
 

 

 

ПРЕПРИНТЫ ПОМИ РАН 

 

 

ГЛАВНЫЙ РЕДАКТОР 

С.В. Кисляков 

 

 

 

РЕДКОЛЛЕГИЯ 

В.М.Бабич, Н.А.Вавилов, А.М.Вершик, М.А.Всемирнов, А.И.Генералов, И.А.Ибрагимов, 

Л.Ю.Колотилина, Б.Б.Лурье, Ю.В.Матиясевич, Н.Ю.Нецветаев, С.И.Репин, Г.А.Серегин  

 

 

Учредитель: Федеральное государственное бюджетное учреждение науки 

Санкт-Петербургское отделение Математического института 

им. В. А.  Стеклова Российской академии наук 

 

Свидетельство о регистрации средства массовой информации: ЭЛ №ФС 77-33560 от 16 

октября 2008 г. Выдано Федеральной службой по надзору в сфере связи и массовых 

коммуникаций 

 

 

Контактные данные: 191023, г. Санкт-Петербург, наб. реки Фонтанки, дом 27 

телефоны:(812)312-40-58; (812) 571-57-54 

e-mail: admin@pdmi.ras.ru 

http://www. pdmi.ras.ru /preprint/ 

Заведующая информационно-издательским сектором Симонова В.Н 

mailto:admin@pdmi.ras.ru


PDMI PREPRINT � 01/2014

Lower Bounds for DPLL algorithms with

splitting over linear functions 1

Dmitry Sokolov

St. Petersburg Department of V.A. Steklov Institute of Mathematics
of Russian Academy of Sceinces
E-mail: sokolov.dmt@gmail.com

10 January, 2014

Abstract

A typical DPLL algorithm for the Boolean satisfiability problem splits the
input problem into two by assigning the two possible values to a variable; then it
simplifies the resulting two formulas. There are more complicated forms of splitting
(for example, splitting by a clause), but they are usually reducible to splitting over
a single variable. DPLL algorithms form the base of most modern SAT solvers,
and there is a significant interest in exponential lower bounds for them (see, e.g.,
[AHI05]).

In this paper we consider an extension of the DPLL paradigm. Our algorithms,
DPLLlin, can split over arbitrary linear function modulo two. These algorithms
quickly solve formulas that encode linear systems modulo two, which were used for
proving exponential lower bounds for conventional DPLL algorithms.

We prove exponential lower bounds on the running time of DPLLlin algorithms.
Moreover, we extend the concept of these algorithms to two newly constructed proof
systems Reslin and Semlin and prove exponential lower bounds on the size of tree-
like proofs in these systems.

1The work is partially supported by Russian Foundation for Basic Research (grant
mol a 12-01-31239), president grant MK-2813.2014.1 and the European Community’s
Seventh Framework Programme [FP7/2007-2013] under grant agreement nb.238381.



ÏÐÅÏÐÈÍÒÛ
Ñàíêò-Ïåòåðáóðãñêîãî îòäåëåíèÿ

Ìàòåìàòè÷åñêîãî èíñòèòóòà èì. Â. À. Ñòåêëîâà
Ðîññèéñêîé àêàäåìèè íàóê

PREPRINTS
of the St. Petersburg Department of Steklov Institute of Mathematics

ÃËÀÂÍÛÉ ÐÅÄÀÊÒÎÐ
Ñ. Â. Êèñëÿêîâ

ÐÅÄÊÎËËÅÃÈß
Â. Ì. Áàáè÷, Í. À. Âàâèëîâ, À. Ì. Âåðøèê, Ì. À. Âñåìèðíîâ, À. È. Ãåíåðàëîâ,
È. À. Èáðàãèìîâ, Ë. Þ. Êîëîòèëèíà, Ã. Â. Êóçüìèíà, Ï. Ï. Êóëèø, Á. Á. Ëóðüå,
Þ. Â. Ìàòèÿñåâè÷, Í. Þ. Íåöâåòàåâ, Ñ. È. Ðåïèí, Ã. À. Ñåðåãèí, Â. Í. Ñóäàêîâ,

Î. Ì. Ôîìåíêî



1 Introduction

DPLL (named after Davis, Putnam, Logemann and Loveland) algorithms are one of the
most popular approaches to the problem of satisfiability of Boolean formulas (SAT). A
typical DPLL algorithm is a recursive algorithm that takes the input formula φ, uses a
procedure A to choose a variable x, uses a procedure B that chooses the value a ∈ {0, 1}
that will be investigated first, and makes two recursive calls for the formulas φ[x := a] the
φ[x := 1− a]. Note that the second call is not necessary if the first one find the formula
to be satisfiable.

