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Abstract

Dyadic shifts D@ T of point distributions D in the d-dimensional unit cube U%
are considered as a randomization. Explicit formulas for the L4-discrepancies of
such randomized distributions are given in the paper in terms of Rademacher
functions. Relaying on the statistical independence of Rademacher functions,
Khinchin’s inequalities, and other related results, we obtain very sharp upper and
lower bounds for the mean L,-discrepancies. 0 < g < oo.

The upper bounds imply directly a generalization of the well known Chen’s
theorem on mean discrepancies to the case of dyadic shifts (Theorem 2.1).

From the lower bounds it follows that for an arbitrary N-point distribution
Dy and any exponent 0 < g < 1 there exist dyadic shifts Dy @ T such that the
L-discrepancy L,[Dy & T > c¢q4(log N)%(d—1) (Theorem 2.2).

The lower bounds for the L..-discrepancy are also considered in the paper. It
is shown that for an arbitrary N-point distribution Dy there exist dyadic shifts
Dy @ T such that Loo[Dy @ T| > cq(log N)%d (Theorem 2.3).

Keywords: Uniform distributions, mean L,-discrepancies, Rademacher
functions, Khinchin’s inequality
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REZEA

1. Dyadic shifts and the mean discrepancies

The classical discrepancy theory deals with the distribution of finite point sets
in rectangular sub-boxes in the unit cube with sides parallel to the coodinate
axes. A detailed discussion of numerous methods and results known in the
field can be found in [1,2,11]. We recall only the main definitions and facts
necessary for the purposes of our paper.

Let D be an arbitrary finite subset (distribution) in the unit cube U? =
[0,1)4. The local discrepancy LID,Y], Y = (yi,...,yq) € U%, is defined by

L[D,Y] = |D N By| — |D| vol By, (1.1)
where By = [0,41) X -+ X [0,y4) is a recfngular box of volume vol By =
Yi,---,Yq, and | - | denotes the cardinality of a set.

The L,-discrepancies are defined by

£,[D] = (/|£[D,Y]|qu) g (1.2)
£.ID] = sup [£1D.Y]. (1.3)

We write N for the set of all positive integers, Ny for the set of all non-
negative integers, N? and N¢ for the product of d copies of the corresponding



sets. For s € Ny, we put

Q2°)={r=m2"7€[0,1):m=0,1,...,2° — 1},
QU2%) = {X = (w1,...,24) €Uy 2, €Q(2%),5 =1,...,d},
Q(2*) = J @), @) = Jo' ).

§>0 s>0

The points of Q¢(2*°) are called dyadic rational points.
Any y € [0,1) can be represented in the form

y=> m(y)27" (1.4)

a>1

where 7,(y) € {0,1} ~ Fy, a € N. Here Fy is the field of two elements
identified with the set of residues {0, 1} mod 2.

The dyadic expansion (1.4) is unique if we agree that for each dyadic
rational point the sum in (1.4) contains finitely many nonzero terms. With
this agreement, 7,(y) = 0 for a > s if y € Q(2°) or, in other words, for each
point y € [0, 1), the sequence {n,(y), a € N} contains infinitely many zeros.

In a natural way, the set of dyadic rational points can be endowed with
the structure of a vector space over the finite field F5. For any two points x
and y in Q(2°°), we define their sum x @ y as follows

Na(T ® Y) = Nu(2) + 14(y) mod 2, a € N, (1.5)

and for any two points X = (z,...,74) and Y = (y,...,94) in Q4(2%°) we
define
X®Y:(xl®yla“'7xd@yd)' (16)

With respect to the addition @ defined in this way, each set Q%(2%) is a vector
space over the field Fy, and dim Q¢(2°) = ds.

Note that formulas (1.5), (1.6) consistently define the addition @ for all
pairs of points X and Y, whenever only one of the points, say Y, belongs to
Q%(2%), while the other is an arbitrary point X € U9,

The said above shows that, for an arbitrary distribution D and any point
T € Q%(2*°), we can define the dyadic shift D®T = {X T : X € D}
and view it as a new distribution. For each s € N, we can consider the
family {D®T : T € Q4(2°)} as a randomization of D and the corresponding
discrepancies L£,[D @ T] as random variables.
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The aim of the present paper is to study the following mean L,-discrepancies

1/q
M Dl=|27% > LDeT)| , 0<g<oo, (L7)
TeQ?(29)
M; oD = max L [D&T]. (1.8)
TeQd(29)

Our results are given in the next section in Theorems 2.1, 2.2 and 2.3.
In Theorem 2.1 we will consider the upper bounds for M, ,[D], 0 < ¢ < o0,
and specific distributions D, the so-called (4, s, d)-nets. The lower bounds
for M, ,[D] and arbitrary distributions D will be given in Theorems 2.2 and
2.3 for exponents 0 < ¢ < 1 and ¢ = 0o, correspondingly.

Recall the definition of dyadic (4, s, d)-nets. We refer to [1,2,11] for
details; notice that in [2] such (6, s, d)-nets are called 2°-sets of class s — .

Consider the elementary intervals A™ C [0,1) of the form

A™ = [m27%, (m+1)27),a € Ng,m =0,1,...,2° — 1, (1.9)
and the elementary bozes AY¥ C U4, A = (ay,...,aq), M = (my,...,mq) €
Nga

AN =AM o x A m; =0,1,...,2% —1,5=1,....,d. (1.10)
Every such box has volume vol A} = 2-a1=~ad,

Let 0 < § < s be integers. A subset Dys C U? consisting of N = 2° points
is called a dyadic (8, s,d)-net of deficienty ¢ if each elementary box AN of
volume 2°~* contains exactly 2° points of Dss.

It follows from the definition that any (4, s,d)-net Dys has zero discrep-
ancy in all elementary boxes of large volume. Precisely,

1.11
|Dys N AN <20 if vol AN <20 (1.11)

|Dos N AN =25 vol AM if  vol AY > 25—8,}
Indeed, in the first case, each box Al is a disjoint union of elementary boxes
of volume 2°~¢, and in the second, each box A is contained in an elementary
box of volume 2075,
Notice also that for any (6, s, d)-net Dys its shift Dys @ T, T € Q%(2%),
is a net with the same parameters.



