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ABSTRACT:

We deal with two dynamical systems associated with a Riemannian manifold with
boundary. The first one is a system governed by the scalar wave equation, the second
is governed by the Maxwell equations. Both of the systems are controlled from the
boundary. The inverse problem is to recover the manifold via the relevant measurements
at the boundary (inverse data).

We show that the inverse data determine a C*-algebras, whose (topologized) spectra
are identical to the manifold. By this, to recover the manifold is to determine a proper
algebra from the inverse data, find its spectrum, and provide the spectrum with a
Riemannian structure.

The paper develops an algebraic version of the boundary control method, which is
an approach to inverse problems based on their relations to control theory.

Key words: wave equation and Maxwell system on a Riemannian manifold,
reconstruction of manifolds via boundary inverse data, C*-algebras, BC-method.
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1 Introduction

About the paper

One of the basic theses of noncommutative geometry is that a topological space
can be characterized via an algebra associated with it [8], [11], [16]. In other
words, a space can be encoded into an algebra. As was recognized in [2] and
[4], such a coding is quite relevant and efficient for solving inverse problems on
manifolds. In particular, it enables one to reconstruct a Riemannian manifold via
its dynamical or spectral boundary inverse data.

Namely, it is shown that a Riemannian manifold €2 can be identified with the

o~

(topologized) spectrum 2A(2) of an appropriate Banach algebra (£2), the algebra
being determined by the inverse data up to isometric isomorphism. Therefore,
one can reconstruct €2 by the scheme:

e extract an isometric copy 2(Q) of A(Q) from the data

— o —

e find its spectrum 2A(Q) =: Q, which is homeomorphic to A(Q) by virtue of
A(Q) 2" (Q). Thus, we have Q "2 Q

e endow (2 with a proper Riemannian structure.

As a result, we get a Riemannian manifold Q isometric to the original Q by
construction. It is ), which solves the reconstruction problem.

Our paper keeps this scheme and extends it to the inverse problem of electro-
dynamics.

Content

We deal with a smooth compact Riemannian manifold 2 with boundary.

Eikonals. We introduce the eikonals, which play the role of main instrument for
reconstruction. An eikonal 7,(-) = dist (-, 0) is a distance function on 2 with the
base o C 0€2. The eikonals determine the Riemannian structure on (2.

With each eikonal one associates a self-adjoint operator 7, in Ly(€2), which
multiplies functions by 7,. Its representation via the Spectral Theorem is 7, =
Jo¥ sdXg, where XZ is the projection onto the subspace Ly (Q[0]) of functions
supported in the metric neighborhood Q*[c] C Q of ¢ of radius s.

For an oriented 3d-manifold €2, by analogy with the scalar case, we introduce

the solenoidal eikonals e, = fooo sdY?, which act in the space

C = {curlh| h,curlh € Ly(Q)}



relevant to electrodynamics. Here Y’ projects vector-fields onto the subspace of
curls supported in Q*[o].

Algebras. Eikonals {7, | o C 02} generate the Banach algebra C(Q2) of real
continuous functions. By the Gelfand theorem, its Gelfand spectrum (the set of

characters) 0/(5) is homeomorphic to €2 [13], [14].

Operator eikonals {7, | 0 C 0Q} generate an operator algebra ¥, which is
a commutative C*-subalgebra of the bounded operator algebra B(Ly(2)). The
algebras T and C(2) are isometrically isomorphic (via 7, — 7,). By this, their

spectra are homeomorphic, and we have T o () hom ).

Solenoidal eikonals generate an operator algebra &, which is a C*-subalgebra
of B(C). In contrast to T, the algebra & is noncommutative. However, the
factor-algebra ¢ = ¢/ over the ideal of compact operators Ji € € turns out to
be commutative. Moreover, one has @ 2" C(Q) that implies € hon C@ Q)
Inverse problems. Following [4], we begin with a dynamical system, which is
governed by the scalar wave equation in 2 and controlled from the boundary 02.
The input—output correspondence is realized by a response operator R, which
plays the role of inverse data. A reconstruction (inverse) problem is to recover
the manifold €2 via given R.

Solving this problem, we construct (via R) an operator algebra % isometric to

T, find its spectrum Q := % hom & hom 2, endow it with the Riemannian structure

by the use of images of eikonals, and eventually turn Q) into an isometric copy of
the original manifold 2. The copy €2 provides the solution to the reconstruction
problem.

In electrodynamics, the corresponding system is governed by the Mazwell
equations and also controlled from the boundary. The relevant response operator
R plays the role of inverse data for the reconstruction problem. To solve this
problem, we repeat all the steps of the above described procedure. The only
additional step is the factorization € — éf, which eliminates noncommutativity.

Appendix. Here the basic lemmas on the eikonals ¢, and algebra € are proven.

Comments

What is ”to recover a manifold”? Setting the goal to determine {2 from R,
one has to take into account the evident nonuniqueness of such a determination.
Indeed, if two manifolds Q2 and Q' are isometric and have the mutual boundary
02 = 0 then their boundary inverse data (in particular, the response operators)
turn out to be identical. Hence, the correspondence 2 — R in not injective and
to recover the original {2 via R is impossible.
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From the physical viewpoint, the inverse data formalize the measurements,
which the external observer implements at the boundary. The above mentioned
nonuniqueness means that the observer is not able to distinguish © from Q" in
principle. In such a situation, the only reasonable understanding of the recon-
struction problem is the following: to construct a manifold Q, which possesses
the prescribed inverse data. It is the above mentioned isometric copy (), which
satisfies this requirement: we have R = R by construction.

Remark Reconstruction via algebras is known in Noncommutative Geometry:
see [8], [11], [16]. However, there is a principle difference: in the mentioned pa-
pers the starting point for reconstruction is the so-called spectral triple { A, H, D},
which consists of a commutative algebra, a Hilbert space, and a self-adjoint
(Dirac-like) operator. So, an algebra is given.

In our case, we at first have to extract an algebra from R. Then we deal
with this algebra imposed by inverse data, whereas its "good” properties are
not guaranteed. For instance, a metric graph is a ”commutative space” but its
eikonal algebra ¥ turns out to be strongly noncommutative . The latter leads
to difficulties in reconstruction problem, which are not overcome yet.

Reconstruction via algebras in inverse problems was originated in [2] and
developed in [4]. It represents an algebraic version of the boundary control method,
which is an approach to inverse problems based on their relations to control theory
[1], [3]. We hope for further applications of this version to inverse problems of
mathematical physics.

Acknowledgements The authors thank B.A.Plamenevskii for kind and use-
ful consultations. The work is supported by the grants RFBR 11-01-00407A,
RFBR 12-01-31446, SPbGU 11.38.63.2012, 6.38.670.2013 and RF Government
grant 11.G34.31.0026.

