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ABSTRACT:
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between the basic module of the affine Lie algebra E/E (with the homogeneous grading)
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1 Introduction

In this paper we reveal some new and deep interrelations between two well devel-
oped branches of representation theory: the representation theory of the infinite
symmetric group and that of the affine Lie and Virasoro algebras. Our start-
ing point was the analogy observed in [10] between the decomposition (3) of
a so-called Schur-Weyl representation of the infinite symmetric group Sy into
irreducibles,

[e.e]
X = ZM%-H ® L1,
k=0
and the decomposition (17) of the basic representation of the affine Lie algebra
sly into irreducible representations of the Virasoro algebra Vir,

Ho = @ Moy ® L(1, k);

k=0

in these formulas IT;, is an irreducible representation of Sy, L(1,k?) is an irre-
ducible representation of Vir, and My is the (2k 4+ 1)-dimensional irreducible
representation of sly; in both cases, the operator algebras generated by the ac-
tions of Gy or Vir and sl, are mutual commutants. This analogy suggested that
there should be a natural action of Vir in the Gy-module X, or, equivalently, a
natural action of Gy in the sl,-module Hy. The aim of this paper is to describe
and study the underlying natural isomorphism of sl;-modules.

For this, we use the result of B. Feigin and E. Feigin [2] that the level 1 irre-
ducible highest weight representations of g@ can be realized as certain inductive
limits of tensor powers (C?)® of the two-dimensional irreducible representation
of sly. The construction of [2] is based on the notion of the fusion product of
representations, whose main ingredient is, in turn, a special grading in the space
(C%)®N, A key observation underlying the results of this paper is that the fusion
product under consideration can be realized in an & y-module so that this special
grading essentially coincides with a well-known combinatorial characteristic of
Young tableaux called the major index (see Sec. 4 and Theorem 1). Thus our
results provide, in particular, a kind of combinatorial description of the fusion
product and show that the combinatorial notion of the major index of a Young
tableau has new and rich representation-theoretic meaning. For instance, Corol-
lary 3 in Sec. 7 shows that the so-called stable major indices of infinite Young
tableaux are the eigenvalues of the Virasoro L, operator, the Gelfand-Tsetlin
basis of the Schur-Weyl module being its eigenbasis.

The paper is organized as follows. In Secs. 2 and 3 we briefly reproduce the
necessary background on the notion of Schur-Weyl duality and the fusion product



of representations, respectively. Section 4 contains our finite-dimensional Theo-
rem 1 with combinatorial interpretation of the fusion product grading via the
major index of Young tableaux. In Sec. 5, we prove its infinite-dimensional ver-
sion, our main Theorem 2, which states that the grading-preserving isomorphism
of sly-modules constructed in Theorem 1 extends, through the corresponding
inductive limits, to a grading-preserving isomorphism of sl;-modules between the
basic sly-module Ly ; and the Schur-Weyl module . The remaining part of the
paper is devoted to studying the key isomorphism in more detail. With this aim,
in Sec. 6 we describe the Fock space realizations of the involved representations

of 5/[\2 and Vir, and then, in Sec. 7, prove some properties of our isomorphism
(Theorem 3).

For definiteness, in what follows we consider only the even case N = 2n. The
odd case can be treated in exactly the same way; instead of the basic representation
Ly, it leads to the other level 1 highest weight representation Ly of sls.

Acknowledgments. The authors are grateful to Igor Frenkel for many inspiring
discussions, and also to Boris Feigin and Evgeny Feigin for introducing into the
notion of fusion product.

2 Infinite-dimensional Schur—Weyl duality

In [10], the notion of infinite-dimensional Schur-Weyl duality was introduced.
Namely, starting from the classical Schur-Weyl duality

(C)EN =" Mopyr @, (1)

k=0
where 7y is the irreducible representation of the symmetric group Gy correspond-
ing to the two-row Young diagram A*) = (n+k,n—k) and My, is the (2k+1)-

dimensional irreducible representation of the special linear group SL(2,C), we
consider so-called Schur-Weyl embeddings (C?)®Y < (C?)®(¥+2) that preserve

this Schur-Weyl structure, i.e., respect both the actions of SL(2,C) and &y, and
the inductive limits of chains

(CH)* = (C)*F = (CH) — ... (2)

Such an inductive limit has the form

X =Y My ®1I, (3)

k=0



where II; is an irreducible representation of the infinite symmetric group Gy
(an inductive limit of the sequence of irreducible representations 7 of Sy); the
operator algebras generated by the actions of Gy and SL(2,C) are mutual com-
mutants.

