
 

 

 

ПРЕПРИНТЫ ПОМИ РАН 

 

 

ГЛАВНЫЙ РЕДАКТОР 

С.В. Кисляков 

 

 

 

РЕДКОЛЛЕГИЯ 

В.М.Бабич, Н.А.Вавилов, А.М.Вершик, М.А.Всемирнов, А.И.Генералов, И.А.Ибрагимов, 

Л.Ю.Колотилина, Б.Б.Лурье, Ю.В.Матиясевич, Н.Ю.Нецветаев, С.И.Репин, Г.А.Серегин  

 

 

Учредитель: Федеральное государственное бюджетное учреждение науки 

Санкт-Петербургское отделение Математического института 

им. В. А.  Стеклова Российской академии наук 

 

Свидетельство о регистрации средства массовой информации: ЭЛ №ФС 77-33560 от 16 

октября 2008 г. Выдано Федеральной службой по надзору в сфере связи и массовых 

коммуникаций 

 

 

Контактные данные: 191023, г. Санкт-Петербург, наб. реки Фонтанки, дом 27 

телефоны:(812)312-40-58; (812) 571-57-54 

e-mail: admin@pdmi.ras.ru 

http://www. pdmi.ras.ru /preprint/ 

Заведующая информационно-издательским сектором Симонова В.Н 

mailto:admin@pdmi.ras.ru


PDMI preprint 08/2013

Scalar products of state-vectors of the
integrable models and their combinatorial

interpretation

N. M. Bogoliubov, C. Malyshev

St.-Petersburg Department of V. A. Steklov Mathematical Institute RAS

Fontanka 27, St.-Petersburg, 191023, Russia

Abstract

The representation of the Bethe wave functions of certain integrable models via
the Schur functions allows to apply the well-developed theory of the symmetric
functions to the calculation of the thermal correlation functions. The algebraic
relations arising in the calculation of the scalar products and the correlation functions
are based on the Binet-Cauchy formula adapted for the Schur functions. We provide
a combinatorial interpretation of the formula for the scalar products of the Bethe
state-vectors in terms of nests of the self-avoiding lattice paths constituting the so-
called watermelon configurations. The interpretation proposed is, in its turn, related
to the enumeration of the boxed plane partitions.
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1 Introduction
The symmetric functions, the Young diagrams, the boxed plane partitions, and the vicious
walkers [1–4] play an important role in the contemporary theoretical physics [5–9]. The
N -particle wave functions of a certain class of integrable models on a chain are expressed
in terms of Schur functions [10–16]. The Schur functions are defined by the Jacobi-Trudi
relation:

Sλ(x) ≡ Sλ(x1, x2, . . . , xN) ≡ det(xλk+N−k
j )1≤j,k≤N

VN(x)
. (1)

Here the Vandermonde determinant, VN(x) ≡ det(xN−k
j )1≤j,k≤N , is used:

VN(x) =
∏

1≤m<l≤N

(xl − xm) . (2)

Besides, λ ≡ (λ1, λ2, . . . λN) in (1) is a partition, i.e., a nonincreasing sequence of nonneg-
ative integers, M ≥ λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0, called the parts of λ. Partition λ can be
represented by Young diagram as an arrangement of squares with the coordinates (i, j)
so that 1 ≤ j ≤ λi.

For the bosonic models defined on a chain of M + 1 sites there is one-to-one corre-
spondence between a set of occupation numbers {nM , nM−1 . . . , n1, n0} and the partition
λ = (MnM , (M − 1)nM−1 , . . . , 1n1 , 0n0), where notation SnS expresses that the integer
number S appears nS times in λ. For the Heisenberg spin-1

2
chains of M + N sites the

coordinates of the spin “down” states (“particles”) constitute a strict decreasing partition
µ = (µ1, µ2, . . . , µN), where M + N − 1 ≥ µ1 > µ2 > . . . > µN ≥ 0. The parts of µ and
λ are related: µj = λj + N − j.

The Young diagram corresponding to λ is an arrangement of squares with λi squares
in the jth row [1]. The bijection between the particle coordinates encoded in λ and the
cells of the Young diagram corresponding to λ is demonstrated on Fig. 1.

0
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0 6

S

B

Figure 1: Configurations of spins and bosons on chains and the corresponding Young
diagram of the related partition λ = (5, 5, 3, 2, 2, 0).

