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Dyadi shift randomization in lassial disrepany theoryM. M. SkriganovSt. Petersburg Department of Steklov Institute of MathematisE-mail: maksim88138813�mail.ruAugust 25, 2014AbstratDyadi shifts D⊕T of point distributionsD in the d-dimensional unit ube Udare onsidered as a randomization. Expliit formulas for the Lq-disrepanies ofsuh randomized distributions are given in the paper in terms of Rademaherfuntions. Relaying on the statistial independene of Rademaher funtions,Khinhin's inequalities, and other related results, we obtain very sharp upper andlower bounds for the mean Lq-disrepanies. 0 < q ≤ ∞.The upper bounds imply diretly a generalization of the well known Chen'stheorem on mean disrepanies to the ase of dyadi shifts (Theorem 2.1).From the lower bounds it follows that for an arbitrary N -point distributionDN and any exponent 0 < q ≤ 1 there exist dyadi shifts DN ⊕ T suh that theLq-disrepany Lq[DN ⊕ T ℄ > d;q(logN) 12 (d−1) (Theorem 2.2).The lower bounds for the L∞-disrepany are also onsidered in the paper. Itis shown that for an arbitrary N -point distribution DN there exist dyadi shiftsDN ⊕ T suh that L∞[DN ⊕ T ℄ > d(logN) 12d (Theorem 2.3).Keywords: Uniform distributions, mean Lq-disrepanies, Rademaherfuntions, Khinhin's inequality
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Contents1. Dyadi shifts and the mean disrepanies2. Main results3. Rademaher funtions and related inequalities4. Rademaher funtions and expliit formulas for disrepanies5. Expliit formulas and preliminary bounds for the mean disrepanies6. Bounds for the error terms and some auxiliary bounds7. Proofs of Theorem 2.1, 2.2 and 2.3.1. Dyadi shifts and the mean disrepaniesThe lassial disrepany theory deals with the distribution of �nite point setsin retangular sub-boxes in the unit ube with sides parallel to the oodinateaxes. A detailed disussion of numerous methods and results known in the�eld an be found in [1, 2, 11℄. We reall only the main de�nitions and fatsneessary for the purposes of our paper.Let D be an arbitrary �nite subset (distribution) in the unit ube Ud =[0; 1)d. The loal disrepany L[D; Y ℄, Y = (y1; : : : ; yd) ∈ Ud, is de�ned by
L[D; Y ℄ = |D ∩BY | − |D| volBY ; (1.1)where BY = [0; y1) × · · · × [0; yd) is a refngular box of volume volBY =y1; : : : ; yd, and | · | denotes the ardinality of a set.The Lq-disrepanies are de�ned by

Lq[D℄ = (∫Ud |L[D; Y ℄|qdY)1=q; 0 < q < ∞; (1.2)
L∞[D℄ = supY ∈Ud |L[D; Y ℄|: (1.3)We write N for the set of all positive integers, N0 for the set of all non-negative integers, Nd and Nd0 for the produt of d opies of the orresponding
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sets. For s ∈ N0, we put
Q(2s) = {x = m2−s ∈ [0; 1) : m = 0; 1; : : : ; 2s − 1};

Qd(2s) = {X = (x1; : : : ; xd) ∈ Ud : xj ∈ Q(2s); j = 1; : : : ; d};
Q(2∞) = ⋃s≥0Q(2s); Qd(2∞) = ⋃s≥0Qd(2s):The points of Qd(2∞) are alled dyadi rational points.Any y ∈ [0; 1) an be represented in the formy =∑a≥1 �a(y)2−a; (1.4)where �a(y) ∈ {0; 1} ≃ F2, a ∈ N. Here F2 is the �eld of two elementsidenti�ed with the set of residues {0; 1} mod 2.The dyadi expansion (1.4) is unique if we agree that for eah dyadirational point the sum in (1.4) ontains �nitely many nonzero terms. Withthis agreement, �a(y) = 0 for a > s if y ∈ Q(2s) or, in other words, for eahpoint y ∈ [0; 1), the sequene {�a(y); a ∈ N} ontains in�nitely many zeros.In a natural way, the set of dyadi rational points an be endowed withthe struture of a vetor spae over the �nite �eld F2. For any two points xand y in Q(2∞), we de�ne their sum x⊕ y as follows�a(x⊕ y) = �a(x) + �a(y) mod 2; a ∈ N; (1.5)and for any two points X = (x; : : : ; xd) and Y = (y1; : : : ; yd) in Qd(2∞) wede�ne X ⊕ Y = (x1 ⊕ y1; : : : ; xd ⊕ yd): (1.6)With respet to the addition⊕ de�ned in this way, eah set Qd(2s) is a vetorspae over the �eld F2, and dimQd(2s) = ds.Note that formulas (1.5), (1.6) onsistently de�ne the addition ⊕ for allpairs of points X and Y , whenever only one of the points, say Y , belongs to

Qd(2∞), while the other is an arbitrary point X ∈ Ud.The said above shows that, for an arbitrary distribution D and any pointT ∈ Qd(2∞), we an de�ne the dyadi shift D ⊕ T = {X ⊕ T : X ∈ D}and view it as a new distribution. For eah s ∈ N, we an onsider thefamily {D⊕T : T ∈ Qd(2s)} as a randomization of D and the orrespondingdisrepanies Lq[D ⊕ T ℄ as random variables.4



The aim of the present paper is to study the followingmean Lq-disrepanies
Ms;q[D℄ = 2−ds ∑T∈Qd(2s)Lq[D ⊕ T ℄q1=q ; 0 < q < ∞; (1.7)
Ms;∞[D℄ = maxT∈Qd(2s) L∞[D ⊕ T ℄: (1.8)Our results are given in the next setion in Theorems 2.1, 2.2 and 2.3.In Theorem 2.1 we will onsider the upper bounds for Ms;q[D℄, 0 < q < ∞,and spei� distributions D, the so-alled (Æ; s; d)-nets. The lower boundsfor Ms;q[D℄ and arbitrary distributions D will be given in Theorems 2.2 and2.3 for exponents 0 < q ≤ 1 and q = ∞, orrespondingly.Reall the de�nition of dyadi (Æ; s; d)-nets. We refer to [1, 2, 11℄ fordetails; notie that in [2℄ suh (Æ; s; d)-nets are alled 2Æ-sets of lass s− t.Consider the elementary intervals �ms ⊂ [0; 1) of the form�ma = [m2−a; (m+ 1)2−a); a ∈ N0; m = 0; 1; : : : ; 2a − 1; (1.9)and the elementary boxes �MA ⊂ Ud, A = (a1; : : : ; ad), M = (m1; : : : ; md) ∈

Nd0, �MA = �m1a1 × · · · ×�mdad ; mj = 0; 1; : : : ; 2aj − 1; j = 1; : : : ; d: (1.10)Every suh box has volume vol�MA = 2−a1−···−ad .Let 0 ≤ Æ ≤ s be integers. A subset D2s ⊂ Ud onsisting of N = 2s pointsis alled a dyadi (Æ; s; d)-net of de�ienty Æ if eah elementary box �MA ofvolume 2Æ−s ontains exatly 2Æ points of D2s.It follows from the de�nition that any (Æ; s; d)-net D2s has zero disrep-any in all elementary boxes of large volume. Preisely,
|D2s ∩�MA | = 2s vol�MA if vol �MA ≥ 2Æ−s;
|D2s ∩�MA | ≤ 2Æ if vol �MA < 2Æ: } (1.11)Indeed, in the �rst ase, eah box �MA is a disjoint union of elementary boxesof volume 2Æ−s, and in the seond, eah box �MA is ontained in an elementarybox of volume 2Æ−s.Notie also that for any (Æ; s; d)-net D2s its shift D2s ⊕ T , T ∈ Qd(2∞),is a net with the same parameters. 5