3 Fusion product

The notion of the fusion product of finite-dimensional representations of sly was
introduced in [3]. Given an sly-representation p and z € C, let p(z) be the
evaluation representation of the polynomial current algebra sly ® C[t], defined

as (z @ t)v = 2 - xv for © € sly, v € p. Now, given a collection pi,..., py
of irreducible representations of sl, with lowest weight vectors vy,...,vy, and a
collection z1, ..., zy of pairwise distinct complex numbers, we consider the tensor

product of the corresponding evaluation representations: Vy = pi(2z1) ® ... ®
pn(zn). The crucial step is introducing a special grading in Vy by setting

V" = U™ (e @Clt]) (1, @...®v,) C V,

where e = (8 (1)) is the raising operator in sl, and U™ is spanned by ho-

mogeneous elements of degree m in ¢. In other words, V](Vm) is spanned by the
monomials of the form

€i1---Cpy, U1t ...F =M,

where e; = e ® #/. Then we consider the corresponding filtration on Vy:

<m k
=Py

k<m
The fusion product of py, ..., py is the graded representation with respect to
the above filtration:
Vi=gVy =V avE v e vt v e (4)

The space V3[k] = V]\(,Sk)/V]\(,Sk_l) is the subspace of elements of degree k, and
elements of the form = ® ' € sly ® C[t] send V3[k] to Vi[k +1]. The degree of an

element with respect to this grading will be denoted by deg.

It is proved in [3] that V¥ is an sl, @ (C[¢]/t")-module that does not depend on
21,...,2y provided that they are pairwise distinct. Moreover, V5 is isomorphic
to p1 ®...® py as an sly-module.



We apply this construction to the case where p; = ... = py = M,y with
M, = C? being the two-dimensional irreducible representation of sl, with the
lowest weight vector vy. In this case,

Vi~ (CH®Y  as an sl,-module.

We equip Vy with the inner product such that the corresponding representation
of sl, is unitary.
Consider the decomposition of Vy into irreducible sly-modules:

Vy = @ Mgy 1 @ M.
k=0

By the classical Schur—Weyl duality (1), we know that the multiplicity space M,
is the space of the irreducible representation 7, of Gy. On the other hand, it
inherits the grading from Vy:

My, = D Mlil, (5)
i>0
where My[i] = My, N V*[i]. Consider the corresponding g-character
Chq Mk = Z qi dim Mk[l]
i>0
It was proved in [5] that

N(N—1)

chy My =q = - K, ~(1/q), (6)

where K , is the Kostka-Foulkes polynomial (see [7, Sec. II1.6]).

4 Major index and the tableaux realization of
the fusion product
Let Ty be the set of all standard Young tableaux of length N with at most two

TOWS.
As was proved in [6],

Kyv(g)=> ¢, (7)
TEA]



where [A] is the set of standard Young tableaux of shape A and ¢(7) is the so-
called charge of a tableau 7 € Ty, defined as the sum of ¢ < N — 1 such that in
7 the element i + 1 lies to the right of @ (see [7]).

It is more convenient for our purposes to use another statistic on Young
tableaux, namely, the major index, defined as follows (see [9, Sec. 7.19]):

maj(7) = Z i,
iedes(T)
where, for 7 € T,

des(7) = {i < N —1: the element i 4+ 1 in 7 lies lower than i}

is the descent set of 7. Obviously, for 7 € Ty we have maj(r) = w — (7).
Then it follows from (6) and (7) that
dim My[i] = #{r € [(n + k,n — k)] : maj(r) = i}. (8)

Denote by Xy the space (C*)® = Y0  Myp1 @ m (see (1)) in which the
irreducible representation m of G is realized in the space spanned by the stan-
dard Young tableaux of shape (n + k,n — k) equipped with the standard inner
product under which the representation is unitary. Note that this is an sly-module
endowed additionally with the grading maj.