Calculation of the correlation functions of integrable models of special type, [10–13,
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15,16], is based on the Binet-Cauchy formula adapted for the Schur functions:
∑

λ⊆MN

Sλ(x)Sλ(y) =
det(Mkj)1≤k,j≤N

VN(x)VN(y)
, (3)

where summation is over all partitions λ with at most N parts, each of which is less than
or equal to M , and VN(x) is the Vandermonde determinant (2). The entries Mkj in (3)
are:

Mkj =
1− (xkyj)

M+N

1− xkyj

. (4)

In particular, Eq. (3) is related to the calculation of the scalar products of two N -particle
Bethe state-vectors [15,16].

We shall denote the box of the size L×N × P as the set of integer lattice points:

B(L,N, P ) =
{
(i, j, k) ∈ N3

∣∣ 0 ≤ i ≤ L, 0 ≤ j ≤ N, 0 ≤ k ≤ P
}

.

We put y = q ≡ (q, q2, . . . , qN), x = q/q ≡ (1, q, . . . , qN−1) in (3) and obtain the q-
parameterized Binet-Cauchy relation,

∑

λ⊆MN

Sλ(q)Sλ(q/q) = V−1
N (q)V−1

N (q/q) det

(
1− q(M+N)(j+k−1)

1− qj+k−1

)

1≤j,k≤N

. (5)

The relation (5) is used in calculation of the amplitudes of the low temperature asymtotics
of the correlation functions in the limit when the total number of sites is large enough,
M À 1, while the number of particles N is moderate: 1 ¿ N ¿ M [15]. The framework
of Quantum Inverse Scattering Method [17,18] enabled [10] to establish the connection of
(5) with enumeration of the plane partitions in B(N, N, M). The determinant in right-
hand side of Eq. (5) was expressed as the Kuperberg determinant [19], what led to the
answer:

V−1
N (q)V−1

N (q/q) det

(
1− q(M+N)(j+k−1)

1− qj+k−1

)

1≤j,k≤N

=
N∏

k=1

N∏
j=1

1− qM+j+k−1

1− qj+k−1
. (6)

This formula is the MacMahon generating function for the boxed plane partitions [3].
As it follows from [16], the sum of the Schur functions in left-hand side of (5) may be

expressed through the q-binomial determinant :
∑

λ⊆MN

Sλ(q)Sλ(q/q) = q
NM

2
(1−M) det

([
2N + i− 1
N + j − 1

])

1≤i,j≤M

. (7)

The entries in (7) are the q-binomial coefficients, [20], defined as
[
R
r

]
≡ [R]!

[r]! [R− r]!
, (8)

where [n] is the q-number being q-analogue of a positive integer n ∈ Z+,

[n] ≡ 1− qn

1− q
,

and the q-factorial [n]! is: [n]! ≡ [1] [2] . . . [n], [0]! ≡ 1. The determinant in right-hand
side of (7) is independently calculated in [16], and the answer agrees with (5), (6).
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2 The Schur functions and the lattice paths
In this Letter we shall give the combinatorial interpretation of Eq. (5) appearing in the
integrable models of strongly correlated bosons, [10], and of free fermions, [15]. It is
well-known that a combinatorial description of the Schur functions may be given in terms
of semistandard Young tableaux. A filling of the cells of the Young diagram of λ with
positive integers n ∈ N+ is called a semistandard tableau of shape λ provided it is weakly
increasing along rows and strictly increasing along columns. The weight xT of a tableau
T is defined as

xT ≡
∏
i,j

xTij
,

where the product is over all entries Tij of the tableau T . An equivalent definition of the
Schur function is given by

Sλ(x1, x2, . . . , xm) =
∑

T

xT , (9)

where m ≥ N , and the sum is over all tableaux T of shape λ with the entries being
numbers from the set {1, 2, . . . , m}.

