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1 Riemann’s zeta function and the Riemann Hy-
pothesis

One of the most interesting and important objects in mathematics is Rie-
mann’s zeta function ζ(z). It can be defined for <(z) > 1 by the Dirichlet series

ζ(z) =
∞∑
n=1

1

nz
. (1.1)

The function can be analytically extended to the entire complex z-plane with the
exception of the point z = 1 which is the only pole of ζ(z).

Leonhard Euler studied this function for real values of z, in particular he
determined the values of ζ(z) for all negative integer values of z (without having
the notion of analytical continuation!). His celebrated formula

∞∑
n=1

n−z =
∏

p prime

1

1− p−z
(1.2)

=
∏

p prime

(
1 + p−z + p−2z + . . .

)
(1.3)

is known as Euler product. It can be viewed as an analytical form of the Funda-
mental Theorem of Arithmetic stating that every natural number has a unique
factorization into product of powers of primes—just expand (1.3) and get the left
hand side of (1.2)!

The identity (1.2) “explains” why Riemann’s zeta function ζ(z) plays such an
important role in the study of prime numbers. In particular, Euler gave a new
proof of the infinitude of primes: if the number of primes were finite, then the
divergent harmonic series, that is, the left hand side of (1.2) for z = 1, would
have a finite value, the right hand side of (1.2).

A closer relationship with the distribution of prime numbers was discovered
by Bernhard Riemann. Already Euler knew that ζ(−2m) = 0 for m =
1, 2, . . . and today points z1 = −2, z2 = −4, . . . , zn = −2n, . . . are called the
trivial zeroes of the zeta-function. They are the only real zeroes of this function.
Riemann showed the role of the complex zeroes of the zeta-function for the study
of the distribution of primes. In a more transparent way this relationship can be
seen from the following formula established by Hans Carl Friedrich von
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Mangold [3]: for non-integer x greater than 1

ψ(x) = x−
∑
m=1

x−2m

−2m
−

∑
ζ(ρ) = 0
=(ρ) 6= 0

xρ

ρ
− ln(2π) (1.4)

where

ψ(x) = ln(LCM(1, 2, ..., bxc)). (1.5)

The first summation in (1.4) is performed over the trivial zeroes−2,−4, . . . ,−2m, . . .
and similar the second summation is over all the others, the non-trivial complex
zeroes of the zeta function. The function ψ(x), introduced by Pafnutij Cheby-
shev, has a jump of size ln(p) at every prime p and at its powers.

According to (1.4), the growth of the difference ψ(x)−x is related to the real
parts of the non-trivial zeroes. We have the celebrated

Riemann Hypothesis (version 1). All non-trivial zeroes of the function ζ(z)
lie on the critical line <(z) = 1

2
.

In terms of the function ψ(x) the hypothesis, RH for short, can be reformu-
lated as

Riemann Hypothesis (version 2). For x→ +∞

ψ(x) = x+O(x
1
2 ln2(x)). (1.6)

Formula (1.6) allows one to give a good approximation to the function π(x),
the prime counting function equal to the number of primes not exceeding x.
Similar to the function ψ(x), the function π(x) has a jump at every prime but
only of size 1, and, in contrast to ψ(x), function π(x) has no jumps at other powers
of primes. These prime powers can be ignored because their number below an x
is of order O(x

1
2 ), so in terms of function π(x) we have

Riemann Hypothesis (version 3).

π(x) =

∫ x dt

ln(t)
+O(x

1
2 ln(x)). (1.7)
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2 Riemann’s xi function and subhypotheses of the
Riemann Hypothesis

There is a tradition (taking its origin from Riemann’s only paper [12] about
this subject) to get rid of the trivial zeroes by dealing with the entire function

ξ(z) = π−
z
2 (z − 1)Γ(1 + z

2
)ζ(z) (2.1)

rather than with the function ζ(z) itself (we use modern notation for this function,
Riemann used ξ(t) to denote the function which today is usually denoted Ξ(t)).
The poles of the factor Γ(1 + z

2
) in (2.1) cancel the trivial zeroes of ζ(z) and

similarly the factor z − 1 cancels the pole of ζ(z). The factor π−
z
2 influences

neither zeroes nor poles but it allows us to state the functional equation in a
pretty form:

ξ(z) = ξ(1− z). (2.2)