Theorem 1. There is a grading-preserving unitary isomorphism of the fusion
product V3 (with the grading deg) and the space Xy (with the grading maj) as
sly-modules such that the multiplicity space My, is spanned by the standard Young
tableaux T of shape (n+k,n—k) (and hence Mg[i] is spanned by T with maj(r) =

Proof. Follows from the fact that the fusion product V5 is isomorphic to (C?)®¥
as an sly-module and equation (8). O

Remark 1. Observe that the isomorphism from Theorem 1 is not unique.

Remark 2. The isomorphism from Theorem 1 determines an action of the
symmetric group Gy on the space V3. It does not coincide with the original
action of Gy on C®V,

Given 7 € Ty, let k(7) be half the difference of the lengths of the first and
the second row of 7. Then, in view of the Schur—Weyl duality, we can write

Vi = @ Mok (7),
TGTN

where Mop(ry41(7) is the (2k(7) 4 1)-dimensional sly-module parametrized by 7
as an element of the multiplicity space.



5 Embeddings and the limit

It is proved in [2] that there is an embedding
Jn Vg — Vz:‘f+2

equivariant with respect to the action of sl,® (C[t~!]/¢™"), and the corresponding
inductive limit

V= lim(VNajN)

is isomorphic to the basic representation Lj; of the affine Lie algebra g@ This
embedding satisfies - -
deg(jnx) = deg(z) — (N + 1). (9)

Now consider the following natural embedding iy : Ty — Tyyo: given a
standard Young tableau 7 of length N, its image iy (7) is the standard Young
tableau of length N + 2 obtained from 7 by adding the element N + 1 to the first
row and the element N + 2 to the second row.

Note that iy is, obviously, a Schur—Weyl embedding in the sense of [10] (see
Sec. 2). Let X' be the corresponding inductive limit (3). Then IIj is the discrete
representation of the infinite symmetric group Gy associated with the tableau

1 2 oo 2k 2E+1 2k+3

o +2 Wtd ... ) (10)

Tk —

which can be realized in the space (which, by abuse of notation, will also be
denoted by IIj) spanned by the infinite two-row Young tableaux tail-equivalent
to 7 (we denote the set of such tableaux by 7). In what follows, the tableaux
7 will be called principal.
Obviously,
maj(in(7)) = maj(r) + (N + 1). (11)

Given N = 2n and 7 € Ty, denote ry(7) = n* — maj(7). Then ryi2(in(7)) =

rn(7), so that we have a well-defined grading on the space I = @@, II;:

r(r) = i ran(rh) = lim (n? — maj(r]0)) (12)
where [7]; is the initial part of length [ of the infinite tableau 7. We will call r(7)
the stable major index of 7. Obviously, (1) = k%
Our main theorem is the following.



Theorem 2. The grading-preserving unitary isomorphism of slo-modules de-
scribed in Theorem 1 extends to a grading-preserving unitary isomorphism of
sly-modules between the spaces V and X :

VX =) My @Th (13)

k=0

Thus in the Schur-Weyl module X, which is an sly-module and an Sy-module,
there is also a structure of the basic sly-module Ly,. The corresponding grading
is given by the stable magjor index (12), that is, for w = x @ T € Moy @ I, we
have degw = r(1).

Remark. As mentioned in the introduction, we consider in detail only the
even case just for simplicity of notation. Considering instead of (2) the chain
(CH®! — (C*)®3 «— (C*)®® — ... and reproducing exactly the same arguments,
we will obtain a grading-preserving isomorphism of the corresponding Schur-Weyl
representation with the other level 1 highest weight representation L;; of sl,.