2 Eikonals

We deal with a real smooth? compact Riemannian manifold Q with the boundary
[, g is the metric tensor, dim Q2 =n > 2.
For a set A C €2, by

O'[A] :={z € Q| dist (z,A) <1}, r>0

Ino factorization turns ¥ into a commutative algebra
Zeverywhere in the paper, ”smooth” means C°°-smooth



we denote its metric r-neighborhood. Compactness implies diam €2 :=
sup{dist (z,y) | z,y € 2} < co and

QA =Q as 7 > diam (2. (2.1)

2.1 Scalar eikonals

Let us say a subset o C I' to be reqular and write o € R(T') if o is diffeomorphic
to a "disk” {p € R | ||p|| < 1}.
By a (scalar) eikonal we name a distant function of the form

T, (x) == dist (x, 0), reQ (oeRI)).

The set o is said to be a base. Eikonals are Lipschitz functions: 7, € Lip(Q2) C
C(€2). Moreover, eikonals are smooth almost everywhere and

V1, (z) =1 a.a. r € Q (2.2)
holds. Also, note the following simple geometric facts.

Proposition 1. For any x €  there is 0 € R(I") such that 7,(x) # 0. For any
different x,x’ € Q) there is a 0 € R(L') such that 7,(x) # 7,(2") (i.e., the eikonals
distinguish points of Q). The equality o = {y € I'| 7,(y) = 0} holds.

Copy Q

As functions on €2, eikonals are determined by the Riemannian structure of €.
The converse is also true in the following sense.

Assume that we are given with a topological space Q), which is homeomorphic
to Q (with the Riemann metric topology) via a homeomorphism 7 : Q — ; let
7y i= T, o~ L. Also, assume that n is unknown but we are given with the map

R(T) 30— 7, € C(Q). (2.3)

Then one can endow ) with the Riemannian structure, which turns it into a
manifold isometric to Q. Roughly speaking, the way is the following 2.

For a fixed point p € Q one can find its neighborhood w C Q and the sets
01,y...,0, € R(T') such that the functions z! = 75, (), ..., 2" = 7,, () consti-
tute a coordinate chart ¢ : w > p — {z¥(p)}?_, € R™. The coordinates endow

3see [5] for detail



w with tangent spaces. These spaces can be provided with the metric tensor
g = 1n.g: one can determine its components ¢” from the equations

0Ty 01 (@ 0Ty 0!

37 (x) o ) i (z) =1, r € ¢p(w), o€ R(l) (2.4)

which are just (2.2) written in coordinates. Choosing here o = o;, we get g% = 1.

Choosing (a finite number of) additional sets o, we can determine the functions
8%‘:9;?_1 and then find all other components g (x) by solving the system (2.4) with
respect to them.

So, although the homeomorphism 7 is unknown, we are able to endow Q with
the metric tensor § = 7,g, which turns it into a Riemannian manifold (£, §)
isometric to (€2, g) by construction.

Moreover, there is a natural way to identify the boundaries [ = 0Q and

[' = 00). At first, we can select the boundary points in €2 by

L= |J & where 6:={3€Q|7(3) =0}
geR(T)

Then we identify I' 3 v = 4 € T if v € o implies 7 € & for all regular o containing
7. )

As a result, we get the manifold (€2, g) isometric to (€2, g), these manifolds
having the mutual boundary I'. In what follows we refer to (€2, g) as a canonical
copy of the original manifold Q (shortly: the copy Q).

The aforesaid is summarized as follows.

Proposition 2. A4 space Q0 along with the map (2.3) determine the copy Q and,
hence, determine Q0 up to isometry of Riemannian manifolds.

2.2 Operator eikonals

Introduce the space H := Lo(£2) with the inner product

(1, v = /Q w(@)o(x) da.

Let A C 2 be a measurable subset, y4( - ) its indicator (a characteristic function).
By

H(A) = {xay | y € H}
we denote the subspace of functions supported on A. The (orthogonal) projection
X4 in H onto H({A) multiplies functions by x4, i.e., cuts off functions on A.
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Let B(H) be the normed algebra of bounded operators in H. With a scalar
eikonal 7, one associates an operator 7, € B(H), which acts in H by

(7oy) () = To(z)y(z), xE€Q
and is bounded since €2 is compact. Moreover, one has

|75 || = max |7, (x)| = ||7o]|c) < diam Q. (2.5)
TEN

With a slight abuse of terms, we also call 7, an eikonal.
Each eikonal is a self-adjoint positive operator, which is represented by the
Spectral Theorem in the well-known form.

Proposition 3. The representation

Ty = / sdX} (2.6)
0
is valid, where the projections X; := Xqs(s) cut off functions on the metric neigh-

borhoods of o.

Note that the integration interval is in fact 0 < s < [|7,]|.
The eikonals corresponding to different bases do commute. This follows from
commutation of X2 and X, for all o,0’ € R(T') and s,s” > 0.

2.3 Solenoidal operator eikonals

Here we introduce an analog of 7, relevant to electrodynamics.

3d-manifold

Now, let dim 2 = 3. Also, let €2 be orientable and endowed with a volume 3-form
dv. On such a manifold, the intrinsic operations of vector analysis A (vector
product), V, div, curl, are well defined on smooth functions and vector fields
(sections of the tangent bundle TQ): see, e.g., [17].

Solenoidal spaces

The class of smooth fields ém(Q) is dense in the space H of square-summable
fields with the product

(a.b); = /Q o() - b(x) da
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where - is the inner product in T€2,. This space contains the (sub)spaces
J={yeH|divy=0inQ}, C:={curlh e H| hycurlhe H} C J

of solenoidal fields and curls. Note that the smooth classes J N C*(€2) and

C N C>®(Q) are dense in J and C respectively.
Recall the well-known decompositions

H=G,&J = G&CaD, (2.7)

where Gy := {Vq| ¢ € H}(Q)} is the space of potential fields, D := {y € J |
curlh =0, v Ay =0 on '} is a finite-dimensional subspace of harmonic Dirichlet
fields [17].

For an A C 2 we denote by

H(A) = {xay| y € H}, T(A):={ye T|suppy C A},
C(A) := {curl k| h € C>(Q), supph C A}

(the closure in 7-_2) the subspaces of fields supported in A.

Eikonals ¢,

Fix a 0 € R([') and take A = Q°[o]|. Let Y be the projection in C onto the
subspace C(Q2*[o]). Note that the action of Y, is not reduced to cutting off fields
on *[o], it acts in more complicated way (see [3], [5]).

By analogy with (2.6), define a solenoidal operator eikonal

Eo ::/ sdY}, (2.8)
0

which is an operator in C. We omit a simple proof of the following result.