Indeed, |(D⊕ T ) ∩�MA | = |D ∩ (�MA ⊕ T )|, T ∈ Qd(2∞), and �MA ⊕ T =�M(T )A with an index M(T ).Replaing the base 2 in the de�nition and in (1.9), (1.10) by an arbitraryprime p, we arrive at (Æ; s; d)-nets in the base p. In arbitrary dimensions d,�rst onstrutions of dyadi (Æ; s; d)-nets with Æ ≤ d log d were given by Sobol,and later, other onstrutions of nets in arbitrary base p were proposed byFaure, see [2℄.It is signi�ant that for eah base p, the de�ieny Æ inreases with thegrowth of the dimension d. Furthermore, (0; s; d)-nets in the base p and witharbitrary large s exist if and only if d ≤ p+1; in partiular, in�nite sequenesof dyadi nets with Æ = 0 exist only in dimensions d = 1; 2 and 3.It is known that (Æ; s; d)-nets D2s �ll the unit ube very uniformly, andthe L∞-disrepanies admit the bounds
L∞[D2s℄ < Cd2Æsd−1; s → ∞; (1.12)with a onstant Cd depending only on dimension d. Furthermore, for arbi-trary (Æ; s; d)-nets the order of this bound as s → ∞ an not be improved.We reall that for an arbitrary N -point distribution DN ⊂ Ud the follow-ing bounds hold

Lq[DN ℄ > d;q(logN) 12 (d−1); 1 < q < ∞; (1.13)with positive onstants d;q depending only on d and q.These lassial bounds are due to Roth for 2 ≤ q ≤ ∞ and Shmidt for1 < q < 2. In two dimensions, it is known that bound (1.13) is also true forq = 1, this result is due to Hal�asz.The order of bound (1.13) is the best possible as N → ∞. In the mostgeneral form, in all dimensions d ≥ 2 and for all exponents 0 < q < ∞ thisfundamental fat was established by Chen. Previously, for 0 < q ≤ 2, thisfat was established by Davenport, Roth and other authors.It should be mentioned that Chen gave two di�erent proofs of his theo-rem. In the �rst proof the averagings of the Lq-disrepanies were onsideredwith respet to the usual Eulidean translations of point distributions. Theoriginal idea of the p-adi shifts was introdued and exploited in the seondproof in the paper [7℄.We refer to [1, 2, 11℄ for detailed disussion of all these questions.6



2. Main resultsOur �rst result onerns upper bounds for the mean Lq-disrepanies.Theorem 2.1. Let D2s be an arbitrary dyadi (Æ; s; d)-net. Then, for eah0 < q < ∞ the following bound holds
Ms;q[D2s ℄ < 2−d+Æ+1 (⌈12q⌉(s+ 1)) 12 (d−1) + d2Æ: (2.1)In partiular, there exist dyadi shifts T ∈ Qd(2s) suh that
Lq[D2s ⊕ T ℄ ≤ 2−d+Æ+1(⌈12q⌉(s+ 1)) 12 (d−1) + d2Æ: (2.2)Theorem 2.1 shows that in all dimensions there exist dyadi (Æ; s; d)-netswhih meet the lower bound (1.13).For the �rst time, the results of suh type were established by Chen fornets of de�niieny Æ = 0 in an arbitrary prime base p ≥ 2.The original Chen's approah was relaying on an elaborated ombinatorialanalysis involving simultaneous indution on the parameters d, s, and evenintegers q. Under that approah, the assumption Æ = 0 turns out to beessential. As a result, for eah �xed prime base p, Chen's theorem ould beapplied only to dimensions d ≤ p+1, and for dyadi nets only in dimensions1, 2 and 3.In the author's paper [12℄ a new approah to the study of the mean Lq-disrepanies was proposed. Under this approah, the value of the de�ienyÆ turns out to be ompletely irrelevant. This approah is relaying on thetheory of launary funtion series. In the ase of dyadi nets, these areseries of Rademaher funtions, whih form a launary subsystems for theWalsh funtions, and in the ase of nets in an arbitrary base p these seriesare launary subsystems for the orresponding Chrestenson{Levy funtions.The detailed desription of suh funtional systems an be found in [10℄.A result similar to Theorem 2.1 was established previously in [13℄, seealso [14℄, but with worth onstants in the bounds. As funtions of q theonstants given above in bound (2.1) and (2.2) are optimal in the followingsense. It an be shown that

Lq[D2s ℄ ≤ L∞[D2s ℄ ≤ 2d=" (Lq[D2s ℄ + d2Æ+1) ; (2.3)7



where q = "s → ∞ and " > 0 is an arbitrary onstant, see Lemma 6.2.Therefore, bounds (2.1) and (2.2) imply bound (1.12). Furthermore, ifthe order of the onstants in (2.1) and (2.2) ould be improved as q → ∞,then the order of bound (1.12) ould be also improved as s → ∞ for asubsequene of (Æ; s; d)-nets.Now we onsider lower bounds for the mean Lq-disrepanies. In whatfollows, log denotes the logarithm in base 2.Theorem 2.2. Let DN ⊂ Ud, d ≥ 2, be an arbitrary N-point distributionand an exponent 0 < q ≤ 1 be arbitrary �xed. Suppose that an integer s ishoosen to satisfys ≥ logN + 2d+ 1q + 12(d− 1) log(d− 1) + d+ 1 + log d: (2.4)Then, the following bound holds
Ms;q[DN ℄ > q(d)(logN) 12 (d−1); (2.5)where q(d) = 2−(2d+1)=q−d−1(d− 1)− 12 (d−1): (2.6)In partiular, there exist dyadi shifts T ∈ Qd(2s) suh that

Lq[DN ⊕ T ℄ > q(d) (logN) 12 (d−1): (2.7)Certainly, bounds (2.5) and (2.7) hold also for 1 < q < ∞ but, in thisase, these bounds follow at one from (1.13).In dimensions d ≥ 3, even the exat order of the L1-disrepany is un-known, and the Lq-disrepanies with 0 < q < 1 were never onsidered atall.Theorem 2.2 shows that, in ontrast to the Lq-disrepanies of individualdistributions, the mean Lq-disrepanies an be studied ompletely for allexponents 0 < q ≤ 1.It is worth noting that Theorems 2.1 and 2.2 an be extended to thefollowing onditional mean Lq-disrepaniesMs;q[D; V ℄ = (|V |−1∑T∈V Lq[D ⊕ T ℄q)1=q ; 0 < q < ∞; (2.8)8



where V is a subset in Qd(2s).It turns out that the onditional means (2.8) an meet the bounds oforder (2.1) and (2.5) at very small averaging subsets V of ardinality |V | =O(s!q(d)) as s → ∞; here !q(d) is a onstant independent of s.Certainly, suh subsets V should be rather spei�. Some results in thisdiretion were obtained in [14℄, and further studies of these intriguing ques-tions will be ontinued in the forthoming papers.Our result on the mean L∞-disrepany an be stated as follows.Theorem 2.3. Let DN ⊂ Ud, d ≥ 3, be an arbitrary N-point distribution.Suppose that an integer s is hoosen to satisfys ≥ logN + 12(d− 2) log(d− 2) + 2d+ log d: (2.9)Then, the following bound holds
Ms;∞[DN ℄ > ∞(d) (logN) 12 d; (2.10)where ∞(d) = 2−2d−1(d− 2)− 12 (d−2): (2.11)In partiular, there exist dyadi shifts T ∈ Qd(2s) suh that
L∞[DN ⊕ T ℄ > ∞(d) (logN) 12d: (2.12)In dimensions d ≥ 3 the exat order of the L∞-disrepany still remainsan open question. In two dimensions the answer is known: the followingShmidt's lower bound is the best possible
L∞[DN ℄ >  logN; DN ⊂ U2:In higher dimensions, the following Bek's lower bound for the three-dimensional distributions remained the only known result over many years