Indeed, (D@ T)NAY| =|DN(AY o T)|, T € Q4(2%°), and A¥ ¢ T =
A%(T) with an index M(T).

Replacing the base 2 in the definition and in (1.9), (1.10) by an arbitrary
prime p, we arrive at (4, s, d)-nets in the base p. In arbitrary dimensions d,
first constructions of dyadic (0, s, d)-nets with § < dlogd were given by Sobol,
and later, other constructions of nets in arbitrary base p were proposed by
Faure, see [2].

It is significant that for each base p, the deficiency ¢ increases with the
growth of the dimension d. Furthermore, (0, s, d)-nets in the base p and with
arbitrary large s exist if and only if d < p+1; in particular, infinite sequences
of dyadic nets with 0 = 0 exist only in dimensions d = 1,2 and 3.

It is known that (d, s, d)-nets Dss fill the unit cube very uniformly, and
the L-discrepancies admit the bounds

Loo[Dos] < C2°5%71 5 — o0, (1.12)

with a constant C,; depending only on dimension d. Furthermore, for arbi-
trary (0, s, d)-nets the order of this bound as s — oo can not be improved.

We recall that for an arbitrary N-point distribution Dy C U¢ the follow-
ing bounds hold

L,[Dn] > cqq(log N)%(d’l), 1 <q<oo, (1.13)

with positive constants ¢4, depending only on d and gq.

These classical bounds are due to Roth for 2 < ¢ < oo and Schmidt for
1 < ¢ < 2. In two dimensions, it is known that bound (1.13) is also true for
g = 1, this result is due to Halasz.

The order of bound (1.13) is the best possible as N — oo. In the most
general form, in all dimensions d > 2 and for all exponents 0 < ¢ < oo this
fundamental fact was established by Chen. Previously, for 0 < ¢ < 2, this
fact was established by Davenport, Roth and other authors.

It should be mentioned that Chen gave two different proofs of his theo-
rem. In the first proof the averagings of the L,-discrepancies were considered
with respect to the usual Euclidean translations of point distributions. The
original idea of the p-adic shifts was introduced and exploited in the second
proof in the paper [7].

We refer to [1,2,11] for detailed discussion of all these questions.



2. Main results

Our first result concerns upper bounds for the mean L,-discrepancies.

Theorem 2.1. Let Dys be an arbitrary dyadic (9, s, d)-net. Then, for each
0 < g < oo the following bound holds

$(d-1)
M 4[Dos] < 274F0H ([%qW (s+ 1)) +d2°. (2.1)

In particular, there exist dyadic shifts T € Q%(2%) such that

$(d-1)
L,[Dys @ T] < 27401 ((%fﬂ (s+ 1)) +d2°. (2.2)

Theorem 2.1 shows that in all dimensions there exist dyadic (9, s, d)-nets
which meet the lower bound (1.13).

For the first time, the results of such type were established by Chen for
nets of definiciency 6 = 0 in an arbitrary prime base p > 2.

The original Chen’s approach was relaying on an elaborated combinatorial
analysis involving simultaneous induction on the parameters d, s, and even
integers ¢. Under that approach, the assumption 6 = 0 turns out to be
essential. As a result, for each fixed prime base p, Chen’s theorem could be
applied only to dimensions d < p+ 1, and for dyadic nets only in dimensions
1, 2 and 3.

In the author’s paper [12] a new approach to the study of the mean L,
discrepancies was proposed. Under this approach, the value of the deficiency
0 turns out to be completely irrelevant. This approach is relaying on the
theory of lacunary function series. In the case of dyadic nets, these are
series of Rademacher functions, which form a lacunary subsystems for the
Walsh functions, and in the case of nets in an arbitrary base p these series
are lacunary subsystems for the corresponding Chrestenson-Levy functions.
The detailed description of such functional systems can be found in [10].

A result similar to Theorem 2.1 was established previously in [13], see
also [14], but with worth constants in the bounds. As functions of ¢ the
constants given above in bound (2.1) and (2.2) are optimal in the following
sense. It can be shown that

L4[Dy:] < Loo[Dos] < 2% (Ly[Dys] + d2°H) (2.3)
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where ¢ = €s — oo and € > 0 is an arbitrary constant, see Lemma 6.2.
Therefore, bounds (2.1) and (2.2) imply bound (1.12). Furthermore, if
the order of the constants in (2.1) and (2.2) could be improved as ¢ — o0,
then the order of bound (1.12) could be also improved as s — oo for a
subsequence of (0, s, d)-nets.
Now we consider lower bounds for the mean L, -discrepancies. In what
follows, log denotes the logarithm in base 2.

Theorem 2.2. Let Dy C U?, d > 2, be an arbitrary N-point distribution
and an exponent 0 < q < 1 be arbitrary fized. Suppose that an integer s is
choosen to satisfy

2d+1 1
kA +§(d—1)log(d—1)+d+1+logd. (2.4)

s > log N +

Then, the following bound holds
M 4[Dx] > 4(d)(log N) 241, (2.5)

where
Yq(d) = 27D a1 (g 1y=5(d-D), (2.6)

In particular, there exist dyadic shifts T € Q%(2%) such that
Ly[Dy ® T] > y,(d) (log N)2-Y. (2.7)

Certainly, bounds (2.5) and (2.7) hold also for 1 < ¢ < oo but, in this
case, these bounds follow at once from (1.13).

In dimensions d > 3, even the exact order of the L;-discrepancy is un-
known, and the L, -discrepancies with 0 < ¢ < 1 were never considered at
all.

Theorem 2.2 shows that, in contrast to the L,-discrepancies of individual
distributions, the mean L,-discrepancies can be studied completely for all
exponents 0 < g < 1.

It is worth noting that Theorems 2.1 and 2.2 can be extended to the
following conditional mean L,-discrepancies

L/q
M;,[D,V] = <|V|‘1 Z LD & T]q> , 0<gq< oo, (2.8)

TeV



where V is a subset in Q%(2°).

It turns out that the conditional means (2.8) can meet the bounds of
order (2.1) and (2.5) at very small averaging subsets V' of cardinality |V| =
O(s#4@) as s — oo; here w,(d) is a constant independent of s.

Certainly, such subsets V' should be rather specific. Some results in this
direction were obtained in [14], and further studies of these intriguing ques-
tions will be continued in the forthcoming papers.