Proposition 4. The eikonal €, is a bounded self-adjoint positive operator, the

equalities
(2.5) | .
leoll = Il =" lI7 (2.9)

being valid.
An important fact is that, in contrast to the cutting off projections X7, the

. . !’ . .
projections Y? and Y’ do not commute in general. As a consequence, the eikonals
gy and g, also do not commute.



Multiplying a field ~ € C by a bounded function ¢, one takes the field out of
the subspace of curls: ph € H but wh ¢ C in general. However, a map h — ¢h
is a well defined bounded operator from C to H. For instance, understanding 7,
as an operator, which multiplies vector fields by the scalar eikonal 7,, we have
7, € B(C;H).

The following result is of crucial character for future application to inverse
problems. By R(C;’H) C B(C; H) we denote the set of compact operators.

Lemma 1. For any o C I' the relation e, — 7, € R(C;’H) holds.
In the proof (see Appendix) we use the technique developed in [9].

3 Algebras

3.1 Handbook

We begin with minimal information about algebras: for detail see, e.g., [13],
[14]. The abbreviations BA and CBA mean a Banach and commutative Banach
algebra respectively.

1. A BA is a (complex or real) Banach space A equipped with the multi-
plication operation ab satisfying ||ab|| < ||a|| ||b|| a,b € A. We deal with algebras
with the unit e € A: ea = ae = a.

A BA A is called commutative if ab = ba for all a,b € A. Example: the
algebra C'(X) of continuous functions on a topological space X with the norm
|la]] = supy |a(-)|. The subalgebras of C'(X) are called function algebras.

A CBA is said to be uniform if ||a?|| = ||a]|* holds. All function algebras are
uniform.

2. Let A’ be the space of linear continuous functionals on a CBA A. A
functional § € A’ is called multiplicative if 6(ab) = 6(a)d(b). Ezample: a Dirac
measure §,, € C'(X) : 04,(a) = a(xy) (xo € X). Each multiplicative functional
is of the norm 1.

The set of multiplicative functionals endowed with x-weak topology (in A’) is
called a spectrum of A and denoted by A A spectrum is a compact Hausdorff
space.

3. The Gelfand transform acts from a CBA A to C(./T) by the rule G: a —
a(-), a(8) := 6(a), § € A. It represents A as a function algebra. The passage
from A to GA C C(A) is referred to as a geometrization of A.

Theorem 1. (I.M.Gelfand) If A is a uniform CBA, then G is an isometric
isomorphism from A onto GA, i.e., Glaa+ b+ cd) = aGa+ fGb+ GeGd and
|Gallc ) = llall.a holds for all a,b,c,d € A and numbers o, .
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4. If two CBA A and B are isometrically isomorphic (we write A o B) via
an isometry 7, then the dual isometry j* : B — A’ provides a homeomorphism
of their spectra: j*g = A Also, one has GA SO B via the map j; : Ga —
(Ga) o j*.

5. Let A(X) C C(X) be a closed function algebra. For each zy € X, the

Dirac measure d,, belongs to A(X). Therefore, the map xy +— d,, provides a

—

canonical embedding X C A(X).
If X is a compact Hausdorff space, then the Dirac measures exhaust the spec-
trum of C'(X), whereas the map zy — d,, provides a canonical homeomorphism

from X onto C'(X) (we write X ho C/()?)) Also, one has C'(X) oo GC(X).

The trick, which is used in inverse problems for reconstruction of manifolds,
is the following. Assume that we are given with an ”abstract” CBA 2, which is
known to be isometrically isomorphic to C'(X), but neither the (compact Haus-
dorff) space X nor the isometry map is given. Then, by determining the spectrum

QAl, we in fact recover the space X up to a homeomorphism: X hom & (X) hom A,
whereas C'(X) "Z" GC(X) "=" G does hold. Thus, 2 provides a homeomorphic

~

copy 2 of the space X and a concrete isometric copy C'(2) of the algebra C'(X).

6. A C*-algebra is a BA endowed with an involution (*) satisfying («wa+ b+
cd)* = aa* + Bb* + d*c¢* and ||a*a|| = ||a||? for all elements a, b, ¢, d and numbers
a, . In the real case, we have just @ = a. FEzample: the algebra B(H) of
bounded operators in a Hilbert space ‘H with the operator norm and conjugation.

7. Let Z be a norm-closed two-side ideal in a C*-algebra A. Then a ~ b &
a—b € T is an equivalence. The factor A/7 is endowed with a C*-structure via the
projection 7 : A — A/T (element a — equivalence class of a). Namely, one sets
|mal| :== inf{[|b]|4| b € wa}, ara+pfrb+rmend == 7(aa+pb+cd), (wa)* = m(a*)
for elements a, b, ¢,d € A and numbers «, 5. Thus, 7 is a homomorphism of C*-
algebras.

3.2 Algebra ¥

Now let X be our Riemannian manifold €2, which is definitely a compact Hausdorff
space. Let C'(2) be the CBA of real continuous functions on 2.

The eikonals 7, generate C'(£2) in the following sense. For a Banach algebra
A and a subset S C A, by VS we denote the minimal norm-closed subalgebra
of A, which contains S. The following fact is a straightforward consequence of
the separating properties of eikonals (Proposition 1) and the Stone-Weierstrass
theorem [14].
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Proposition 5. The equality V{7, | o0 € R(I')} = C(R2) is valid.

Recall that H = Ly(£2), B(H) is the bounded operator algebra, 7, € B(H) is
the multiplication by 7, (see sec 2.2). Introduce the (sub)algebra

T = V{7, | o e R(I')} C B(H) (3.1)

generated by scalar operator eikonals. As easily follows from (2.5) and Proposition
5, the map C(2) > 7, — 7, € T, which connects the generators, is extended to
an isometric isomorphism of CBA C(Q2) and . With regard to items 4, 5 of sec
3.1, the isometry implies

Qe o) e g (3.2)
On reconstruction

Here we prepare a fragment of the procedure, which will be used for solving
inverse problems.

Assume that we are given with a Hilbert space H = UH, where U is a unitary
operator. Also assume that we know the map

R(I) x [0,7] 3 {o,s} — X € B(H) (T > diamQ), (3.3)

where X2 := UX32U*, but the operator U : H — H is unknown *. Show that this
map determines the manifold €2 up to isometry. Indeed,

1. using the map, one can construct the operators

r r (2.6)
7 ::/ sdx;:/ sdUx:U] % vs U
0 0

2. determine the algebra € = V{7’ | o € R(I')} € B(H), which is isometric
to T C B(H) (via the unknown U)

0

3. applying the Gelfand transform to T, find its spectrum ¥ =: Q and the
functions 7, := G} on €.

o~

Since T 2" T, one has Q=3 g (see (3.2)). Hence, we get a
homeomorphic copy €2 of the original 2 along with the images 7, of the original

in other words, we are given with a representation of the projection family {X, g.}a.eR([‘) in
a space H

12



eikonals 7, on ®. Thus, we have a version of the map (2.3), which determines
the copy €2 (see Proposition 2).
Summarizing, we arrive at the following assertion.