In this paper we won’t deprive the zeta function of its trivial zeroes but try
to take advantage of our knowledge of the precise positions of these zeroes. To
this end we will work with the entire function

ζ∗(z) = 2(z − 1)ζ(z). (2.3)

For our purpose we could also omit the factor z − 1 and/or use the factor π−
z
2 ;

this would change the picture(s) so probably separate paper(s) could be devoted
to these variations. The factor 2 in (2.3) results in the equality

ζ∗(0) = 1 (2.4)

which slightly simplifies some forthcoming formulas.
If the zeta function had a zero z0 with the real part greater than 1

2
, then

according to (2.2) 1 − z0 would be a zero with the real part less than 1
2
. Thus,

we have

Riemann Hypothesis (version 4). The trivial zeroes z1 = −2, z2 = −4, . . . , zn =
−2n, . . . are the only zeroes of the function ζ∗(z) lying in the half-plane <(z) < 1

2
.

A half-plane is a natural object when one deals with Dirichlet series. However,
we are going to deal with Taylor series, and for them disks are more natural
regions. So we make a change of variable:

z =
w

w + 1
, w =

z

1− z
. (2.5)
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Figure 1: z-plane and the critical line Figure 2: w-plane and the critical cir-
cle

Under this transformation the critical line becomes the critical circle |w| = 1, the
half-plane <(z) < 1

2
becomes the interior of this circle, and points

w1 =
z1

1− z1
= −2

3
, . . . , wn =

zn
1− zn

= − 2n

2n+ 1
, . . . (2.6)

become the trivial zeroes of the function

ζ̃(w) = ζ∗( w
w+1

). (2.7)

With this new notation we have

Riemann Hypothesis (version 5). The trivial zeroes w1 = −2
3
, . . . , wn =

− 2n
2n+1

, . . . are the only zeroes of the function ζ̃(w) lying in the open disk {w :
|w| < 1}.

It isn’t convenient to work near the critical circle (full of zeroes) so we split
RH into an infinite series of weaker subhypotheses.

Subhypothesis RHn. The trivial zeroes w1 = −2
3
, . . . , wn = − 2n

2n+1
are the

only zeroes of the function ζ̃(w) lying in the closed disk {w : |w| ≤ 2n+1
2n+2
}.

While each of these subhypotheses is weaker than RH, taken together, they,
evidently, are equivalent to it:
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Riemann Hypothesis (version 6). For every n the subhypothesis RHn is
true.

3 Padé approximations and a theorem of de Montes-
sus de Ballore

In order “to see” where the smallest (in absolute value) zeroes of ζ̃(w) lie, we
can approximate this function by rational functions: let Pn,m(w) and Qn,m(w) be
polynomials such that

ζ̃(w) ≈ Pn,m(w)

Qn,m(w)
=

1 + pn,m,1w + · · ·+ pn,m,nw
n

1 + qn,m,1w + · · ·+ qn,m,mwm
(3.1)

= ζ̃(w) +O(wk) (3.2)

where k has the maximal possible value; since in (3.3) we have at our disposal
n+m coefficients

pn,m,1, . . . , pn,m,n, qn,m,1, . . . , qn,m,m, (3.3)

k should be equal to n+m+ 1.
A theorem of Robert de Montessus de Ballore [10, 11] (see also [1])

tells us about the behaviour of the numerators in (3.1) for special choices of n.
Namely, let us say that a number n is good if there is a positive number R such
that the closed disk

{w : |w| ≤ R} (3.4)

contains exactly n zeroes of the function ζ̃(w). Then, for any fixed good n, with
the growth of m the n zeroes of Pn,m approach the zeroes from disk (3.4).

Our subhypothesis RHn implies that n is good and furthermore, for m→∞,

Pn,m(w)→
n∏
k=1

(
1− w

wn

)
. (3.5)

We are going to deal only with the absolute value of the leading coefficient of
Pn,m(w) for which (3.5) implies the weaker

Subhypothesis RHw
n . For m→∞

|pn,m,n| →Wn (3.6)
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where

Wn =
n∏
k=1

1

|wn|
=

n∏
k=1

2k + 1

2k
. (3.7)