Our result on the mean L..-discrepancy can be stated as follows.

Theorem 2.3. Let Dy C U%, d > 3, be an arbitrary N-point distribution.
Suppose that an integer s is choosen to satisfy

1
s >log N + §(d — 2)log(d — 2) 4+ 2d + log d. (2.9)
Then, the following bound holds
M0[Dx] > Yoo(d) (log N)7¢, (2.10)

where .
Yoo(d) = 272471 (g — 2)72(4=2), (2.11)

In particular, there exist dyadic shifts T € Q%(2°) such that
Loo[Dy BT] > 7oo(d) (log N)z%. (2.12)

In dimensions d > 3 the exact order of the L.-discrepancy still remains
an open question. In two dimensions the answer is known: the following
Schmidt’s lower bound is the best possible

Eoo[DN] >cC IOgN, DNCUQ.

In higher dimensions, the following Beck’s lower bound for the three-
dimensional distributions remained the only known result over many years

L[Dn] > c. logN(loglogN)%_g,DN c U?, (2.13)

where ¢ > 0 is arbitrary small.
Rather recently, the following strong lower bounds were established in all

dimensions d > 3 )
Loo[Dn] > cq(log N)zd=D+ma (2.14)

9



with small constants 7y > d=2? depending only on d.

These deep results are due to Bilyk and Lacey [3] in dimension d = 3
and Bilyk, Lacey and Vagharshakyan [4] in dimensions d > 4, see also the
surveys [5, 6].

Traditiionally, a great number of specilists in the discrepancy theory be-
lieves that in all dimensions d > 3 the best possible lower bound is of the
form

Loo[Dn] > cq(log N)“,

However, contrary to such a popular belief, it was conjectured that the
best possible lower bound should have the form

Lo[Dy] > ca(log N)z¢. (2.15)

This conjecture is inspired by some very non-trivial parallels between
the disrepancy theory and the theory of stochastic processed. The reader
can consult the cited papers [3-6] for a more detailed discussion of these
questions.

Theorem 2.3 shows that the hypothetical bound (2.15) is true for the
mean L..-discrepancy.

We will see that the mean L,-discrepancies can be represented in terms of
the Rademacher series, see section 4. For such series, very sharp upper and
lower L, -bounds for any 0 < ¢ < oo can be given by Khinchin’s inequality.
In fact, Theorems 2.1 and 2.2 are corolaries of this inequality. At the same
time, Theorem 2.3 is a corollary of a suitably modified Khinchin’s inequality,
adapted to the L.,-norm, see Lemma 3.2.

Lower bounds (1.13), (2.13), (2.14) are obtained with the help of different
variations of Roth’s orthogonal function method, cf. [2,5]. It is interesting
to note that, in the proofs of Theorems 2.2 and 2.3, we will not use any aux-
iliary orthogonal functions. The corresponding lower bounds will be derived
directly from the explicit formulas for discrepancies given in Lemma 4.3.

3. Rademacher functions and related inequal-
ities
In this section all nosessary facts on Rademacher functions and related topics

are collected.
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In the one-dimensional case, the Rademacher functions r,(y), y € [0,1),
a € N, can be defined by

raly) = (=1)=®) =1 — 2n,(y), (3.1)

where 7, (y) are the coefficients in the dyadic expansion (1.4). It is convenient
to put ro(y) = 1.
In these terms, expansion (1.4) takes the form

y=1 532 ). 3.2

The Rademacher functions r,(+), a € N, form a sequence of independent
random variables taking the values +1 with probability 1/2. This fact can
be expressed by the following relations

mes{y € [0,1) : 74, (y) =&1,...,74,(y) =5} =27 (3.3)

which hold for any 1 < a; <--- <@, €N,and any ¢; = £1, j =1,...,1,
see, for example [9,12].

Each function r,(y), a € N, is piecewise constant on elementary intervals
A" = [m27% (m+1)27%), m=0,1,...,2°—1. Therefore, relations (3.3) are
equivalent to their discret analogs

{y € Q) tray(y) =1, 0 (y) = e} =227 (3-4)

withany 1 <a; <--- <@ <s,s€N andanye; ==£1,j=1,...,[.
The k-dimensional Rademacher functions r4(Y), Y = (y,...,uyx) € U¥,
A= (ay,...,a;) € NE are defined by

d

ra(Y) =[] re ). (3.5)

J=1

In some formulas, we write £ for dimension, because the formulas will be
used in the subsequent text with k =d and k =d — 1.
We introduce the linear space R¥, s € Ny, consisting of all functions of

the form
FO) =" dara(y). (3.6)



with real coefficients \,; here I, = {0,1,...,s} and I* denotes the product
of k copies of I.

It follows from relations (3.4) that the set of functions {r.(-),a € I} is
linear independent on Q(2°%), and therefore, the set {ra(-), A € I?} is linear
independent on Q%(2%). Thus, dimR* = (s + 1)*, and RF is a very small
subspace in the large space B¥ of dimension 2% consisting of all real-valued
functions piecewise constant on elementary cubes

AM = [m 275 (my +1)27°) x - x [mp27%, (my, +1)27%),
m;j=0,1,...,2° —1,j=1,..., k.

Each function f € B¥ is determined by its values on dyadic rational points
QF(2¢), and we have

[fllg = [[fllsgy 0 <g< 00, (3.7)
where
1/q
£, = | [1roneay | L 0<g<oc,
k
[ flloo = sup [f(Y)],
YeUk
1/q
1Fllsq= | 27" Z LFY)]? , 0 <g <o,
Y eQk(25)
s00 = a Y)|.
£l = s [7(Y)

The k-dimensional Khinchin’s inequality: for each function f € R and
all 0 < ¢ < 0o, we have

fQalf] < [If s < BEQaLS), (3.8)
where
1/2
QA= D N (3.9)
Aerk

12



The constants o/; and 65 are independent of f and s; they are the k-th power
of the constants «, and f,, correspondingly, and

2-C=d/a if 0<qg<?2
g > ! 1 (3.10)
1, if 2<¢g<o0,
1
By < 501" (3.11)

In the one-dimensional case inequality (3.8) is a corollary of the inde-
pendence of Rademacher functions, see (3.3), (3.4), and its proof can be
found in many texts on harmonic analysis and probability theory, see, for
example, [9, Sec. 10.3, Thm. 1], [12], [16, Chap. 5, Thm. 8.4].

