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ABSTRACT

The Lagrangian and Hamiltonian of the Born-Infeld model in the cartesian as well
as in the light cone variables are given. Using the auto-Backlund transformation
the new solutions of the corresponding nonlinear equation are constructed. In par-
ticular, the "dressed" Barbashov-Chernikov's solution is obtained.
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The Born-Infeld model (BI) [1], suggested at the beginning of 1930-th, is a nonlinear gener-
alization of the Maxwell electrodynamics (a detailed report on its advantages as well as short-
comings "hot on the trail" was given in [2]). Let us notice in this connection, that a growth of
interest to this model is caused by some of its remarkable features such as relativistic invari-
ance, Hamiltonian structure, �niteness of energy, some additional symmetries and by rather
recently established property of complete integrability - an existence of a Lax pair [3], which
gives a possibility to construct families of solitonic solutions. All this stimulated an extension
of the area of its applications, and, the present time, the BI model itself as its generalizations
are actively exploited, in particular, in the theory of bosonic strings, superstrings [4] and in the
cosmology [5].

The present work is devoted to important aspects of the BI model: Hamiltonian structure
(including variant of the equation in the light cone variables) and to construction its new
solutions using of the Backlund transformation.

1. The main object of the theory is a real scalar massless �eld φ = φ(x, t), related to the
function of two invariants of the Maxwell electrodynamics: I1 = (1/2)FikF

ik = (B2 − E2)/2
and I2 = (1/4)eiklmFikFlm = EB, where Fik is electromagnetic �eld tensor, eiklm is the Levi-
Civita symbol. In the case of (1+1)-dimensional pseudoeuclidean space with the metric εµν =
diag(1,−1) this connection is given by the following relation: b2(I1−b2I2

2 ) = εµνφµφν = φ2
x−φ2

t ,
where b is the Born constant, which has a sense of a quantity inverse to some "maximal" �eld
∼ E2

0 .
A nonlinear equation for the �eld φ is generated either under the condition of vanishing

of divergence the vector Gµ = εµνφν/
√

1 + b2(I1 − b2I2
2 ), or, equivalently, by the Born-Infeld

action with the Lagrangian density L = (1/b2){1−
√

1 + φ2
x − φ2

t} (for simplicity the constant
b will be put below equal to unity):

S(φ) =

∫ ∫
L dxdt =

∫ ∫
{1−

√
1 + φ2

x − φ2
t} dxdt. (1)

The equation is written in the form

(1 + φ2
x)φtt − 2φxφtφxt − (1− φ2

t )φxx = 0. (2)

This equation belongs to the hyperbolic class of nonlinear di�erential equations (4), provided
that the following condition is valid

1 + φ2
x − φ2

t > 0. (3)

Additionally we require of rather strong decrease of the function φ(x) = φ(x, 0) and its deriva-
tives in the sense of Shwartz space. Let us also notice that Eq. (2) has an obvious geometric
sense: it represents a minimal graph in the pseudoeuclidean space of variables {x, t, φ(x, t)}
and has a natural analog in the euclidean space as a minimal surface graph in R3.

Let us put π(x, t) = ∂L/∂φt = φt/
√

1 + φ2
x − φ2

t , then the set of functions (φ(x), π(x)),
where φ(x) = φ(x, 0), π(x) = π(x, 0), form a phase space Γ of the dynamical system (2), and
it has the Hamiltonian (H = πφt +

√
1 + φ2

x − φ2
t − 1 is the Hamiltonian density):

H =

∫ ∞
−∞
Hdx =

∫ ∞
−∞

(πφt +
√

1 + φ2
x − φ2

t − 1)dx. (4)

4Also it is necessary to notice, that the BI-equation up to an exchange t → y, where y is the second plane
coordinate, coincides with the equation for the velocity potential of two-dimensional presonic gas �ow [6].
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Introducing the Poisson structure on Γ by the brackets

{φ(x), φ(y)} = {π(x), π(y)} = 0, {φ(x), π(y)} = δ(x− y), (5)

one may readily make sure, that the equation of motion (2), will take the Hamiltonian form

πt = {π,H} = −δH
δφ

. (6)

Besides the global momentum of the model is equal to

P = −
∫ ∞
−∞

πφxdx, (7)

while the Lorentz boost generator (a subgroup of the Poincare group) is

K =

∫ ∞
−∞

x(πφt +
√

1 + φ2
x − φ2

t − 1)dx. (8)

The Poisson brackets related to the corresponding Lie algebra are the following

{H,P} = 0, {H,K} = P, {K,P} = −H, (9)

what is identical to relations for these generators in �eld models including, for example, the
models which are described by the sin - Gordon equation [7].