Proof. Since we are now considering sl, ® C[¢t'] instead of sl, ® C[t], we should
slightly modify the previous constructions to take the minus sign into account.
Namely, instead of (5) we now have My, = @;>oMy[—1], and the isomorphism of
Theorem 1 identifies M[—i] with the space spanned by the tableaux 7 of shape
(n + k,n — k) such that maj(7) = i. Denote this isomoprhism between V3 and
Xy by py. Observe that the only conditions we impose on py are as follows: (a)
pn is a unitary isomorphism of sly-modules and (b) py o &Eg = —mayj.

Now, to prove Theorem 2, we need to show that we can choose a sequence of
isomorphisms py such that the diagram

* PN
VN > .XN

le J{iN
Vies =5 Xyyo
is commutative for all N. We use induction on N. The base being obvious,
assume that we have already constructed py, and let us construct py.o.

We have Vi, = jn (V)@ (in (V)" On the first subspace, we set pyo(x) 1=
in(pn(jxto(2))). On the second one, we define it in an arbitrary way to satisfy
the desired conditions (a) and (b). The fact that this definition is correct and
provides us with a desired isomorphism between Vy_, and Xy, follows from (9)
and (11). O



Corollary 1. The embedding jn : Vi — V3, 5 equivariant with respect to the
action of the symmetric group Sy (see Remark 2 after Theorem 1). Thus the
limit space V, isomorphic to Ly, has the structure of a representation of the
infinite symmetric group Oy.

Let w_g be the lowest vector in My, ;1. Then a natural basis of V is {ef'w_o; ®
T:m=0,1,...,2k, 7 € Tx}. Denoting V = Moy, 1 ® I and Vi[0] = {v € V :
hov = 0}, we have V,[0] = efw_o, ® 1, so that we may identify V;[0] with IT, by
the correspondence

c(t) - ebw o @t e 1, t e I,

where ¢(t) is a normalizing constant. Thus we have

V[0] := {vEV:hov:0}<—>H:éﬂk, (14)

k=0

where II is the space spanned by all infinite two-row Young tableaux with “cor-
rect” tail behavior, i.e., tail-equivalent to 75 (see (10)) for some k.

Our aim in the remaining part of the paper is to study the isomorphism from
Theorem 2 in more detail. For this, we first describe the Fock space realization
of the basic sl,-module and the fusion product.

6 The Fock space

6.1 The Fock space and the level 1 highest weight repre-
sentations of sl
Let F be the fermionic Fock space constructed as the infinite wedge space over

the linear space with basis {uy}rez U {vg}rez. That is, F is spanned by the
semi-infinite forms

Uil/\.../\uik/\?}jl/\.../\Ujl/\UN/\’UN/\UN_l/\’UN_l/\...,
NeZ,i,>...>1u, >N, j3>...>75 >N,

and is equipped with the inner product in which such monomials are orthonormal.
Let ¢, be the exterior multiplication by u; and 1, be the exterior multiplication
by vk, and denote by ¢;, 1 the corresponding adjoint operators. Then this family
of operators satisfies the canonical anticommutation relations (CAR):

PPy, + PrPr = 1, Urthy + pthe = 1,

10



all the other anticommutators being zero.
Consider the generating functions

)= D0, (@)=Y Y, @)=Y 6 vt (E)= D vl
i€z icZ i€Z i€Z

Let a? and a? be the systems of bosons constructed from the fermions {¢y}
and {1y}, respectively:

= Gty =Y I ubns L= Gpbhi,, 1 FEO,
n=1 n=0 kez

and similarly for a¥. They satisfy the canonical commutation relations (CCR)

[aﬁ, afn] = N0p,—m, la id w] = n0p,—m, (15)

n’ m

i.e., form a representation of the Heisenberg algebra 2. Denote

E CL n+1 2 :a n+1

nez nez

Let V' be the operator in F that shifts the indices by 1
V(w“ /\ww/\) :Vb(w“)/\%(ww)/\, %(UZ) :ui-l—l; %(Uz) = Vij—1.

The vacuum vector in F is Q =u_y Av_; Au_s ANv_o A .... We also consider
the family of vectors

QO = Q, an = V_nQ(), n € 7.

In the space F we have a canonical representation of the affine Lie algebra
sly = sl ® C[t,t™'] ® Cc & Cd, which is given by the following formulas. Given
x € sly, denote X (2) =Y, , 2,2~ "D, Then

E(z) =9(2)¢"(2),  F(z) = ¢(2)¥"(2),
h,=a%, —a?,, d= %g+2h_nhn, c=1.

