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Dyadi
 shift randomization in 
lassi
al dis
repan
y theoryM. M. SkriganovSt. Petersburg Department of Steklov Institute of Mathemati
sE-mail: maksim88138813�mail.ruAugust 25, 2014Abstra
tDyadi
 shifts D⊕T of point distributionsD in the d-dimensional unit 
ube Udare 
onsidered as a randomization. Expli
it formulas for the Lq-dis
repan
ies ofsu
h randomized distributions are given in the paper in terms of Radema
herfun
tions. Relaying on the statisti
al independen
e of Radema
her fun
tions,Khin
hin's inequalities, and other related results, we obtain very sharp upper andlower bounds for the mean Lq-dis
repan
ies. 0 < q ≤ ∞.The upper bounds imply dire
tly a generalization of the well known Chen'stheorem on mean dis
repan
ies to the 
ase of dyadi
 shifts (Theorem 2.1).From the lower bounds it follows that for an arbitrary N -point distributionDN and any exponent 0 < q ≤ 1 there exist dyadi
 shifts DN ⊕ T su
h that theLq-dis
repan
y Lq[DN ⊕ T ℄ > 
d;q(logN) 12 (d−1) (Theorem 2.2).The lower bounds for the L∞-dis
repan
y are also 
onsidered in the paper. Itis shown that for an arbitrary N -point distribution DN there exist dyadi
 shiftsDN ⊕ T su
h that L∞[DN ⊕ T ℄ > 
d(logN) 12d (Theorem 2.3).Keywords: Uniform distributions, mean Lq-dis
repan
ies, Radema
herfun
tions, Khin
hin's inequality
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repan
ies2. Main results3. Radema
her fun
tions and related inequalities4. Radema
her fun
tions and expli
it formulas for dis
repan
ies5. Expli
it formulas and preliminary bounds for the mean dis
repan
ies6. Bounds for the error terms and some auxiliary bounds7. Proofs of Theorem 2.1, 2.2 and 2.3.1. Dyadi
 shifts and the mean dis
repan
iesThe 
lassi
al dis
repan
y theory deals with the distribution of �nite point setsin re
tangular sub-boxes in the unit 
ube with sides parallel to the 
oodinateaxes. A detailed dis
ussion of numerous methods and results known in the�eld 
an be found in [1, 2, 11℄. We re
all only the main de�nitions and fa
tsne
essary for the purposes of our paper.Let D be an arbitrary �nite subset (distribution) in the unit 
ube Ud =[0; 1)d. The lo
al dis
repan
y L[D; Y ℄, Y = (y1; : : : ; yd) ∈ Ud, is de�ned by
L[D; Y ℄ = |D ∩BY | − |D| volBY ; (1.1)where BY = [0; y1) × · · · × [0; yd) is a re
fngular box of volume volBY =y1; : : : ; yd, and | · | denotes the 
ardinality of a set.The Lq-dis
repan
ies are de�ned by

Lq[D℄ = (∫Ud |L[D; Y ℄|qdY)1=q; 0 < q < ∞; (1.2)
L∞[D℄ = supY ∈Ud |L[D; Y ℄|: (1.3)We write N for the set of all positive integers, N0 for the set of all non-negative integers, Nd and Nd0 for the produ
t of d 
opies of the 
orresponding
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sets. For s ∈ N0, we put
Q(2s) = {x = m2−s ∈ [0; 1) : m = 0; 1; : : : ; 2s − 1};

Qd(2s) = {X = (x1; : : : ; xd) ∈ Ud : xj ∈ Q(2s); j = 1; : : : ; d};
Q(2∞) = ⋃s≥0Q(2s); Qd(2∞) = ⋃s≥0Qd(2s):The points of Qd(2∞) are 
alled dyadi
 rational points.Any y ∈ [0; 1) 
an be represented in the formy =∑a≥1 �a(y)2−a; (1.4)where �a(y) ∈ {0; 1} ≃ F2, a ∈ N. Here F2 is the �eld of two elementsidenti�ed with the set of residues {0; 1} mod 2.The dyadi
 expansion (1.4) is unique if we agree that for ea
h dyadi
rational point the sum in (1.4) 
ontains �nitely many nonzero terms. Withthis agreement, �a(y) = 0 for a > s if y ∈ Q(2s) or, in other words, for ea
hpoint y ∈ [0; 1), the sequen
e {�a(y); a ∈ N} 
ontains in�nitely many zeros.In a natural way, the set of dyadi
 rational points 
an be endowed withthe stru
ture of a ve
tor spa
e over the �nite �eld F2. For any two points xand y in Q(2∞), we de�ne their sum x⊕ y as follows�a(x⊕ y) = �a(x) + �a(y) mod 2; a ∈ N; (1.5)and for any two points X = (x; : : : ; xd) and Y = (y1; : : : ; yd) in Qd(2∞) wede�ne X ⊕ Y = (x1 ⊕ y1; : : : ; xd ⊕ yd): (1.6)With respe
t to the addition⊕ de�ned in this way, ea
h set Qd(2s) is a ve
torspa
e over the �eld F2, and dimQd(2s) = ds.Note that formulas (1.5), (1.6) 
onsistently de�ne the addition ⊕ for allpairs of points X and Y , whenever only one of the points, say Y , belongs to

Qd(2∞), while the other is an arbitrary point X ∈ Ud.The said above shows that, for an arbitrary distribution D and any pointT ∈ Qd(2∞), we 
an de�ne the dyadi
 shift D ⊕ T = {X ⊕ T : X ∈ D}and view it as a new distribution. For ea
h s ∈ N, we 
an 
onsider thefamily {D⊕T : T ∈ Qd(2s)} as a randomization of D and the 
orrespondingdis
repan
ies Lq[D ⊕ T ℄ as random variables.4



The aim of the present paper is to study the followingmean Lq-dis
repan
ies
Ms;q[D℄ = 2−ds ∑T∈Qd(2s)Lq[D ⊕ T ℄q1=q ; 0 < q < ∞; (1.7)
Ms;∞[D℄ = maxT∈Qd(2s) L∞[D ⊕ T ℄: (1.8)Our results are given in the next se
tion in Theorems 2.1, 2.2 and 2.3.In Theorem 2.1 we will 
onsider the upper bounds for Ms;q[D℄, 0 < q < ∞,and spe
i�
 distributions D, the so-
alled (Æ; s; d)-nets. The lower boundsfor Ms;q[D℄ and arbitrary distributions D will be given in Theorems 2.2 and2.3 for exponents 0 < q ≤ 1 and q = ∞, 
orrespondingly.Re
all the de�nition of dyadi
 (Æ; s; d)-nets. We refer to [1, 2, 11℄ fordetails; noti
e that in [2℄ su
h (Æ; s; d)-nets are 
alled 2Æ-sets of 
lass s− t.Consider the elementary intervals �ms ⊂ [0; 1) of the form�ma = [m2−a; (m+ 1)2−a); a ∈ N0; m = 0; 1; : : : ; 2a − 1; (1.9)and the elementary boxes �MA ⊂ Ud, A = (a1; : : : ; ad), M = (m1; : : : ; md) ∈

Nd0, �MA = �m1a1 × · · · ×�mdad ; mj = 0; 1; : : : ; 2aj − 1; j = 1; : : : ; d: (1.10)Every su
h box has volume vol�MA = 2−a1−···−ad .Let 0 ≤ Æ ≤ s be integers. A subset D2s ⊂ Ud 
onsisting of N = 2s pointsis 
alled a dyadi
 (Æ; s; d)-net of de�
ienty Æ if ea
h elementary box �MA ofvolume 2Æ−s 
ontains exa
tly 2Æ points of D2s.It follows from the de�nition that any (Æ; s; d)-net D2s has zero dis
rep-an
y in all elementary boxes of large volume. Pre
isely,
|D2s ∩�MA | = 2s vol�MA if vol �MA ≥ 2Æ−s;
|D2s ∩�MA | ≤ 2Æ if vol �MA < 2Æ: } (1.11)Indeed, in the �rst 
ase, ea
h box �MA is a disjoint union of elementary boxesof volume 2Æ−s, and in the se
ond, ea
h box �MA is 
ontained in an elementarybox of volume 2Æ−s.Noti
e also that for any (Æ; s; d)-net D2s its shift D2s ⊕ T , T ∈ Qd(2∞),is a net with the same parameters. 5