L∞[DN ℄ > " logN(log logN) 18−"; DN ⊂ U3; (2.13)where " > 0 is arbitrary small.Rather reently, the following strong lower bounds were established in alldimensions d ≥ 3
L∞[DN ℄ > d(logN) 12 (d−1)+�d (2.14)9



with small onstants �d & d−2 depending only on d.These deep results are due to Bilyk and Laey [3℄ in dimension d = 3and Bilyk, Laey and Vagharshakyan [4℄ in dimensions d ≥ 4, see also thesurveys [5, 6℄.Traditiionally, a great number of speilists in the disrepany theory be-lieves that in all dimensions d ≥ 3 the best possible lower bound is of theform
L∞[DN ℄ > d(logN)d−1:However, ontrary to suh a popular belief, it was onjetured that thebest possible lower bound should have the form
L∞[DN ℄ > d(logN) 12d: (2.15)This onjeture is inspired by some very non-trivial parallels betweenthe disrepany theory and the theory of stohasti proessed. The readeran onsult the ited papers [3{6℄ for a more detailed disussion of thesequestions.Theorem 2.3 shows that the hypothetial bound (2.15) is true for themean L∞-disrepany.We will see that the mean Lq-disrepanies an be represented in terms ofthe Rademaher series, see setion 4. For suh series, very sharp upper andlower Lq-bounds for any 0 < q < ∞ an be given by Khinhin's inequality.In fat, Theorems 2.1 and 2.2 are orolaries of this inequality. At the sametime, Theorem 2.3 is a orollary of a suitably modi�ed Khinhin's inequality,adapted to the L∞-norm, see Lemma 3.2.Lower bounds (1.13), (2.13), (2.14) are obtained with the help of di�erentvariations of Roth's orthogonal funtion method, f. [2, 5℄. It is interestingto note that, in the proofs of Theorems 2.2 and 2.3, we will not use any aux-iliary orthogonal funtions. The orresponding lower bounds will be deriveddiretly from the expliit formulas for disrepanies given in Lemma 4.3.3. Rademaher funtions and related inequal-itiesIn this setion all nosessary fats on Rademaher funtions and related topisare olleted. 10



In the one-dimensional ase, the Rademaher funtions ra(y), y ∈ [0; 1),a ∈ N, an be de�ned byra(y) = (−1)�a(y) = 1− 2�a(y); (3.1)where �a(y) are the oeÆients in the dyadi expansion (1.4). It is onvenientto put r0(y) ≡ 1.In these terms, expansion (1.4) takes the formy = 12 −
12∑a≥1 2−ara(y): (3.2)The Rademaher funtions ra(·), a ∈ N, form a sequene of independentrandom variables taking the values ±1 with probability 1=2. This fat anbe expressed by the following relationsmes{y ∈ [0; 1) : ra1(y) = "1; : : : ; ral(y) = "l} = 2−l (3.3)whih hold for any 1 ≤ a1 < · · · < al, l ∈ N, and any "j = ±1, j = 1; : : : ; l,see, for example [9, 12℄.Eah funtion ra(y), a ∈ N, is pieewise onstant on elementary intervals�ma = [m2−a; (m+1)2−a), m = 0; 1; : : : ; 2a−1. Therefore, relations (3.3) areequivalent to their disret analogs

|{y ∈ Q(2s) : ra1(y) = "1; : : : ; ral(y) = "l}| = 2s−l: (3.4)with any 1 ≤ a1 < · · · < al ≤ s, s ∈ N, and any "j = ±1, j = 1; : : : ; l.The k-dimensional Rademaher funtions rA(Y ), Y = (y1; : : : ; yk) ∈ Uk,A = (a1; : : : ; ak) ∈ Nk0, are de�ned byrA(Y ) = d
∏j=1 raj (yj): (3.5)In some formulas, we write k for dimension, beause the formulas will beused in the subsequent text with k = d and k = d− 1.We introdue the linear spae Rks , s ∈ N0, onsisting of all funtions ofthe form f(Y ) = ∑A∈Iks �ArA(Y ): (3.6)11



with real oeÆients �A; here Is = {0; 1; : : : ; s} and Iks denotes the produtof k opies of Is.It follows from relations (3.4) that the set of funtions {ra(·); a ∈ Is} islinear independent on Q(2s), and therefore, the set {rA(·); A ∈ Ids } is linearindependent on Qd(2s). Thus, dimRks = (s + 1)k, and Rks is a very smallsubspae in the large spae Bks of dimension 2ks onsisting of all real-valuedfuntions pieewise onstant on elementary ubes�Ms = [m12−s; (m1 + 1)2−s)× · · · × [mk2−s; (mk + 1)2−s);mj = 0; 1; : : : ; 2s − 1; j = 1; : : : ; k:Eah funtion f ∈ Bks is determined by its values on dyadi rational points
Qk(2s), and we have

‖f‖q = ‖f‖s;q; 0 < q ≤ ∞; (3.7)where
‖f‖q = ∫Uk |f(Y )|qdY1=q ; 0 < q < ∞;
‖f‖∞ = supY ∈Uk |f(Y )|;
‖f‖s;q = 2−ks ∑Y ∈Qk(2s) |f(Y )|q1=q ; 0 < q < ∞;
‖f‖s;∞ = maxY ∈Qk(2s) |f(Y )|:The k-dimensional Khinhin's inequality: for eah funtion f ∈ Rks andall 0 < q < ∞, we have �kqQ2[f ℄ ≤ ‖f‖s;q ≤ �kqQ2[f ℄; (3.8)where Q2[f ℄ = ∑A∈Iks �2A1=2 ; (3.9)12



The onstants �kq and �kq are independent of f and s; they are the k-th powerof the onstants �q and �q, orrespondingly, and�q ≥ {2−(2−q)=q; if 0 < q < 21; if 2 ≤ q < ∞; (3.10)�q ≤ ⌈
12q⌉1=2: (3.11)In the one-dimensional ase inequality (3.8) is a orollary of the inde-pendene of Rademaher funtions, see (3.3), (3.4), and its proof an befound in many texts on harmoni analysis and probability theory, see, forexample, [9, Se. 10.3, Thm. 1℄, [12℄, [16, Chap. 5, Thm. 8.4℄.The extension of Khinhin's inequality to higher dimensions an be easilygiven by indution on k; we refer to [15, Appendix D℄ for details.In the subsequent text we will use orolaries of Khinhin's inequality givenbelow in Lemmas 3.1 and 3.2.For Y = (y1; : : : ; yd) ∈ Ud and A = (a1; : : : ; ad) ∈ Ids , d ≥ 2, we putY = (Y; y);Y = (y1; : : : ; yd−1) ∈ Ud−1; y = yd ∈ [0; 1);A = (A; a);A = (a1; : : : ; ad−1) ∈ Id−1s ; a = ad ∈ Is: } (3.12)With notation (3.12), any funtion f ∈ Rds an be written in the followingtwo forms f(Y ) = f(Y; y) = ∑A∈Id−1s �A(y)rA(Y); (3.13)where �A(y) =∑a∈Is �Ara(y) (3.14)and f(Y ) = f(Y; y) =∑a∈Is 'a(Y)ra(y); (3.15)where 'a(Y) = ∑A∈Id−1s �ArA(Y): (3.16)
13



Lemma 3.1. For eah funtion f ∈ Rds, we have the following bounds
‖f‖s;q ≤ �d−1q Q∞;2[f ℄; 0 < q < ∞; (3.17)where Q∞;2[f ℄ = maxy∈Q(2s) ∑A∈Id−1s �A(y)21=2 ; (3.18)and