Proposition 6. The map (3.3) determines the copy Q and, hence, determines §
up to isometry of Riemannian manifolds.

Moreover, the procedure 1.— 3. provides the copy Q.

3.3 Algebra ¢
Recall that the eikonals &, are introduced on a 3d-manifold Q by (2.8).
An operator (sub)algebra
¢ = V{e, | c e R(I')} C B(C) (3.4)

is a "solenoidal” analog of the algebra ¥ defined by (3.1). It is a real algebra
generated by self-adjoint operators. As such, & is a C*-algebra. In contrast to ¥,
the algebra € is not commutative (see the remark below Proposition 4). However,
this non-commutativity is weak in the following sense.

Let 8 C B(C) be the ideal of compact operators. Denote K[€] := 8N & and
¢ = ¢/R[¢]; let 7 : B(C) — B(C)/A be the canonical projection. By (3.4), the
latter factor-algebra is generated by the equivalence classes of eikonals:

¢ = V{ne,| o € R(I)}.
Recall that the eikonals 7, generate the algebra C(2): see Proposition 5.
Theorem 2. & is a commutative C*-algebra. The map
C(Q) 37, = e, € € (0 e R(I")),

which relates the generators, can be extended to an isometric isomorphism from
C(2) onto €.
Proof. Define a map

7:C(Q) —B(C)/R

in the following way. Let Y be the projection on C acting in H. With a function
f € C(Q) we associate an operator Y[f] € B(C) acting by

Y[fly=Y(fy), yeC.

} by construction, 7, turns out to be a pull-back function of 7, via the homeomorphism
Q-0

13



Now, define
w(f) == (Y[f])
For f € C(2) we denote by f the operator in H, which multiplies fields by f.
The following two Lemmas are proved in Appendix.

Lemma 2. For any f € C(2) we have
f=Y[/] € &(C;H).
Lemma 3. The mapping 7 is an injective homomorphism of C*-algebras.

To prove Theorem 2 it suffices to show that the map 7 is an extension of the
map 7, — me,. Toward this end, let us show that ¢, — Y[r,] € & Indeed, we
have

e — Y1, =6, — Ty + 75 — Y[1,]
and, due to Lemmas 1 and 2, there is a sum of two compact operators from
R(C;’H) in the right hand side. Now Theorem 2 follows from Lemma 3 and the
fact that algebra ¢ is generated by elements 7e,. O

With regard to items 4, 5 of sec 3.1, the relation C(Q2) oM @& egtablished by
Theorem 2 implies

Q" o) e e (3.5)

Remark Examples, in which factorization eliminates noncommutativity, are well
known. For instance, let X be a compact smooth manifold (without boundary)
and let A C B(Ly(X)) be a C*-algebra generated by a certain class of pseudo-
differential operators of order 0. Then the factor-algebra /£ is commutative
and isomorphic to the algebra of continuous functions on the cosphere bundle of
X (see [15]).

On reconstruction

Here we provide an analog of the procedure described in sec 3.2. This analog is
relevant to inverse problems of electrodynamics. Recall that Y’ is the projection
in C onto the subspace C(Q2*[0]).

Assume that we are given with a Hilbert space C = UC, where U is a unitary
operator. Also assume that we know the map

R(I) x [0,7] 3 {o,s} — Y € B(C) (' > diam (), (3.6)
where Y := UYU*, but the operator U : C — C is unknown. Show that this

map determines the manifold €2 up to isometry. Indeed,

14



1. using the map, one can construct the operators

T T (28)
o ::/ de;:/ sdUY;U" "= Ue,U"
0 0

2. determine the algebra ¢ = V{e/ | 0 € R(I')} C B(C), which is isometric
to € C B(C) (via unknown U)

3. construct the factor-algebra € := &' /R[] over the compact operator ideal
in ¢. By construction, one has & =" ¢/&[¢] =: &.

4. applying the Gelfand transform to ¢, find its spectrum ¢ =: Q and the
functions 7, := G're), on (2.

Since @ "2 éi, one has
6o gim e g
(see (3.5)). So, we get a homeomorphic copy € of the original Q along with the
images 7, of the original eikonals 7, on 2. Thus, we have a version of the map
(2.3). This map determines the Riemannian structure on €2, which turns it into

an isometric copy of Q (see Proposition 2).
Summarizing, we arrive at the following.

Proposition 7. The map (3.6) determines the copy Q and, hence, determines §
up to isometry of Riemannian manifolds.

Moreover, the procedure 1. 4. enables one to construct the copy Q. This
procedure differs from its scalar analog by one additional step that is factorization.

4 Inverse problems

4.1 Acoustical system

With the manifold Q one associates a dynamical system o’ of the form

U — Au =0 in (Q\I) x (0,7) (4.1)
U‘t:() = ut‘t:O =0 in € (42
u=f on I'" x [0,T], (4.3)
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where A is the (scalar) Beltrami-Laplace operator, t =T > 0 is a final time, f
is a boundary control, u = u/(x,t) is a solution. For controls of the smooth class

ME = {f e C>®T x[0,T])| supp f C T x (0,T]}

problem (4.1)—(4.3) has a unique classical (smooth) solution u/. Note that the
condition on supp f means that f vanishes near ¢t = 0.

From the physical viewpoint, u/ can be interpreted as an acoustical wave,
which is initiated by the boundary sound source f and propagates into a domain
Q filled with an inhomogeneous medium.

Attributes

e The space of controls FT := Ly (I' x [0,T]) is said to be an outer space of the
system a!. The smooth class M?* is dense in F*.
The outer space contains the subspaces

Fhs={feF'|suppf Cox[T—sT]}, oecR().

Such a subspace consists of controls, which are located on ¢ and switched on with
delay T — s (the value s is an action time).

e An inner space of the system is H = Ly(Q2). The waves u/(-,t) are time
dependent elements of H.

e In the system a’, the input — state correspondence is realized by a control
operator Wt : FI' — H, Dom W71 = m7T

Whf = ul(-,T).

A specifics of the system governed by the scalar wave equation (4.1) is that W7 is
a bounded operator. Therefore one can extend it from M” onto F* by continuity
that we assume to be done.

e The input — output map is represented by a response operator RT : FI' —
F¥ Dom R' = M1,
B ou’

v 'x[0,7]

R'f: )
where v = v() is an outward normal at v € T'.
The following evident fact was already mentioned in Introduction.