Indeed, |(D⊕ T ) ∩�MA | = |D ∩ (�MA ⊕ T )|, T ∈ Qd(2∞), and �MA ⊕ T =�M(T )A with an index M(T ).Repla
ing the base 2 in the de�nition and in (1.9), (1.10) by an arbitraryprime p, we arrive at (Æ; s; d)-nets in the base p. In arbitrary dimensions d,�rst 
onstru
tions of dyadi
 (Æ; s; d)-nets with Æ ≤ d log d were given by Sobol,and later, other 
onstru
tions of nets in arbitrary base p were proposed byFaure, see [2℄.It is signi�
ant that for ea
h base p, the de�
ien
y Æ in
reases with thegrowth of the dimension d. Furthermore, (0; s; d)-nets in the base p and witharbitrary large s exist if and only if d ≤ p+1; in parti
ular, in�nite sequen
esof dyadi
 nets with Æ = 0 exist only in dimensions d = 1; 2 and 3.It is known that (Æ; s; d)-nets D2s �ll the unit 
ube very uniformly, andthe L∞-dis
repan
ies admit the bounds
L∞[D2s℄ < Cd2Æsd−1; s → ∞; (1.12)with a 
onstant Cd depending only on dimension d. Furthermore, for arbi-trary (Æ; s; d)-nets the order of this bound as s → ∞ 
an not be improved.We re
all that for an arbitrary N -point distribution DN ⊂ Ud the follow-ing bounds hold

Lq[DN ℄ > 
d;q(logN) 12 (d−1); 1 < q < ∞; (1.13)with positive 
onstants 
d;q depending only on d and q.These 
lassi
al bounds are due to Roth for 2 ≤ q ≤ ∞ and S
hmidt for1 < q < 2. In two dimensions, it is known that bound (1.13) is also true forq = 1, this result is due to Hal�asz.The order of bound (1.13) is the best possible as N → ∞. In the mostgeneral form, in all dimensions d ≥ 2 and for all exponents 0 < q < ∞ thisfundamental fa
t was established by Chen. Previously, for 0 < q ≤ 2, thisfa
t was established by Davenport, Roth and other authors.It should be mentioned that Chen gave two di�erent proofs of his theo-rem. In the �rst proof the averagings of the Lq-dis
repan
ies were 
onsideredwith respe
t to the usual Eu
lidean translations of point distributions. Theoriginal idea of the p-adi
 shifts was introdu
ed and exploited in the se
ondproof in the paper [7℄.We refer to [1, 2, 11℄ for detailed dis
ussion of all these questions.6



2. Main resultsOur �rst result 
on
erns upper bounds for the mean Lq-dis
repan
ies.Theorem 2.1. Let D2s be an arbitrary dyadi
 (Æ; s; d)-net. Then, for ea
h0 < q < ∞ the following bound holds
Ms;q[D2s ℄ < 2−d+Æ+1 (⌈12q⌉(s+ 1)) 12 (d−1) + d2Æ: (2.1)In parti
ular, there exist dyadi
 shifts T ∈ Qd(2s) su
h that
Lq[D2s ⊕ T ℄ ≤ 2−d+Æ+1(⌈12q⌉(s+ 1)) 12 (d−1) + d2Æ: (2.2)Theorem 2.1 shows that in all dimensions there exist dyadi
 (Æ; s; d)-netswhi
h meet the lower bound (1.13).For the �rst time, the results of su
h type were established by Chen fornets of de�ni
ien
y Æ = 0 in an arbitrary prime base p ≥ 2.The original Chen's approa
h was relaying on an elaborated 
ombinatorialanalysis involving simultaneous indu
tion on the parameters d, s, and evenintegers q. Under that approa
h, the assumption Æ = 0 turns out to beessential. As a result, for ea
h �xed prime base p, Chen's theorem 
ould beapplied only to dimensions d ≤ p+1, and for dyadi
 nets only in dimensions1, 2 and 3.In the author's paper [12℄ a new approa
h to the study of the mean Lq-dis
repan
ies was proposed. Under this approa
h, the value of the de�
ien
yÆ turns out to be 
ompletely irrelevant. This approa
h is relaying on thetheory of la
unary fun
tion series. In the 
ase of dyadi
 nets, these areseries of Radema
her fun
tions, whi
h form a la
unary subsystems for theWalsh fun
tions, and in the 
ase of nets in an arbitrary base p these seriesare la
unary subsystems for the 
orresponding Chrestenson{Levy fun
tions.The detailed des
ription of su
h fun
tional systems 
an be found in [10℄.A result similar to Theorem 2.1 was established previously in [13℄, seealso [14℄, but with worth 
onstants in the bounds. As fun
tions of q the
onstants given above in bound (2.1) and (2.2) are optimal in the followingsense. It 
an be shown that

Lq[D2s ℄ ≤ L∞[D2s ℄ ≤ 2d=" (Lq[D2s ℄ + d2Æ+1) ; (2.3)7



where q = "s → ∞ and " > 0 is an arbitrary 
onstant, see Lemma 6.2.Therefore, bounds (2.1) and (2.2) imply bound (1.12). Furthermore, ifthe order of the 
onstants in (2.1) and (2.2) 
ould be improved as q → ∞,then the order of bound (1.12) 
ould be also improved as s → ∞ for asubsequen
e of (Æ; s; d)-nets.Now we 
onsider lower bounds for the mean Lq-dis
repan
ies. In whatfollows, log denotes the logarithm in base 2.Theorem 2.2. Let DN ⊂ Ud, d ≥ 2, be an arbitrary N-point distributionand an exponent 0 < q ≤ 1 be arbitrary �xed. Suppose that an integer s is
hoosen to satisfys ≥ logN + 2d+ 1q + 12(d− 1) log(d− 1) + d+ 1 + log d: (2.4)Then, the following bound holds
Ms;q[DN ℄ > 
q(d)(logN) 12 (d−1); (2.5)where 
q(d) = 2−(2d+1)=q−d−1(d− 1)− 12 (d−1): (2.6)In parti
ular, there exist dyadi
 shifts T ∈ Qd(2s) su
h that

Lq[DN ⊕ T ℄ > 
q(d) (logN) 12 (d−1): (2.7)Certainly, bounds (2.5) and (2.7) hold also for 1 < q < ∞ but, in this
ase, these bounds follow at on
e from (1.13).In dimensions d ≥ 3, even the exa
t order of the L1-dis
repan
y is un-known, and the Lq-dis
repan
ies with 0 < q < 1 were never 
onsidered atall.Theorem 2.2 shows that, in 
ontrast to the Lq-dis
repan
ies of individualdistributions, the mean Lq-dis
repan
ies 
an be studied 
ompletely for allexponents 0 < q ≤ 1.It is worth noting that Theorems 2.1 and 2.2 
an be extended to thefollowing 
onditional mean Lq-dis
repan
iesMs;q[D; V ℄ = (|V |−1∑T∈V Lq[D ⊕ T ℄q)1=q ; 0 < q < ∞; (2.8)8



where V is a subset in Qd(2s).It turns out that the 
onditional means (2.8) 
an meet the bounds oforder (2.1) and (2.5) at very small averaging subsets V of 
ardinality |V | =O(s!q(d)) as s → ∞; here !q(d) is a 
onstant independent of s.Certainly, su
h subsets V should be rather spe
i�
. Some results in thisdire
tion were obtained in [14℄, and further studies of these intriguing ques-tions will be 
ontinued in the forth
oming papers.Our result on the mean L∞-dis
repan
y 
an be stated as follows.Theorem 2.3. Let DN ⊂ Ud, d ≥ 3, be an arbitrary N-point distribution.Suppose that an integer s is 
hoosen to satisfys ≥ logN + 12(d− 2) log(d− 2) + 2d+ log d: (2.9)Then, the following bound holds
Ms;∞[DN ℄ > 
∞(d) (logN) 12 d; (2.10)where 
∞(d) = 2−2d−1(d− 2)− 12 (d−2): (2.11)In parti
ular, there exist dyadi
 shifts T ∈ Qd(2s) su
h that
L∞[DN ⊕ T ℄ > 
∞(d) (logN) 12d: (2.12)In dimensions d ≥ 3 the exa
t order of the L∞-dis
repan
y still remainsan open question. In two dimensions the answer is known: the followingS
hmidt's lower bound is the best possible
L∞[DN ℄ > 
 logN; DN ⊂ U2:In higher dimensions, the following Be
k's lower bound for the three-dimensional distributions remained the only known result over many years

