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ABSTRACT:

The article is devoted to the representation theory of locally compact group GLB of almost upper-
triangular infinite matrices over finite field, which we view as an adequate n = oo analogue of general
linear groups GL(n,q). We describe all semifinite traces (characters) of GLB which are finite on the
appropriate subspace A(GLB) of smooth functions in L; on the group.

We further distinguish a class of unipotent traces and explore their properties, including remarkable
multiplicativity and connections with conjugation-invariant probability measures on the group of upper-
triangular matrices over finite field. We construct representations of GLB corresponding to the wide
class of indecomposable unipotent traces. Our construction is based on the natural action of GLB in
the space of flags in the countable infinite-dimensional vector space and leads to von Neumann type
11, factor representations.

We also study and decompose the (bi-)regular representation of GLB. Finally, various connections
between representation theory of GLB and representation theory of the infinite-dimensional Iwahori-
Hecke algebra H,(co) and infinite symmetric group S(oco) (which is the inductive limit of symmetric
groups S(n)) are explained.

The main stream of this paper is a continuation and development of the series of the previous papers
by S.Kerov and A.Vershik of 70-90s on the representation theory of finite and infinite symmetric groups.
The topics we study should be considered, in general, as a part of the so-called asymptotic representation
theory.

Key words: Manrices over finite fields, upper-triangke matrices, finite traces, finite char-
acters, representatins
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HISTORICAL PREFACE

My joint work with S. Kerov on the asymptotic representation theory of the matrix groups
GL(n, q) over finite field as the rank n grows to infinity, was started at the beginning of 80s as
a continuation of our papers devoted to analogous problems for symmetric groups of growing
ranks. The problem setup was taking into account not only the analogy between these two
series of groups, but also an important distinction in the definition of the inductive limit of
group algebras, which should be modified for GL(n,q). “True” (i.e. parabolic) embedding of
these group algebras was well-known starting from the very first papers on the representation
theory of GL(n, q) (see [Gr], [Zel], [F], etc). It was used by A. Zelevinsky and us (see [V82]) to
define a natural limit object (i.e. inductive limit) which is the group GLB of infinite matrices
(over finite field) with finitely many non-zero elements below the main diagonal. The results of
the book [Zel] in which the representation theory of GL(n,¢q) is studied via the Hopf algebras
theory, are not directly related to the asymptotic representation theory but are substantial for
the problems’ setup.

However, the project was suspended and we returned to this topic only in the middle of
90s with the first article [VK98] appearing in 1998. In this paper we gave main definitions
and sketched the plan of further research. In 1998-1999 we prepared some more detailed texts.
Already after the sad death of my former student and coauthor an outstanding mathematician
and person S. Kerov (1946-2000) an improved version of these texts was published [VKO7].
Also lecture notes [V03] based on my talks at school EMS-NATO in The Euler International
Mathematical Institute in 2001 were published a bit earlier (2003). Several talks devoted
to this topic were presented at various conferences and seminars. All these texts contained
(mostly without proofs) a number of statements forming an initial foundation of the asymptotic
representation theory of group GLB.

V. Gorin following the general plan contained in [VKO07] interpreted and supplemented with
complete proofs the statements of that article. The present paper is a result of this work. We
can say that this article, finally, concludes the first step in the study of the representation theory
of GLB.

Further work related to this important topic will, probably, be based on the scheme presented
here and might have several directions. First, a more detailed study of the principal represen-
tations (i.e. representations induced from the Borel subgroup) is required; this part of theory is
especially close to the representation theory of the infinite symmetric group. Second, we need
to find a more explicit reduction of other representations, including cuspidal ones and others,
to the principal representations. The most interesting questions are related to the harmonic
analysis and combinatorics of the group algebra of GLB, to the interpretation of characters
as measures, to statistics of Jordan normal forms, etc, and also to the representations of this
group, both irreducible and factor representations. One can hope that this theory will be of
use for the general representation theory of locally compact groups and will also extend our
understanding of the representation theory of groups GL(n,q).