There is a number of works concerning lower bounds for DPLL algorithms: for unsat-
isfiable formulas exponential lower bounds follow from lower bounds on the complexity
of resolution proofs [Urq87], [Tse68]. We have no hope to prove superpolynomial lower
bound for satisfiable formulas: if P = NP, the procedure B may always choose the correct
value of the variable according to some satisfying assignment. The paper [AHI05] gives
exponential lower bounds for two wide enough classes of DPLL algorithms: myopic and
drunken algorithms. In the myopic case the procedures A and B can see formula with
erased signs of negation, they can query the number of positive and negative occurrences
for every variable and also can read K = n1−ε clauses with negations. Drunken algorithms
may have an arbitrary procedure A, while the procedure B chooses the value uniformly
at random.

The paper [IS11] extends the class of DPLL algorithms by adding the procedure C
that may decide that some branch of the splitting tree will be cut (not investigated) since
it is not too “perspective”. More precisely, before each recursive call such an algorithm
calls the procedure C that decides whether to make this recursive call or not. DPLL
algorithms with cut heuristic always give a correct answer on unsatisfiable formulas; how-
ever they may err on satisfiable formulas. On the other hand, if the presence of a cut
heuristic gives a substantial improvement on the time complexity and difficult instances
(i.e. instances on which the algorithm errs) are not easy to find, then such algorithms
become reasonable. The paper [IS11] also proves exponential lower bounds for DPLL
algorithms with cut heuristic. Similarly to classical DPLL algorithms the hard examples
here are Tseitin formulas encoding linear systems modulo two. However, Gaussian elimi-
nation easily solves these formulas. In this work we extend DPLL algorithms in order to
solve linear systems modulo two by allowing to split over linear functions. We call this
class of algorithms DPLLlin.

Despite the fact that Tseitin formulas are easy for DPLLlin algorithms, we are still
able to prove exponential lower bounds. We suggest a proof system Reslin and its ex-
tension Semlin such that a fast DPLLlin algorithm for specific unsatisfiable formulas φn
can be transformed into short proofs in tree-like Reslin (and also Semlin). We prove ex-
ponential lower bounds for these systems. Our proof is based on ideas from [BPS07]. We
reduce the problem to proving lower bounds on communication complexity of function
Searchφ(x, y) where φ is an unsatisfiable formula and Searchφ(x, y) is a function, which
returns number of clause which is unsatisfied by the substitution (x, y).

Open question. The following questions are still open:

� lower bounds on the dag-like version of proof systems Reslin and Semlin;

3



� lower or upper bounds on the running time of DPLLlin algorithms for other for-
mulas which are hard for classical DPLL algorithms (for example, the pigeonhole
principle);

� lower bounds for satisfiable formulas for some bound on procedures.

2 Splitting algorithms

Let us define a linear DPLL algorithm. (We denote this class of algorithms by DPLLlin.)
Such an algorithm receives a Boolean formula φ(x1, x2, . . . , xn) and an affine subspace
L ⊆ {0, 1}n and attempts to find a satisfying assignment for φ. We assume that the
affine subspace is represented as a linear system over F2.

A DPLLlin algorithm has two procedures:

� A is a procedure that takes a formula and an affine subspace and returns a linear
function over F2 (this is the linear function for splitting).

� B is a procedure that takes a formula, an affine subspace L and a linear function
h and returns an affine subspace that will be investigated first (L ∩ (h(x) = 0) or
L ∩ (h(x) = 1)).

DPLLlin is a recursive algorithm:

Algorithm 2.1. Input: formula in CNF φ(x1, x2, . . . , xn) and affine subspace L ⊆
{0, 1}n.

1. If there exists a clause that cannot be satisfied in subspace L, then return “unsat-
isfiable”.

2. If L contains a single point, then return this point as a satisfying assignment for
formula φ.

3. Choose a function for splitting h := A(φ, L).

4. Choose the first value c := B(φ, L, h).

5. Make a recursive call with input (φ, L∩(h = c)). If the result is an assignment, then
return it; otherwise return the result of a new recursive call with input (φ, L∩ (h =
1− c)).