There is a natural way of representing each semistandard tableau of shape λ with
entries not exceeding N as a nest of self-avoiding lattice paths with prescribed start and
end points. Let Tij be an entry in ith row and jth column of the semistandard tableau T .
The ith lattice path of the nest C (counted from the top of the nest) encodes the ith row
of the tableau (i = 1, . . . , N). It goes from Ci = (N − i + 1, N − i) to (1, µi = λi + N − i)
(see Fig. 2). It makes λi steps to the north so that the step along the line xj corresponds
to the occurrences of the letter N − j + 1 in the ith row of T . The power lj of xj in the
weight of any particular nest of paths is the number of steps to north taken along the
vertical line xj. Thus, an equivalent representation of the Schur function takes the form:

Sλ(x1, x2, . . . , xN) =
∑
C

N∏
j=1

x
lj
j , (10)

where summation is over all admissible nests C. This representation of the Schur functions
is natural in the Quantum Inverse Scattering Method approach to the solution of the
models. The kth path is contained in a rectangle of the size λk × (N − k), k = 1, . . . , N .
The starting point of each path is the lower left vertex. We define the volume of the path
as the number of squares below it in the corresponding rectangle. The volume of the nest
of lattice paths is equal to the volume of the lattice paths:

| ζ |C =
N∑

j=1

(j − 1)lj.

Therefore, the q-parametrized Schur function is a partition function of the described nest:

Sλ(q/q) =
∑
C

q|ζ|C ,
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Figure 2: A semistandard tableau of shape λ = (5, 5, 3, 2, 2, 0) is represented as a nest of
lattice paths. Vertical steps along the line xj represent occurrences of letter N − j + 1,
N = 6, in the tableau.

where summation is over all admissible nests C. Adding the weight of partition |λ| =∑N
k=1 λk to the volume of the nest, we obtain that

| ξ |C =| λ | + | ζ |C =
N∑

j=1

j lj ,

and
Sλ(q) =

∑
C

q|ξ|C = q|λ|
∑
C

q|ζ|C = q|λ|Sλ(q/q) .

Consider a conjugated nest of self-avoiding lattice paths (see Fig. 3) from (1, µi =
λi + N − i) to Bi = (i, N + M − i). The ith path consists of M − λi steps to the north.
The representation of the Schur function corresponding to the described nest is:

Sλ(x1, x2, . . . , xN) =
∑
B

N∏
j=1

x
M−lj
j , (11)

where summation is over all admissible nests B of N self-avoiding lattice paths. The kth

path is contained in a rectangle of the size (k−1)×M , k = 1, . . . , N . The ending point of
each path is the top right vertex. The volume of the path is the number of squares below
it in the corresponding rectangle. The volume of the nest of the lattice paths is equal to
the volume of the paths:

| ζ |B =
N∑

j=1

(j − 1)(M − lj).

In the limit q → 1, the Schur function is equal to the number of nests of self-avoiding
lattice paths of the types either B or C:

Sλ(1, . . . , 1) =
∑
B

1 =
∑
C

1 .
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Figure 3: Conjugated nest of lattice paths.

The summand of the scalar product (3), being the product of two Schur functions, may be
graphically expressed as a nest of N self-avoiding lattice paths starting at the equidistant
points Ci and terminating at the equidistant points Bi (i = 1, . . . , N). This configuration,
known as watermelon, is presented on Fig. 4. The scalar product (3) is the sum of all such
watermelons. Repeating the arguments used above to derive the lattice paths volumes, it
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Figure 4: Watermelon configuration

is straightforward to find that the volume of the watermelon is equal to:

| w |=| ξ |C + | ζ |B .

The partition function of watermelons (the generating function of watermelons) is equal
to left-hand side of (5):

W(N, M) =
∑
W

q|w| =
∑

λ⊆MN

Sλ(q)Sλ(q/q) , (12)

where the sum
∑

W is taken over all watermelons with the fixed endpoints Ci, Bi, 1 ≤
i ≤ N .
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To connect watermelon with a semistandard tableaux, let us now read the watermelon
configuration with the endpoints Ci = (N − i + 1, N − i), Bi = (i, N + M − i) in the
following way. The ith path (counted from the bottom) makes λi = N steps to the east.
The power mj of zj in the weight is the number of steps to the east taken along the
horizontal line zj. The Young tableau of such configuration is rectangle of the size N×N .
The Schur function of the watermelon is:

SN(z1, z2, . . . , zN+M) =
∑
W

N+M∏
j=1

z
mj

j , (13)

where summation is over all admissible watermelons, and N is the partition (N, N, . . . , N)
of the length N , i.e., N ≡ NN in our notations. The volume of watermelon is equal to

| w |=
M+N∑
j=1

(j − 1)mj − N2(N − 1)

2
.