The extension of Khinchin’s inequality to higher dimensions can be easily
given by induction on k; we refer to [15, Appendix D] for details.

In the subsequent text we will use corolaries of Khinchin’s inequality given
below in Lemmas 3.1 and 3.2.

For Y = (y1,...,yq) € U4 and A = (a1, ...,aq) € I¢, d > 2, we put
Y=Y, 9),Y=(y, . va1) €Uy =y €0,1), (3.12)
A= (Aa),A=(a,...,a01) €I a=aq€ I, .

With notation (3.12), any function f € R? can be written in the following
two forms

FY)=F(Y,y)= > ®aly)ra(Y), (3.13)
where 8
Pa(y) =Y Aara(y) (3.14)
and S
FY) = F(Y,9) =Y wa(Y)raly), (3.15)
where S
pa(Y)= D Aara(Y). (3.16)

13



Lemma 3.1. For each function f € RY, we have the following bounds

1 flls.q < Be ' Quonlf], 0 < g < o0, (3.17)
where
1/2
Qooolf] = max Z day)? ] (3.18)
Ac]?
and
1flls.0 = afQs[f], (3.19)

where Qo[ f] is defined in (3.9).

Proof. Applying the right inequality (3.8) with ¥ = d — 1 to function (3.13),
we obtain (3.17). Bound (3.19) is just the left inequality (3.8) with k =d. O

Lemma 3.1 will be used in the proof of Theorems 1.1 and 1.2. For the
proof of Theorem 1.3 the following more specific result will be needed. This
result can be thought of as a modification of Khinchin’s inequality for the
L.,-norm.

Lemma 3.2. For each function f € RY, we have the following bound

1 f 1|00 > @81 Qu ol f], (3.20)
where
Qi2lf] =) Qalpdl, (3.21)
a€ls o
Qaled = | D X4 (3.22)
Aerd!

Proof. First of all, we observe that relations (3.4) imply the following equality
for each one-dimensional function ¢ € R,. Let

@(y) = Z Qpara(y)a Yy e [07 1)7

then, we have

HQOH&OO = Z |90a" (323)

a€cl,

14



Indeed, we can assume always that ¢y > 0, and in view of relations (3.4),
there exists a point yo € Q(2°) such that r,(yy) = sign g, if ¢, # 0, a € I;.
Therefore,

lellso > lo(wo)l = Ial-

a€cl,

The opposite inequality is obvious, and (3.23) follows.
Applying equality (3.23) to function (3.15), we obtain

f(Y,y)l

= ma ma
1£llsoo = | max . max,

= max E loa (Y
Ye@d 1 28

acl,
>27@0 Y Y lea( =) ()l
YeQd—1(2s) acls a€ls
> af” ZQ2 ] =af ™' Qualf],

G/EIS

where, on the last step, we used the left inequality (3.8) with £ =d — 1 and
qg=1.
The proof of Lemma 3.2 is complete. O

4. Rademacher functions and explicit formulas
for discrepancies

For an arbitrary point y € [0,1) with dyadic expansion (1.4), we denote by
y®) its projection to Q(2°):

=> )2 seN, (4.1)
a=1

and for s = 0 we put y(® =0, so that
y=y¥ +0,(y)27%, seN, (4.2)

where 0;(y) € [0,1) for all y € [0, 1).

15



We put
1 i 2 — 4
6N ayy=3 (4.3)
0, if 20 %y

It follows from (1.4) and (4.1) that elementary intervals A”, m = 0,1,...,2°—
1, see (1.9), can be written in the form

A™ = [m27% (m +1)2°) = {z € [0,1) : 29 = m27°}.

s

Therefore,
0 (z,y) = 69 (a9 & y*)) = (A, 2 & y) (4.4)
and
25—1
00 (@) @y = (AT, 2)x (AT, y) (4.5)
m=0

Hereinafter, we write x(&, ) for the characteristic function of a set £. Notice
that
XA, z) = x (AT, 2) = x(A72!) (4.6)

for any a > s.
It follows from (4.4) and (4.5) that

5 (ot = > o )0 (z @ y).

z€Q(29)

Furthermore, 6®)(z(*) @ y{*)) is the reproducing kerner for the space Bi:

fl@) =Y 9D ey®)f(y)
yeQ(2#)
1

't / 5O @y f(y)dy, [ € B,. (4.7)

0

Consider the following elementary intervals
I, =Al =[27%2"%, aecN. (4.8)

It is convenient to put IIy = [0, 1).
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In terms of dyadic expansion (1.4), intevals (4.8) can be described as
follows
I, ={z€[0,1) :n.(2) = 1,m(2) =0 for i<a}. (4.9)

Notice that for each s € N the set of intervals {Il,, @ > s} form a partition
of the open interval (0,27%).

The following result is of crucial importance in the subsequent consider-
ation.

Lemma 4.1. For each s € N, the characteristic function x([0,y),-) of the
interval [0,y),y € [0,1), has the following representation

x(10,),2) = x([0,9), 2) + (. ), (4.10)
where ,
X9([0,y),2) = % — %;X(Ha, 9 @y ), (y), (4.11)
and for all x, y € [0,1), the following bounds hold
0 < x([0,y),2) <1 (4.12)
and
£, 9)] < 500 &), (4.13)

Proof. We will check the statements of the lemma for all possible arrange-
ments of points x and y.

If # = y, then x([0,9),y) = 0, x(0,y),y) = 1/2, e¥)(y,y) = —1/2, and
bounds (4.12), (4.13) are true.
If x # y, we put

v=v(z,y) =min{a € N: no(z) # na(y)}-
With (4.2), we obtain
y—x=(y) = ()27 + (0.(y) — 0,(2))27", (4.14)

where 1,(z) # 1,(y) and 0 < [6,(y) — 6,(x)| < 1.
From (4.14), we conclude the following:
(i) <y, if and only if n,(y) =1 and n,(z) = 0;
(ii) >y, if and only if n,(y) = 0 and n,(z) = 1.
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Furthemore, from (4.9) we conclude that

1, if a=v,

_ (4.15)
0, if a#uwv.