Note that such an algorithm creates a tree of recursive calls. We label its internal
nodes with functions used for splitting; the values are placed on the edges; the number
of unsatisfied clauses (or the satisfying assignment) is placed on the leaves.

Lemma 2.1. Φ is a boolean formula in CNF with n variables of size m. We can perform
the second step of algorithm 2.1 in time p(n,m) for a fixed polynomial p.

4



Proof. There are m clauses, so we can check the compatibility of subspace L and clauses
one by one.

Let us consider a clause y1∨y2∨· · ·∨yk, where yi are literals. We can satisfy this clause
if and only if we can satisfy one literal. k ≤ n, so we can consider literals separately. We
can satisfy literal yk if and only if the equation (yk = 1) has a solution in space L (that is,
the system (yk = 1)∩L has a solution in {0, 1}n), and we can check it by using Gaussian
elimination.

3 DPLLlin Algorithms and Linear Systems

We now show that DPLLlin algorithms easily solve linear system over F2, both satisfiable
and unsatisfiable ones.

We start with the following simple fact.

Proposition 3.1. If h(x) is a linear function then we need at least 2d−1 clauses to encode
it as CNF formula, where d is a number of significant variables of h.

Proof. Let X is a set of significant variables of function h and formula φ encodes this
function. Each clause must contain all variables from set X, if not, we can set literals
of this clause to zero and it implies that we set the value of formula to zero. But we
substitute not all variables, so the value of formula is not a constant, contradiction.

Let us consider the substitutions which set a value of function h to 0. The number of
such substitutions equals to 2d−1. We match each of these substitutions to clause which
turns to zero by this substitution (we always can find such clause, otherwise there is a
substitution which turns formula to 1 and function to 0). If formula contains at most
2d−1 − 1 clauses then for two substitutions we match one clause. This substitutions are
different, so there is a variable which equals to 1 in one of substitution and equals to 0
in another substitution, thus the clause doesn’t contain this variable, because it turns to
zero with both substitutions, contradiction.

Lemma 3.1. If φ is a formula in CNF of size m which encodes a system of linear equations
h1(x) = c1, h2(x) = c2, . . . hk(x) = ck over field F2, where hi are linear functions then there
exist DPLLlin algorithms, such that running time of this algorithm on formula φ equals
to O(k +m+ n).

Proof. We describe both procedures A and B. Without loss of generality we assume that
procedures know the system of linear equations.

Procedure A(φ, L):

1. if there exists i, such that L∩{x | hi(x) = ci} = ∅ and algorithm splits over equation
hi then return a significant variable of function hi, such that algorithm hasn’t split
over this variable yet (if there are more than one such i choose the maximal one);

2. if there exists i, such that L∩{x | hi(x) = ci} 6= L then return hi (if there are more
than one such i then choose minimal one);

3. return an arbitrary linear function f such that, L ∩ {x | f(x) = 0} 6= L and
L ∩ {x | f(x) = 0} 6= ∅.

5



Procedure B is an arbitrary.

We now prove that this algorithm finishes after O(k +m+ n) steps. Let m =
k∑
i=1

mi,

where mi is number of clauses which encodes an equation hi.
If procedure A uses rule 3 then all points from current affine subspace satisfy all

equation (otherwise procedure can use rule 2), so in this case we can find satisfying
assignment in at most n steps (because dimension of our space is at most n).

Thus procedure A chooses equations from our system one by one. If we substitute to
i-th equation the value 1 − ci then procedure can use rule 1, and it chooses significant
variables of this equation, because L ∩ {x | hi(x) = ci} = ∅, and for all j > i algorithm
does not split over function hj. Hence algorithm can understand that there is no satisfying
assignment in this branch in 2di steps, which is at most 2mi by proposition 3.1. Thus
during wrong assignments to concrete equations, algorithm makes at most 2m steps.

If we substitute the value ci to i-th equation, but procedure can use rule 1 then
formula is unsatisfiable (because currently we substitute only correct values to equations).
If procedure starts to use rule 1 for some equation j then in 2dk steps algorithm either
understands that formula is unsatisfiable or procedure A starts to use rule 1 for equation

with number greater than j, thus algorithm finishes in at most
k∑
j=1

2dj =
k∑
i=j

2mj = 2m

steps.