Each subhypothesis RHw
n is, formally, weaker than the corresponding sub-

hypothesis RHn, nevertheless, taken together the subhypotheses RHw
n are also

equivalent to RH. In order to see why it is so, suppose that RH isn’t valid, and
let w̌ be a non-trivial zero of ζ̃(w) violating it in version 5 above. We will assume
that w̌ has the least possible absolute value denoted R. Disk (3.4) contains only
finitely many, say, n, zeroes of ζ̃(w) because there are only finitely many zeroes
of ζ∗(z) in the preimage of the disk on z-plane. Let these zeroes be denoted w̌1,
. . . , w̌n and enumerated in such a way that |w̌1| ≤ · · · ≤ |w̌n|. Clearly, n is a
good number and hence by the theorem of de Montessus for m→∞

Pn,m(w)→
n∏
k=1

(
1− w

w̌n

)
(3.8)

and respectively

|pn,m,n| →
n∏
k=1

1

|w̌n|
. (3.9)

It is easy to see that |w̌1| ≤ |w1|, . . . , |w̌n−1| ≤ |wn−1| and |w̌n| < |wn|. Thus,
n∏
k=1

1

|w̌n|
>

n∏
k=1

1

|wn|
= Wn, (3.10)

which gives the required contradiction with (3.6) and we have

Riemann Hypothesis (version 7). For every n the subhypothesis RHw
n is

true.

It follows from the above consideration that in this version of RH we can
restrict n to good numbers.

4 Determinants and eigenvalues
It is easy to understand that coefficients (3.3) can be expressed via the coef-

ficients in the Taylor expansion

ζ̃(w) = 1 + θ1w + · · ·+ θkw
k + . . . (4.1)
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In order to simplify further notation we put θ0 = 1 and θk = 0 for k < 0. Explicit
expressions for pn,m,n can be given (Carl Jacobi [2], see also [1]) in terms of
Toeplitz matrices

Ln,m =


θn θn−1 . . . θn−m+1

θn+1 θn . . . θn−m+2
...

... . . . ...
θn+m−1 θn+m−2 . . . θn

 (4.2)

or in terms of the dual Hankel matrices

Mn,m =(−1)n+m


θn+m−1 θn+m−2 . . . θn
θn+m−2 θn+m−3 . . . θn−1

...
... . . . ...

θn θn−1 . . . θn−m+1

 , (4.3)

namely,

pn,m,n =
det(Ln,m+1)

det(Ln,m)
(4.4)

= (−1)n+m+1det(Mn,m+1)

det(Mn,m)
. (4.5)

Representation (4.4) was investigated in [5, 7, 8, 9], in this paper we will
study representation (4.5) which was considered in [6, 7, 9]; ongoing study of
both representations can be followed on [4].

If for some constant C for m→∞

|pn,m,n| → C (4.6)

then (4.5) implies that
| det(Mn,m)|

1
m → C. (4.7)

Thus subhypothesis RHw
n has the following (formally) weaker corollary:

Subhypothesis RHww
n . For m→∞

| det(Mn,m)|
1
m →Wn. (4.8)

Again, taken together, subhypotheses RHww
n imply RH. Indeed, we see from

(3.9), (3.10), (4.6), and (4.7) that if RH were not valid, then for some good n
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the values of |pn,m,n| and, respectively, of | det(Mn,m)| 1m would tend to a quantity
greater than Wn. Thus we have

Riemann Hypothesis (version 8). For every n the subhypotheses RHww
n is

true.

One could try to prove (4.8) by induction on n. We know that −2 is the zero
of the zeta function nearest to the origin, hence RHww

1 is true and it remains to
show the validity of

Subhypothesis RHr
n. For m→∞∣∣∣∣det(Mn+1,m)

det(Mn,m)

∣∣∣∣ 1
m

→ Wn+1

Wn

=
1

|wn+1|
=

2n+ 3

2n+ 2
. (4.9)

Let µn,m,1, µn,m,2, . . . , µn,m,m be the eigenvalues of the matrix Mn,m (they
are real thanks to matrix being Hankel). In terms of these eigenvalues we can
restate

Subhypothesis RHww
n (equivalent form). For m→∞

1

m

m∑
k=1

ln |µn,m,k| → ln(Wn) (4.10)

and

Subhypothesis RHr
n (equivalent form). For m→∞

1

m

m∑
k=1

ln |µn+1,m,k| −
1

m

m∑
k=1

ln |µn,m,k| → − ln(|wn+1|) = ln

(
2n+ 3

2n+ 2

)
. (4.11)

5 Visual patterns of eigenvalues
According to (4.10), RH can be viewed as a statement about the behavior of

the eigenvalues of the matrices (4.3) as a whole, but doesn’t tells us anything, at
least directly, about the distribution of the eigenvalues. The author was curious to
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perform calculations for smallm in order to see whether one could find interesting
patterns in values of individual eigenvalues. Indeed, being properly exhibited, the
eigenvalues show definite patterns allowing one to state a number of conjectures.