A. Vershik

1. INTRODUCTION

1.1. Overview. Let F, be the finite field with ¢ elements and let GL(n, ¢) denote the group of
all invertible n x n matrices over IF;. In the present article we study the group GLB of all almost
upper-triangular matrices (i.e. containing finitely many nonzero elements below diagonal) over
F,, which we view as n = oo analogue of groups GL(n, q), as will be explained in Section 1.6.
In other words, if V. is the (countable) vector space of all finite vectors in Fg° and V), is the



subspace spanned by the first n basis vectors, then GLB consists of all linear transforms of Vi
preserving all but finitely many spaces V,.

An important feature of the infinite-dimensional group GLB is its local compactness. GLB
possesses the Haar measure ugrs which allows to introduce the group algebra L, (GLB, ugLB)
with multiplication given by the convolution. In our study we intensively use an important dense
subalgebra A(GLB) of L;(GLB, ugLB) consisting of all continuous functions with compact
support taking only finitely many values.

As we show the group GLB has a rich family of traces (characters), which might be sin-
gular on the group itself, but are finite on A(GLB). These traces give rise to type I factor
representations and form a basis for the representation theory and harmonic analysis on GLB.
They are the main object of our interest.

In the present article we concentrate on the following topics, where we prove a variety of
results.

e We study the algebra L;(GLB,ugLs) and its dense locally semisimple subalgebra
A(GLB). The structure of the latter as an inductive limit of finite-dimensional algebras
is explained and thoroughly investigated.

e We describe all finite traces of A(GLB).

e We distinguish the family of unipotent (principal) traces, find their remarkable prop-
erties and explain their connections with infinite-dimensional Iwahori-Hecke algebra
H,(00), infinite symmetric group S(oco) and unipotent representations of GL(n, g).

e We show that each unipotent trace can be identified with conjugation-invariant ergodic
probability measure on the Borel subgroup B C GLB of all upper-triangular matrices.
A number of theorems and conjectures on the structure of such measures is presented.

e We give a construction for the wide family of representations of GLB based on the
natural action of GLB in the spaces of flags in the infinite-dimensional vector space
over F, and in the principal gruppoid defined by this action. We prove that these
representations are von Neumann type I, factor representations and compute their
traces, which are identified with extreme (indecomposable) unipotent traces of A(GLB)
with explicit parameters in our classification of all finite traces.

e We study the (bi-)-regular representation of GLB, show that is possesses a natural
trace which is finite on A(GLB) and decompose this trace into extremes.

In Sections 1.2-1.5 a more detailed description of our work is given. In Section 1.6 we
motivate our definitions and some of the choices, which otherwise might seem arbitrary. We
also summarize the similarities with asymptotic representation theory of symmetric groups in
the same section. The brief list of key notations and theorems is given in Section 1.7. Finally,
we want to remark that most of the results of the present paper were announced (without
proofs) in articles [VK98], [V03], [VKO7]. In this text we refine those statements and give full
proofs of them, also a number of entirely new results is presented.

1.2. Shwartz-Bruhat algebra A(GLB) and its traces. One of the central objects of our
study is algebra A(GLB) C L;(GLB, ugLs) cousisting of all continuous functions on GLB
with compact support taking only finitely many values. A(GLB) can be viewed as an analogue
of the algebra of smooth functions or Shwartz-Bruhat algebra in the theory of linear p-adic
groups, see e.g. [BZ], [GGP].

In Section 2 we show that algebra A(GLB) is an inductive limit of group algebras
A(GLB),, ~ C(GL(n,q))). However, the arising embeddings i,, : C(GL(n,q)) — C(GL(n +
1,¢)) are not induced by group embeddings, instead we should use parabolic emebeddings, which
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are averagings by certain subgroups. This description implies that A(GLB) is locally semisim-
ple algebra, which means, in particular, that the enveloping C*—algebra of GLB is almost finite
dimensional (AF-) algebra; see e.g. [Br], [VK87], [SV], [K03].