‖f‖s;q ≥ �dqQ2[f ℄; (3.19)where Q2[f ℄ is de�ned in (3.9).Proof. Applying the right inequality (3.8) with k = d− 1 to funtion (3.13),we obtain (3.17). Bound (3.19) is just the left inequality (3.8) with k = d.Lemma 3.1 will be used in the proof of Theorems 1.1 and 1.2. For theproof of Theorem 1.3 the following more spei� result will be needed. Thisresult an be thought of as a modi�ation of Khinhin's inequality for theL∞-norm.Lemma 3.2. For eah funtion f ∈ Rds, we have the following bound
‖f‖s;∞ ≥ �d−11 Q1;2[f ℄; (3.20)where Q1;2[f ℄ =∑a∈IsQ2['a℄; (3.21)Q2['a℄ =  ∑A∈Id−1s �2A1=2 : (3.22)Proof. First of all, we observe that relations (3.4) imply the following equalityfor eah one-dimensional funtion ' ∈ Rs. Let'(y) =∑a∈Is 'ara(y); y ∈ [0; 1);then, we have
‖'‖s;∞ =∑a∈Is |'a|: (3.23)14



Indeed, we an assume always that '0 ≥ 0, and in view of relations (3.4),there exists a point y0 ∈ Q(2s) suh that ra(y0) = sign'a if 'a 6= 0, a ∈ Is.Therefore,
‖'‖s;∞ ≥ |'(y0)| =∑a∈Is |'a|:The opposite inequality is obvious, and (3.23) follows.Applying equality (3.23) to funtion (3.15), we obtain

‖f‖s;∞ = maxY∈Qd−1(2s) maxy∈Q(2s) |f(Y; y)|= maxY∈Qd−1(2s)∑a∈Is |'a(Y)|
≥ 2−(d−1)s ∑Y∈Qd−1(2s)∑a∈Is |'a(Y)| =∑a∈Is ‖'a(·)‖s;1
≥ �d−11 ∑a∈IsQ2['a℄ = �d−11 Q1;2[f ℄;where, on the last step, we used the left inequality (3.8) with k = d− 1 andq = 1.The proof of Lemma 3.2 is omplete.4. Rademaher funtions and expliit formulasfor disrepaniesFor an arbitrary point y ∈ [0; 1) with dyadi expansion (1.4), we denote byy(s) its projetion to Q(2s):y(s) = s

∑a=1 �a(y)2−a; s ∈ N; (4.1)and for s = 0 we put y(0) = 0, so thaty = y(s) + �s(y)2−s; s ∈ N0; (4.2)where �s(y) ∈ [0; 1) for all y ∈ [0; 1). 15



We put Æ(s)(x; y) = {1; if x(s) = y(s)0; if x(s) 6= y(s) (4.3)It follows from (1.4) and (4.1) that elementary intervals �ms ,m = 0; 1; : : : ; 2s−1, see (1.9), an be written in the form�ms = [m2−s; (m+ 1)2s) = {z ∈ [0; 1) : z(s) = m2−s}:Therefore, Æ(s)(x; y) = Æ(s)(x(s) ⊕ y(s)) = �(�0s; x(s) ⊕ y(s)) (4.4)and Æ(s)(x(s) ⊕ y(s)) = 2s−1
∑m=0 �(�ms ; x)�(�ms ; y) (4.5)Hereinafter, we write �(E ; ·) for the harateristi funtion of a set E . Notiethat �(�ms ; x) = �(�ms ; x(s)) = �(�ms x(a)) (4.6)for any a ≥ s.It follows from (4.4) and (4.5) thatÆ(s)(x(s) ⊕ y(s)) = ∑z∈Q(2s) Æ(s)(x(s) ⊕ z)Æ(s)(z ⊕ y(s)):Furthermore, Æ(s)(x(s) ⊕ y(s)) is the reproduing kerner for the spae Bs:f(x) = ∑y∈Q(2s) Æ(s)(x(s)(x(s) ⊕ y(s))f(y)= 2s 1

∫0 Æ(s)(x(s) ⊕ y(s))f(y)dy; f ∈ Bs: (4.7)Consider the following elementary intervals�a = �1a = [2−a; 21−a); a ∈ N: (4.8)It is onvenient to put �0 = [0; 1). 16



In terms of dyadi expansion (1.4), intevals (4.8) an be desribed asfollows �a = {z ∈ [0; 1) : �a(z) = 1; �i(z) = 0 for i < a}: (4.9)Notie that for eah s ∈ N the set of intervals {�a; a > s} form a partitionof the open interval (0; 2−s).The following result is of ruial importane in the subsequent onsider-ation.Lemma 4.1. For eah s ∈ N, the harateristi funtion �([0; y); ·) of theinterval [0; y); y ∈ [0; 1), has the following representation�([0; y); x) = �(s)([0; y); x) + "(s)(x; y); (4.10)where �(s)([0; y); x) = 12 −
12 s
∑a=1 �(�a; x(s) ⊕ y(s))ra(y); (4.11)and for all x, y ∈ [0; 1), the following bounds hold0 ≤ �(s)([0; y); x) ≤ 1 (4.12)and

|"(s)(x; y)| ≤ 12Æ(s)(x(s) ⊕ y(s)): (4.13)Proof. We will hek the statements of the lemma for all possible arrange-ments of points x and y.If x = y, then �([0; y); y) = 0, �(s)(0; y); y) = 1=2, "(s)(y; y) = −1=2, andbounds (4.12), (4.13) are true.If x 6= y, we put� = �(x; y) = min{a ∈ N : �a(x) 6= �a(y)}:With (4.2), we obtainy − x = (��(y)− ��(x))2−� + (��(y)− ��(x))2−�; (4.14)where ��(x) 6= ��(y) and 0 ≤ |��(y)− ��(x)| < 1.From (4.14), we onlude the following:(i) x < y, if and only if ��(y) = 1 and ��(x) = 0;(ii) x > y, if and only if ��(y) = 0 and ��(x) = 1.17



Furthemore, from (4.9) we onlude that�(�a; x(a) ⊕ y(a)) = {1; if a = �;0; if a 6= �: (4.15)The said above an be expesed by the following expliit formulas�([0; y); x) = �(��; x(�) ⊕ y(�))�(y) = 12�(��; x(�) ⊕ y(�))(1− r�(y))= 12 − �(�� ; x(�) ⊕ y(�))r�(y): (4.16)Now, taking formulas (4.16) and (4.15) into aount, we onsider thefollowing two opportunities:(i) � ≤ s; in this ase, equality (4.10) holds with "(s)(x; y) = 0, andbounds (4.12), (4.13) are obvious;(ii) � > s; in this ase, equality (4.10) holds with �(s)([0; y); x) = 12 and"(s)(x; y) = −12�(�� ; x(�) ⊕ y(�))r�(y), and bound (4.12) is obvious, whilebound (4.13) is true beause �� ⊂ �0s and, therefore,�(��; x(�) ⊕ y(�)) ≤ �(�0s; x(s) ⊕ y(s)) = Æ(s)(x(s) ⊕ y(s));f. (4.4), (4.6).The proof of Lemma 4.1 is omplete.We emphasize that relations (4.16) and (4.15) imply the following expliitformulas�([0; y); x) =∑a∈N

�(�a; x(a) ⊕ y(a))�a(y)= 12 −
∑a∈N

�(�a; x(a) ⊕ y(a))ra(y)− Æ(x; y); (4.17)where Æ(x; y) = 1 if x = y and is equal to 0 otherwise.Furthermore, for any x and y the sums in (4.17) ontain at most onenonzero term. In this sense, one an say that series (4.17) onverge for all xand y, while the onvergene is not uniform. Lemma 4.1 shows how to dealwith suh series: although the error terms "(s) in (4.10) are not small, theyare onentrated on small subsets. 18