The (multi)set {µn,m,1, µn,m,2, . . . µn,m,m} of eigenvalues of matrix (4.3) will
be called the µ-spectrum of the function ζ̃ and will be denoted Specµn,m(ζ̃) or,
for simplicity, just Specµn,m unless we need to consider similar spectra for other
functions. We shall always suppose that the eigenvalues are numbered in such a
way that

|µn,m,1| ≤ · · · ≤ |µn,m,k| ≤ |µn,m,k+1| ≤ · · · ≤ |µn,m,m|. (5.1)

It turned out that spectra Specµn,m contain both very large and very small (in
absolute value) numbers, so it is more convenient to use logarithmic scaling. We
define the logarithmic µ-spectrum as

Speclnµn,m = {ln(|µ|) : µ ∈ Specµn,m}, (5.2)

its elements will be called logarithmic eigenvalues.
It is very useful to keep track of the signs of the eigenvalues missing in (5.2),

so we split Speclnµn,m into the positive logarithmic µ-spectrum and the negative
logarithmic µ-spectrum, defined as follows

Specln
+ µ

n,m = {ln(µ) : µ ∈ Specµn,m&µ > 0}, (5.3)

Specln
− µ

n,m = {ln(−µ) : µ ∈ Specµn,m&µ < 0}. (5.4)

When exhibiting several logarithmic µ-spectra on a single picture, we will
shift them vertically, that is, an eigenvalue µ from Specln

± µ
n,m will produce a point

with coordinates (x, y) = (ln |µ|,m) or at point (x, y) = (ln |µ|,m+ 1
2
) in the case

when we need to show two spectra on the same picture.
Figures 3–8 (more pictures can be downloaded from [4]) show spectra Speclnµn,m

for n = 1, . . . , 6. First of all, we notice that spectra Specln
+ µ

n,m and Specln
+ µ

n,m+1 are
close one to another, and so are spectra Specln

− µ
n,m and Specln

− µ
n,m+1 as well. As a

consequence, we can see “trajectories” and, treating m as (discrete) time, we can
imagine “particles” moving along these trajectories.

In order to introduce this notion formally, we will enumerate the logarithmic
eigenvalues in two ways, from left to right and vice versa. Let N+

n,m and N−n,m be
the number of elements in sets (5.3) and (5.4) respectively and let

Specln
+ µ

n,m =
{
µ+<
n,m,1, . . . , µ

+<

n,m,N+
n,m

}
(5.5)

= {µ+>
n,m,1, . . . , µ

+>

n,m,N+
n,m
} (5.6)
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Figure 3: Positive and negative logarithmic µ-sprectra Specln
± µ

1,m , m = 1 . . . 256

Figure 4: Positive and negative logarithmic µ-sprectra Specln
± µ

2,m , m = 1 . . . 256
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Figure 5: Positive and negative logarithmic µ-sprectra Specln
± µ

3,m , m = 1 . . . 256

Figure 6: Positive and negative logarithmic µ-sprectra Specln
± µ

4,m , m = 1 . . . 256
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Figure 7: Positive and negative logarithmic µ-sprectra Specln
± µ

5,m , m = 1 . . . 256

Figure 8: Positive and negative logarithmic µ-sprectra Specln
± µ

6,m , m = 1 . . . 256

14



with

µ+<
n,m,1 ≤ · · · ≤ µ+<

n,m,k ≤ µ+<
n,m,k+1 ≤ · · · ≤ µ+<

n,m,N+
n,m
, (5.7)

µ+>
n,m,1 ≥ · · · ≥ µ+>

n,m,k ≥ µ+>
n,m,k+1 ≥ · · · ≥ µ+>

n,m,N+
n,m

(5.8)

and

Specln
− µ

n,m = {µ−<n,m,1, . . . , µ−<n,m,N−n,m
} (5.9)

= {µ−>n,m,1, . . . , µ−>n,m,N−n,m
} (5.10)

with

µ−<n,m,1 ≤ · · · ≤ µ−<n,m,k ≤ µ−<n,m,k+1 ≤ · · · ≤ µ−<
n,m,N−n,m

, (5.11)