Let us introduce the light cone variables which will be used below ξ = (t−x)/2, η = (t+x)/2.
Equation (2) has the form

2φ̂ξη(φ̂ξφ̂η − 2)− (φ̂2
ξφ̂ηη + φ̂2

ηφ̂ξξ) = 0, (10)

and

φ̂(ξ, η) = φ(η − ξ, η + ξ), φ(x, t) = φ̂(
t− x

2
,
t+ x

2
). (11)

In terms of these variables the action (1) takes the form (with condition of hyperbolicity φ̂ξφ̂η <
1)

Ŝ(φ̂) = 2

∫ ∞
−∞

∫ ∞
−∞
{1−

√
1− φ̂ξφ̂η } dξdη. (12)

The phase space Γ̂ of the dynamical system (10) is formed now by the canonical variables φ̂(ξ)
and π̂(ξ) (under an assumption of its strong decreasing at ξ → ±∞), where φ̂(ξ) = φ̂(ξ, η =
0), π̂(ξ) = (∂L̂/∂φ̂η)|η=0, L̂ is the Lagrangian density (the integrand of Eq. (12)), and the
Hamiltonian turns into the following one:

Ĥ =

∫ ∞
−∞

[π̂φ̂η + 2

√
1− φ̂ξφ̂η − 2]dξ; (13)

with that the Poisson structure on Γ̂ will has the form

{φ̂(ξ), φ̂(ξ′)} = 0, {π̂(ξ), π̂(ξ′)} = 0, {φ̂(ξ), π̂(ξ′)} = δ(ξ − ξ′). (14)
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Following (13) and (14) Eq. (10) can be represented in the Hamiltonian form:

π̂η = {Ĥ, π̂} = −δĤ
δφ̂

. (15)

As the momentum of the model one should take the functional

P̂ = −
∫ ∞
−∞

π̂φ̂ηdξ, (16)

and the boost generator is

K̂ =

∫ ∞
−∞

ξ(π̂φ̂η + 2

√
1− φ̂ξφ̂η − 2)dξ. (17)

2. Equation (2) possess a Backlund autotransformation, at �rst time introduced, apparently,
in [8]. In order to show this we notice that the di�erential forms

ω1 =
φt

1− L
dx+

φx
1− L

dt and ω2 = φxdx+ φtdt (18)

are exact and, hence, the relations

Φx =
φt

1− L
, Φt =

φx
1− L

(19)

form the sought transformation. Hence, a new solution of Eq. (2) may be written as a curvi-
linear integral, independent on the integration curve:

Φ(x, t) =

∫ (x,t)

(x0,t0)

φt√
1 + φ2

x − φ2
t

dx+
φx√

1 + φ2
x − φ2

t

dt. (20)

In the cone variables the autotransformation (19) will take the form:

Φ̂ξ = − φ̂ξ√
1− φ̂ξφ̂η

, Φ̂η =
φ̂η√

1− φ̂ξφ̂η
, (21)

and, hence, the new solution will be also represented in the form independent on the integration
curve

Φ̂(ξ, η) =

∫ (ξ,η)

(ξ0,η0)

− φ̂ξ√
1− φ̂ξφ̂η

dξ +
φ̂η√

1− φ̂ξφ̂η
dη (22)

(we imply that the integrals in (20) and (22) exist; it is necessary to notice also that the
transformations (19) and (21) do not contain any parameter).