Consider the multidemensional extention of the above result. For anarbitrary point Y = (y1; : : : ; yd) ∈ Ud we denote by Y (s) = (y(s)1 ; : : : ; y(s)d ) itsprojetion to Qd(2s), so thatY = Y (s) +�s(Y )2−s; s ∈ N0;where �s(Y ) = (�s(y1); : : : ; �s(yd)) ∈ Ud: (4.18)Introdue elementary boxes of the form�A = �a1 × · · · × �ad ; A = (a1; : : : ; ad) ∈ Nd0: (4.19)Eah suh box has volume vol �A = 2−a1−···−ad .We write κ(A) for the number of nonzero elements in A = (a1; : : : ; ad) ∈
Nd0.Multiplying formulas (4.10) with x = xj, y = yj, j = 1; : : : ; d (reall thatr0(y) ≡ 1 and �0 = [0; 1)), we obtian the following resultLemma 4.2. For eah s ∈ N, the harateristi funtion �(BY ; X) of theretangular box BY = [0; y1)× · · · × [0; yd), Y ∈ Ud, has the following repre-sentation �(BY ; X) = �(s)(BY ; X) + "(s)(X; Y ); (4.20)where �(s)(By; X) = 2−d ∑A∈Ids (−1)κ(A)�(�A; X(s))rA(Y ); (4.21)and for all X = (x1; : : : ; xd), Y = (y1; : : : ; yd) ∈ Ud, the following boundshold 0 ≤ �(s)(BY ; X) ≤ 1 (4.22)and

|"(s)(X; Y )| ≤ 12 d
∑j=1 Æ(s)(x(s)j ⊕ y(s)j ): (4.23)Proof. By de�nition �(s)(By; X) = d
∏j=1�(s)([0; yj); xj;and bound (4.22) follows from (4.12).19



Using oordinates (3.12), we obtain�(By; X) = �(BY;X)�([0; y); x)= �(s)(BY;X) + "(s)(X;Y))(�(s)([0; y); x) + "(s)(x; y))= �(s)(BY ; X) + "(s)(X; Y );where "(s)(X; Y ) = "(s)(X;Y)�(s)([0; y); x) + "(s)(x; y)�(BY ; X):Therefore,
|"(s)(X; Y )| ≤ |"(s)(X;Y)|+ |"(s)(x; y)|: (4.24)In the one-dimensional ase bound (4.23) is given in (4.13). Using (4.24), weobtain bound (4.23) in all dimensions by indution on d.Multiplying formulas (3.2) with y = yj, j = 1; : : : ; d, we obtainy1 : : : yd = 2−d ∑A∈Nd0(−1)κ(A)2−a1−···−adrA(Y )Sine volBY = y1 : : : yd and vol�A = 2−a1−···−ad , this formula an be writenin the form volBY = 2−d ∑A∈Nd0(−1)κ(A) vol�A rA(Y )= vol(s)BY + "(s)(Y ); s ∈ N0; (4.25)where vol(s)BY = 2−d ∑A∈Ids (−1)κ(A) vol�A rA(Y ); (4.26)and "(s)(Y ) satis�es the bound

|"(s)(Y )| ≤ d2−s−1; Y ∈ Ud; (4.27)that an be easily proved by indution on d.The loal disrepany (1.1) an be written in the form
L[D; Y ℄ = ∑X∈DL(X; Y ); L(X; Y ) = �(BY ; X)− volBY : (4.28)20



Substituting formulas (4.20) and (4.25) to (4.28), we obain
L(X; Y ) = L(s)(X; Y ) + E (s)(X; Y ); (4.29)where

L(s)(X; Y ) = 2−2 ∑A∈Ids (−1)κ(A)�A(X(s) ⊕ Y (s))rA(Y );�A(X(s))⊕ Y (s)) = �(�A; X(s)⊕)− vol�Aand
E (s)(X; Y ) = "(s)(X; Y )− "(s)(Y ):In view of bounds (4.23) and (4.27), we have

|E (s)(X; Y )| ≤ 12 ( d
∑j=1 Æ(s)(x(s)j ⊕ y(s)j ) + d2−s) ; X; Y ∈ Ud:For an arbitrary distribution D ⊂ Ud, we denote by D(s) its projetion to

Qd(2s): D(s) = {X(s) : X ∈ D}; s ∈ N0;so that, |D(s)| = |D|, while some points of D(s) may oinide.We de�ne the miroloal disrepanies by�A[D(s) ⊕ Y (s)℄ = ∑X∈D �A(X(s) ⊕ Y (s)) = ∑X∈D(�(�A; X(s) ⊕ Y (x))− vol�A)= |(D(s) ⊕ Y (s)) ∩ �A| − |D| vol�A; (4.30)Substituting (4.29) to (4.28), we arrive at the following rusult summarizingthe above disussion.Lemma 4.3. For eah s ∈ N, the loal disrepany L[D; Y ℄ has the followingrepresentation
L[D; Y ℄ = L(s)[D; Y ℄ + E (s)[D; Y ℄; (4.31)where

L(s)[D; Y ℄ = 2−d ∑A∈Ids (−1)κ(A)�A[D(s) ⊕ Y (s)℄ rA(Y ); (4.32)
21



and the term E (s)[D; Y ℄ satis�es the bound
|E (s)[D; Y ℄| ≤ 12 ( d

∑j=1 Æ(s)[D(s) ⊕ Y (s)℄ + d|D|2−s) ; (4.33)where Æ(s)[D(s) ⊕ Y (s)℄ = ∑X∈D Æs(x(s)j ⊕ y(s)j ): (34)5. Expliit formulas and preliminary boundsfor the mean disrepaniesApplying Lemma 4.3 to a shifted distribution D⊕ T , T ∈ Qd(2s), we obtain
L[D ⊕ T; Y ℄ = L(s)[D ⊕ T; Y ℄ + E (s)[D ⊕ T; Y ℄; (5.1)where the term L(s)[D ⊕ T; Y ℄ an be written in the form

L(s)[D ⊕ T; Y ℄ = F (s)[D; T ⊕ Y (s); Y (s)℄; (5.2)
F (s)[D;Z; Y ℄ = 2−d ∑A∈Ids (−1)κ(A)�A[D ⊕ Z℄ rA(Y ); (5.3)�A[D ⊕ Z℄ = ∑X∈D(�(�A; X(s) ⊕ Z)− vol�A)= |(D ⊕ Z)| ∩ �A| − |D| vol�A; Z ∈ Qd(2s): (5.4)Let Lq(Qd(2s) × Ud), 0 < q ≤ ∞, be the spae onsisting of all funtionsf(T; Y ), T ∈ Qd(2s), Y ∈ Ud, with |||f |||q < ∞, where

|||f |||q = 2−ds ∑T∈Qd(2s) ∫Ud |f(T; Y )|qdY1=q ; 0 < q < ∞;
|||f |||∞ = maxT∈Qd(2s) supY ∈Ud |f(T; Y )|:For any two funtions f1; f2 ∈ Lq(Qd(2s)× Ud), we have

|||f1 + f2|||q ≤ |||f1|||q + |||f2|||q; 1 ≤ q ≤ ∞; (5.5)
|||f1 + f2|||qq ≤ |||f1|||qq + |||f2|||qq; 0 < q ≤ 1: (5.6)22