X(Ha’x(a) @ y(a)) o} {
The said above can be expesed by the following explicit formulas

x([0,y), 2) = x(IL,, 2% & y®)n(y) = %X(Hu; 2 @y (1 =7, (y))

1
=5 = x(M, 2" @ y)ry (y). (4.16)

Now, taking formulas (4.16) and (4.15) into account, we consider the
following two opportunities:

(i) v < s; in this case, equality (4.10) holds with £®)(2,5) = 0, and
bounds (4.12), (4.13) are obvious;

(ii) v > s; in this case, equality (4.10) holds with x(*)([0,y),z) = 1 and
e®(z,y) = —ix(IL, 2" & y®)r,(y), and bound (4.12) is obvious, while
bound (4.13) is true because I, C A? and, therefore,

X(wa(u) D y(u)) < X(AS, PAONEN y(S)) — 5 (x(S) D y(S))7

cf. (4.4), (4.6).
The proof of Lemma 4.1 is complete. [

We emphasize that relations (4.16) and (4.15) imply the following explicit
formulas

X([0,9),7) = > x(a, 9 & y“)a(y)

a€eN

_ % =3 (2 & YD)y (y) — 3(x,y), (4.17)

a€eN

where 0(x,y) = 1 if = y and is equal to 0 otherwise.

Furthermore, for any x and y the sums in (4.17) contain at most one
nonzero term. In this sense, one can say that series (4.17) converge for all x
and y, while the convergence is not uniform. Lemma 4.1 shows how to deal
with such series: although the error terms £(*) in (4.10) are not small, they
are concentrated on small subsets.
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Consider the multidemensional extention of the above result. For an
arbitrary point Y = (y1,...,54) € U? we denote by V() = (yis), . ,y((;)) its
projection to Q¢(2°%), so that

Y = Y +@( )—s’ s € Np,

where
O,(Y) = (Bs(y1), ..., 05(yq)) € U™ (4.18)
Introduce elementary boxes of the form
Iy =Tl x---x1I,, A=(ay,...,aq) € NL (4.19)
Each such box has volume vol [, = 27%1 7%,
We write s(A) for the number of nonzero elements in A = (ay,...,a4) €
N

Multiplying formulas (4.10) with x =z, y = y;, j =1,...,d (recall that
ro(y) = 1 and Iy = [0,1)), we obtian the following result

Lemma 4.2. For each s € N, the characteristic function x(By,X) of the
rectangular box By = [0,y1) x --- % [0,yq), Y € U?, has the following repre-
sentation

X(By, X) = x*(By, X) + e¥(X,Y), (4.20)
where
XO(By, X) =271 " (= 1) (g, XO)ry (V), (4.21)
Aeld

and for all X = (z1,...,24), Y = (y1,...,ya) € U4, the following bounds
hold

0<x®¥(By,X)<1 (4.22)
and
(X, V)] < = Za @yl (4.23)
Proof. By definition
d
(B, X) =[x (0,4). ;.
j=1

and bound (4.22) follows from (4.12).

19



Using coordinates (3.12), we obtain

=X (By, X) + (X, Y) (x?([0,y), 2) + (2, 1))
= X" (By,X) + (X, Y),
where
eP(X,Y) = DX, Y)x([0,), 2) + ¥ (, y)x(By, X).
Therefore,

ED(X,Y)] < [e(X,Y)] + [P (2, y)]. (4.24)

In the one-dimensional case bound (4.23) is given in (4.13). Using (4.24), we
obtain bound (4.23) in all dimensions by induction on d. O

Multiplying formulas (3.2) with y = y;, j =1,...,d, we obtain

Y. .. Yy = 2—d Z (_1)%(A)2—a1—...—adTA(Y)
AeNd

Since vol By = y;...yq and volIl4 = 2%~ ~%  this formula can be writen
in the form

vol By =271 Z (—1)* vol 4 74 (Y)

AeNd
=vol® By + ¥ (Y), se Ny, (4.25)
where
vol®) By = 2743 " (—1) vol Iy ra(Y), (4.26)
Aerd
and £®)(Y) satisfies the bound
(V) <d2*7Y, Y e U, (4.27)

that can be easily proved by induction on d.
The local discrepancy (1.1) can be written in the form

LID,Y] =) L(X)Y), L(X,Y)=x(By,X)-volBy. (4.28)

XeD
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Substituting formulas (4.20) and (4.25) to (4.28), we obain

LIX,V)=LY(X,V)+ED(X,Y), (4.29)
where
LOX,Y) =272 (1) A(XD @ vE)r (),
Aerlg
(XY@ YE) = (4, X&) — volII4
and

EW(X,Y) =eW(X,Y) — (V).
In view of bounds (4.23) and (4.27), we have

EG(X, V)| < = <Za seayj)+d2—$>, X,y eU“

For an arbitrary distribution D C U?, we denote by D®) its projection to
@d(Qs):
DY) ={X® . X € D}, seN,
so that, |[D®)| = |D|, while some points of D) may coincide.
We define the microlocal discrepancies by

Aa[D® @ Y] = Z A(XE @y () = Z(X(HA,X(S) &Y ®) — volIl4)

XeD XeD

= |(D® @ Y®)NTI4| — |D|vol I, (4.30)

Substituting (4.29) to (4.28), we arrive at the following rusult summarizing
the above discussion.

Lemma 4.3. For each s € N, the local discrepancy L[D,Y] has the following
representation

L[D,Y]=LY[D, Y]+ EYD,Y], (4.31)
where
LOD, Y] =274 (- (D @ Y] r,(Y), (4.32)
Aerd
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and the term £®)[D,Y] satisfies the bound

1EGD,Y]| < = <Z(s ]+d|D|2‘s>, (4.33)

where

5O [D( =Y 0 ey, (34)

XeD
5. Explicit formulas and preliminary bounds
for the mean discrepancies
Applying Lemma 4.3 to a shifted distribution D ® T, T € Q%(2°), we obtain
LDaT,Y]|=LYDaT,Y]|+EWDaT,Y], (5.1)

where the term £)[D @ T,Y] can be written in the form

LYDeT,Y]=FO DT Y<$> Y<$>], (5.2)
FOD,2,Y] =27 (- A D& Z]ra(Y), (5.3)
Aerd
MD®Z) =) (x(Ma, X @ Z) — vol TTy)
XeD
= (D@ Z)|NTl4| — |D|volTl,, Z € Q%2%). (5.4)

Let L,(Q%(2%) x U%), 0 < q < oo, be the space consisting of all functions
f(T,Y), T € Q42%),Y € U4, with ||| f|||, < 0o, where

1/q
A= | 27 /\fTY\qu L 0<q<oo
TGQdZSUd
oo: max su 7Y
17l = e sup £ 7).