µ−>n,m,1 ≥ · · · ≥ µ−>n,m,k ≥ µ−>n,m,k+1 ≥ · · · ≥ µ−>
n,m,N+

n,m
. (5.12)

According to the upper indices we can distinguish four kinds of particles, π+<
n,k ,

π−<n,k , π
+>
n,k , and π−>n,k . At time moment m these four particles have coordinates

µ+<
n,m,k, µ

+>
n,m,k, µ

−<
n,m,k, and µ−>n,m,k respectively. Each position is always occupied

by two particles, either by π+<
n,k1

π+>
n,k2

or by π−<n,k1 π
−>
n,k2

with k1 + k2 = N+
n,m + 1

or k1 + k2 = N−n,m + 1 respectively. From each pair one particle will finally go
to −∞, and the other to +∞. In this paper we deal with the former kind of
particles, and a forthcoming paper will be devoted to the latter kind.

Particles π+<
n,k , π

−<
n,k moving towards −∞ were named “electrons” in [6]. This

name is due to the following observation which can be made on the basis of Figures
3–8 (but the best is to watch animations of the spectra which can be downloaded
from [4]). We see there that the trajectories of electrons corresponding to positive
and negative eigenvalues interleave, the particles oscillate but never touch one
another, that is, they behave as particles having similar charges – repelling one
another and thus bouncing.

It seems that after changing the direction a few times, electrons start moving
towards −∞ with stabilizing speed, and this speed is related in a remarkable way
to the trivial zeroes z1, z2, . . . of the zeta function, or, equivalently, to the trivial
zeroes w1,w2, . . . of function ζ̃(w). Namely, the numerical data suggest

Conjecture A. For every n, k there is a positive number Cn,k such that for
m→∞

µn,m,k = (−1)n+k(Cn,k + o(1))|wn+k|−m, (5.13)
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moreover, for every n there is a number Cn such that for k →∞

Cn,k → Cn. (5.14)

Geometrically (see Figure (9)) Conjecture A implies that electrons correspond-
ing to eigenvalues µn′,m,k′ and µn′′,m,k′′ eventually start to “follow parallel courses”
provided that n′ + k′ = n′′ + k′′.

Figure 9: Logarithmic µ-sprectra Speclnµn,m for n = 1, 2, 3, 4

It seems that Conjecture A is independent from RH in the sense that there is
no straightforward way to deduce this conjecture from RH. On the other hand,
the conjecture allows one to give one more reformulation of RH and to put forth
a conjecture stronger than RH.

Namely, according to Conjecture A for every k > 1 the electron corresponding
to µn,m,k has its “elder brother” µn+1,m,k−1 moving with the same speed, but µn,m,1
has only “younger brothers”. This suggests rewriting (4.11) as

1

m

m∑
k=1

ln |µn+1,m,k| −
1

m

m+1∑
k=1

ln |µn,m+1,k| → − ln(|wn+1|) (5.15)

(replacing m by m+ 1 is justified by the inductive hypothesis according to which
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there exists a finite limiting value in (4.10)). Now we have:

1

m

m∑
k=1

ln |µn+1,m,k| −
1

m

m+1∑
k=1

ln |µn,m+1,k| = (5.16)

− ln |µn,m+1,1|
m

+
1

m

m∑
k=1

(ln |µn+1,m,k| − ln |µn,m+1,k+1|) (5.17)

and Conjecture A tells us that already the first summand in (5.17) accounts for
the limiting values in (5.15). In other words, Conjecture A implies that RH is
equivalent to

m∑
k=1

(ln |µn+1,m,k| − ln |µn,m+1,k+1|) = o(m). (5.18)

Figure 10: The left-hand side of (5.18) for n = 1, 2, 3, 4

Visually (see Figure 9) values of ln |µn+1,m,k| and ln |µn,m+1,k+1|) are indeed
very close, Figure 10 exhibits the left-hand side of (5.18) for n = 1, . . . , 4 and
m = 10, . . . , 256, and suggests
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Conjecture B. For every n there exists a number Dn such that for m→∞
m∑
k=1

(ln |µn+1,m,k| − ln |µn,m+1,k+1|)→ Dn. (5.19)

Clearly, Conjectures A and B, taken together, imply RH.
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