3. In the following we shall construct some simplest solutions of the Eq. (2) ((10)), and
also will illustrate an application of the formulas (20) and (22).

a). It is obvious that the functions

φ̂(ξ, η) = φ̂1(ξ) and φ̂(ξ, η) = φ̂2(η), (23)

where φ̂1, φ̂2 are arbitrary functions, are solutions of Eq. (10). They describe one-dimensional
solitary waves, propagating along the characteristics (correspondingly ξ = const and η = const).
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Substituting correspond each of these solutions into (22), one may readily see, that in the result
we shall obtain (in view of an invariance of Eq. (10) under a shifts of solution on an arbitrary
constant we omit it here and below): Φ̂(ξ, η) = −φ̂1(ξ) and Φ̂(ξ, η) = φ̂2(η) correspondingly.
The �rst case re�ect the fact, that Eq. (10) is invariant under a substitution φ(ξ, η)→ −φ(ξ, η),
while in the second one - the Backlund transformation leaves the solution unchanged. It is clear,
that, for example, a repeated application of this transformation will result in the initial picture.

b). Let us consider a solution of the form: φ̂(ξ, η) = φ̂1(ξ) + φ̂2(η). After its substitution
into (10) and integration we shall obtain:

φ̂(ξ, η) = ± 1

c0

ln |c0ξ + c1

c0η + c2

|, (24)

where c0, c1, c2 are arbitrary constants. From the physical point of view the solutions (24) have
the meaning of the nonlinear superposition states of two solitonic waves, propagating along
the corresponding characteristics. Substituting, for example, the �rst of them into (22), and
performing integration, we shall have:

Φ̂(ξ, η) =
1

c0

ln |
2b0(c0η + c2)− 2b0 − 1 +

√
[2b0(c0η + c2)− 1]2 − 1

2a0(c0ξ + c1)− 2a0 − 1 +
√

[2a0(c0ξ + c1)− 1]2 − 1
|, (25)

where a0 = c0η0+c2, b0 = c0ξ0+c1. As well as (24), relation (25) describes (a more complicated)
nonlinear superposition of waves on characteristics.

c). Let us consider a solution in the form φ(x, t) = Φ(z), z = x2− t2. After its substitution
into (2) we shall obtain an equation on the function Φ

zΦzz + Φz + 2zΦ3
z = 0. (26)

As a result of its integration we �nd:

φ1,2(x, t) =
1
√
c1

ln |c1(x2 − t2)− 2±
√
c2

1(x2 − t2)2 − 4c1(x2 − t2)|, (27)

where c1 > 0 is an arbitrary constant. These solutions correct in the region |x2 − t2| > 2/c1,
describe also (however distinct with respect to (24) and (25)) nonlinear superposition of two
opposite directions solitonic waves. However, in this case an application of the transformation
(19) gives a rather complicated relation and is not presented here.

d). Let us consider the well know Barbashov-Chernikov solution of the Eq. (2) [9] (see also
the monograph [10], where this solution was obtained with the use of a hodograph transfor-
mation). It corresponds to linear interaction of two solitonic waves with opposite directions
(solitons) and it has the form:

φ(x, t) = φ10(x− t+ κ1) + φ20(x+ t+ κ2), (28)

where φ10, φ20 are arbitrary localized and smooth functions, κ1, κ2 are constants equal∫ ∞
−∞

(φ20q)
2 dq and

∫ ∞
−∞

(φ10s)
2 ds

at t→∞ and having a sense of initial wave phases.
For construction of a new ("dressed") solution it is convenient to pass to another related to

ξ, η, light cone variables of the form ξ1 = (x− t+ κ1)/2, η1 = (x+ t+ κ2)/2, so, that

6



φ(x, t) =
ˆ̂
φ(
x− t+ κ1

2
,
x+ t+ κ2

2
),

ˆ̂
φ(η1, ξ1) = φ(η1 + ξ1−

κ2 + κ1

2
, η1− ξ1−

κ2 − κ1

2
). (29)

Using these variables Eq. (10) turns into the next (under the hyperbolicity condition 1 +
ˆ̂
φξ1

ˆ̂
φη1 > 0):

2
ˆ̂
φξ1η1(2 +

ˆ̂
φξ1

ˆ̂
φη1)− (

ˆ̂
φ

2

η1

ˆ̂
φξ1ξ1 +

ˆ̂
φ

2

ξ1

ˆ̂
φη1η1) = 0, (30)

and from (19) will have the corresponding Backlund autotransformation:

ˆ̂
Φξ1 = −

ˆ̂
φξ1√

1 +
ˆ̂
φξ1

ˆ̂
φη1

,
ˆ̂
Φη1 =

ˆ̂
φη1√

1 +
ˆ̂
φξ1

ˆ̂
φη1

. (31)

Hence we �nd a "dressed" Barbashov-Chernikov solution ((ξ0, η0) is the initial point):

ˆ̂
Φ(ξ1, η1) = −

∫ (ξ1,η1)

(ξ0,η0)

ˆ̂
φ10ξ1√

1 +
ˆ̂
φ10ξ1

ˆ̂
φ20η1

dξ1 +

ˆ̂
φ20η1√

1 +
ˆ̂
φ10ξ1

ˆ̂
φ20η1

dη1. (32)

Let us choose as an example of an application of this relation the functions ˆ̂
φ10 è

ˆ̂
φ20 in the

form: ˆ̂
φ10(ξ1) = A sin ξ1 è

ˆ̂
φ20(η1) = B sin η1, where A, B are the wave amplitudes (we suppose

that they are given positive values). Then the formula (32) will be rewritten as

ˆ̂
Φ(ξ1, η1) = −

∫ (ξ1,η1)

(ξ0,η0)

A cos ξ1√
1 + C1 cos ξ1

dξ1 +
B cos η1√

1 + C2 cos η1

dη1, (33)

where C1 = C1(η0) = AB cos η0, C2 = C2(ξ0) = AB cos ξ0. Supposing for de�niteness, that
C1, C2 > 0, i.e. η0, ξ0 ∈ (−π/2, π/2) (another combinations of signs are considered in a similar
way 5) and performing the integration, we shall obtain (see, for example, [11]):

ˆ̂
Φ(ξ1, η1) = − 2A

C1

√
1 + C1

[(1 + C1)E(
ξ1

2
, k1)− F (

ξ1

2
, k1)]

(34)

+
2B

C2

√
1 + C2

[(1 + C2)E(
η1

2
, k2)− F (

η1

2
, k2)], ξ1 ∈ [max(ξ0, 0), π], η1 ∈ [max(η0, 0), π],

where

F (Ψ, k) =

∫ Ψ

0

dΨ√
1− k2 sin2 Ψ

è E(Ψ, k) =

∫ Ψ

0

√
1− k2 sin2 Ψ dΨ (35)

are correspondingly elliptic integrals of the �rst and second kind, k2
1 = 2C1/(1 + C1), k2

2 =
2C2/(1 + C2), where in this case 0 < k1, k2 ≤ 1, and, hence, C1, C2 ≤ 1. Taking into account,
that at k � 1 the integrals (35) have asymptotics of the form F (Ψ, k) = Ψ + (1/4)(Ψ −
sin 2Ψ/2)k2 +O(k4), E(Ψ, k) = Ψ− (1/4)(Ψ− sin 2Ψ/2)k2 +O(k4), from (34) we come to the

5For example, the solution at C1 < 0 will be expressed from elliptic integrals of the �rst and third kind.
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conclusion that an asymptotic representation of the "dressed" Barbashov-Chernikov solution
at k1, k2 � 1, k1/k2 = O(1) has the form:

ˆ̂
Φ(ξ1, η1) = − A√

1 + C1

[ξ1 −
2 + C1

2(1 + C1)
(ξ1 − sin ξ1)]+

(36)

B√
1 + C2

[η1 −
2 + C2

2(1 + C2)
(η1 − sin η1)] +O(k2

1) +O(k2
2).

Let us, also, notice that according to periodicity of the integrand (33), the solution (34) (36) will
not be changed under the substitutions ξ0 → ξ0 +2πm1, ξ1 → ξ1 +2πm1, η0 → η0 +2πn1, η1 →
η1 +2πn1, m1, n1 = 0, ±1, ±2, . . ., and, hence, it extends on the exterior of the region, pointed
in (34)

From the physical point of view the formula (34) describes a propagation of nonlinear waves
along the characteristics on a background of linear ones, while the "dressing" procedure - as it
follows from (36) - at small k1 and k2 turns to "renormalization" of bare solution amplitudes
and linear additional terms.
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