4 Proof Systems

4.1 Searchφ

Let φ is an unsatisfiable formula in CNF. We define a function Searchφ : {0, 1}n →
{1, 2, . . . ,m}, where m is a number of clauses in formula φ. This function takes a variables
substitution and returns a number of clause, which is unsatisfied by this substitution.

Definition 4.1. Decision tree for function f : {0, 1}n → {0, 1} is a binary rooted tree.
Every inner node is marked by some function of input variables and every leaf is marked
by 0 or 1. Edges are marked by 0 or 1 and every inner node has one son with edge 0 and
another with edge 1.

Calculation of function f(x1, . . . , xn) is started in root of tree. When we come to inner
node, we calculate the function which is written in this node and move to corresponding
subtree. When we come to leaf, we return the value which is written in it.

We will observe decision trees for function Searchφ such that, inner nodes are marked
by linear functions. Further we will observe only such trees.

Lemma 4.1. If there exists a DPLLlin algorithm which works t steps on formula φ then
there exists decision tree for function Searchφ of size at most t.

Proof. The tree of recursion calls of DPLLlin algorithm is a correct decision tree for
function Searchφ.

6



4.2 Proof Systems Reslin and Semlin

Let us define the proof systems Reslin and Semlin. At first we define a notion of linear
clause and semantic implication.

Definition 4.2. Linear clause is a clause of the following form: (h1(x) = c1 ∨ h2(x) =
c2 ∨ . . . hk(x) = ck), where hi is a linear function over F2 and ci ∈ {0, 1}.

As a negation of linear equation h(x) = c we will understand an equation h(x) = 1−c.
There is a natural correspondence between clauses of boolean formula and linear clauses:
(xc11 ∨ xc22 ∨ · · · ∨ x

ck
k ) ⇒ ((x1 = c1) ∨ (x2 = c2) ∨ · · · ∨ xk = ck), where x1 = x, x0 = ¬x.

We will call a linear clause as a clause, and respectively, instead of using clauses from
boolean formulas we will use its’ linear analogies.

Definition 4.3. Clause C is semantically implied by clauses C1, C2, . . . , Ck, that means

that this formula is a tautology (
k∧
i=1

Ci(x))→ C(x)

Proposition 4.1. We can check in polynomial time if C is a semantically implied by
clauses C1, C2, . . . , Ck for fixed constant k.

Proof. Let C = (h1(x) = c1 ∨ h2(x) = c2 ∨ . . . hl(x) = cl). C is not semantically implied
by clauses C1, C2, . . . , Ck if and only if for all i ∈ {1, . . . , k} exists variables substitution
a, such that Ci(a) = 1 and C(a) = 0.

Let us pick one equation from each clause Ci (there are at most mk possibilities to do
it, where m is a maximal size of clause), so we obtain a linear system L. And now we try
to solve a linear system L ∩ (h1(x) = c1) ∩ (h2(x) = c2) ∩ · · · ∩ (hl(x) = cl). If C is not
semantically implied by other clauses then this system has solution. We can check it by
using the Gaussian elimination.

Finally we use Gaussian elimination for all possibilities of creation system L.

Definition 4.4. Proof in system Reslin is a sequence of clauses C1, . . . , Ck, where Ck = ∅
and Ci is created by one of following rules:

� Ci is a clause of formula;

� Ci is semantically implied by one of previous clause (analogue of weakening rule in
classical resolution);

� Ci is a resolvent of two previous clauses, that means there exists j, l < i such that
Cj(x) = (h1(x) = c1∨h2(x) = c2∨ . . . hs(x) = cs), Cj(x) = (h1(x) = 1−c1∨g2(x) =
d2∨. . . gm(x) = dm) and Ci = (h2(x)∨h3(x)∨· · ·∨hs(x)∨g2(x)∨g3(x)∨· · ·∨gm(x)).

Proof system Semlin is a generalization of proof system Reslin.

Definition 4.5. Proof in system Semlin is a sequence of clauses C1, . . . , Ck, where Ck = ∅
and Ci is created by one of following rules:

� Ci is a clause of formula;

� Ci is semantically implied by two previous clauses.

7



Note that every proof in system Reslin is a proof in system Semlin.

Proposition 4.2. Boolean formula has a proof in Reslin if and only if this formula is
unsatisfiable.

