and {\'} are the solutions of Bethe equations (26) for N and N — n particles
respectively. Really, notice that from the definition (10) it follows that limy ., A™!C()\) =
a and hence

(Onn({p}) | a” | On({A}) = in lim Sx({ph {A})- (39)

Replacing the arbitrary parameters {p} by the solutions of Bethe equations {\'} we
obtain the answer for (38). The limit in (39) may be found with the help of the formula

n

1 ot
det{G(Uj, Uk)} B det { G—1) 9ui—1 G(’U, Uk) ’U—>oo} =1 (40)

lim

V1,02, Un 200 HM2j>k21<vk —vj) N HM2j>k'>n<Uk — ;)

where G(u,v) is an arbitrary differentiable for at least M times function of two variables.
1 n(n—1) gi—1
G-t T

Denoting V), = T4, ur) |p;—s00 We obtain the answer

Ann({p} AN = (Tn-n({p}) [a" | TN({A})

]'V— 1 g:l J'_)‘a

The entries of the N x N matrix 7{,) are equal to Vg for a < n and are Ty, (34) for
a>mn,1 <b< N.Toobtain the answer for the transition element (38) we have to change
parameters {p} on the solutions of Bethe equations for N — n particles.

For instance, for n = 1 the answer for the transition element is

(Tn_1({N]) [a | TN({A}))
Hj‘V::J, HaN:1()‘;' — Aa)

= M — X)) Ty = ) o TN XD (02

where matrix

-1 Ty, ... Tin
—1 T22 c. TQN
—1 TN2 c. TNN

To find the transition element of the creation operator one can take the complex



conjugation of the transition element of the annihilation operator:

(@ (VD) 1o | (D) = @ | TT c0pa []BOV) | 0

=@ | T[B Oy [T e ) 1)
= @ [0 TT By 0)

= D () | @) [ @ (XD (19

where the definition (30) and the property (31) have been used, and A’ are the solutions
of Bethe equations (26) for N — n particles. The obtained formula allows to express the
transition element of the creation operator in the determinantal form:

AL VD) = (Bx({AY) | (@)™ [ On o ({X'))
N VN H;V:n—}—l fo\leo‘;‘ - )\a)
VN_n Hj>k>n()\§€ - A;) Ha<ﬁ(>‘ﬁ — )

where T@({X}, {A}) is the Hermitian conjugated matrix (41) on the solutions of Bethe
equations.

The obtained representations for the transition elements (41) and (44) allow us to
calculate different n-photon time-dependent correlation functions.

We define the n-photon Green function {(a")"a"(t))y as the average taken over the
N-particle ground state of the model | ¥ ({A7})):

()" (1)) = 5 (N} | (@) ™ae™ | (A7)

det TH (N} AAD) - (44)

piH(EY —E;'Vw)

=3 N | (@) [ Bya((A)

X(Pn-n({A7]) [ " | WN({A7]))
eit(E;'ngE]‘{,_n)

=> TAETNE (Wn (A7) | a™ | Tan({A7))) 21/57\[9” . (45)

where the sum is taken over the sets of solutions of Bethe equations (26) for M +n particles
A7 labeled by o, and the complete orthogonal set (37) of eigenstates of the Hamiltonian
(5) was used. Substituting formulas (29), (32), (35) and (41) into (45) we obtain the final
answer.

From (9) it follows that limy_,o, A™'B(\) = b'. Repeating the derivation of the transition
element of the operator a (38) we find that

B, (AL AND) = (Bx({A) | (0" | x-n({X'})
CN Hj’V:n—i-l Hgﬂ()‘;‘ - >‘a>
Hj>k>n()‘;c - A;) Ha<6()‘6 - Aa)

det T (N} (AD), (46)



where matrix 7" is defined in (41), (44), and A\, X" are the solutions of corresponding Bethe
equations. The expression (46) differs from (44) by the factor vy /vy _,, and thus

(N ({A) [N [ Cy-n({AD) = (Tnvon({N}) [ " | Tx({A}))

The Green function

(1) () = < (T (A} | (B)'e ™™ | ({2 })

't(E;'Vg 7Ej'\-7—n)

- (e [ s @

An important resource in quantum metrology is the Einstein-Podolsky-Rosen entanglement
which is characterized by the sign of the observable

£ = (a'b)n('a)y — (aTab’b)y .

The wells are said to be spatially entangled whenever £ > 0.
The other important quantity which measures the visibility of the interference fringes
is given by
2|(a'b) x|

where the expectation value is taken with respect to the ground state. This quantity
characterizes the degree of coherence between the two wells, related to the left-right (and
back) tunneling.

The obtained results for the time-dependent correlation functions will allow to study
the dynamics of entanglement and visibility in details.
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