We have
F=Ho®Ky+Hi ® K4,

where Hy ~ Lo, and H; ~ L;; are the irreducible level 1 highest weight repre-
sentations of sly and Ky and IC; are the multiplicity spaces. Observe also that

6—(N+1)Q—N = Q—(N+2)-

11



Note that the operators a, = \%hn satisfy the CCR, (15), i.e., form a system
of free bosons, or generate the Heisenberg algebra 2. The vectors {Qa,}nez
introduced above are exactly singular vectors for this Heisenberg algebra: h;€2,, =
0 for m < 0, ho€2,, = m£2,,. The representation of 2, in H, breaks into a direct
sum of irreducible representations:

Ho = P Ho[2k], (16)

kEZ

where H,[2k] is the charge 2k subspace, i.e., the eigenspace of hy with eigenvalue
2k:
Ho[Qk] = {U € HO : h(ﬂ} = 2/47'1]} = C[hg, hl; .. .]ng.

6.2 The representation of the Virasoro algebra associated
with the basic representation of sl

Given a representation of the affine Lie algebra g[\Q, we can use the Sugawara
construction to obtain the corresponding representation of the Virasoro algebra
Vir. It can also be described in the following way. As noted above, the operators
a, = %hn form a system of free bosons. Given such a system, a representation

of Vir can be constructed as follows ([4, Ex. 9.17]):

1 o
L, = 3 Za_jaj+n, n # 0; Ly = ;a_jaj.

JEZ

Thus we obtain a representation of Vir in F and, in particular, in Hy. In this
representation, the algebras generated by the operators of Vir and sly C sl, are
mutual commutants, and we have the decomposition

Ho = P Mo ® L(1,K), (17)

k=0

where Moy is the (2k 4 1)-dimensional irreducible representation of sl and
L(1,k?) is the irreducible representation of Vir with central charge 1 and confor-
mal dimension k2.

The charge k subspace Hy[k] contains a series of singular vectors &, of Vir
with energy (k 4+ m)*:

Lnfk,m =0forn= 17 27 ce L()gk,m = (k + m)2.

12



Let us use the so-called homogeneous vertex operator construction of the basic
representation of sl (see [4, Sec. 14.8]). In this realization,

E(z) =T_(2)4(2)z V1 F(2) =T (2)[_(2)z"V, (18)

['+(z) = exp <:F Z —h:ty>

7=1

where

and the operators I'y(2) satisfy the commutation relation
2\ 2
Dy (2)-(w) = D ()4 () (1= =) . (19)
Using the boson-fermion correspondence (see [4, Ch. 14]), we can identify
Hy with the space A ® C[g,¢'], where A is the algebra of symmetric functions
(see [7]). In particular, consider the charge 0 subspace H[0] = H;[0], which is
identified with A. We can use the following representation of the Heisenberg
algebra generated by {h, },ez:

h, < 2nain,

where p; are Newton’s power sums. Then the corresponding Virasoro operators

are .
= 0 o 0
L, = T - 7
_Z;lp Tapr i z_; rin =) Opr Opn—r
r=n r= (21)

an-i-r T + Zprpn T n > 0.

Note that the representatlon (20) of the Helsenberg algebra, and hence the rep-
resentation (21) of the Virasoro algebra, are not unitary with respect to the
standard inner product in A. To make it unitary, we should consider the inner
product in A defined by

h—n = Dn, n >0, (20)

<p/\7pu> - 6)\u CANC 2l(/\); (22)

where py are the power sum symmetric functions, zy = [[;¢™m,! for a Young
diagram A\ with m; parts of length ¢, and [(\) is the length (number of nonzero
rows) of A.

Denote the singular vectors of Vir in H[0] by &, := &m- According to a result
by Segal [8], in the symmetric function realization (20),

En > € S(am), (23)
where 5., is the Schur function indexed by the n X n square Young diagram and

¢ is a numerical coeflicient.