Proof. Note that the proof in resolution proof system is a proof in system Reslin (it’s
enough to use a correspondence between boolean and linear clauses). Respectively all
unsatisfiable formulas have a proof in system Reslin.

Only unsatisfiable formulas have a proof in system Reslin, because each clause is a
clause of formula or it’s semantically implied by some previous clauses.

Proposition 4.3. Boolean formula has a proof in Semlin if and only if this formula is
unsatisfiable.

Proof. It is a corollary from 4.2, because every proof in system Reslin is a proof in system
Semlin.

We define a tree-like version of these systems.

Definition 4.6. Tree-like proof in system Reslin (Semlin) is a correct proof, where each
clause is used at most once in a creation of next clauses.

5 Lower bounds on DPLLlin algorithms

We will stick the to the following plan:

1. If running time of DPLLlin algorithm on unsatisfied boolean formula φ is at most
s then we prove that there exists a tree-like prove of formula φ in system Reslin of
size at most 2s.

2. If there exists a proof in tree-like proof system Reslin (Semlin) of formula φ of
size s then we create a communication protocol with depth O(log(log(s)) log(s)) to
function Searchφ.

3. We create a formula φ0 for which lower bound on communication complexity on
task Searchφ0 is known.

5.1 The connection between DPLLlin algorithms and proof sys-
tems Reslin and Semlin

Lemma 5.1. If the running time of DPLLlin algorithm equals to S then there exists a
proof in tree-like Reslin system of the size at most 2S.

Proof. Let us observe the recursive calls tree of DPLLlin algorithm. We correspond to
each node v of this tree a clause cv which contains a disjunction of negation of substitutions
from path which connects root of tree and node v. Each substitution is a linear equation
(thus a negation too), so cv is a correct linear clause.

Let us observe a node v which is not a leaf and it’s children v1, v2. If the function hv
is a splitting function in vertex v then without loss of generality cv1 = (cv ∨ (hv = 0)) and

8



cv2 = (cv ∨ (hv = 1)), thus cv can be obtained from clauses cv1 and cv2 by using resolution
rule. Also note that clause which corresponds to root, is empty, thus we obtain a correct
proof from clauses which are corresponded to leafs, and the size of this proof equals to S.

To finish this proof we need to obtain the clauses which are corresponded to leafs
from clauses of formula. We prove that every clause in leafs can be obtained by using
one weakening rule from clause of formula.

Let us observe a leaf l. It’s a leaf thus there exists a clause of formula C which is
incompatible with substitution from root to leaf l. So negation of clause cl is semantically
implied by clause C.

This we can obtain all clauses from leafs by using at most S weakening rule.

5.2 Communication complexity

Let us consider the second part of our plan. We need to create a communication protocol
([KN97]) for function Searchφ by using proof of formula φ in Semlin proof system (we
also can use a proof in Reslin proof system).

Let Alice and Bob want to solve a problem Searchφ for some boolean formula φ(X, Y ).
Alice knows values of variables in X and Bob knows values of variables in Y .

We denote by Rpub
ε (f(X, Y )) a minimal number of bits which Alice and Bob need to

communicate to calculate a value of function f with probability at least 1− ε. They use
common random bits (Alice knows values of X and Bob knows values of Y ), ([KN97], ch.
3).

Lemma 5.2. For all ε = ε(n) and all linear clause c(x1, . . . , xn, y1, . . . , yn). Rpub
ε (c) ≤

O(log(1
ε
)).

Proof. Let c = (h1(x, y) = c1∨h2(x, y) = c2∨ · · · ∨hk(x, y) = ck). Let us describe Alice’s
and Bob’s strategies.

1. Choose a random subset of linear equations I from clause c.

2. Bob sends to Alice a bit v =
∑
i∈I
hi(0, y).

3. Alice calculates a bit v′ =
∑
i∈I
hi(x, 0) + v.

4. If v′ =
∑
i∈I

(ci + 1) then the answer is 0 else answer is 1.

5. Alice sends the answer to Bob.

Communication complexity of this protocol equals to 2. Let us prove that if answer
is 0 then protocol always returns 0, in the other case protocol returns 1 with probability
1
2
.