For 1 ≤ q < ∞, relation (5.5) is the standard Minkowski's inequality, while(5.6) is its modi�ation for 0 < q < 1, see [16, Chap. 1, Ineqs. (9.11), (9.13)℄.With these notations, we put
M(s)q [D℄ = |||L(s)[D ⊕ :; :℄ |||q; 0 < q ≤ ∞; (5.7)and
E (s)q [D℄ = ||| E (s)[D ⊕ :; :℄ |||q; 0 < q ≤ ∞: (5.8)Substituting (5.1) to de�nition (1.7) and using (5.7), we obtain the upperbound
Ms;q[D℄ ≤ M(s)q [D℄ + E (s)q [D℄; 1 ≤ q < ∞ (5.9)and, for 0 < q ≤ 1, we an merely put

Ms;q[D℄ ≤ Ms;1[D℄ ≤ M
(s)1 [D℄ + E

(s)1 [D℄; 0 < q ≤ 1: (5.10)Similarly, using (5.6), we obtain the lower bound
Ms;q[D℄q ≥ M(s)q [D℄q − E (s)q [D℄q; 0 < q ≤ 1: (5.11)Bounds (5.9), (5.10) and (5.11) will be used in the proofs of Theorems 1.1and 1.2, orrespondingly.It follows from formulas (5.2) and (5.3) that L(s)[D⊕ T; Y ℄ as a funtionof Y ∈ Ud belongs to the spae Bds . Hene, we an use equality (3.7), andwrite (5.7) in the form

M(s)q [D℄ = 2−ds ∑T∈Qd(2s) |L(s)[D ⊕ T; :℄ |qs;q1=q
= 2−2ds ∑T;Y ∈Qd(2s) |L(s)[D ⊕ T; Y ℄ |q1=q ; 0 < q < ∞ (5.12)The following simple observation explains why the mean Lq-disrepaniesan be expressed in terms of Rademaher series.In the vetor spae of pairs (T; Y ) ∈ Qd(2s)×Qd(2s) ≃ F2ds2 , we onsiderthe following linear mapping� : (T; Y ) → (T ⊕ Y; Y ) (5.13)23



Obviously, � 2 = 1, �−1 = r. Hene, � is a one-to-one mapping, and in thedouble sum in (5.12), the variables Z = T ⊕ Y and Y an be viewed asindependent. As a result, we have
M(s)q [D℄ = 2−ds ∑Z∈Qd(2s)F (s)q [D;Z℄q1=q ; 0 < q < ∞ (5.14)where

F (s)q [D;Z℄ = 2−ds ∑Y ∈Qd(2s) |F [D;Z; Y ℄|q1=q : (5.15)Bounds (5.9), (5.10), (5.11) and formulas (5.14), (5.15) will be used in theproof of Theorems 1.1 and 2.2.In the ase of the mean L∞-disrepany the above arguments should beslightly modi�ed. First of all, using de�nitions (1.8) and (1.13), we an write
Ms;∞[D℄ = maxT∈Qd(2s) supY ∈Ud |L[D ⊕ T; Y ℄ | ≥ maxT;Y ∈Qd(2s) |L[D⊕; Y ℄ |: (5.16)For Z; Y ∈ Qd(2s), we put T = Z ⊕ Y and

F [D;Z; Y ℄ = L[D ⊕ Z ⊕ Y; Y ℄: (5.17)With this notation, formula (5.1) takes the form
F [D;Z; Y ℄ = F (s)[D;Z; Y ℄ + E (s)[D;Z; Y ℄; (5.18)where F (s)[D;Z; Y ℄ is de�ned in (5.3) and

E (s)[D;Z; Y ℄ = E (s)[D ⊕ Z ⊕ Y; Y ℄: (5.19)Sine � de�ned in (5.13) is a one-to one mapping, we have the equalitymaxT;Y ∈Qd(2s) |L[D ⊕ T; Y ℄ | = maxZ;Y∈Qd(2s) |F [D;Z; Y ℄ | (5.20)This relation an be ontinued as followsmaxZ;Y ∈Qd(2s) |F [D;Z; Y ℄ | = maxZ∈Qd(2s) maxY ∈Qd(2s) |F [D;Z; Y ℄ |
≥ 2−ds ∑Z∈Qd(2s) maxY ∈Qd(2s) |F [D;Z; Y ℄ | ≥ F

(s)1;∞[D℄− E
(s)1;∞[D℄: (5.21)24



where
F

(s)1;∞[D℄ = 2−ds ∑Z∈Qd(2s) F (s)
∞ [D;Z℄; (5.22)

F (s)
∞ [D;Z℄ = maxY ∈Qd(2s) |F (s)[D;Z; Y ℄ | (5.23)and

E
(s)1;∞[D℄ = 2−2s ∑Z∈Qd(2s) maxY ∈Qd(2s) |E (s)[D;Z; Y ℄ |: (5.24)Comparing (5.16), (5.20) and (5.21), we obtain the lower bound

Ms;∞[D℄ ≥ F
(s)1;∞[D℄− E

(s)1;∞[D℄: (5.25)This bound will be used in the proof of Theorem 2.3.We will all the quantities M
(s)q [D℄ and F

(s)1;∞[D℄ as the prinipal termswhile the E
(s)q [D℄ and E

(s)1;∞[D℄ as the eror terms.6. Bounds for the error terms and some auxiliary boundsLemma 6.1. (i) Let D2s be an arbitrary dyadi (Æ; s; d)-net. Then, the fol-lowing bound holds
E (s)q [D2s ℄ ≤ d2Æ; 0 < q ≤ ∞ (6.1)(ii) Let DN ⊂ Ud be an arbitrary N-point distribution. Then, the follow-ing bounds hold

E (s)q [DN ℄ ≤ dN2−s; 0 < q ≤ 1; (6.2)and
Es1;∞[DN ℄ ≤ dN2−s: (6.3)Proof. The funtions Æ(s)j [D(s) ⊕ Y (s)℄, j = 1; : : : ; d, de�ned in (4.34), belongto the spae Bds and satisfy equality (3.7). We putÆ(s)j;q [D℄ = ‖Æ(s)j [D(s) ⊕ :℄ ‖q = ‖Æ(s)j [D(s) ⊕ :℄ ‖s;q; 0 < 1 ≤ ∞: (6.4)Obviously, Æ(s)j;q [D ⊕ Z℄ = Æ(s)j;q [D℄; Z ∈ Qd(2s): (6.5)25



Applying formula (4.5) to de�nition (4.34), we obtainÆ(s)j [Ds ⊕ Z℄ = 2s−1
∑m=0Nj;m �(�ms ; zj); (6.7)where Nj;m = ∑X∈D �(�ms ; x(s)j ) = |D ∩�ms;j|;and �ms;j denotes the following elementary box�ms;j = {X = (x1; : : : ; xd) ∈ Ud : xj ∈ �ms ; xi ∈ [0; 1); i 6= j}Notie that vol�ms;j = 2−s and for eah j = 1; : : : ; d the boxes �ms;j m =0; 1; : : : ; 2s − 1, form a partition of the unit ube Ud. Therefore,2s−1

∑m=0Nj;m = N = |D|: (6.8)(i) From (6.7), we obtain the boundÆ(s)j;q [D℄ ≤ Æ(s)j;∞ ≤ maxm Nj;m; 0 ≤ ∞: (6.9)Using de�nition (5.8), bound (4.33), and equality (6.5), we obtain
E (s)q [D ⊕ T ℄ ≤ 12 ( d

∑j=1 Æ(s)j;∞[D℄ + d|D|2−s) ; 0 < q ≤ ∞: (6.10)If D2s is an arbitrary (Æ; s; d)-net, then N = 2s and Nj;m ≤ 2Æ for all j andm, see (1.11). Comparing bounds (6.9) and (6.10) for suh a net, we obtainbound (6.1).(ii) From (6.7) and (6.8), we obtain the boundÆ(s)j;q [D℄ ≤ Æ(s)j;1 [D℄ = 2s−1
∑j=1 Nj;m2−s = N2−s; 0 < q ≤ 1 (6.11)Using de�nition (5.8), bound (4.33) and equality (6.5), we obtain