13



6.3 Fusion product and the Fock space
It is shown in [2] that

‘/22 = 6[607 SERY e—(Zn—l)]Q—2n CcF

as an sly ® (C[t™1]/t"*")-module, the embedding j, under this isomorphism co-
incides with the natural inclusion

Cleo, - - - e—(2n-1)]Q2—2n C Cleg, . . ., e—(204+1)|Q=2(n+1),

and the limit space V coincides with H,.
Using results of [2], one can easily prove the following lemma.

Lemma 1. A basis in Fa, = Cle, ..., e_(2n—-1)|—2 is

{eloe™, . “’é Ly 0SS k< 2n— (o + ... 4 don—1) } Qo2

Observe that under this “fusion-Fock” correspondence, the charge 0 subspace
H|0] is identified with V[0]. It follows from Lemma 1 that a basis of F,[0] =
Fy, NH[O] is

{H 6606“1 gt i A iy =0 gy, (24)

7 The key isomorphism in more detail

Comparing (13) and (17), we obtain the following result.

Corollary 2. The space Il of the discrete representation of the infinite symmet-

ric group corresponding to the tableau Ty has a natural structure of the Virasoro
module L(1,k?).

Our aim is to study this Virasoro representation in II; (or, which is equiv-
alent, the corresponding representation of the infinite symmetric group in the
Fock space). In particular, from the known theory of the basic module Ly, we
immediately obtain the following result.

Corollary 3. In the above realization of the Virasoro module L(1,k?), the Gelfand-
Tsetlin basis in Iy (which consists of the infinite two-row Young tableaux tail-
equivalent to 1) is the eigenbasis of Ly, and the eigenvalues are given by the
stable major index r:

Lot = r(7)T.

14



Note that, in view of (14) and the remark after Lemma 1, the charge 0 sub-
space ‘H[0] is identified with the space II spanned by all infinite two-row Young
tableaux with “correct” tail behavior. Thus we obtain the following corollary.

Corollary 4. The space I1, which is the countable sum of discrete representations
of the infinite symmetric group S, has a structure of an irreducible representa-
tion of the Heisenberg algebra .

On the other hand, as mentioned above, H|[0] can be identified with the alge-
bra of symmetric functions A via (20). Denote by ® the obtained isomorphism
between II and A, which thus associates with every tableau 7 € Il a symmetric
function ®(7) € A such that r(7) = deg ®(7).

Denote by T™) the (finite) set of two-row tableaux that coincide with some
Tw, n =0,1,..., from the Nth level. Let II(™ be the subspace in IT spanned by
all 7 € T™), Tt follows from all the above identificatons that I1(%) « [y, [0].

Theorem 3. Under the isomorphism P,

1) the principal tableauz (10) correspond to the Schur functions with square
Young diagrams:
®(71,) = const - s(ky;

2) the subspace TI?*) correspond to the subspace Apxy of A spanned by the
Schur functions indexed by Young diagrams lying in the k X k square; the
correspondence between the Schur function basis in Agxy and the basis (24)
in 112 ~ [5,]0] is given by formula (29) below.

Proof. We follow Wasserman’s [11] proof of Segal’s result (23).
Let 0 < y,...,% < k. Then, obviously,

k
— t—1
€_ip-- .e_ikQ_gk = H Zj

E(zk)...E(21)Q_ok,

j=1
where by [monomial]F'(z1, ..., z,) we denote the coefficient of this monomial in
F(z,...,2m). Now, using the representation (18), the commutation relation (19),

and the obvious facts that V=¥Q_,, = Qg and ' (2)Qy = 2, we obtain
k ' 2\ 2
E(z).. . B(21)Q gy = sz.““—ﬂ) H (1 - 2) I (z)...0_(21).
j=1 1<j<i<k

Observe that, in view of (20) and the well-known fact from the theory of symmet-
ric functions, I'_(z) is exactly the generating function of the complete symmetric

15



functions. Hence, expanding the product I'_(zy)...I'_(z1)$2 by the Cauchy iden-
tity ([7, [.4.3]) and making simple transformations, we obtain