We observe a bit v′. v′ =
∑
i∈I
hi(x, 0) + v =

∑
i∈I
hi(x, 0) +

∑
i∈I
hi(0, y) =

∑
i∈I
hi(x, y). If

all equations in clause are false then hi(x, y) = ci + 1, hence v′ =
∑
i∈I

(ci + 1), hence in

this case protocol is correct. If subset A of equations is true then with probability 1
2

the

9



following equality is true |I ∩ A| = 1 mod 2. Thus with probability 1
2

next equality is
true: v′ =

∑
i∈I
hi(x, y) =

∑
i∈I∩A

ci(x, y) +
∑
i∈I\A

(ci(x, y) + 1) 6=
∑
i∈I

(ci + 1).

To obtain the error at most ε it is enough to repeat this protocol O(log(1
ε
)) times.

We need the following lemma to create the protocol.

Lemma 5.3. If T is a tree and each node has at most two children then there exists a
node v0 ∈ T , such that the size of subtree with root v0 is at least 1

3
and at most 2

3
of

number of nodes in T .

Proof. Let us denote by s the size of tree T and by Tv a subtree with root v. We describe
an algorithm to find a vertex v0.

Input: a node v and a tree T of size s.

1. If the size of Tv is at least 1
3
s and at most 2

3
s then return a node v.

2. Choose a child v1 of the node v such that subtree of this child is maximal.

3. Recursive call with input (v1, T ).

We run this algorithm for tree T and the root of tree T .
If v is in T and the size of Tv is at least 2

3
s then the size of Tv1 is at least 1

3
s. Thus

algorithm either stops and return a correct vertex or the size of current subtree is always
bigger than 2

3
s but after at most s step we come to a leaf where this size is equals to

1.

Lemma 5.4. If there exists a tree-like proof of formula φ in Semlin proof system then
∀ε > 0 Rpub

ε (Searchφ) ≤ O((log(1
ε
) + log log(S)) log(S)).

Proof. We denote by T a tree, by |T | the size of tree T and by Tv a subtree with root
v. vmid is a node such that 1

3
|T | ≤ |Tvmid

| ≤ 2
3
|T | (if the tree T is a binary tree then this

node always exists by lemma 5.3). We correspond to each node v the clause cv.
Let’s describe Alice’s and Bob’s strategies. Protocol will be recursive. Alice has values

for the variables in set X and Bob has values for the variables in set X. T is a subtree of
proof in tree-like Semlin proof system. Some branches can be removed from subtree T .

1. If T contains only one node then return clause which corresponds to this node.

2. Find a node vmid in tree T .

3. Use a lemma 5.2 to calculate the value of clause cvmid
with probability ε

log 3
2
(S)

.

4. If clause is true then make a recursive call with input (X, Y, T \ Tvmid
).

5. If clause is true then make a recursive call with input (X, Y, Tvmid
).

At first we observe a communication complexity of this protocol. Bits are transmitted
only on step 3 and the number of bits is at most log(1

ε
) + log log(S) by lemma 5.2. At

each recursive call the the size of tree is divided by at least 3
2

(by choosing a node vmid),

10



thus there are O(log(S)) recursive steps, thus communication complexity of this protocol
equals to O((log(ε) + log log(S)) log(S)).

Now we observe an error probability. Let’s assume that step 3 of our protocol is
always correct. Note that we have invariant: root of current tree contains a clause which
is not satisfied by Alice’s and Bob’s values (at first we run a protocol for whole tree which
has an empty clause in the root). Thus protocol always returns an unsatisfied clause and
we need to show that this clause is contained in our formula.

If our protocol returns clause cv which is not contained in formula (not in the leaf of
our tree) then both children were cut on step 4, thus clauses in children are satisfied by
substitution. Clause cv is semantically implied by the children, thus cv must be satisfied,
contradiction.

The probability of error on step 3 is at most probability from lemma 5.2 multiply by
number of recursive calls, thus this probability is at most ε

2 log 3
2
(S)

log 3
2
(S) ≤ ε.

5.3 Lower bounds on communication protocol

Definition 5.1. Tseitin formula is based on a simple connected undirected graph G =
(V,E) with degree bounded by a constant d. Every edge e ∈ E has the corresponding
propositional variable xe, every vertex v ∈ V has the corresponding constant cv ∈ {0, 1}.
For every vertex we write a formula in CNF that codes an equality

∑
u,(v,u)∈E

x(v,u) = cv.