E (s)q [D⊕T ℄ ≤ E
(s)1 [D⊕T ℄ ≤ 12 ( d

∑j=1 Æ(s)j;1 [D℄ + d|D|2−s) ; 0 < q ≤ 1: (6.12)26



If DN is an arbitrary N -point distribution, then bounds (6.11) and (6.12)imply bound (6.2).For funtion (5.19) bound (4.33) takes the form
|E (s)[D;Z; Y ℄ | = |E (s)[D ⊕ Z ⊕ Y; Y ℄| ≤ 12 ( d

∑j=1 Æ(s)j [D(s) ⊕ Z℄ + d|D|2−s) ;(6.13)where the right hand side is independent of Y .Substituting (6.13) to de�nition (5.24), we obtain
E
(s)1;∞[D℄ ≤ 12 ( d

∑j=1 Æ(s)j;1 [D℄ + d|D|2−s) : (6.14)For an arbitrary N -point distribution DN , bound (6.14) implies bound(6.3).The proof of Lemma 6.1 is omplete.In the omments to Theorem 2.1 we have mentioned bound (2.3); itsproof is given in the followingLemma 6.2. For an arbitrary distribution D ⊂ Ud, the following boundholds
Lq[D℄ ≤ L∞[D℄ ≤ 2ds=q(Lq[D℄ + 2E (s)

∞ [D℄); 1 ≤ q < ∞; (6.15)where the term E
(s)
∞ [D℄ is de�ned in (5.8).In partiular, for an arbitrary (Æ; s; d)-net D2s and q = "s, " > 0, bound(6.15) takes the form
Lq[D2s ℄ ≤ L∞[D2s℄ ≤ 2d="(Lq[D2s ℄ + d2Æ+1): (6.16)Proof. It follows from (4.7) that the funtionÆ(s)(X(s) ⊕ Y (s) = d

∏j=1 Æ(s)(x(x)j ⊕ y(s)j )is the reproduing kerner for the spae Bds :f(X) = ∑Y ∈Qd(2s) Æ(s)(X(s) ⊕ Y (s))f(Y ); f ∈ Bds : (6.17)27



Applying H�older's inequality to the sum in (6.17) and taking (3.7) intoaount, we obtain
‖f‖∞ = ‖f‖s;∞ ≤





∑Y ∈Qd(2s) |f(Y )|q1=q= 2ds=q‖f‖s;q = 2ds=q‖f‖q; 1 ≤ q < ∞:In partiular,
‖L(s)[D; :℄‖∞ ≤ 2ds=q‖L(s)[D; :℄‖q; (6.18)where the L(s)[D; :℄ is de�ned in (4.32).On the other hand, we derive from (4.31) and (5.8) that

‖L(s)[D; :℄‖∞ ≥ ‖L[D; :℄ ‖∞ − ‖E [D; :℄ ‖∞ ≥ L∞[D℄− E (s)
∞ [D℄and

‖L(s)[D; :℄‖q ≤ ‖L[D; :℄ ‖q + ‖E [D; :℄ ‖∞ ≤ Lq[D℄ + E (s)
∞ [D℄Comparing these inequalities with (6.18), we obtain

L∞[D℄ ≤ 2ds=q(Lq[D℄ + E (s)
∞ [D℄) + E (s)

∞ [D℄
≤ 2ds=q(Lq[D℄ + 2E (s)

∞ [D℄);that proves the right bound (6.15), while the left bound is obvious.If D2s is a (Æ; s; d)-net and q = "s, " > 0, then substituting bound (6.1)from Lemma 6.1, we obtain (6.16).The proof of Lemma 6.2 is omplete.In onlusion of this setion, we give one further auxiliary result that willbe used in the proofs of Theorems 2.2 and 2.3.Consider the following subset of the k-dimensional elementary boxes �A ⊂Uk, k ≥ 2, see (4.19),Jk� (s) = {�A : A ∈ Iks ; vol�A = 2−�}; � ∈ N (6.19)Lemma 6.3. If s ≥ �, then the subset Jk�(s) = Jk� is independent of s, andthe following bound holds
|Jk� | ≥ ( �k − 1)k−1 : (6.20)28



Proof. Sine vol�A = 2−a1−···−ak , subset (6.19) onsists of boxes �A withA = (a1; : : : ; ak) ∈ Iks : a1 + · · ·+ ak = � (6.21)Eah solution of equation (6.21) satis�es 0 ≤ aj ≤ min{�; s}, j = 1; : : : ; k,and for s ≥ � the set of all solutions is independent of s.If s ≥ �, then for any (a1; : : : ; ak−1) ∈ Nk−10 with 0 ≤ aj ≤ ⌊�=(k − 1)⌋,j = 1; : : : ; k − 1, the integer ak = � − a1 − · · · − ak−1 satis�es 0 ≤ ak ≤ �.Therefore, A = (a1; : : : ; ak) is a solution of (6.21), and
|Jk� | ≥ (1 + ⌊�=(k − 1)⌋)k−1 ≥ ( �k − 1)k−1 :

7. Proofs of Theorems 2.1, 2.2 and 2.3The proof of eah of Theorems 2.1, 2.2 and 2.3 onsists of two steps. At �rst,relaying on the bounds for sums of Rademaher funtions given in Lemmas2.1 and 2.2, we establish very good bounds for the prinipal terms M(s)q [D℄and F
(s)1;∞[D℄. Next, relaying on the upper bounds for the error terms E (s)q [D℄and E
(s)1;∞ given in Lemma 6.1, we ompare the prinipal terms with theorresponding mean disrepanies Ms;q[D℄.Proof of Theorem 2.1. LetD2s be a (Æ; s; d)-net. Applying bound (3.18) fromLemma 3.1 to funtion (5.3), we obtain the following bound for quantity(5.15)

F (s)q [D2s; Z℄ ≤ �d−1q Q∞;2[F (s)℄; (7.1)where Q∞;2[F (s)℄ = 2−d maxy∈Q(2s) ∑A∈Id−1s �A(Z; y)21=2 ; (7.2)�A(Z; y) =∑a∈Is �A[D2s ⊕ Z℄ra(y); (7.3)and the oeÆients �A [D2s ⊕ Z℄ are de�ned in (5.4).29



For eah Z ∈ Qd(2s) the shift D2s ⊕ Z is a (Æ; s; d)-net, and it followsfrom (1.11) that �A[D2s ⊕ Z℄ = 0 if vol�A ≥ 2Æ−s:The ondition on volumes an be written asvol�A = vol�A vol�a = 2−a1−···−ad−1−a ≥ 2Æ−sor a ≤ s− Æ− a1−· · ·− ad−1. Therefore, the summation in (7.3) is extendedto s ≥ a ≥ l; l = max{0; s− Æ − a1 − · · · − ad−1 + 1}:Elementary boxes �A are mutually disjoint, and, for a given A, all boxes�A = �A×�a, s ≥ a ≥ l, are embedded to the elementary box �A×�, where� = �0l−1 if l ≥ 1 and � = [0; 1) if l = 0. In both ases, vol �A×�a ≤ 2Æ−s.Hene, |(D2s ⊕ Z) ∩ (�A × �)| ≤ 2Æ by the de�nition of (Æ; s; d)-nets, see(1.11).With these bounds, funtion (7.3) an be estimated as follows
|�A(Z; y)| ≤ s