E(2%). . .B(2)Q_gp = (—1)kkE=D/2 Hzf_laa(z)aa(z_l) Z sx(z7 sy,

j=1 LM<k

where _
as(z) = [[ (5 —2) = det[z icij <k
1<i<j<k
is the Vandermonde determinant, as(27") is the similar determinant for the vari-
ables 271 = (21%,..., 2. "), [()\) is the length of the diagram A (the number of
nonzero rows), s)(z~1) is the Schur function calculated at the variables z~!, and
sy is the Schur function as an element of A identified with H[0]. Thus we have

iy, Qg = (—1)FED/2.7) (H zf_ijaa(z)aa(z_l) Z S)\(Z_l)s,\> .

First consider the case where 7y = ... = 4, = m. Then, by the definition of
the Schur functions [7, 1.3.1],

k—i; —m—7
sz Y a,;(z) = det[zizk ]]lgi,jgk = a(s(Z)S((k_m)kz)(Z),

where ((k—m)¥) is the rectangular Young diagram with & rows of length k —m,
and the standard orthogonality relations imply that

e op = (1) ETVEL s ey (25)

Since &, = efQ) o, for m = 0 this is Segal’s result (23), which we have now
extended to the case of rectangular diagrams. It is easy to see that the singular
vector of Vir in V[0] is just efw o @ 71, so that the first claim of the theorem
follows.

We now turn to the case of 4,...,ix that are not necessarily equal. For
convenience, set €, := e__p), 0 <p < k. Given 0 < ay, ..., < k, we have

k
Cor- - Ca, oz = 1] [ [[ 277 a6(2) D arss(z)sa |, (26)
j=1 I(A)<k
where a)s(x) = det[x;\ﬁk_j]lgi’jgk = sa(z)as(x). Consider a Young diagram
po= (1, .. p) = (0701727, ). Let us sum (26) over all different permutations
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a = (a1, ..., o) of the sequence (y1, .. ., jg). Note that the operators e; commute
with each other, so that the left-hand side does not depend on the order of
the factors. In the right-hand side, > sz" = m,(2), a monomial symmetric
function. Thus we have

k!
B =1 [ mu@asx) 3wz s | D)
Hj:O ! I\ <k

Let v be a Young diagram with at most k£ rows and at most k£ columns, i.e.,
v C (k¥). We have

5,(2) = 3 Kopmil2), (28)

where K, are Kostka numbers. It is well known that K,, = 0 unless u < v, where
< is the standard ordering on partitions: u <v <= pu +...+pu; <vi+...+y;
for every ¢+ > 1. In particular, u; < vy < k. Besides, since we consider only &
nonzero variables z1, ..., 2, it also follows that m,(z) = 0 unless {(x) < k. Thus
the sum in (28) can be taken only over diagrams p C (k¥), for which equation (27)
holds. Multiplying this equation by K,, and summing over p yields

Z kki!'Kuugul' . ‘guk = [1] s,,(z)a,;(z) Z a/\+6(2_1)3/\

p=(0m0171272..)C(kk) Hj:ﬁ T A<k

By the orthogonality relations, the right-hand side is equal to k!s,. Thus we
obtain the following formula:

K,
v = Z k - [ E (k=) € (k—pug) $ 22k - (29)
p=(0r017r12r2...)C(k*) Hj:o Ty

Observe that for rectangular diagrams this formula reduces to (25). Indeed, for
v = ((k —m)*), all diagrams p with p < v have [(u) > k, hence the only nonzero
term in the right-hand side of (29) corresponds to p = v, with K,, = 1 and
ry = k!éj,k—m-

It follows from (29) that Aj.; C II?*. On the other hand, the generating

functions for the tableaux from 7°?* and for the Young diagrams lying in the
k X k square coincide:

o 2k
S = Z)qAI_{kL7

TET(2K) AC(k*
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where || is the number of cells in a Young diagram A and [*] , is the g-binomial

coefficient (the equation for Young diagrams can be found in [1, Theorem 3.1];
for tableaux, it can be deduced from the known results on the major index given,

e.g.,

in [9]). This implies, in particular, that dim Ay, = dimII?* and completes

the proof. O
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