Proposition 8. If two Riemannian manifolds have the mutual boundary and are
isometric (the isometry being identity at the boundary), then their (acoustical)
response operators coincide. In particular, for the manifold Q and its copy Q one
has R7T = R?T for any T > 0.
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e A connecting operator CT : FI' — FT is defined by
ct = whywt. (4.4)
By the definition, we have
(CTf9)pr = WHEW gy = (o (-, 1), (-, 1)),

i.e., CT connects the Hilbert metrics of the outer and inner spaces. A significant
fact is that the connecting operator is determined by the response operator of the
system o through an explicit formula

CT — (ST)*R2TJ2TST , (45)

DO |

where the map S” : FI' — F** extends the controls from T' x [0, 7] to T x [0, 27]
as odd functions (of time t) with respect to t = T; J*'' . 21" — F?1"is an

integration: (J* f)(-,t) = [, f(-,s)ds (see [1], [3]).

Controllability

The set U? := {u/(-,s)| f € FL} is said to be reachable (from o, at the moment
t=s).

The operator A, which governs the evolution of the system o, does not
depend on time. By this, a time delay of controls implies the same delay of the
waves. As a result, one has

Us = WHrkhs, 0<s<T.

Problem (4.1)—(4.3) is hyperbolic and the finiteness of domains of influence
does hold for its solutions: for the delayed controls one has

suppu’ (-, T) C Qs[o], feFhs. (4.6)

The latter means that in the system o the waves propagate with the unit ve-
locity. As a result, the embedding U; C H(Q2*[0]) is valid. The character of this
embedding is of principal importance: it turns out to be dense. The following re-
sult is based upon the fundamental Holmgren—John-Tataru uniqueness theorem
(see [1], [3] for detail).

Proposition 9. For any s > 0 and o € R(T), the relation Us = H(Q[o]) is

valid (the closure in H). In particular, for s =T > diam Q) one has UL = H.
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In control theory this property is referred to as a local approximate boundary
controllability of the system a’. It shows that the reachable sets are rich enough:
any function supported in the neighborhood 2*[o] can be approximated (in H-
metric) by a wave u/ (-, T) by means of the proper choice of the control f € FI*.

By P? we denote the projection in H onto the reachable subspace U5 and
call it a wave projection. Recall that X? is the projection in H onto H(Q*[0]),
which cuts off functions onto the neighborhood Q%[o]. As a consequence of the
Proposition 9 we obtain

P’ = X7, s>0, o e R(I). (4.7)

4.2 IP of acoustics

Setup

A dynamical inverse problem (IP) for the system (4.1)—(4.3) is set up as follows:
given for a fized T > diam ) the response operator R*", to recover the manifold
Q.

A physical meaning of the condition 7 > diam (2 is that the waves u/, which
prospect the manifold from the parts o of its boundary, need big enough time to
fill the whole Q: see (4.6) and (2.1).

As was clarified in Introduction, to recover £ means to construct (via given
R*") a Riemannian manifold, which has the same boundary T', and possesses the
response operator, which is equal to R?!. Speaking in advance, it will be shown
that R?" determines the copy . Thus,  provides the solution to the IP.

Model

As an operator connecting two Hilbert spaces, the control operator W' : FI' — 'H
can be represented in the form of a polar decomposition

W= et W,

where )
W= [y ] o)

and ®* : |[WT|f — WTf is an isometry from Ran |[W*| C F* onto Ran W' C H
(see, e.g., [7]). In what follows we assume that ®' is extended by continuity to
an isometry from Ran |[W7| onto Ran WT.

Recall that US := WTFD* are the reachable sets of the system ol and P is
the projection in H onto U2.
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 Let us say the (sub)space H := Ran |[WT| C FT to be a model inner space,
Uu; = \WLT\}';TS C 'H a model reachable set. By P; we denote the projection in

H onto Z;{; and call it a model wave projection.

The model and original objects are related through the isometry ®7. In
particular, the definitions imply ®7 P = P57

Now let 7' > diam (), so that Q7 [¢] = Q holds for any 0. By Proposition
9, one has Ran W7 = H. By this, the isometry ®" turns out to be a unitary
operator from H onto M. Its inverse U := (®7)* maps H onto H isometrically
and UP? = P5U holds.

Let X? := UX?U* be the image (in H) of the cutting off projection. The
property (4.7) implies

P = X?, s>0, o € R([). (4.8)

Solving IP

It suffices to show that the operator R?" determines the copy Q. The procedure
is the following.

1. Find the connecting operator by (4.5). Determine the operator |[W7'| =

(CT)% and the subspace = Ran [W7| C FT.

2. Fix a 0 € R(') and s € (0,7]. In H recover the model reachable set
Ui = |WTFI* C 'H and determine the corresponding projection Pj. By
(4.8), we get the projection X?. Thus, the map (3.3) is at our disposal.

3. By Proposition 6, this map determines the copy ). Tts response operator
R?T coincides with the given R*!: see Proposition 8.

The acoustical IP is solved.

4.3 Maxwell system

Here Q is a smooth compact oriented Riemannian 3d-manifold.

Propagation of electromagnetic waves in a curved space is described by the

dynamical Maxwell system o,

e, = curlh, hy = —curle in (Q\I') x (0,7) (4.9)
6‘15:0 = 0, h|t:0 =0 in Q (410)
eg = f on I' x [0,77, (4.11)

19



where ey := e — e - v v is a tangent component of e at the boundary, f is a time-
dependent tangent field on I' (boundary control), e and h are the electric and
magnetic components of the solution. For controls of the smooth class

M = {feéo‘”(FX [0,T]) | v-f=0, suppf CT x (O,T]} )

problem (4.9)-(4.11) has a unique classical smooth solution {e/(x,t), h'(z,t)}.
Note that the condition on supp f means that f vanishes near ¢t = 0.
Since a divergence is an integral of motion of the Maxwell system, one has

dive/(-,t) =0, divh/(-,t)=0, t>0.

Attributes

e An outer space of the system af; is the space
FT = {feEQ(rx 0,7Y) | V-f:o}.

The smooth class M?* is dense in F*.
The outer space contains the subspaces

Fro={feF"|suppf Cox[T—sT}, oeR(T)

of controls, which are located on o and switched on with delay 7" — s (the value
s is an action time).

e An inner space of the system is the space C @ C. By (4.9), the solutions
{ef(-,t),h(-,t)} are time dependent elements of this space. Also, we select its
electric part C® {0} 2 /(- ,1).
e The input — state correspondence is realized by a control operator Wi, : F©' —
C®C, DomWg = MT WEf = {ef(-,T),h(-,T)}. Its electric part is W7 :
Fr —¢,

W fsel(-,T).
In contrast to the acoustical (scalar) system, Wi and W7 are unbounded (but
closable) operators.