L∞[DN ℄ > 
" logN(log logN) 18−"; DN ⊂ U3; (2.13)where " > 0 is arbitrary small.Rather re
ently, the following strong lower bounds were established in alldimensions d ≥ 3
L∞[DN ℄ > 
d(logN) 12 (d−1)+�d (2.14)9



with small 
onstants �d & d−2 depending only on d.These deep results are due to Bilyk and La
ey [3℄ in dimension d = 3and Bilyk, La
ey and Vagharshakyan [4℄ in dimensions d ≥ 4, see also thesurveys [5, 6℄.Traditiionally, a great number of spe
ilists in the dis
repan
y theory be-lieves that in all dimensions d ≥ 3 the best possible lower bound is of theform
L∞[DN ℄ > 
d(logN)d−1:However, 
ontrary to su
h a popular belief, it was 
onje
tured that thebest possible lower bound should have the form
L∞[DN ℄ > 
d(logN) 12d: (2.15)This 
onje
ture is inspired by some very non-trivial parallels betweenthe disrepan
y theory and the theory of sto
hasti
 pro
essed. The reader
an 
onsult the 
ited papers [3{6℄ for a more detailed dis
ussion of thesequestions.Theorem 2.3 shows that the hypotheti
al bound (2.15) is true for themean L∞-dis
repan
y.We will see that the mean Lq-dis
repan
ies 
an be represented in terms ofthe Radema
her series, see se
tion 4. For su
h series, very sharp upper andlower Lq-bounds for any 0 < q < ∞ 
an be given by Khin
hin's inequality.In fa
t, Theorems 2.1 and 2.2 are 
orolaries of this inequality. At the sametime, Theorem 2.3 is a 
orollary of a suitably modi�ed Khin
hin's inequality,adapted to the L∞-norm, see Lemma 3.2.Lower bounds (1.13), (2.13), (2.14) are obtained with the help of di�erentvariations of Roth's orthogonal fun
tion method, 
f. [2, 5℄. It is interestingto note that, in the proofs of Theorems 2.2 and 2.3, we will not use any aux-iliary orthogonal fun
tions. The 
orresponding lower bounds will be deriveddire
tly from the expli
it formulas for dis
repan
ies given in Lemma 4.3.3. Radema
her fun
tions and related inequal-itiesIn this se
tion all nosessary fa
ts on Radema
her fun
tions and related topi
sare 
olle
ted. 10



In the one-dimensional 
ase, the Radema
her fun
tions ra(y), y ∈ [0; 1),a ∈ N, 
an be de�ned byra(y) = (−1)�a(y) = 1− 2�a(y); (3.1)where �a(y) are the 
oeÆ
ients in the dyadi
 expansion (1.4). It is 
onvenientto put r0(y) ≡ 1.In these terms, expansion (1.4) takes the formy = 12 −
12∑a≥1 2−ara(y): (3.2)The Radema
her fun
tions ra(·), a ∈ N, form a sequen
e of independentrandom variables taking the values ±1 with probability 1=2. This fa
t 
anbe expressed by the following relationsmes{y ∈ [0; 1) : ra1(y) = "1; : : : ; ral(y) = "l} = 2−l (3.3)whi
h hold for any 1 ≤ a1 < · · · < al, l ∈ N, and any "j = ±1, j = 1; : : : ; l,see, for example [9, 12℄.Ea
h fun
tion ra(y), a ∈ N, is pie
ewise 
onstant on elementary intervals�ma = [m2−a; (m+1)2−a), m = 0; 1; : : : ; 2a−1. Therefore, relations (3.3) areequivalent to their dis
ret analogs

|{y ∈ Q(2s) : ra1(y) = "1; : : : ; ral(y) = "l}| = 2s−l: (3.4)with any 1 ≤ a1 < · · · < al ≤ s, s ∈ N, and any "j = ±1, j = 1; : : : ; l.The k-dimensional Radema
her fun
tions rA(Y ), Y = (y1; : : : ; yk) ∈ Uk,A = (a1; : : : ; ak) ∈ Nk0, are de�ned byrA(Y ) = d
∏j=1 raj (yj): (3.5)In some formulas, we write k for dimension, be
ause the formulas will beused in the subsequent text with k = d and k = d− 1.We introdu
e the linear spa
e Rks , s ∈ N0, 
onsisting of all fun
tions ofthe form f(Y ) = ∑A∈Iks �ArA(Y ): (3.6)11



with real 
oeÆ
ients �A; here Is = {0; 1; : : : ; s} and Iks denotes the produ
tof k 
opies of Is.It follows from relations (3.4) that the set of fun
tions {ra(·); a ∈ Is} islinear independent on Q(2s), and therefore, the set {rA(·); A ∈ Ids } is linearindependent on Qd(2s). Thus, dimRks = (s + 1)k, and Rks is a very smallsubspa
e in the large spa
e Bks of dimension 2ks 
onsisting of all real-valuedfun
tions pie
ewise 
onstant on elementary 
ubes�Ms = [m12−s; (m1 + 1)2−s)× · · · × [mk2−s; (mk + 1)2−s);mj = 0; 1; : : : ; 2s − 1; j = 1; : : : ; k:Ea
h fun
tion f ∈ Bks is determined by its values on dyadi
 rational points
Qk(2s), and we have

‖f‖q = ‖f‖s;q; 0 < q ≤ ∞; (3.7)where
‖f‖q = ∫Uk |f(Y )|qdY1=q ; 0 < q < ∞;
‖f‖∞ = supY ∈Uk |f(Y )|;
‖f‖s;q = 2−ks ∑Y ∈Qk(2s) |f(Y )|q1=q ; 0 < q < ∞;
‖f‖s;∞ = maxY ∈Qk(2s) |f(Y )|:The k-dimensional Khin
hin's inequality: for ea
h fun
tion f ∈ Rks andall 0 < q < ∞, we have �kqQ2[f ℄ ≤ ‖f‖s;q ≤ �kqQ2[f ℄; (3.8)where Q2[f ℄ = ∑A∈Iks �2A1=2 ; (3.9)12



The 
onstants �kq and �kq are independent of f and s; they are the k-th powerof the 
onstants �q and �q, 
orrespondingly, and�q ≥ {2−(2−q)=q; if 0 < q < 21; if 2 ≤ q < ∞; (3.10)�q ≤ ⌈
12q⌉1=2: (3.11)In the one-dimensional 
ase inequality (3.8) is a 
orollary of the inde-penden
e of Radema
her fun
tions, see (3.3), (3.4), and its proof 
an befound in many texts on harmoni
 analysis and probability theory, see, forexample, [9, Se
. 10.3, Thm. 1℄, [12℄, [16, Chap. 5, Thm. 8.4℄.The extension of Khin
hin's inequality to higher dimensions 
an be easilygiven by indu
tion on k; we refer to [15, Appendix D℄ for details.In the subsequent text we will use 
orolaries of Khin
hin's inequality givenbelow in Lemmas 3.1 and 3.2.For Y = (y1; : : : ; yd) ∈ Ud and A = (a1; : : : ; ad) ∈ Ids , d ≥ 2, we putY = (Y; y);Y = (y1; : : : ; yd−1) ∈ Ud−1; y = yd ∈ [0; 1);A = (A; a);A = (a1; : : : ; ad−1) ∈ Id−1s ; a = ad ∈ Is: } (3.12)With notation (3.12), any fun
tion f ∈ Rds 
an be written in the followingtwo forms f(Y ) = f(Y; y) = ∑A∈Id−1s �A(y)rA(Y); (3.13)where �A(y) =∑a∈Is �Ara(y) (3.14)and f(Y ) = f(Y; y) =∑a∈Is 'a(Y)ra(y); (3.15)where 'a(Y) = ∑A∈Id−1s �ArA(Y): (3.16)
13