For any two functions fi, fo € L,(Q%(2%) x U?), we have

e+ Fallla < lLAlllg + (11 £2lllg, 1T < g <00, (5.5)
Lo+ falllg < [ILANG+ A/ 0<q<1. (5.6)
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For 1 < ¢ < oo, relation (5.5) is the standard Minkowski’s inequality, while
(5.6) is its modification for 0 < ¢ < 1, see [16, Chap. 1, Inegs. (9.11), (9.13)].
With these notations, we put

MDD =[[[LYD& .. ]l 0<q< oo, (5.7)

q

and
EOD) = |EVDE ., ]|l 0<q< oo (5.8)

Substituting (5.1) to definition (1.7) and using (5.7), we obtain the upper
bound
M, 4[D] < MP[D]+ &P [D], 1<¢<oo (5.9)

and, for 0 < ¢ <1, we can merely put
M, [D] < M1 [D] < MPD)+ £ [D], 0<qg<1. (5.10)
Similarly, using (5.6), we obtain the lower bound

M, 4[D)P > MWD - EW[D]?, 0<q<1. (5.11)

q q

Bounds (5.9), (5.10) and (5.11) will be used in the proofs of Theorems 1.1
and 1.2, correspondingly.

It follows from formulas (5.2) and (5.3) that £L&)[D @ T, Y] as a function
of Y € U? belongs to the space BY. Hence, we can use equality (3.7), and
write (5.7) in the form

1/q
MPD] = |27% Y |LYDeT, ]|,
TeQ?(2¢)
1/q
=127 ) |[LYDeT Y]] , 0<g<oo (512)
T,Y €Qd(25)

The following simple observation explains why the mean L, -discrepancies
can be expressed in terms of Rademacher series.

In the vector space of pairs (T,Y) € Q%(2°) x Q%(2°) ~ F2% we consider
the following linear mapping

T (T,Y)— (T®Y,Y) (5.13)
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Obviously, 72 = 1, 77! = r. Hence, 7 is a one-to-one mapping, and in the
double sum in (5.12), the variables 7 = T @ Y and Y can be viewed as
independent. As a result, we have

1/q

MWD * Y FUID,ZP| , 0<g<oo (5.14)

q
ZeQd(25)

where
1/q

FOD,Z)= 2% > |FID,ZY)| . (5.15)
Y eQd(2¢)

Bounds (5.9), (5.10), (5.11) and formulas (5.14), (5.15) will be used in the
proof of Theorems 1.1 and 2.2.

In the case of the mean L. .-discrepancy the above arguments should be
slightly modified. First of all, using definitions (1.8) and (1.13), we can write

M oo[D] = max sup |[L[D@®T,Y]|> max |L[D®,Y]]. (5.16)
’ TeQ¥(2°) yeyd T,Y eQ?(29)

For Z,Y € Q4(2°), we put T = Z @Y and
FID,Z,Y]=L[D® ZaY,Y) (5.17)
With this notation, formula (5.1) takes the form
FID,Z2,Y]=F9D,z, Y] +E¥D, Z,Y], (5.18)
where F(®)[D, Z,Y] is defined in (5.3) and
EWD,Z,Y]|=EW Do ZaY,Y]. (5.19)
Since 7 defined in (5.13) is a one-to one mapping, we have the equality

max |L[D@®T,Y]|= max |F[D,ZY]| (5.20)
T,Y €Q?(29) Z,YeQd(2#)

This relation can be continued as follows

max |F[D,Z,Y]|= max max |F[D,Z,Y]]
Z,Y €Qd(29) ZeQd(29) YeQd(2s)

>27% 3" max |F[D,Z,Y]| > FLID] - &P

5 S 1,00
ZeQd(295) veoi®)

D). (5.21)
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where

F D=2 > FUD, Z, (5.22)
ZeQ?(2¢)
FOID, Z] = max |FOD,Z,Y]]| (5.23)
YeQd(2¢)
and ©
E¥) D] =272 EWID, Z, Y]] 5.24
ey Z Yglgg(gs)l [ 1 (5.24)
ZeQ?(29)

Comparing (5.16), (5.20) and (5.21), we obtain the lower bound

M o[D] > FELID] — EF)

1,00

D]. (5.25)

This bound will be used in the proof of Theorem 2.3.
We will call the quantities M{”[D] and fl(so)o[D] as the principal terms

while the £5”[D] and 51(‘20[D] as the eror terms.

6. Bounds for the error terms and some auxiliary bounds

Lemma 6.1. (i) Let Dys be an arbitrary dyadic (8, s,d)-net. Then, the fol-
lowing bound holds
EP[Dys] <d2°, 0<q< oo (6.1)

(ii) Let Dy C U? be an arbitrary N-point distribution. Then, the follow-
ing bounds hold
EP[Dy] <dN27°, 0<g<1, (6.2)

and

£ o[Dy] < dN27°. (6.3)

Proof. The functions 8\ [D® @ Y®)], j = 1,....,d, defined in (4.34), belong
to the space B¢ and satisfy equality (3.7). We put

50D) = [|60[(DD @ ][l = (16 [DD @ Jlyg, 0<1<o00.  (6.4)
Obviously,
VD@ 2] =o0)[D], Z QU2 (6.5)

25



Applying formula (4.5) to definition (4.34), we obtain

2°—-1

SWD @ Z) = ZNJm X(A™, 2)), (6.7)

where
Nim= Y x(A7, 2y = DA™,
XeD
and AY'; denotes the following elementary box

AT ={X = (21,...,2q) €U :m; € AV, 2; €[0,1), i # j}

Notice that vol Af", = 277 and for each j = 1,...,d the boxes A, m =
0,1,...,2° — 1, form a partition of the unit cube U?. Therefore,

2°-1

> Njm=N=|D|. (6.8)
m=0

(i) From (6.7), we obtain the bound

sWID] < 6¢) < maxN;,,, 0 < oo. (6.9)

Using definition (5.8), bound (4.33), and equality (6.5), we obtain
EPDaT] < (Z D] +d|D|2” ) . 0<q<oo. (6.10)

If Dysis an arbitrary (4, s, d)-net, then N = 2% and N;,,, < 2° for all j and
m, see (1.11). Comparing bounds (6.9) and (6.10) for such a net, we obtain
bound (6.1).