A reason to select an electric part of the system ol is that it is the electric
component, which is controlled at the boundary: see (4.11). By this, e/ and
h! are not quite independent. Moreover, for T < inf{r > 0] Q"[['] = Q} the
operator W7 is injective and, hence, e/(-,T) determines h/(-,T) [3], [5].

e The input — output map of the system o, is represented by a response

operator RT : FI' — FT' Dom RT = MT,
R'f:=vA hf}FX[O,T] .
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The following fact is quite evident.

Proposition 10. If two Riemannian manifolds have the mutual boundary and
are isometric (the isometry being identity at the boundary), then their Mazwell
response operators coincide. In particular, for the manifold 2 and its canonical
copy Q0 one has R?' = R?™ for any T > 0.

e An electric connecting operator CT : FI' — FT is introduced via a connecting
form ¢, Domcf' = MT x MT,

CT[fag] = (ef(~,T),eg(~,T))C = (WTfa WTg)C

It is a Hermitian nonnegative bilinear form. As such, it is closable, the closure &
being defined on N7 x NI, where N7 is a lineal in 7%, N¥ > M?*. The form
¢’ determines a unique self-adjoint operator C* by the relation

C"f,9)rr = ¢"[f,g],  f€DomC", geN"

(see, e.g., [7]) In fact, to close ¢! is to close WT', and one has N7 = Dom W1 =
Dom (C7)z. Hence, the knowledge of ¢ enables one to extend W7 from M7 to
NT. In what follows this extension (closure) is assumed to be done and denoted
by the same symbol WT. The images WTf for f € NT are regarded as the
generalized solutions e/ (-, T).

As a result, one has the relations

f.9) = ((C")3£.(CM)hg)

A key fact is that the connecting form is determined by the response operator of
the system o2l through an explicit formula

=WrEWh),,  flgeNT.  (412)

]_‘T

c'[f, 9] = @ (ST RIS f. g) o frge M", (4.13)
where the map S” : FI' — F** extends the controls from T’ x [0, 7] to T x [0, 27]
as odd functions (of time t) With respect tot =1; J¥ : F' — 7?1 is an

integration: (J2T f)(-,t) = [ f( (see [3]).

Resuming the aforesa1d we can elalm that R?” determines the operator (C7)z

by the scheme

(113)

RT'= M= = 07 = (C1) (4.14)
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Controllability

The set &5 := {ef(-,s)| f € FF N M*} is said to be reachable (from o, at the
moment t = s).

The operators curl, which govern the evolution of the system «};, does not
depend on time. By this, a time delay of controls implies the same delay of the
waves. As a result, one can represent

£ = WT [FF*aMT] .

The Maxwell system (4.9)—(4.11) obeys the finiteness of domains of influence
principle: for the delayed controls one has

suppel (-,T) C Q[o], fe[FHrnmMm]. (4.15)

The latter means that electromagnetic waves propagate with the unit velocity. As
a consequence, the embedding £5 C C(Q°[o]) is valid. Moreover, this embedding
is dense. This fact is derived from a vectorial version of the Holmgren—John—
Tataru uniqueness theorem (see [3] for detail).

Proposition 11. For any s > 0 and o € R(T), the relation E = C{Q%[o]) is

valid (the closure in C). In particular, for s =T > diam§2 one has EL' = C.

This property is interpreted as a local approzimate boundary controllability of
the electric subsystem of ol;.

By E? we denote the projection in C onto the reachable subspace £ and call
it a wave projection. Recall that Y is the projection in C onto C(Q°[c]). As a
consequence of the Proposition 11 we obtain

E: =Y?, s>0, c e R(I'). (4.16)

4.4 1P of electrodynamics
Setup

A dynamical inverse problem (IP) for the system (4.9)—(4.11) is set up as follows:
given for a fired T > diam Q the response operator R*™, to recover the manifold
Q.

A physical meaning of the condition 7" > diam €2 is the same as in the acoustical
case: the electromagnetic waves need big enough time to prospect the whole €2:
see (4.15) and (2.1).

As before, to recover Q means to construct (via given R*’) a Riemannian
manifold, which has the same boundary I', and possesses the response operator,
which is equal to R?’. As well as in the scalar case, we will show that R*'
determines the copy Q). Thus,  will provide the solution to the IP.
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Model

Representing the (closed) control operator W' : FT' — C in the polar decom-
1

position form, one has W? = WT|WT| where [WT| := [(WT)"WT]* and
UL WY |f — WTfis an isometry from Ran |[WT| ¢ FT onto Ran WT C C [7].
In what follows ¥ is assumed to be extended by continuity to an isometry from
Ran [W] onto Ran W' Also note that (4.12) implies |[W*| = (C*)>.

Recall that &€ := WT[F* N M™] is an electric reachable set and E is the
(wave) projection in C onto &£2.

 Let us say the (sub)spaceN(f = Ran |[W7T| Cc FT to be a model inner space,
Es = [WT| [FEF* N MT] C C the model reachable sets. By E: we denote the

projection in C onto g’; and call it a model wave projection.

The model and original objects are related through the isometry ¥7. 1In
particular, the definitions imply W7 E$ = E507,

Now, let 1" > diam ). By Proposition 11, one has Ran W7’ = C. Therefore
the isometry U7 turns out to be a unitary operator from C onto C. Its inverse
U := (U")* maps C onto C isometrically and UE$ = ESU holds.

Let Y := UY U*. The property (4.16) implies

B =Y7?, s>0, 0 € R(). (4.17)

Solving IP

Let us show that the operator R*’ determines the copy Q.

1. Find the connecting form ¢’ by (4.13). Determine the model control opera-
1 ~ JE—
tor [WT| = (CT)? (see (4.14)) and the model inner space C = Ran |W7| C
Fr.

2. Fix a o € R(I') and s € (0,7). In C recover the model reachable set
g = |WT| [FI* N MT] ¢ C and determine the corresponding projection
ES. By (4.17), we get the projection Y. Thus, the map (3.6) is at our
disposal.

3. By Proposition 7, this map determines the copy Q. Its Maxwell response
operator R*"" coincides with the given R?" (see Proposition 10).