As for every locally semisimple algebra the structure of the algebra A(GLB) is uniquely
defined by its Bratteli diagram. Recall that Bratteli diagram is a graded graph with vertices at
level n symbolizing irreducible representations of A(GLB),, and edges between adjacent levels
symbolizing the inclusion relations of the representations. The inclusions i,, : A(GLB), —
A(GLB),,41 are not unital and the algebra A(GLB) has no unit element, thus, each vertex
of the Bratteli diagram is to be supplemented with additional label which is the dimension
of the corresponding irreducible representation. In our case these numbers are dimensions
of irreducible representations of groups GL(n,q) and they admit explicit formulas (e.g. a ¢—
analogue of the classical hook formula, see e.g. [M, Chapter IV])

We show in Section 2 that the Bratteli diagram of A(GLB) is a union of countably many
copies of the Young graph Y with shifted grading. Recall that level n of Y consist of all Young
diagrams with n boxes (equivalently, partitions of n) with edges joining the diagrams which
differ by addition of a single box. Therefore, the algebra A(GLB) is a direct sum of countably
many (non-isomorphic) ideals corresponding to different copies of Y.

We also show that infinite Iwahori-Hecke algebra H,(oco) is naturally embedded into
A(GLB), moreover, it is a subset of one of the above ideals. This somehow explains the
appearance of the Young graph. Indeed, Y (without any labels, since Hy(co) contains the unit
element) is the Bratteli diagram of H,(c0) as follows from the fact that H,(co) and the group
algebra of S(oco) are isomorphic, see e.g. [VK89].

We further concentrate on the representation theory of A(GLB) and GLB. It is well-known
that the representation theory of “big” groups, such as S(c0), U(o0), GL(00, q) is wild and in
order to get a well-behaved theory one has to restrict the class of the representations under
consideration. There are two approaches here, one of them deals with von Neumann factor
representations, see e.g. [Th84], and another one studies representations of (G, K)—pairs, see
e.g. [02]. In both approaches representations are in correspondence with characters (or traces)
of a group (or algebra), thus, it is crucial to obtain the classification of traces.

In Section 2.6 we describe the set of finite traces of A(GLB). We show (see Theorem 2.26)
that this set is a simplicial cone with extreme rays parameterized by triplets (f, «, ), where
a ={«a;} and § = {f;} are non-increasing sequences of non-negative reals satisfying:

oo
a Zay > 20, Bi=hr>20, > (+B) <1,
i=1
and f is an element of a certain (explicit) countable set CY’. This result is to a large extent
based on the classification theorem for characters of the infinite symmetric group S(oco) first
proved by Thoma in [Th64]. For each extreme trace parameterized by (f, a, 3) we give a formula

for its values on A(GLB) in terms of the values of characters of irreducible representations of
GL(n,q).

1.3. Unipotent traces. Among the traces of A(GLB) we distinguish a class of unipotent
traces, which are closely related to the same-named representations of GL(n,¢). In our classi-
fication of traces the unipotent extreme ones are such that f = fy, where fy is a certain special
element of CY’. They are distinguished by the fact that the values on (at least some) elements
of Hy(o0) C A(GLB) are non-zero. On the contrary, if f # fo, then for arbitrary o and 3
the corresponding trace vanishes on H,(co). Moreover, the restriction of extreme unipotent
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trace on A(GLB),, ~ C(GL(n,q)) is a linear combination of traces of irreducible unipotent
representations of GL(n,q), see [St], [J2] for more information on unipotent representation of
GL(n, q).

The extreme unipotent traces are in one-to-one correspondence with extreme traces of
Iwahori-Hecke algebra Hy(co) (and, thus, with characters of the infinite symmetric group
S(00)). Extreme traces of H,(oco) are parameterized (see [VK89] and also [Me, Section 7])
by two sequences

>y > >

, BL=>Pr>-- >0, Z(ai-l-ﬂi)ﬁl

(3

and the (normalized) restriction of the extreme unipotent trace of A(GLB) on H,(c0) C
A(GLB) is extreme trace of H,(oo) with the same parameters. This provides an infinite-
dimensional analogue of the well-known correspondence between irreducible representations of
H,(n) and unipotent irreducible representations of GL(n, q), see e.g. [CF].

The extreme unipotent traces have a number of intriguing properties which we discuss in
Section 3.