(ii) From (6.7) and (6.8), we obtain the bound

25—1

D) <D= Njm2 " =N27°, 0<q<1 (6.11)

Using definition (5.8), bound (4.33) and equality (6.5), we obtain

d
<Z§ ’ +d|D|2—$> , 0<g<1. (6.12)
j=1

26
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If Dy is an arbitrary N-point distribution, then bounds (6.11) and (6.12)
imply bound (6.2).
For function (5.19) bound (4.33) takes the form

EDD, Z,V]| = |EVD& ZaY,Y] < - <Z(5 9 @ Z] +d|D|2 )

(6.13)
where the right hand side is independent of Y.
Substituting (6.13) to definition (5.24), we obtain

d
1 \ N
) [D] < 5 (Z 5\ [D] + d|D|2 ) . (6.14)
7=1
For an arbitrary N-point distribution Dy, bound (6.14) implies bound
(6.3).
The proof of Lemma 6.1 is complete. O

In the comments to Theorem 2.1 we have mentioned bound (2.3); its
proof is given in the following

Lemma 6.2. For an arbitrary distribution D C U<, the following bound
holds

L,[D] < Loo[D] < 2%/4(L,[D] +26P[D)), 1< q< o0, (6.15)

where the term E[D) is defined in (5.8).
In particular, for an arbitrary (9, s,d)-net Dys and ¢ = €s, £ > 0, bound
(6.15) takes the form

Ly[Das] < Loo[Dys] < 2Y5(Ly[Dys] + d2°+1). (6.16)

Proof. Tt follows from (4.7) that the function
5O & v = [[ 60

is the reproducing kerner for the space Bg:

= > v O)f(Y), feB (6.17)

Y eQd(23)
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Applying Holder’s inequality to the sum in (6.17) and taking (3.7) into
account, we obtain

1/q
1Flloe = 1l < [ D2 [FO))7
YeQd(2s)
= 2509 flloq = 29| Fllyy 1< g < o0
In particular,
I£9D, Jlloo < 2274 LP[D, |y, (6.18)

where the £®)[D, ] is defined in (4.32).
On the other hand, we derive from (4.31) and (5.8) that

1£9D, Yoo = 1£[D, Jlloo = €D, Jlloe > Loo[D] = EL[D]

e}

and
1£9[D, Mg < ILID, g+ IEID, ]l < Lg[D] + EL[D]

Comparing these inequalities with (6.18), we obtain

Loo[D] < 2/9(L,[D] + ED[D)) + QD]
< 2%/9(L,[D] + 26 (D)),

that proves the right bound (6.15), while the left bound is obvious.

If Dos is a (9, s,d)-net and ¢ = €s, € > 0, then substituting bound (6.1)
from Lemma 6.1, we obtain (6.16).

The proof of Lemma 6.2 is complete. O

In conclusion of this section, we give one further auxiliary result that will
be used in the proofs of Theorems 2.2 and 2.3.

Consider the following subset of the k-dimensional elementary boxes [14 C
Uk, k> 2, see (4.19),

JE(s)={TIy: AcIF volll;, =277}, o€N (6.19)

Lemma 6.3. If s > o, then the subset J*(s) = J* is independent of s, and
the following bound holds

o k—1
k> : 2
= (55) (6.20)
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Proof. Since vol T4 = 27% "% subset (6.19) consists of boxes IT4 with
A:(al,...,ak)eIf:a1+~-~+ak:0 (621)

Each solution of equation (6.21) satisfies 0 < a; < min{o,s}, j =1,...,k,
and for s > o the set of all solutions is independent of s.

If s > o, then for any (a,...,a;_1) € Ni =" with 0 < a; < |o/(k —1)],
j=1,...,k—1, the integer a, = 0 —ay; — --- — a,_ satisfies 0 < a, < 0.
Therefore, A = (ay,...,ax) is a solution of (6.21), and

= o Lo 00 = (75)

7. Proofs of Theorems 2.1, 2.2 and 2.3

The proof of each of Theorems 2.1, 2.2 and 2.3 consists of two steps. At first,
relaying on the bounds for sums of Rademacher functions given in Lemmas
2.1 and 2.2, we establish very good bounds for the principal terms Mfi) [D]
and j’-"l(sgo[D] Next, relaying on the upper bounds for the error terms & [D]
and 51(‘20 given in Lemma 6.1, we compare the principal terms with the
corresponding mean discrepancies M ,[D].

Proof of Theorem 2.1. Let Das be a (0, s, d)-net. Applying bound (3.18) from
Lemma 3.1 to function (5.3), we obtain the following bound for quantity
(5.15)

FDys, Z) < B2 Qoo ), (7.1)
where
1/2
Queal 7V = 27 max AEZI;_I a(Zy) | (7.2)
Da(Z,y) = Z Aa[Das @ Zlra(y), (7.3)
acls

and the coefficients Ay [Dys @ Z] are defined in (5.4).
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For each Z € Q%(2%) the shift Dys @ 7 is a (4, s,d)-net, and it follows
from (1.11) that

M[Dos @ Z] =0 if vollly > 277,
The condition on volumes can be written as
vol T4 = vol TT5 vol TT, = 27 @~ 0d-17a > 99—

ora<s—§—a;—---—ag_. Therefore, the summation in (7.3) is extended
to
s>a>1, l=max{0,s—d—a; — - —aqg_+1}.

Elementary boxes I, are mutually disjoint, and, for a given A, all boxes
I, =11 x1II,, s > a > [, are embedded to the elementary box IIy X A, where
A=A ifi>1and A=][0,1)if /= 0. In both cases, vol [T x II, < 2°~.
Hence, |(Dos @ Z) N (TIa x A)] < 2° by the definition of (6, s, d)-nets, see
(1.11).