∑a=l |�A[D2s ⊕ Z℄|
≤

s
∑a=l |(D2s ⊕ Z) ∩ �A|+ |D2s | s

∑a=l vol�A
≤ |(D2s ⊕ Z) ∩ (�A ×�)|+ 2s vol(�A ×�) ≤ 2Æ+1:Substituting this bound to (7.2), we obtainQ∞;2[F (s)℄ ≤ 2−d+Æ+1|Id−1s |1=2 = 2−d+Æ+1(s+ 1) 12 (d−1);and, therefore,
F (s)q [D2s;Z℄ ≤ �d−1q 2−d+Æ+1(s+ 1) 12 (d−1):With this bound, the prinipal term (5.14) an be estimated as follows

M(s)q [D2s℄ ≤ 2−d+Æ+1⌈12q⌉ 12 (d−1)(s+ 1) 12 (d−1); (7.4)where bound (3.11) for the onstant �q has been also used.30



Substituting bound (7.4) and bound (6.1) from Lemma 6.1 to inequalities(5.9) and (5.10), we obtain
Ms;q[D2s ℄ < 2−d+Æ+1 (⌈12q⌉(s+ 1)) 12 (d−1) + d2Æ; 0 < q < ∞:The proof of Theorem 2.1 is omplete.Proof of Theorem 2.2. Let DN ⊂ Ud, d ≥ 2, be an N -point distribution.Applying bound (3.19) from Lemma 3.1 to funtion (5.3), we obtain thefollowing bound for quantity (5.15)

F (s)q [DN ; Z℄ ≥ �dqQ2[F (s)℄; (7.5)where Q2[F (s)℄ = 2−d∑A∈Ids �A[DN ⊕ Z℄21=2 : (7.6)The oeÆients �A[DN ⊕ Z℄ are de�ned in (5.4), and it is lear that
|�A[DN ⊕ Z℄| ≥ ≪ N vol�A ≫; (7.7)where ≪ t ≫= min{|t− n| : n ∈ Z} is the distane of a number t ∈ R fromthe set of all integers Z.With bound (7.7), we haveQ2[F (s)℄ ≥ 2−d∑A∈Ids ≪ N vol�A ≫2



1=2 : (7.8)Let � ∈ N be hosen to satisfy2−2 < N2−� ≤ 2−1;then ≪ N vol �A ≫> 2−2 for all boxes �A with vol�A = 2−�.Let s ∈ N be hosen to satisfys ≥ � = ⌈logN⌉+ 1 ≥ logN + 1; (7.9)31



then, using Lemma 6.3 with k = d, we an estimate the sum in (7.8) asfollows
∑A∈Ids ≪ N vol�A ≫2 ≥ ∑A∈Jd� ≪ N vol�A ≫2> 2−4|Jd� | ≥ 2−4( logN + 1d− 1 )d−1 :Sibstituting this bound to (7.8), we obtainQ2[F (s)℄ > 2−d−2(d− 1)− 12 (d−1)(logN + 1) 12 (d−1);and, therefore,

F (s)[DN ; Z℄ > �dq2−d−2(d− 1)− 12 (d−1)(logN + 1) 12 (d−1):With this bound, the prinipal term (5.14) an be estimated as follows
M(s)q [DN ℄ > q(d)(logN + 1) 12 (d−1); 0 < q ≤ 1;q(d) = 2−2d=q−d−1(d− 1)− 12 (d−1); (7.10)where bound (3.10) for the onstant �q has been also used.Substituting bounded (7.10) and bound (6.2) from Lemma 6.1 to inequal-ity (5.11), we obtain

Ms;q[DN ℄q > q(d)q(logN + 1) 12 (d−1)q − (dN2−s)q
≥ q(d)q(logN + 1) 12 (d−1)q(1− �q(s)); 0 < q ≤ 1;where �q(s) = q(d)−q(dN2−s)q:Let s be hosen suÆiently large to satisfy �q(s) ≤ 1=2. To do this, weput s ≥ logN + 2d+ 1q + 12(d− 1) log(d− 1) + d+ 1 + log d;and in this ase the above ondition (7.9) will be also satis�ed.As a result, we have

Ms;q[DN ℄ > q(d)(logN + 1) 12 (d−1); 0 < q ≤ 1;where q(d) = 2−1=qq(d) = 2−(2d+1)=q−d−1(d− 1)− 12 (d−1)The proof of Theorem 2.2 is omplete.32



Proof of Theorem 2.3. Let DN ⊂ Ud, d ≥ 3, be an N -point distribution.Applying bound (3.20) from Lemma 3.2 to funtion (5.3), we obtain thefollowing bound for quantity (5.23)
F (s)

∞ [DN ; Z℄ ≥ �d−11 Q1;2[F (s)℄; (7.11)where Q1;2[F (s)℄ = 2−d∑a∈IsQ2['a℄; (7.12)Q2['a℄ =  ∑A∈Id−1s �A[DN ⊕ Z℄21=2 : (7.13)With bound (7.7), we haveQ2['a℄ ≥  ∑A∈Id−1s ≪ N vol�A ≫2


1=2 : (7.14)Notie that vol �A = vol�A vol�a = vol�A2−a, and de�ne �a ∈ N by2−2 < N2−�a−a ≤ 2−1;then ≪ N vol �A ≫> 2−2 for all boxes �A with vol�A = 2−�a.It is lear that �a = � − a, 0 ≤ a ≤ �, where� = ⌈logN⌉+ 1 ≥ logN + 1:In what follows, we assume that0 ≤ a ≤
12� and � ≥ �a ≥ 12�:Let s ∈ N be hosen to satisfy s ≥ �, thens ≥ � = �0 > �1 > �2 > : : : ; (7.15)and, using Lemma 6.3 with k = d− 1, we an estimate the sum in (7.14) asfollows

∑A∈Id−1s ≪ N vol �A ≫2≥ ∑A∈Jd−1�a ≪ N vol�A ≫2> 2−4|Jd−1�a | ≥ 2−4( �ad− 2)d−2
≥ 2−4( �=2d− 2)d−2 :33



Hene, for quantities (7.13), we have the boundQ2['a℄ > 2−2(d− 2)− 12 (d−2)(�=2) 12 d−1; 0 ≤ a ≤ �=2:Substituting this bound to (7.12), we obtainQ1;2[F (s)℄ ≥ 2−d ∑0≤a≤�=2Q2['a℄ > 2−d−2(d− 2)− 12 (d−2)(�=2) 12d
≥ 2− 32 d−2(d− 2)− 12 (d−2)(logN + 1) 12d;and, therefore,

F (s)
∞ [DN ; Z℄ > �d−11 2− 32d−2(d− 2)− 12 (d−2)(logN + 1) 12d:With this bound, the prinipal term (5.22) an be estimated as follows

F
(s)1;∞[DN ℄ > ∞(d)(logN + 1) 12 d; ∞(d) = 2−2d(d− 2)− 12 (d−2) (7.16)where bound (3.10) for the onstant �1 has been also used.Substituting bound (7.16) and bound (6.3) from Lemma 6.1 to inequality(5.25), we obtain

Ms;∞[DN ℄ > ∞(d)(logN + 1) 12d − 12(d+ 1)N2−s
≥ ∞(d)(logN + 1) 12 d(1− �∞(s));where �∞(d) = ∞(s)−1(dN2−s):Let s be hosen suÆiently large to satisfy �∞(s) ≤ 12 . To do this, we puts ≥ logN + 12(d− 2) log(d− 2) + 2d+ log d;and in this ase the above ondition (7.15) will be also satis�ed.As a result, we have

Ms;∞[DN ℄ > ∞(d)(logN + 1) 12d;where ∞(d) = 12∞(d) = 2−2d−1(d− 2)− 12 (d−2):The proof of Theorem 1.3 is omplete.34
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