Recall the following multiplicativity property for the characters of S(o0), see [Th64], [VK81],
[KOO]. Let x be a normalized character (i.e. central positive-definite function satisfying x(e) =
1) of S(c0). Then x is extreme (i.e. extreme point of the convex set of all normalized characters)
if and only if the following multiplicativity property is satisfied. For g € S(n) C S(o0) and
h € S(m) C S(o0) let g ©® h denote the element of S(n +m) C S(c0) obtained by adjoining the

permutations g and h, i.e. by making g acton 1,...,n and h act onn+1,...,n+m. Then for
all n,m, g, h we have
(1.1) x(g ©h) = x(g)x(h).

We prove (see Theorem 3.3) that extreme unipotent traces of A(GLB) satisfy an analogue of
(1.1). More precisely, let e, denote the element of A(GLB),, C A(GLB) corresponding to g
under the identification of A(GLB),, and group algebra of GLL(n, ¢). Further, for g € GL(n,q),
h € GL(m, q) let g ® h denote the block-diagonal matrix in GL(n 4+ m, ¢) with blocks n and m.
Then every normalized extreme unipotent trace y of A(GLB) satisfies

x(egon) = x(eg)x(€n).
for any g, h with coprime characteristic polynomials. We further compute the values of extreme
unipotent traces on arbitrary elements of A(GLB) in terms of explicit specializations (i.e.
homomorphisms into C) of the algebra of symmetric functions A, see Theorem 3.5.

We continue the discussion of unipotent traces by showing their relation to certain probability
measures. We prove (see Theorem 4.1) that each extreme unipotent trace of A(GLB) gives
rise to a probability measure on the subgroup B C GLB of upper-triangular matrices and,
moreover, if two traces are not proportional, then corresponding measures are distinct. Also
each such measure on B can be naturally extended to a signed (i.e. not necessary positive)
o-finite measure on GLB invariant under conjugations. This gives an interpretation of traces
of A(GLB) as characters of the group GLB which are infinite (i.e. not well-defined) on the
group itself, but have a singularity of type measure.

We further study the properties of measures on B corresponding to the unipotent traces.
We show (see Theorem 4.1) that each such measure is ergodic (with respect to conjugations).
Motivated by this connection we turn our attention to study of ergodic probability measures
on B.



At this point in order to simplify the exposition it is convenient to switch from GLB to
another distinguished infinite-dimensional matrix group GLU. GLU is the group group of all
almost uni-uppertriangular infinite matrices, i.e.

GLU = {[X;;] € GLB : X;; =1 for large enough i}.

The whole theory for GLU is very much parallel to that of GLB, and we summarize it in
the Appendix. For now we only need the fact that GLU also has a distinguished class of
extreme unipotent traces, enumerated by the very same sequence «, (3, moreover, under the
identification A(GLB),, ~ C(GL(n,q)) ~ A(GLU),, unipotent traces of GLB and GLU are
the same functions.

When we switch from GLB to GLU Borel subgroup B gets replaced by U C GLU which is
the group of unipotent upper-triangular matrices. Note that, generally speaking, conjugations
do not preserve U. However, we can still define a conjugation-invariant measure p through the
property u(X) = p(Y) for every X C U, Y C U such that X = gYg~!. We state and prove
a partial result towards the classification theorem for ergodic conjugation-invariant measures
on U, see Conjecture 4.5 and Proposition 4.7. This theorem is a particular case of a general
statement describing specializations of the algebra of symmetric functions A non-negative on
Macdonald polynomials (our case corresponds to Hall-Littlewood polynomials), which is known
as Kerov’s conjecture, see [K03, Section I1.9]. We also state a conjectural Law of Large numbers
for ergodic measures, see Conjecture 4.5. One particular case of this conjecture was proved by
Borodin [B1], [B2] who studied uniform measure on U. Finally, in Theorem 4.6 we explain
which measures in the above conjectural classification correspond to extreme unipotent traces.