With these bounds, function (7.3) can be estimated as follows

Pa(Z,y)| <Y AalDae @ Z]|

a=l

< Dy & Z) N 1| + [Dys| Y vol Iy

a=I a=I[

<|(Dy @ Z) N (TTa x A)| 4 2°vol(TTq x A) < 2071,

Substituting this bound to (7.2), we obtain
Qo 2[j:(s)] < 27d+6+1|18(171|1/2 _ 27d+6+1(8 + 1)5((171),
and, therefore,
}—és) [Das 7] < 53_12_d+6+1(5 + 1)%((1_1)-
With this bound, the principal term (5.14) can be estimated as follows

1
MIDy] < 27 [T (s 4 1)20070, (7.4)

where bound (3.11) for the constant (3, has been also used.
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Substituting bound (7.4) and bound (6.1) from Lemma 6.1 to inequalities
(5.9) and (5.10), we obtain

Ld-1)

2

1
Ms,q[DZS] < 27d+6+1 <’7§q—‘ (S + 1)) + d26, 0< g < oQ.

The proof of Theorem 2.1 is complete. [

Proof of Theorem 2.2. Let Dy C U% d > 2, be an N-point distribution.
Applying bound (3.19) from Lemma 3.1 to function (5.3), we obtain the
following bound for quantity (5.15)

FIDw, 7] > ajQs[ F©), (7.5)
where
1/2
QFW] =27 Y Dy 2| . (7.6)
Aerd

The coefficients Aa[Dy @ Z] are defined in (5.4), and it is clear that
Ma[Dy @ Z]| > < Nvolll, >, (7.7)

where < ¢ >= min{|t — n| : n € Z} is the distance of a number ¢ € R from
the set of all integers Z.
With bound (7.7), we have

1/2

QZ[F(S)] > 9—d Z < NvolTl,4 >2 . (7.8)

Aeqd
Let 0 € N be chosen to satisfy
272 < N277 <271,

then << N vollIl, > > 272 for all boxes II4 with volll, = 27°.
Let s € N be chosen to satisfy

s>o0=[logN|+1>logN +1, (7.9)
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then, using Lemma 6.3 with & = d, we can estimate the sum in (7.8) as
follows

D> < Nvollly > > Y < Nvollly >

Aeld AeJjg

log N +1\*“"
> 2744 > 27t (&)

d—1
Sibstituting this bound to (7.8), we obtain

Qo[ F®)] > 2792(d — 1)~ 2D (log N 4 1)20¢-1),
and, therefore,

FODy, Z] > af2742(d — 1)"2@ D (log N + 1)@,

With this bound, the principal term (5.14) can be estimated as follows
Mgs)[DN] > cq(d)(log N + 1)% ) 0<qg<1,
cq(d) = 2724 0=d=1(q — 1)*%<d b, (7.10)

where bound (3.10) for the constant «, has been also used.
Substituting bounded (7.10) and bound (6.2) from Lemma 6.1 to inequal-
ity (5.11), we obtain

M 4[Dn]? > ¢4(d)?(log N + 1)
> cq(d)?(log N + 1)

(@=Da _ (N2~%)d
D1 —&(s), 0<g<1,

lq
2
l
2

where
€q(s) = cq(d) " (dN277).
Let s be chosen sufficiently large to satisfy £,(s) < 1/2. To do this, we

put

2d+1 1

s >log N + +§(d—1)log(d—1)+d+1—i—logd,

and in this case the above condition (7.9) will be also satisfied.
As a result, we have

Ms,q[DN] > *yq(d)(logN—{— 1)%((1_1)7 0<qg<1,

where
Ye(d) = 2—1/ch(d) = 2_(2d+1)/q—d—1(d —1) Ld-1)

The proof of Theorem 2.2 is complete. O]
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Proof of Theorem 2.3. Let Dy C U? d > 3, be an N-point distribution.
Applying bound (3.20) from Lemma 3.2 to function (5.3), we obtain the
following bound for quantity (5.23)

FODy, Z) > of 7' Qo[ F), (7.11)
where
Q12[FW) =271 " Qalal, (7.12)
a€ls
1/2
Qalpal = [ Y. MlDveo 2z | . (7.13)
Acrd?

With bound (7.7), we have
1/2

Qa[pa] > Z < Nvolll, >? . (7.14)

Aerd?
Notice that volIl4 = vol II4 volII, = volI1427%, and define ¢, € N by
272 < N27% 0 < 97

then < N volIl4 >> 272 for all boxes IIp with volII, = 27 %.
It is clear that 0, = 0 — a, 0 < a < 0, where

o=[logN]+1>logN + 1.

In what follows, we assume that

1 1
0§a§§a and 020,1250.
Let s € N be chosen to satisfy s > o, then
§S>0=00>0>09> ..., (7.15)

and, using Lemma 6.3 with k£ = d — 1, we can estimate the sum in (7.14) as
follows

Y < Nvolll;»?> > < NvolTl, >?

Acrdt Acgi!
d—2 d—2
2
PR /TRy /T Y (/L N
o 12 d—2 = d—2
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Hence, for quantities (7.13), we have the bound
Qslpa] > 272(d —2) 22 (5/2)2 0 < a < 0/2.
Substituting this bound to (7.12), we obtain
QalFI =27 ST Qulpd] > 2703 (d —2) 3 (0/2) 3
0<a<o/2
> 2734-2(g — 2)72(@D(Jog N 4 1)27,
and, therefore,
FO Dy, Z) > at1272472(d — 2) 724D (1og N 4 1) 2%,

With this bound, the principal term (5.22) can be estimated as follows
FELIDN] > coo(d)(log N +1)39,  coo(d) = 27%0(d — 2)7:1D (7.16)
where bound (3.10) for the constant a; has been also used.
Substituting bound (7.16) and bound (6.3) from Lemma 6.1 to inequality
(5.25), we obtain

N

Mol Dx] > coo(d)(log N + 14 — %(d N2

11— & (5)),

M

> Coo(d)(log N 4+ 1)
where
Eno(d) = coo(s)H(AN27%).
Let s be chosen sufficiently large to satisfy &, (s) < % To do this, we put
1
s >log N + §(d— 2) log(d — 2) + 2d + log d,

and in this case the above condition (7.15) will be also satisfied.
As a result, we have

M o[ Dy] > Yoo (d)(log N + 1)39,

where 1
Cod_ _lg
Toold) = Seso(d) = 27471 (d — 2)H02),

The proof of Theorem 1.3 is complete. O]
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