We denote this formulas as a TS(G,c)(x).

We now modify the Tseitin formulas. k-fold Tseitin formulas ([BPS07]) are based on
Tseitin formulas. We receive a Tseitin formula TS(G,c) and change each variable xi to the
following formula (zi1 ∧ zi2 ∧ · · · ∧ zik), after we translate resulting formula to CNF and
we receive formula TSk(G,c)(z).

Note that if the degree of graph G is bounded then for every natural constant k the
size of TSk(G,c) is bounded by some polynomial in number of vertexes in G.

We observe the 2-fold Tseitin formulas and we assume that Alice has values for vari-
ables zi1 and Bob has values for variables zi2.

Theorem 5.1. There exists an explicit family of graphs Gn and vectors cn such that

Rpub
1
3

(SearchTS2
(G,c)

) = Ω( n
1
3

(log(n) log log(n))2
).

We will use a results of work [BPS07] to prove this theorem. The main idea is to
reduce the problem DISJn,k to our problem with k = 2.

Definition 5.2. Let A,B ⊆ {1, . . . , n} then DISJn,2(A,B) = 1⇔ A ∩B = ∅.

Theorem 5.2. ([BPS07] ch. 5) Let m = n
1
3

log(n)
then for every n there exists a vector

c ∈ {0, 1}n and an explicit graph G with n vertexes such that
Rpub
ε (DISJm,2) = O(Rpub

ε (SearchTS(G,c)
) log(n)(log log(n))2).

Lemma 5.5. ([KS92]) Rpub
1
3

(DISJn,2) = Ω(n).

We are ready to prove Theorem 5.1.

11



Proof. (Theorem 5.1)

Let m = n
1
3

log(n)
. By lemma 5.5, Rpub

ε (DISJm,2) = Ω(m) thus by Theorem 5.2 there

exists G, c such that Rpub
1
3

(SearchTS2
(G,c)

) = Ω( n
1
3

(log(n) log log(n))2
)

5.4 Lower Bounds on Semlin and Reslin

Theorem 5.3. There exists an explicit family of graphs Gn with n vertexes and vectors
cn such that, the size of proof of formula TS2

(Gn,cn)
in tree-like proof systems Semlin and

Reslin equals to Ω(2n
1
3 / log3(n)).

Proof. Let us use a family from Theorem 5.1.

Rpub
1
3

(TS2
(G,c)) = Ω( n

1
3

(log(n) log log(n))2
), but by lemma 5.4

Rpub
ε (Searchφ) ≤ O((log(ε) + log log(S)) log(S)) where S is the proof size thus

log log(S) log(S) = Ω( n
1
3

(log(n) log log(n))2
) thus S = Ω(2n

1
3 / log3(n))

Corollary 5.1. There exists an explicit family of graphs Gn with n vertexes and vectors
cn such that, the running time of each DPLLlin algorithm on formulas from family

TS2
(Gn,cn)

equals to Ω(2n
1
3 / log3(n)).

Proof. It is a corollary from Theorem 5.3 and lemma 5.1.

Acknowledgements. The author is grateful to Jan Kraj́ıček, to Dmitry Itsykson and
to Edward A. Hirsch for fruitful discussions and error correction.

References

[AHI05] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential
lower bounds for the running time of DPLL algorithms on satisfiable formulas.
J. Autom. Reason., 35(1-3):51–72, 2005.

[BPS07] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for lovász-
schrijver systems and beyond follow from multiparty communication complexity.
SIAM Journal on Computing, 37(3):845–869, 2007.

[IS11] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for myopic DPLL algo-
rithms with a cut heuristic. In Proceedings of the 22nd international conference
on Algorithms and Computation, ISAAC’11, pages 464–473, Berlin, Heidelberg,
2011. Springer-Verlag.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge
University Press, New York, NY, USA, 1997.

[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic communication
complexity of set intersection. SIAM J. Discret. Math., 5(4):545–557, November
1992.

12



[Tse68] G. S. Tseitin. On the complexity of derivation in the propositional calculus.
Zapiski nauchnykh seminarov LOMI, 8:234–259, 1968. English translation of
this volume: Consultants Bureau, N.Y., 1970, pp. 115–125.

[Urq87] A. Urquhart. Hard examples for resolution. JACM, 34(1):209–219, 1987.

13