1.4. Construction of representations of GLB. Our next topic is the construction of rep-
resentations of GLB corresponding to the extreme unipotent traces of A(GLB). Of course,
there exists an abstract general (Gelfand-Naimark-Segal) construction for the representation
with given trace, but since by its definition GLB is a transformation group we seek for more
explicit constructions based on its natural action in the infinite-dimensional vector space over IF;.

In Section 5 we adopt the representation formalism of [02] in a modified form and construct
unitary representations 7' of (GLB x GLB) (in other words, we consider two-sided represen-
tations) in a Hilbert space H possessing a distinguished vector v, which is cyclic and invariant
under the action of GLB diagonally embedded into (GLB x GLB). v defines a spherical func-
tion x(a) = ((a, e)v,v), and viewed as a function on A(GLB) (or GLB) this function becomes
our trace. There is a simple link between our constructions and factor representations (semifi-
nite, in general). If we consider the restriction of 7' on the first component of GLB x GLB,
then we get a von Neumann factor representation.

In the most well-studied settings of asymptotic representation theory, e.g. for infinite sym-
metric group S(oco) (see [Th64], [VK81], [03], [Ok]) and real infinite-dimensional matrix groups
such as U(oo) (see [Vo], [01], [02]) distinguished vector v belongs to H and corresponding fac-
tor representation is of type I1;. However, in our settings, since our traces are defined only on
A(GLB) instead of the whole group GLB, we have to use generalized vectors (distributions)
v and corresponding factor representations we get are of type Il.

Similar situations appeared before in the investigation of at least two topics of classical repre-
sentation theory of finite-dimensional groups. In the study of unitary representations of general
Lie groups sometimes one is led to consider type I, factor representation, see e.g. [Pu7l],
[Pu74] where characters and representations of simply connected solvable and more general



Lie groups are studied. From the other side, in the theory of semisimple Lie groups gener-
alized distinguished vectors show up! in harmonic analysis, i.e. when one tries to decompose
highly-reducible representations. As a quick example, by the well-known theorem bi-regular
representation of a finite group G equipped with a distinguished vector v — d-function at iden-
tity element of G' — is the direct sum of irreducible spherical representations 7* ® (7*)* of
Gelfand pair (G x G, G) (here A goes over all irreducible representations of G). By Peter-Weyl
theorem, the same decomposition is valid for a compact Lie group, however, d—function at
identity is no longer a vector of Ly on the group, rather it is a generalized vector (distribution).

Coming back to the construction of representation of GLB recall that extreme unipotent
traces of A(GLB) are parameterized by two sequences of non-negative reals {«;} and {f;}. We
start from two distinguished simplest cases, where the corresponding factor representations are
of type I. If oy = 1 with other parameters being zeros, then the corresponding representations is
trivial 1-dimensional representation of GLB. On the contrary, if 31 = 1 with other parameters
being zeros, then the corresponding von Neumann factor representation is of type I, and the
construction is related to classical Steinberg representation of GL(n,q), see [St], [Hu].

Further we concentrate on the case §; = 0 for all ¢ and ), a; = 1, where we get type /1
factor representations. To simplify the exposition let us stick to the case when only «; and as
are non-zero. Our construction starts with natural action of GLB on the grassmanian Gr(V'),
which is the set of all subspaces of countable infinite-dimensional vector space V' over F,. (If
more than two «;s are non-zero, then Gr(V') gets replaced by an appropriate space of flags.) A
well-known group-measure space (or crossed product) construction going back to the papers of
F. J. Murray and J. von Neumann [MN], [N] associates a von Neumann factor to a free ergodic
action of a group on a space equipped with measure. Of course, the action of GLB on Gr(V')
is not free and, thus, modifications are necessary. The known solution here is to use principal
gruppoid of the equivalence relation spanned by the group action, in other words, we take
the set Gr?(V) C Gr(V) x Gr(V) which is the graph of the equivalence relation. Gruppoids
and construction of the associated von Neumann algebras attracted a lot of attention in the
literature, see [Mo] for a review, a somewhat simpler case when all the classes of equivalence
relation are finite was first studied in [Kr] and [FM]. Gruppoids in the context of asymptotic
representation theory of symmetric groups first appeared in [VK81], where the construction
was based on the action of S(co) on the set of words equipped with product measure.