Lemma 3.1. For ea
h fun
tion f ∈ Rds, we have the following bounds
‖f‖s;q ≤ �d−1q Q∞;2[f ℄; 0 < q < ∞; (3.17)where Q∞;2[f ℄ = maxy∈Q(2s) ∑A∈Id−1s �A(y)21=2 ; (3.18)and

‖f‖s;q ≥ �dqQ2[f ℄; (3.19)where Q2[f ℄ is de�ned in (3.9).Proof. Applying the right inequality (3.8) with k = d− 1 to fun
tion (3.13),we obtain (3.17). Bound (3.19) is just the left inequality (3.8) with k = d.Lemma 3.1 will be used in the proof of Theorems 1.1 and 1.2. For theproof of Theorem 1.3 the following more spe
i�
 result will be needed. Thisresult 
an be thought of as a modi�
ation of Khin
hin's inequality for theL∞-norm.Lemma 3.2. For ea
h fun
tion f ∈ Rds, we have the following bound
‖f‖s;∞ ≥ �d−11 Q1;2[f ℄; (3.20)where Q1;2[f ℄ =∑a∈IsQ2['a℄; (3.21)Q2['a℄ =  ∑A∈Id−1s �2A1=2 : (3.22)Proof. First of all, we observe that relations (3.4) imply the following equalityfor ea
h one-dimensional fun
tion ' ∈ Rs. Let'(y) =∑a∈Is 'ara(y); y ∈ [0; 1);then, we have
‖'‖s;∞ =∑a∈Is |'a|: (3.23)14



Indeed, we 
an assume always that '0 ≥ 0, and in view of relations (3.4),there exists a point y0 ∈ Q(2s) su
h that ra(y0) = sign'a if 'a 6= 0, a ∈ Is.Therefore,
‖'‖s;∞ ≥ |'(y0)| =∑a∈Is |'a|:The opposite inequality is obvious, and (3.23) follows.Applying equality (3.23) to fun
tion (3.15), we obtain

‖f‖s;∞ = maxY∈Qd−1(2s) maxy∈Q(2s) |f(Y; y)|= maxY∈Qd−1(2s)∑a∈Is |'a(Y)|
≥ 2−(d−1)s ∑Y∈Qd−1(2s)∑a∈Is |'a(Y)| =∑a∈Is ‖'a(·)‖s;1
≥ �d−11 ∑a∈IsQ2['a℄ = �d−11 Q1;2[f ℄;where, on the last step, we used the left inequality (3.8) with k = d− 1 andq = 1.The proof of Lemma 3.2 is 
omplete.4. Radema
her fun
tions and expli
it formulasfor dis
repan
iesFor an arbitrary point y ∈ [0; 1) with dyadi
 expansion (1.4), we denote byy(s) its proje
tion to Q(2s):y(s) = s

∑a=1 �a(y)2−a; s ∈ N; (4.1)and for s = 0 we put y(0) = 0, so thaty = y(s) + �s(y)2−s; s ∈ N0; (4.2)where �s(y) ∈ [0; 1) for all y ∈ [0; 1). 15



We put Æ(s)(x; y) = {1; if x(s) = y(s)0; if x(s) 6= y(s) (4.3)It follows from (1.4) and (4.1) that elementary intervals �ms ,m = 0; 1; : : : ; 2s−1, see (1.9), 
an be written in the form�ms = [m2−s; (m+ 1)2s) = {z ∈ [0; 1) : z(s) = m2−s}:Therefore, Æ(s)(x; y) = Æ(s)(x(s) ⊕ y(s)) = �(�0s; x(s) ⊕ y(s)) (4.4)and Æ(s)(x(s) ⊕ y(s)) = 2s−1
∑m=0 �(�ms ; x)�(�ms ; y) (4.5)Hereinafter, we write �(E ; ·) for the 
hara
teristi
 fun
tion of a set E . Noti
ethat �(�ms ; x) = �(�ms ; x(s)) = �(�ms x(a)) (4.6)for any a ≥ s.It follows from (4.4) and (4.5) thatÆ(s)(x(s) ⊕ y(s)) = ∑z∈Q(2s) Æ(s)(x(s) ⊕ z)Æ(s)(z ⊕ y(s)):Furthermore, Æ(s)(x(s) ⊕ y(s)) is the reprodu
ing kerner for the spa
e Bs:f(x) = ∑y∈Q(2s) Æ(s)(x(s)(x(s) ⊕ y(s))f(y)= 2s 1

∫0 Æ(s)(x(s) ⊕ y(s))f(y)dy; f ∈ Bs: (4.7)Consider the following elementary intervals�a = �1a = [2−a; 21−a); a ∈ N: (4.8)It is 
onvenient to put �0 = [0; 1). 16



In terms of dyadi
 expansion (1.4), intevals (4.8) 
an be des
ribed asfollows �a = {z ∈ [0; 1) : �a(z) = 1; �i(z) = 0 for i < a}: (4.9)Noti
e that for ea
h s ∈ N the set of intervals {�a; a > s} form a partitionof the open interval (0; 2−s).The following result is of 
ru
ial importan
e in the subsequent 
onsider-ation.Lemma 4.1. For ea
h s ∈ N, the 
hara
teristi
 fun
tion �([0; y); ·) of theinterval [0; y); y ∈ [0; 1), has the following representation�([0; y); x) = �(s)([0; y); x) + "(s)(x; y); (4.10)where �(s)([0; y); x) = 12 −
12 s
∑a=1 �(�a; x(s) ⊕ y(s))ra(y); (4.11)and for all x, y ∈ [0; 1), the following bounds hold0 ≤ �(s)([0; y); x) ≤ 1 (4.12)and

|"(s)(x; y)| ≤ 12Æ(s)(x(s) ⊕ y(s)): (4.13)Proof. We will 
he
k the statements of the lemma for all possible arrange-ments of points x and y.If x = y, then �([0; y); y) = 0, �(s)(0; y); y) = 1=2, "(s)(y; y) = −1=2, andbounds (4.12), (4.13) are true.If x 6= y, we put� = �(x; y) = min{a ∈ N : �a(x) 6= �a(y)}:With (4.2), we obtainy − x = (��(y)− ��(x))2−� + (��(y)− ��(x))2−�; (4.14)where ��(x) 6= ��(y) and 0 ≤ |��(y)− ��(x)| < 1.From (4.14), we 
on
lude the following:(i) x < y, if and only if ��(y) = 1 and ��(x) = 0;(ii) x > y, if and only if ��(y) = 0 and ��(x) = 1.17



Furthemore, from (4.9) we 
on
lude that�(�a; x(a) ⊕ y(a)) = {1; if a = �;0; if a 6= �: (4.15)The said above 
an be expesed by the following expli
it formulas�([0; y); x) = �(��; x(�) ⊕ y(�))�(y) = 12�(��; x(�) ⊕ y(�))(1− r�(y))= 12 − �(�� ; x(�) ⊕ y(�))r�(y): (4.16)Now, taking formulas (4.16) and (4.15) into a

ount, we 
onsider thefollowing two opportunities:(i) � ≤ s; in this 
ase, equality (4.10) holds with "(s)(x; y) = 0, andbounds (4.12), (4.13) are obvious;(ii) � > s; in this 
ase, equality (4.10) holds with �(s)([0; y); x) = 12 and"(s)(x; y) = −12�(�� ; x(�) ⊕ y(�))r�(y), and bound (4.12) is obvious, whilebound (4.13) is true be
ause �� ⊂ �0s and, therefore,�(��; x(�) ⊕ y(�)) ≤ �(�0s; x(s) ⊕ y(s)) = Æ(s)(x(s) ⊕ y(s));
f. (4.4), (4.6).The proof of Lemma 4.1 is 
omplete.We emphasize that relations (4.16) and (4.15) imply the following expli
itformulas�([0; y); x) =∑a∈N