The IP of electrodynamics is solved.
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4.5 Comments

e In this paper, the condition 7" > diam €2 is imposed for the sake of simplicity.
It provides the embedding 7,C(€2) C C(2), which is convenient just by technical
reasons. However, there is a time-optimal setup of the reconstruction problem,
which takes into account a local character of dependence of the acoustical and
Maxwell response operators on a near-boundary part of the manifold. Namely,
by the finiteness of the domain of influence, for an arbitrary fixed 7" > 0 the
operator R?"" is determined by the submanifold Q7 [['] (does not depend on the
part Q\Q”[[']). Therefore, the natural setup is: given for a fized T > 0 the
operator R*T | to recover QT[I']. In such a stronger form the problem is solved in
[3] and [6].

e In reconstruction via a spectral triple {A, H,D} (see [8], [16]), the algebra
provides a topological space (that is .Z), whereas the operator D encodes a Rie-
mannian metric on A. The metric is recovered (via D) by means of the Connes
distance formula. In our scheme, the object responsible for the metric is a selected
family of generators of the algebra (that is the eikonals).

e Dealing with the reconstruction problem for a graph, one can introduce the
straightforward analog of the eikonal algebra ¥. However, this algebra turns out
to be noncommutative. By this, we have to deal with its Jacobson spectrum
%, which is the topologized set of the primitive ideals of T [13]. As the known
examples show, its structure is related with geometry of the graph but the relation
is of rather implicit character. This challenging problem is open yet. An intriguing
fact is that in some examples the space T is non-Hausdorff. Tt contains ”clusters”,
which are the groups of nonseparable points. Presumably, the clusters of T are
related with interior vertices of the graph.

5 Appendix
Here we give proof of Lemmas 1, 2, 3.

The standard operations on vector fields on the manifold V, div, curl are un-
derstood in the generalized sense. Here are standard formulas of vector analysis:

div (pu) = Ve - u+ pdivuy, (5.1)
div (u Av) = curlu - v — u - curlw, (5.2)
curl (pu) = Vo Au+ pcurlu. (5.3)

In (5.1) and (5.3) a function ¢ is Lipschitz; a field u is locally integrable and
its divergence is also locally integrable. In (5.2) we may suppose that u or v is
Lipschitz, and the other field is locally integrable and has locally integrable curl.
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5.1 Proof of Lemma 1

Let the field z € H satisfy curlz € H. Following [12], we say that the field z
satisfies the condition
zg|lr = 0, (5.4)

if for any field v € 7'?, such that curlv € 7'?, we have
(z,curlv)q = (curl z,v)q.

Here and further in this section (-,+)y and || - ||y means the inner product and
the norm in Ly(U) or Ly(U). It can be shown, that due to smoothness of the
boundary I' it suffices to check this condition only for v € 6“(9)

Introduce the space

F:={ueH:divu € Ly(Q), curlu € H, ug|r = 0}

with the norm
JullZ == llullg, + [|div ul|g + [[curl u|g.

The following result is valid for an Q C R? (see [12], section 8.4) and can be
easily generalized on a smooth manifold.

Theorem 3. The embedding of the space F' to H is compact.

Actually, the stronger fact holds true: the space F' coincides with vector
Sobolev space ﬁl(Q), which is compactly embedded to H. However, Theorem 3
will suffice for our purposes. Theorem 3 is used in spectral analysis of the Maxwell
operator on compact manifolds (see, e.g., [10]).

Let us outline the scheme of the proof of Lemma 1. We obtain estimates
for Ly-norms of curl and divergence of the difference 7,u — e,u by Ls-norm of
u € C (inequalities (5.13), (5.15)), and establish the boundary condition (5.4) on
[' for this difference. This means that the field 7,u — ¢,u belongs to F' with the
corresponding norm estimate, which implies that the operator 7, — ¢, restricted
to C is compact (by compactness of the embedding F' C 7'2)

In what follows we consider X7 as the projections in 7'?, which cut off fields
on *[o].

We will use the following relations, which are valid for any 7" > 0:

/ sdX:=TX! — X ds,
[0,1]

[0,7]

/ dej:TY,,T—/ Y7 ds.
[0,1] [0,1]
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Along with (2.6) this implies that for 7 > diam Q2 we have

<%—nw=(4ﬂuﬁ;wmﬁy,yec (5.5)

To prove Lemma 1 we need to establish a compactness of the operator, which
acts from C to ‘H by

T
Koim [ (X518 de
0
(this integral is the same for any 7' > diam(2). Define a family of operators

acting from C to H by

g

K? ::/ (XS —YE)de, 0<s<oo.
0

One can easily check the following relation

(/Osxg dg y) (z) = max{s — 7,(z), 0} y(z), @€ (5.6)

Lemma 4. Choose 0 C I' and s > 0. Let a field 3 € H{(Q¥[o]) be smooth
in Q%[o] (in particular, smooth on the boundary Q°lo] N T') and orthogonal to
C(Q[0]). Then for any z € C*() one has

(ﬂ, K; curl Z)Qsm = (ﬁ, VTG N Z)QS[O—].
Proof. Let 0 < s < s. By the absolute continuity of Lebesgue integral we have
(8, K2 curl 2)av o) — (B, K curl 2)qs o1, s —s5—0. (5.7)

As is evident, 3 is orthogonal to C(Q¢[c]) for £ < s; therefore

(67 K;l curl Z)QS'[U} = / d€ (BJ (Xg - Yog) curl Z)Sﬁ[o} =
0

2 (8, (s = 70 curl 2) gy =

[ e (6. XE curt 2o
0

((8" = 75) B, curl 2) gur -
Define a Lipschitz function A in §2 as follows

h(x) := max{s’ — 7,(x),0}
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We have
((8" = 75) B, curl 2)qu(,) = (R, curl 2)q (5.8)

(the field hB is defined in €2 since h vanishes outside of Q¥ [o] C Q°[o]). The
field hf is Lipschitz, as function h is Lipschitz, and the field 8 is smooth in the

neighborhood of supp A, so we can apply a formula of integration by parts to the
right hand side in (5.8). Orthogonality of 3 to C(Q°[c]) implies

curl 3

asio] =0,  Bolasig)nr = 0. (5.9)

Due to the second equality we have (hf3)g|r = 0. So the integral over I' in inte-
gration by parts vanishes. Applying the first equality in (5.9) and formula (5.3),
we obtain:

(hB,curl 2)g = (curl (hB), 2)a = (VA A B,2)a = ((=V75) A B, 2)qs [y =
(B, V1, A z)stM.

The latter term tends to (3, V7, A 2)qs[s] as s — s. Taking into account (5.7),
we obtain the required equality. O

Note that Lemma 4 holds true if Q%[c] = Q.
Lemma 5. Let 0 C I'. For a field z € C(2) we have
(K, curl z, K, curl 2)g = 2 (K, curl 2, V7, A 2)q. (5.10)

Proof. We have

T
(K,curl z, K curl 2)q / ds (X, —Y})curl z, K,curl 2)g =
0
/ ds / dé (X2 — Y curlz, (X8 — Y8 curl 2)q =
2/ ds / dé (X2 —Y¥) curl z, (X8 — Y8 curl 2)g =
0 0
T
2/ ds ((X; = Y;) curl 2, K curl 2) s (5.11)
0
As is clear, the field 8 := (X2 — Y) curl z is orthogonal to C(Q2*[c]). Moreover,

it is smooth in 2*[o], since it is solenoidal and satisfies (5.9). So we can apply
Lemma 4 to the integrand:

(X5 =Y))curlz, K] curl 2)qs o) = (X5 = Y,) curl 2, V7, A 2)0s[41.