The partition function of watermelons is expressed through the Schur function (13):

W(N, M) = q−
N2

2
(N−1) SN(1, q2, . . . , qN+M−1) . (14)

This function is easy to calculate with the help of well known formula (see [1], Chapter
1, Example 1):

Sλ(1, q2, . . . , qm−1) = qn(λ)
∏

1≤i<j≤m

1− qλi−λj−i+j

1− qj−i
, (15)

where n(λ) =
∑

i(i− 1)λi. Moreover, if m > N , then λi = 0 for i > N . We obtain from
(15) that

W(N, M) =
N∏

i=1

N+M∏
j=N+1

1− qN−i+j

1− qj−i
. (16)

Replacing the indices j → N + j and i → N + 1− i, we put (16) into the form:

W(N, M) =
N∏

i=1

M∏
j=1

1− qN+i+j−1

1− qj+i−1
=

N∏
i=1

N∏
j=1

1− qM+i+j−1

1− qj+i−1
. (17)

Eventually, it is seen that Eqs. (12) and (17) are in agreement with Eqs. (5) and (6).
The watermelon with deviation k may be obtained by imposing the boundary condition

lN = . . . = lN−k+1 = 0 in (10). The starting points Di of the watermelon with deviation
will be shifted to the east by k steps with respect to Ci. The watermelon with deviation
is presented on Fig. 5. The boundary condition introduced is equivalent to the following
property of the Schur function. Consider a partition λ = (λ1, . . . , λN−k, λN−k+1, . . . , λN)
with the last k parts equal to zero, λN−k+1 = . . . = λN = 0. Then the limiting relation is
valid:

lim
xN→0

· · · lim
xN−k+1→0

Sλ(x1, . . . , xN−k, xN−k+1, . . . , xN) = Sλ̃(x1, . . . , xN−k) , (18)

8



С1

С2

С3

С4

С5

С6

D1

D2

D3

D4

D5

D6

y1 y2 y3 y4 y5 y6x6 x5 x4 x3 x2 x1

B1

B2

B3

B4

B5

B6

z1

z2

z11

z10

Figure 5: Watermelon with deviation k = 2. Starting points are Di, endpoints are Bi.

where the parts of λ̃ = (λ1, λ2, . . . , λN−k) satisfy M ≥ λ1 ≥ λ2 . . . λN−k ≥ 0. Taking the
limit (18) in (3), we obtain:

∑

λ̃⊆MN−k

Sλ̃(x1, . . . , xN−k)Sλ̂(y1, . . . , yN) =

(
N−k∏

l=1

x−k
l

)
det(M̃kj)1≤k,j≤N

VN−k(x)VN(y)
,

where summation is over all partitions λ̃ with at most N − k parts, each of which is less
than or equal to M . The partition λ̂ of the length N contains extra zeros λ̂N−k+1 =
λ̂N−k+2 = . . . λ̂N = 0, and the entries M̃kj are:

M̃kj = Mkj , 1 ≤ k ≤ N, 1 ≤ j ≤ N − k ,

M̃kj = yN−k
j , 1 ≤ k ≤ N, N − k + 1 ≤ j ≤ N ,

where the entries Mkj are given by (4).
The semistandard tableau corresponding to the watermelon with deviation consists of

N rows of the length L = N − k. The volume of the watermelon with deviation is

| w |=
M+N∑
j=1

(j − 1)mj − NM(M − 1)

2
. (19)

In the case of the watermelon with deviation we obtain the representation analogous to
(14):

W(N,L, M) = q−
NM(M−1)

2 SL(1, q, . . . , qN+M−1) (20)

=
∑

λ̃⊆MN−k

Sλ̃(q, . . . , qN−k)Sλ̂(1, . . . , qN−1) ,

where L = LN for the partition L. Calculating the Schur function SL with the help of
(15), we obtain:

W(N, L, M) =
N∏

i=1

N+M∏
j=N+1

1− qL−i+j

1− qj−i
=

N∏
i=1

M∏
j=1

1− qL+i+j−1

1− qj+i−1
. (21)

9



In the limit q → 0, this formula gives the number of the watermelons with deviation:

A(N, L, M) =
N∏

i=1

M∏
j=1

L + i + j − 1

j + i− 1
. (22)