�(�a; x(a) ⊕ y(a))�a(y)= 12 −
∑a∈N

�(�a; x(a) ⊕ y(a))ra(y)− Æ(x; y); (4.17)where Æ(x; y) = 1 if x = y and is equal to 0 otherwise.Furthermore, for any x and y the sums in (4.17) 
ontain at most onenonzero term. In this sense, one 
an say that series (4.17) 
onverge for all xand y, while the 
onvergen
e is not uniform. Lemma 4.1 shows how to dealwith su
h series: although the error terms "(s) in (4.10) are not small, theyare 
on
entrated on small subsets. 18



Consider the multidemensional extention of the above result. For anarbitrary point Y = (y1; : : : ; yd) ∈ Ud we denote by Y (s) = (y(s)1 ; : : : ; y(s)d ) itsproje
tion to Qd(2s), so thatY = Y (s) +�s(Y )2−s; s ∈ N0;where �s(Y ) = (�s(y1); : : : ; �s(yd)) ∈ Ud: (4.18)Introdu
e elementary boxes of the form�A = �a1 × · · · × �ad ; A = (a1; : : : ; ad) ∈ Nd0: (4.19)Ea
h su
h box has volume vol �A = 2−a1−···−ad .We write κ(A) for the number of nonzero elements in A = (a1; : : : ; ad) ∈
Nd0.Multiplying formulas (4.10) with x = xj, y = yj, j = 1; : : : ; d (re
all thatr0(y) ≡ 1 and �0 = [0; 1)), we obtian the following resultLemma 4.2. For ea
h s ∈ N, the 
hara
teristi
 fun
tion �(BY ; X) of there
tangular box BY = [0; y1)× · · · × [0; yd), Y ∈ Ud, has the following repre-sentation �(BY ; X) = �(s)(BY ; X) + "(s)(X; Y ); (4.20)where �(s)(By; X) = 2−d ∑A∈Ids (−1)κ(A)�(�A; X(s))rA(Y ); (4.21)and for all X = (x1; : : : ; xd), Y = (y1; : : : ; yd) ∈ Ud, the following boundshold 0 ≤ �(s)(BY ; X) ≤ 1 (4.22)and

|"(s)(X; Y )| ≤ 12 d
∑j=1 Æ(s)(x(s)j ⊕ y(s)j ): (4.23)Proof. By de�nition �(s)(By; X) = d
∏j=1�(s)([0; yj); xj;and bound (4.22) follows from (4.12).19



Using 
oordinates (3.12), we obtain�(By; X) = �(BY;X)�([0; y); x)= �(s)(BY;X) + "(s)(X;Y))(�(s)([0; y); x) + "(s)(x; y))= �(s)(BY ; X) + "(s)(X; Y );where "(s)(X; Y ) = "(s)(X;Y)�(s)([0; y); x) + "(s)(x; y)�(BY ; X):Therefore,
|"(s)(X; Y )| ≤ |"(s)(X;Y)|+ |"(s)(x; y)|: (4.24)In the one-dimensional 
ase bound (4.23) is given in (4.13). Using (4.24), weobtain bound (4.23) in all dimensions by indu
tion on d.Multiplying formulas (3.2) with y = yj, j = 1; : : : ; d, we obtainy1 : : : yd = 2−d ∑A∈Nd0(−1)κ(A)2−a1−···−adrA(Y )Sin
e volBY = y1 : : : yd and vol�A = 2−a1−···−ad , this formula 
an be writenin the form volBY = 2−d ∑A∈Nd0(−1)κ(A) vol�A rA(Y )= vol(s)BY + "(s)(Y ); s ∈ N0; (4.25)where vol(s)BY = 2−d ∑A∈Ids (−1)κ(A) vol�A rA(Y ); (4.26)and "(s)(Y ) satis�es the bound

|"(s)(Y )| ≤ d2−s−1; Y ∈ Ud; (4.27)that 
an be easily proved by indu
tion on d.The lo
al dis
repan
y (1.1) 
an be written in the form
L[D; Y ℄ = ∑X∈DL(X; Y ); L(X; Y ) = �(BY ; X)− volBY : (4.28)20



Substituting formulas (4.20) and (4.25) to (4.28), we obain
L(X; Y ) = L(s)(X; Y ) + E (s)(X; Y ); (4.29)where

L(s)(X; Y ) = 2−2 ∑A∈Ids (−1)κ(A)�A(X(s) ⊕ Y (s))rA(Y );�A(X(s))⊕ Y (s)) = �(�A; X(s)⊕)− vol�Aand
E (s)(X; Y ) = "(s)(X; Y )− "(s)(Y ):In view of bounds (4.23) and (4.27), we have

|E (s)(X; Y )| ≤ 12 ( d
∑j=1 Æ(s)(x(s)j ⊕ y(s)j ) + d2−s) ; X; Y ∈ Ud:For an arbitrary distribution D ⊂ Ud, we denote by D(s) its proje
tion to

Qd(2s): D(s) = {X(s) : X ∈ D}; s ∈ N0;so that, |D(s)| = |D|, while some points of D(s) may 
oin
ide.We de�ne the mi
rolo
al dis
repan
ies by�A[D(s) ⊕ Y (s)℄ = ∑X∈D �A(X(s) ⊕ Y (s)) = ∑X∈D(�(�A; X(s) ⊕ Y (x))− vol�A)= |(D(s) ⊕ Y (s)) ∩ �A| − |D| vol�A; (4.30)Substituting (4.29) to (4.28), we arrive at the following rusult summarizingthe above dis
ussion.Lemma 4.3. For ea
h s ∈ N, the lo
al dis
repan
y L[D; Y ℄ has the followingrepresentation
L[D; Y ℄ = L(s)[D; Y ℄ + E (s)[D; Y ℄; (4.31)where

L(s)[D; Y ℄ = 2−d ∑A∈Ids (−1)κ(A)�A[D(s) ⊕ Y (s)℄ rA(Y ); (4.32)
21



and the term E (s)[D; Y ℄ satis�es the bound
|E (s)[D; Y ℄| ≤ 12 ( d

∑j=1 Æ(s)[D(s) ⊕ Y (s)℄ + d|D|2−s) ; (4.33)where Æ(s)[D(s) ⊕ Y (s)℄ = ∑X∈D Æs(x(s)j ⊕ y(s)j ): (34)5. Expli
it formulas and preliminary boundsfor the mean dis
repan
iesApplying Lemma 4.3 to a shifted distribution D⊕ T , T ∈ Qd(2s), we obtain
L[D ⊕ T; Y ℄ = L(s)[D ⊕ T; Y ℄ + E (s)[D ⊕ T; Y ℄; (5.1)where the term L(s)[D ⊕ T; Y ℄ 
an be written in the form

L(s)[D ⊕ T; Y ℄ = F (s)[D; T ⊕ Y (s); Y (s)℄; (5.2)
F (s)[D;Z; Y ℄ = 2−d ∑A∈Ids (−1)κ(A)�A[D ⊕ Z℄ rA(Y ); (5.3)�A[D ⊕ Z℄ = ∑X∈D(�(�A; X(s) ⊕ Z)− vol�A)= |(D ⊕ Z)| ∩ �A| − |D| vol�A; Z ∈ Qd(2s): (5.4)Let Lq(Qd(2s) × Ud), 0 < q ≤ ∞, be the spa
e 
onsisting of all fun
tionsf(T; Y ), T ∈ Qd(2s), Y ∈ Ud, with |||f |||q < ∞, where

|||f |||q = 2−ds ∑T∈Qd(2s) ∫Ud |f(T; Y )|qdY1=q ; 0 < q < ∞;
|||f |||∞ = maxT∈Qd(2s) supY ∈Ud |f(T; Y )|:For any two fun
tions f1; f2 ∈ Lq(Qd(2s)× Ud), we have

|||f1 + f2|||q ≤ |||f1|||q + |||f2|||q; 1 ≤ q ≤ ∞; (5.5)
|||f1 + f2|||qq ≤ |||f1|||qq + |||f2|||qq; 0 < q ≤ 1: (5.6)22