(o
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Substituting this to (5.11), we obtain

T
(K curl z, K curl 2)g = 2/ ds (X7 —=Y;)curl 2, V1, A 2)qsie] =
0

2 (K, curlz, V71, A 2)q.

]
Applying (5.10) to z € C*(12), we obtain
| K curl z||5 = 2 (Kycurl 2, V7, A 2)q < C || K curl z||q - || 2]|q-
Therefore,
| K, curl z||q < C ||z (5.12)
Lemma 6. For any field u € C the relations
|lcurl (K,u)||lo < C ||lullo (5.13)
and
(EKqu)olr =0 (5.14)
are valid.

Proof. Let z € C*(Q). Operator K, is self-adjoint by (5.12) and we have

|(K,u,curl 2)q| = |(u, Kycurl 2)q| < ||ullq - || Kycurl z||g <
Cllullq - [|2][a-

Since z is arbitrary this estimate implies (5.13). Since z is not necessarily com-
pactly supported, the equality (5.14) holds true. O

Lemma 7. Let o C I'. For any field u € C we have
[div (Kyu)llo < C'ulla. (5.15)

Proof. By the definition of K, for large enough 1" we have

T T
K,,uz(/ X;ds)u—(/ E;ds)u.
0 0

The second term belongs to C and thus is solenoidal in (2. By (5.6) the first term
is equal to (T'— 7,) u. Then by formula (5.1) we have

div (K,u) =div ((T' — 75) u) = =V, A .

This completes the proof. O
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Proof of Lemma 1. Suppose u € C. It follows from the estimates (5.13), (5.15)
and boundary condition (5.14) that

1K sullr < Clullg.

Then by compactness of the embedding F' C H (Theorem 3) we conclude that
K, € R(C;H). In view of (5.5) this completes the proof. O

5.2 Proof of Lemma 2

At first we prove Lemma for f € C*(1).

Choose a finite open cover {U;} of the support of f such that every set of
this cover is C'*°-diffeomorphic to a ball in case U; NI' = @ or to a semi-ball
{z e R®: 2] < 1, 2* > 0} otherwise. Choose a partition of unity ¢; € C5°(U;)

such that
0<¢G <L > ¢ =1.
J

supp f

It is clear that } }
f=Y =Y (G = YIG1),

J

and the functions ¢; f belong to C§°(U;). Thus, it is necessary to prove the Lemma
for a function f supported in some open set U C*°-diffeomorphic to a ball or a
semiball. In this case, for any y € C we have

(fy = YIfly)lv = Vpy,, p, € H'(U), (5.16)

and if the set U intersects with I', then the following equality holds true

Pylunr = const.

This can be easily obtained with the help of the Helmholtz decomposition in U.
The function p, in (5.16) is uniquely determined up to additive constant,
which can be chosen so that

Pylvar =0 (5.17)

/pydajzo
U

otherwise. The Friedrichs and Poincaré inequalities imply that, in the both cases,
there is a constant C' such that

lpyllo < CIVpyllo = lLfy = YIflyllo < CIF = YA Iyl

if UNT # 0, and
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Therefore, the mapping y — p, is continuous from C to H*(U).
Now assume that a sequence y, weakly converges to zero in C. Then the

sequence p,, weakly converges to zero in H*(U), and due to compactness of the
embedding H'(U) C Ly(U) this implies

1Py llv — 0, n— oo, (5.18)

Next, we have

||fyn - Y[f] yn”?l = (fyn; fyn - Y[f] yn)Q = (fyn; van)Q-

In the last equality we used (5.16) and the inclusion supp f C U. Integrating by
parts in this inner product, and applying formula (5.1) and equality divy, = 0,
we arrive at

(Fym Vo, )2 = —/ VF -y py dz < Mlgalla - oyl
U

(M depends only on f). Integral over QU vanishes since f vanishes on 0U \ " and
in the case UNT # () we have (5.17). The right hand side of the latter inequality
tends to zero because the norms of y,, are bounded and (5.18) takes place. Then,
with regard to the result of the previous calculation, we get the relation

1fyn = Yflynlla = 0, n — o0,

which shows that the operator f — Y[f] is compact.

Now let us consider the case f € C(€). The function f can be approximated
in C'(Q) by functions f, € C>(Q2). Operators of multiplication by f, tend to
the operator of multiplication by f in the operator norm. Hence, the operator
f = Y[f] is compact as a limit of compact operators.

5.3 Proof of Lemma 3
Here we prove the following properties:
(af + Bg) = o (f) + B7(g),

m(fg) =7(f)7(9),
17 (I = I £1],

where f,g € C(Q2), o, f € R. The first and second relations follow from Lemma 2.
For example, consider the second one. We show that

Y[fIY[g] = Y[fg] € & (5.19)
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By Lemma 2 we have
Y[fIY[gl = (f+ K)Y]g) = Y9+ K = f(g+ Ko) + K = fg + K,

where K, Ky, K, K € ﬁ(C,?'_Z). Applying Lemma 2 to the function fg, we ob-
tain (5.19).

Consider the fourth property. We can restrict ourselves with smooth f since
the mapping 7 is bounded. The latter follows from the obvious inequality

17 (O < A

Let us establish the opposite inequality. We need to show that for any compact
operator K € K we have
YT+ K[| = [If]]- (5.20)

Fix a point gy € Q\ I" such that V f(zy) # 0 (the case of a constant f is trivial).
Choose a sequence of functions ¢; € C5°(2\I') such that supp ¢; shrink to z, as
j — oo. Introduce the fields

Functions ¢; can be chosen such that every field y; does not vanish identically.
Owing to (5.2) we have divy;, = 0. Since suppy; tend to z¢ as j — oo, for
sufficiently large j the fields y; belong to C. Further, we have

1
fyi=fVIfAVp;= §V(f2) N Vj,
so by (5.2) div (fy;) = 0 and for large j the fields fy; also belong to C. Hence

Y{fly; =Y (fy;) = fyj. (5.21)

Consider a normed sequence
b5 = 5/ llysll-

Obviously, the sequence g; weakly converges to zero in C. Therefore Ky; — 0 in
C. With regard to (5.21) this yields

IV A+ K) g5l = 1795 + Kg5ll = | f(wo)l, 5 — oo

Since ||g;]| = 1 we arrive at the inequality ||Y[f] + K| = |f(xo)|. This occurs for
all points xg, at which f has nonzero gradient. So (5.20) holds true.
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