The Schur function can be expressed in a polynomial form through the complete
symmetric functions, [1]: Sλ(x) = det(hλi−i+j(x))1≤i,j≤N . This expression agrees, [3],
with the definition (9). Under the q-parametrization, the complete symmetric functions
are the q-binomial coefficients (8):

hr(q/q) =

[
N + r − 1

r

]
, 1 ≤ r ≤ N. (23)

The following determinant with the q-binomial entries was calculated in [21]:

det

(
q(j−1)(λi+j−i)

[
λi + m− i

m− j

])

1≤i,j≤N

= Sλ(1, q, . . . , qm−1) , m ≥ N . (24)

Using (23) and the Pascal formula for the q-binomial coefficients,
[
R
r

]
=

[
R− 1
r − 1

]
+ qr

[
R− 1

r

]
, (25)

one can re-express left-hand side of (24) so that the following equation holds:

det
(
hλi−i+j(1, q, . . . , q

m−1)
)
1≤i,j≤N

= Sλ(1, q, . . . , qm−1) . (26)

The partition function of the watermelon with deviation given by (20) and (21) may
be rewritten with regard to the determinantal formulas (24) and (26):

W(N,L, M) = q−
NM(M−1)

2 det

(
q(j−1)(L+j−i)

[
L + M + N − i

M + N − j

])

1≤i,j≤N

(27)

= q−
NM(M−1)

2 det (hL+j−i(q/q))1≤i,j≤N . (28)

The number of the watermelons with deviation (22) is expressed:

A(N, L,M) = det

((
L + M + N − i

M + N − j

))

1≤i,j≤N

(29)

= det

((
L + M + N + j − i− 1

L + j − i

))

1≤i,j≤N

, (30)

where the determinant (29) is the binomial determinant, [22], while the coincidence of
(29) and (30) can independently be checked by means of (25) at q = 1.

In the limit q → 1, the Schur function (11) may be expressed with the help of (24):

det

((
λi + N − i

N − j

))

1≤i,j≤N

= Sλ(1, . . . , 1) =
∑
B

1 =
∑
C

1 . (31)

10



Equation (31) expresses the statement of the Gessel-Viennot theorem, [22], connecting the
binomial determinant in left-hand side of (31) with the number of nests of self-avoiding
lattice paths of the types either B or C.

There exists bijection between watermelons and plane partitions confined in a box of
finite size [23]. A plane partition is an array (πij)1≤i,j of non-negative integers that are
non-increasing as functions both of i and j [1, 3]. The integers πij are called the parts of
the plane partition, and |π| =

∑
i,j πij is its volume. Each plane partition has a three-

dimensional diagram which can be interpreted as a stack of unit cubes (three-dimensional
Young diagram). The height of stack with coordinates (i, j) is equal to πij. It is said that
the plane partition corresponds to a box B(N, L, M) provided that j ≤ N , i ≤ L and
πij ≤ M for all cubes of the Young diagram. The generating function of plane partitions

Zq(N, L, M) =
∑

B(N,L,M)

q|π| , (32)

where the sum is taken over all plane partitions contained in a box B(N,L, M).
Projection of gradient lines of plane partition (see Fig. 6) form a nest of lattice paths

that correspond to watermelons (see Fig. 4 and Fig. 5, respectively). By its construction,

{ {{M
N N { {

{M
N

L

Figure 6: Plane partitions with gradient lines embedded into a symmetric box B(N, N, M)
and into an arbitrary one B(N,L, M), obtained as a special limit of symmetric box.

the volume of watermelon (19) coincides with the volume of plane partition |π|, and thus

Zq(N, L, M) = W(N, L,M) .

3 Discussion
The algebraic relations arising in calculation of the scalar products and the correlation
functions of certain integrable models, [10,16], are based on the Binet-Cauchy formula (3)
adapted for the Schur functions. There exists an interesting combinatorial interpretation
for Eq. (5) in terms of nests of the self-avoiding lattice paths, which, in turn, are related
to enumeration of the boxed plane partitions. All these combinatorial objects arise in the
investigation of the asymptotical behavior of the thermal correlation functions [16]. In

11



the limit when the total number of sites is large enough while the occupation is moderate,
these correlation functions are related with the partition functions of the matrix models
and hopefully give evidence of a third order phase transition [24] in the integrable models
in question. Further investigations are in progress.
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