For 1 ≤ q < ∞, relation (5.5) is the standard Minkowski's inequality, while(5.6) is its modi�
ation for 0 < q < 1, see [16, Chap. 1, Ineqs. (9.11), (9.13)℄.With these notations, we put
M(s)q [D℄ = |||L(s)[D ⊕ :; :℄ |||q; 0 < q ≤ ∞; (5.7)and
E (s)q [D℄ = ||| E (s)[D ⊕ :; :℄ |||q; 0 < q ≤ ∞: (5.8)Substituting (5.1) to de�nition (1.7) and using (5.7), we obtain the upperbound
Ms;q[D℄ ≤ M(s)q [D℄ + E (s)q [D℄; 1 ≤ q < ∞ (5.9)and, for 0 < q ≤ 1, we 
an merely put

Ms;q[D℄ ≤ Ms;1[D℄ ≤ M
(s)1 [D℄ + E

(s)1 [D℄; 0 < q ≤ 1: (5.10)Similarly, using (5.6), we obtain the lower bound
Ms;q[D℄q ≥ M(s)q [D℄q − E (s)q [D℄q; 0 < q ≤ 1: (5.11)Bounds (5.9), (5.10) and (5.11) will be used in the proofs of Theorems 1.1and 1.2, 
orrespondingly.It follows from formulas (5.2) and (5.3) that L(s)[D⊕ T; Y ℄ as a fun
tionof Y ∈ Ud belongs to the spa
e Bds . Hen
e, we 
an use equality (3.7), andwrite (5.7) in the form

M(s)q [D℄ = 2−ds ∑T∈Qd(2s) |L(s)[D ⊕ T; :℄ |qs;q1=q
= 2−2ds ∑T;Y ∈Qd(2s) |L(s)[D ⊕ T; Y ℄ |q1=q ; 0 < q < ∞ (5.12)The following simple observation explains why the mean Lq-dis
repan
ies
an be expressed in terms of Radema
her series.In the ve
tor spa
e of pairs (T; Y ) ∈ Qd(2s)×Qd(2s) ≃ F2ds2 , we 
onsiderthe following linear mapping� : (T; Y ) → (T ⊕ Y; Y ) (5.13)23



Obviously, � 2 = 1, �−1 = r. Hen
e, � is a one-to-one mapping, and in thedouble sum in (5.12), the variables Z = T ⊕ Y and Y 
an be viewed asindependent. As a result, we have
M(s)q [D℄ = 2−ds ∑Z∈Qd(2s)F (s)q [D;Z℄q1=q ; 0 < q < ∞ (5.14)where

F (s)q [D;Z℄ = 2−ds ∑Y ∈Qd(2s) |F [D;Z; Y ℄|q1=q : (5.15)Bounds (5.9), (5.10), (5.11) and formulas (5.14), (5.15) will be used in theproof of Theorems 1.1 and 2.2.In the 
ase of the mean L∞-dis
repan
y the above arguments should beslightly modi�ed. First of all, using de�nitions (1.8) and (1.13), we 
an write
Ms;∞[D℄ = maxT∈Qd(2s) supY ∈Ud |L[D ⊕ T; Y ℄ | ≥ maxT;Y ∈Qd(2s) |L[D⊕; Y ℄ |: (5.16)For Z; Y ∈ Qd(2s), we put T = Z ⊕ Y and

F [D;Z; Y ℄ = L[D ⊕ Z ⊕ Y; Y ℄: (5.17)With this notation, formula (5.1) takes the form
F [D;Z; Y ℄ = F (s)[D;Z; Y ℄ + E (s)[D;Z; Y ℄; (5.18)where F (s)[D;Z; Y ℄ is de�ned in (5.3) and

E (s)[D;Z; Y ℄ = E (s)[D ⊕ Z ⊕ Y; Y ℄: (5.19)Sin
e � de�ned in (5.13) is a one-to one mapping, we have the equalitymaxT;Y ∈Qd(2s) |L[D ⊕ T; Y ℄ | = maxZ;Y∈Qd(2s) |F [D;Z; Y ℄ | (5.20)This relation 
an be 
ontinued as followsmaxZ;Y ∈Qd(2s) |F [D;Z; Y ℄ | = maxZ∈Qd(2s) maxY ∈Qd(2s) |F [D;Z; Y ℄ |
≥ 2−ds ∑Z∈Qd(2s) maxY ∈Qd(2s) |F [D;Z; Y ℄ | ≥ F

(s)1;∞[D℄− E
(s)1;∞[D℄: (5.21)24



where
F

(s)1;∞[D℄ = 2−ds ∑Z∈Qd(2s) F (s)
∞ [D;Z℄; (5.22)

F (s)
∞ [D;Z℄ = maxY ∈Qd(2s) |F (s)[D;Z; Y ℄ | (5.23)and

E
(s)1;∞[D℄ = 2−2s ∑Z∈Qd(2s) maxY ∈Qd(2s) |E (s)[D;Z; Y ℄ |: (5.24)Comparing (5.16), (5.20) and (5.21), we obtain the lower bound

Ms;∞[D℄ ≥ F
(s)1;∞[D℄− E

(s)1;∞[D℄: (5.25)This bound will be used in the proof of Theorem 2.3.We will 
all the quantities M
(s)q [D℄ and F

(s)1;∞[D℄ as the prin
ipal termswhile the E
(s)q [D℄ and E

(s)1;∞[D℄ as the eror terms.6. Bounds for the error terms and some auxiliary boundsLemma 6.1. (i) Let D2s be an arbitrary dyadi
 (Æ; s; d)-net. Then, the fol-lowing bound holds
E (s)q [D2s ℄ ≤ d2Æ; 0 < q ≤ ∞ (6.1)(ii) Let DN ⊂ Ud be an arbitrary N-point distribution. Then, the follow-ing bounds hold

E (s)q [DN ℄ ≤ dN2−s; 0 < q ≤ 1; (6.2)and
Es1;∞[DN ℄ ≤ dN2−s: (6.3)Proof. The fun
tions Æ(s)j [D(s) ⊕ Y (s)℄, j = 1; : : : ; d, de�ned in (4.34), belongto the spa
e Bds and satisfy equality (3.7). We putÆ(s)j;q [D℄ = ‖Æ(s)j [D(s) ⊕ :℄ ‖q = ‖Æ(s)j [D(s) ⊕ :℄ ‖s;q; 0 < 1 ≤ ∞: (6.4)Obviously, Æ(s)j;q [D ⊕ Z℄ = Æ(s)j;q [D℄; Z ∈ Qd(2s): (6.5)25



Applying formula (4.5) to de�nition (4.34), we obtainÆ(s)j [Ds ⊕ Z℄ = 2s−1
∑m=0Nj;m �(�ms ; zj); (6.7)where Nj;m = ∑X∈D �(�ms ; x(s)j ) = |D ∩�ms;j|;and �ms;j denotes the following elementary box�ms;j = {X = (x1; : : : ; xd) ∈ Ud : xj ∈ �ms ; xi ∈ [0; 1); i 6= j}Noti
e that vol�ms;j = 2−s and for ea
h j = 1; : : : ; d the boxes �ms;j m =0; 1; : : : ; 2s − 1, form a partition of the unit 
ube Ud. Therefore,2s−1

∑m=0Nj;m = N = |D|: (6.8)(i) From (6.7), we obtain the boundÆ(s)j;q [D℄ ≤ Æ(s)j;∞ ≤ maxm Nj;m; 0 ≤ ∞: (6.9)Using de�nition (5.8), bound (4.33), and equality (6.5), we obtain
E (s)q [D ⊕ T ℄ ≤ 12 ( d

∑j=1 Æ(s)j;∞[D℄ + d|D|2−s) ; 0 < q ≤ ∞: (6.10)If D2s is an arbitrary (Æ; s; d)-net, then N = 2s and Nj;m ≤ 2Æ for all j andm, see (1.11). Comparing bounds (6.9) and (6.10) for su
h a net, we obtainbound (6.1).(ii) From (6.7) and (6.8), we obtain the boundÆ(s)j;q [D℄ ≤ Æ(s)j;1 [D℄ = 2s−1
∑j=1 Nj;m2−s = N2−s; 0 < q ≤ 1 (6.11)Using de�nition (5.8), bound (4.33) and equality (6.5), we obtain

E (s)q [D⊕T ℄ ≤ E
(s)1 [D⊕T ℄ ≤ 12 ( d

∑j=1 Æ(s)j;1 [D℄ + d|D|2−s) ; 0 < q ≤ 1: (6.12)26



If DN is an arbitrary N -point distribution, then bounds (6.11) and (6.12)imply bound (6.2).For fun
tion (5.19) bound (4.33) takes the form
|E (s)[D;Z; Y ℄ | = |E (s)[D ⊕ Z ⊕ Y; Y ℄| ≤ 12 ( d

∑j=1 Æ(s)j [D(s) ⊕ Z℄ + d|D|2−s) ;(6.13)where the right hand side is independent of Y .Substituting (6.13) to de�nition (5.24), we obtain
E
(s)1;∞[D℄ ≤ 12 ( d

∑j=1 Æ(s)j;1 [D℄ + d|D|2−s) : (6.14)For an arbitrary N -point distribution DN , bound (6.14) implies bound(6.3).The proof of Lemma 6.1 is 
omplete.In the 
omments to Theorem 2.1 we have mentioned bound (2.3); itsproof is given in the followingLemma 6.2. For an arbitrary distribution D ⊂ Ud, the following boundholds
Lq[D℄ ≤ L∞[D℄ ≤ 2ds=q(Lq[D℄ + 2E (s)

∞ [D℄); 1 ≤ q < ∞; (6.15)where the term E
(s)
∞ [D℄ is de�ned in (5.8).In parti
ular, for an arbitrary (Æ; s; d)-net D2s and q = "s, " > 0, bound(6.15) takes the form
Lq[D2s ℄ ≤ L∞[D2s℄ ≤ 2d="(Lq[D2s ℄ + d2Æ+1): (6.16)Proof. It follows from (4.7) that the fun
tionÆ(s)(X(s) ⊕ Y (s) = d

∏j=1 Æ(s)(x(x)j ⊕ y(s)j )is the reprodu
ing kerner for the spa
e Bds :f(X) = ∑Y ∈Qd(2s) Æ(s)(X(s) ⊕ Y (s))f(Y ); f ∈ Bds : (6.17)27



Applying H�older's inequality to the sum in (6.17) and taking (3.7) intoa

ount, we obtain
‖f‖∞ = ‖f‖s;∞ ≤





∑Y ∈Qd(2s) |f(Y )|q1=q= 2ds=q‖f‖s;q = 2ds=q‖f‖q; 1 ≤ q < ∞:In parti
ular,
‖L(s)[D; :℄‖∞ ≤ 2ds=q‖L(s)[D; :℄‖q; (6.18)where the L(s)[D; :℄ is de�ned in (4.32).On the other hand, we derive from (4.31) and (5.8) that

‖L(s)[D; :℄‖∞ ≥ ‖L[D; :℄ ‖∞ − ‖E [D; :℄ ‖∞ ≥ L∞[D℄− E (s)
∞ [D℄and

‖L(s)[D; :℄‖q ≤ ‖L[D; :℄ ‖q + ‖E [D; :℄ ‖∞ ≤ Lq[D℄ + E (s)
∞ [D℄Comparing these inequalities with (6.18), we obtain

L∞[D℄ ≤ 2ds=q(Lq[D℄ + E (s)
∞ [D℄) + E (s)

∞ [D℄
≤ 2ds=q(Lq[D℄ + 2E (s)

∞ [D℄);that proves the right bound (6.15), while the left bound is obvious.If D2s is a (Æ; s; d)-net and q = "s, " > 0, then substituting bound (6.1)from Lemma 6.1, we obtain (6.16).The proof of Lemma 6.2 is 
omplete.In 
on
lusion of this se
tion, we give one further auxiliary result that willbe used in the proofs of Theorems 2.2 and 2.3.Consider the following subset of the k-dimensional elementary boxes �A ⊂Uk, k ≥ 2, see (4.19),Jk� (s) = {�A : A ∈ Iks ; vol�A = 2−�}; � ∈ N (6.19)Lemma 6.3. If s ≥ �, then the subset Jk�(s) = Jk� is independent of s, andthe following bound holds
|Jk� | ≥ ( �k − 1)k−1 : (6.20)28



Proof. Sin
e vol�A = 2−a1−···−ak , subset (6.19) 
onsists of boxes �A withA = (a1; : : : ; ak) ∈ Iks : a1 + · · ·+ ak = � (6.21)Ea
h solution of equation (6.21) satis�es 0 ≤ aj ≤ min{�; s}, j = 1; : : : ; k,and for s ≥ � the set of all solutions is independent of s.If s ≥ �, then for any (a1; : : : ; ak−1) ∈ Nk−10 with 0 ≤ aj ≤ ⌊�=(k − 1)⌋,j = 1; : : : ; k − 1, the integer ak = � − a1 − · · · − ak−1 satis�es 0 ≤ ak ≤ �.Therefore, A = (a1; : : : ; ak) is a solution of (6.21), and
|Jk� | ≥ (1 + ⌊�=(k − 1)⌋)k−1 ≥ ( �k − 1)k−1 :

7. Proofs of Theorems 2.1, 2.2 and 2.3The proof of ea
h of Theorems 2.1, 2.2 and 2.3 
onsists of two steps. At �rst,relaying on the bounds for sums of Radema
her fun
tions given in Lemmas2.1 and 2.2, we establish very good bounds for the prin
ipal terms M(s)q [D℄and F
(s)1;∞[D℄. Next, relaying on the upper bounds for the error terms E (s)q [D℄and E
(s)1;∞ given in Lemma 6.1, we 
ompare the prin
ipal terms with the
orresponding mean dis
repan
ies Ms;q[D℄.Proof of Theorem 2.1. LetD2s be a (Æ; s; d)-net. Applying bound (3.18) fromLemma 3.1 to fun
tion (5.3), we obtain the following bound for quantity(5.15)

F (s)q [D2s; Z℄ ≤ �d−1q Q∞;2[F (s)℄; (7.1)where Q∞;2[F (s)℄ = 2−d maxy∈Q(2s) ∑A∈Id−1s �A(Z; y)21=2 ; (7.2)�A(Z; y) =∑a∈Is �A[D2s ⊕ Z℄ra(y); (7.3)and the 
oeÆ
ients �A [D2s ⊕ Z℄ are de�ned in (5.4).29



For ea
h Z ∈ Qd(2s) the shift D2s ⊕ Z is a (Æ; s; d)-net, and it followsfrom (1.11) that �A[D2s ⊕ Z℄ = 0 if vol�A ≥ 2Æ−s:The 
ondition on volumes 
an be written asvol�A = vol�A vol�a = 2−a1−···−ad−1−a ≥ 2Æ−sor a ≤ s− Æ− a1−· · ·− ad−1. Therefore, the summation in (7.3) is extendedto s ≥ a ≥ l; l = max{0; s− Æ − a1 − · · · − ad−1 + 1}:Elementary boxes �A are mutually disjoint, and, for a given A, all boxes�A = �A×�a, s ≥ a ≥ l, are embedded to the elementary box �A×�, where� = �0l−1 if l ≥ 1 and � = [0; 1) if l = 0. In both 
ases, vol �A×�a ≤ 2Æ−s.Hen
e, |(D2s ⊕ Z) ∩ (�A × �)| ≤ 2Æ by the de�nition of (Æ; s; d)-nets, see(1.11).With these bounds, fun
tion (7.3) 
an be estimated as follows
|�A(Z; y)| ≤ s

∑a=l |�A[D2s ⊕ Z℄|
≤

s
∑a=l |(D2s ⊕ Z) ∩ �A|+ |D2s | s

∑a=l vol�A
≤ |(D2s ⊕ Z) ∩ (�A ×�)|+ 2s vol(�A ×�) ≤ 2Æ+1:Substituting this bound to (7.2), we obtainQ∞;2[F (s)℄ ≤ 2−d+Æ+1|Id−1s |1=2 = 2−d+Æ+1(s+ 1) 12 (d−1);and, therefore,
F (s)q [D2s;Z℄ ≤ �d−1q 2−d+Æ+1(s+ 1) 12 (d−1):With this bound, the prin
ipal term (5.14) 
an be estimated as follows

M(s)q [D2s℄ ≤ 2−d+Æ+1⌈12q⌉ 12 (d−1)(s+ 1) 12 (d−1); (7.4)where bound (3.11) for the 
onstant �q has been also used.30



Substituting bound (7.4) and bound (6.1) from Lemma 6.1 to inequalities(5.9) and (5.10), we obtain
Ms;q[D2s ℄ < 2−d+Æ+1 (⌈12q⌉(s+ 1)) 12 (d−1) + d2Æ; 0 < q < ∞:The proof of Theorem 2.1 is 
omplete.Proof of Theorem 2.2. Let DN ⊂ Ud, d ≥ 2, be an N -point distribution.Applying bound (3.19) from Lemma 3.1 to fun
tion (5.3), we obtain thefollowing bound for quantity (5.15)

F (s)q [DN ; Z℄ ≥ �dqQ2[F (s)℄; (7.5)where Q2[F (s)℄ = 2−d∑A∈Ids �A[DN ⊕ Z℄21=2 : (7.6)The 
oeÆ
ients �A[DN ⊕ Z℄ are de�ned in (5.4), and it is 
lear that
|�A[DN ⊕ Z℄| ≥ ≪ N vol�A ≫; (7.7)where ≪ t ≫= min{|t− n| : n ∈ Z} is the distan
e of a number t ∈ R fromthe set of all integers Z.With bound (7.7), we haveQ2[F (s)℄ ≥ 2−d∑A∈Ids ≪ N vol�A ≫2



1=2 : (7.8)Let � ∈ N be 
hosen to satisfy2−2 < N2−� ≤ 2−1;then ≪ N vol �A ≫> 2−2 for all boxes �A with vol�A = 2−�.Let s ∈ N be 
hosen to satisfys ≥ � = ⌈logN⌉+ 1 ≥ logN + 1; (7.9)31



then, using Lemma 6.3 with k = d, we 
an estimate the sum in (7.8) asfollows
∑A∈Ids ≪ N vol�A ≫2 ≥ ∑A∈Jd� ≪ N vol�A ≫2> 2−4|Jd� | ≥ 2−4( logN + 1d− 1 )d−1 :Sibstituting this bound to (7.8), we obtainQ2[F (s)℄ > 2−d−2(d− 1)− 12 (d−1)(logN + 1) 12 (d−1);and, therefore,

F (s)[DN ; Z℄ > �dq2−d−2(d− 1)− 12 (d−1)(logN + 1) 12 (d−1):With this bound, the prin
ipal term (5.14) 
an be estimated as follows
M(s)q [DN ℄ > 
q(d)(logN + 1) 12 (d−1); 0 < q ≤ 1;
q(d) = 2−2d=q−d−1(d− 1)− 12 (d−1); (7.10)where bound (3.10) for the 
onstant �q has been also used.Substituting bounded (7.10) and bound (6.2) from Lemma 6.1 to inequal-ity (5.11), we obtain

Ms;q[DN ℄q > 
q(d)q(logN + 1) 12 (d−1)q − (dN2−s)q
≥ 
q(d)q(logN + 1) 12 (d−1)q(1− �q(s)); 0 < q ≤ 1;where �q(s) = 
q(d)−q(dN2−s)q:Let s be 
hosen suÆ
iently large to satisfy �q(s) ≤ 1=2. To do this, weput s ≥ logN + 2d+ 1q + 12(d− 1) log(d− 1) + d+ 1 + log d;and in this 
ase the above 
ondition (7.9) will be also satis�ed.As a result, we have

Ms;q[DN ℄ > 
q(d)(logN + 1) 12 (d−1); 0 < q ≤ 1;where 
q(d) = 2−1=q
q(d) = 2−(2d+1)=q−d−1(d− 1)− 12 (d−1)The proof of Theorem 2.2 is 
omplete.32



Proof of Theorem 2.3. Let DN ⊂ Ud, d ≥ 3, be an N -point distribution.Applying bound (3.20) from Lemma 3.2 to fun
tion (5.3), we obtain thefollowing bound for quantity (5.23)
F (s)

∞ [DN ; Z℄ ≥ �d−11 Q1;2[F (s)℄; (7.11)where Q1;2[F (s)℄ = 2−d∑a∈IsQ2['a℄; (7.12)Q2['a℄ =  ∑A∈Id−1s �A[DN ⊕ Z℄21=2 : (7.13)With bound (7.7), we haveQ2['a℄ ≥  ∑A∈Id−1s ≪ N vol�A ≫2


1=2 : (7.14)Noti
e that vol �A = vol�A vol�a = vol�A2−a, and de�ne �a ∈ N by2−2 < N2−�a−a ≤ 2−1;then ≪ N vol �A ≫> 2−2 for all boxes �A with vol�A = 2−�a.It is 
lear that �a = � − a, 0 ≤ a ≤ �, where� = ⌈logN⌉+ 1 ≥ logN + 1:In what follows, we assume that0 ≤ a ≤
12� and � ≥ �a ≥ 12�:Let s ∈ N be 
hosen to satisfy s ≥ �, thens ≥ � = �0 > �1 > �2 > : : : ; (7.15)and, using Lemma 6.3 with k = d− 1, we 
an estimate the sum in (7.14) asfollows

∑A∈Id−1s ≪ N vol �A ≫2≥ ∑A∈Jd−1�a ≪ N vol�A ≫2> 2−4|Jd−1�a | ≥ 2−4( �ad− 2)d−2
≥ 2−4( �=2d− 2)d−2 :33



Hen
e, for quantities (7.13), we have the boundQ2['a℄ > 2−2(d− 2)− 12 (d−2)(�=2) 12 d−1; 0 ≤ a ≤ �=2:Substituting this bound to (7.12), we obtainQ1;2[F (s)℄ ≥ 2−d ∑0≤a≤�=2Q2['a℄ > 2−d−2(d− 2)− 12 (d−2)(�=2) 12d
≥ 2− 32 d−2(d− 2)− 12 (d−2)(logN + 1) 12d;and, therefore,

F (s)
∞ [DN ; Z℄ > �d−11 2− 32d−2(d− 2)− 12 (d−2)(logN + 1) 12d:With this bound, the prin
ipal term (5.22) 
an be estimated as follows

F
(s)1;∞[DN ℄ > 
∞(d)(logN + 1) 12 d; 
∞(d) = 2−2d(d− 2)− 12 (d−2) (7.16)where bound (3.10) for the 
onstant �1 has been also used.Substituting bound (7.16) and bound (6.3) from Lemma 6.1 to inequality(5.25), we obtain

Ms;∞[DN ℄ > 
∞(d)(logN + 1) 12d − 12(d+ 1)N2−s
≥ 
∞(d)(logN + 1) 12 d(1− �∞(s));where �∞(d) = 
∞(s)−1(dN2−s):Let s be 
hosen suÆ
iently large to satisfy �∞(s) ≤ 12 . To do this, we puts ≥ logN + 12(d− 2) log(d− 2) + 2d+ log d;and in this 
ase the above 
ondition (7.15) will be also satis�ed.As a result, we have

Ms;∞[DN ℄ > 
∞(d)(logN + 1) 12d;where 
∞(d) = 12
∞(d) = 2−2d−1(d− 2)− 12 (d−2):The proof of Theorem 1.3 is 
omplete.34
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