When classes (orbits) are uncountable (which is the case for the action of GLB in Gr(V))
the construction is more delicate, and even the definition of the correct measure on gruppoid
becomes complicated. General solutions do exist here, see [Ha], [Re], however, in our case
the situation is simplified by the fact that Gr(V) can be decomposed into Schubert cells, each
of which is a B—orbit. This lets us to start from a measure on symbols of Schubert cells
(here we use the Bernoulli measure, similarly to the constructions of [VK81] for S(c0)) and
produce the measures on Gr(V') and gruppoid Gr? (V) using it. We end up with quasiinvariant
measures, which allow us to construct usual unitary representation of GLB x GLB in the
space of square-integrable functions on Gr?(V). As for the distinguished vector v, in the case
of countable equivalence classes (as happens for S(co)) the right choice is known to be the
indicator function of the diagonal of gruppoid, see [VK81], [FM]. In our case the diagonal has
measure zero, so this choice is unappropriate. Because of that we have to use a generalized
vector (distribution) v which is the integral along the diagonal (defined only for the continuous
functions.)

1Note, however, that all the representations are of type I in this theory.
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One interesting aspect here is that the measure on Gr(V') we use is not GLB-invariant and,
moreover, one proves that there is no equivalent o—finite GLB—invariant measure. In classics
this would imply that the resulting crossed product gives a factor of type I1I, see e.g. [Kr,
Theorem 2.4], [SV, Theorem 1.3.12], while we end up with type Il factor representations of
GLB. An explanation here is the following: our trace on the operators of representation of
GLB can not be extended to the operators of the multiplication by the function, as opposed
to the situations related to the variations of the crossed product construction.

Somewhat related question concerns cyclicity of the distinguished vector v. In general, there
is no guarantee that GLB x GLB orbit of our vector is dense, thus, we have to consider the
representation in the cyclic hull of v. In [VK81], [O3, Section 5], [V11] the cyclicity question
for the representations of infinite symmetric group S(co) was discussed; for GLB this topic
requires further investigations.

We are currently unable to construct representations of GLB corresponding to other unipo-
tent traces of A(GLB). Even the case a; = ; = 0 for all 7, which for the infinite symmetric
group S(o00) corresponds to the biregular representation, is out of our reach at the moment.

In papers [V11], [V12] a new approach to the construction of spherical representations (or
finite factor representations on the different language) related to infinite symmetric group S(oo)
was proposed. The authors hope that this approach might be extended to GLB.

1.5. Biregular representation of GLB. The final object of our interest is the (bi-)regular
representation of GLB. Since GLB admits a unique Haar measure pugrLs (normalized
by the condition perLe(B) = 1) there is a well-defined two-sided representation of GLB
in Ly(GLB, pcLe). This representation equipped with the distinguished distribution— d—
function at unit element of the group — fits into the formalism of generalized spherical repre-
sentations and corresponds to a certain trace of A(GLB). As in the classical harmonic analysis
on finite or compact groups we are interested into the decomposition of this representation. In
Section 6 we describe the decomposition of the trace of bi-regular representation of GLB into
a combination of extreme traces of A(GLB).

1.6. Motivations and comments. A well-known point of view is that the symmetric group
S(n) can be viewed as GL(n,q) over the field with one element, i.e. with ¢ = 1. This agrees
with similarities between the representation theory of GL(n,q) and S(n), so it is natural to
expect some similarities for n = oo as well.

The infinite symmetric group S(oo) is usually defined as the inductive limit of finite sym-
metric group, equivalently, S(co) consists of all bijections of countable set, which permute only
finitely many elements. A natural adaptation of this definition to GL(n,q) is the following.
Realize GLL(n, q) as a subgroup of GL(n + 1, ¢) acting in the space spanned by the first n coor-
dinate vectors and fixing n + 1st coordinate vector and consider the inductive limit of GL(n, q)
with respect to such embeddings. In this way we get the infinite-dimensional group GL(c0, q).
However, the representation theory of GIL(c0, q) turns out to be not as rich as one could hope
for. For instance, the set of extreme (indecomposable) characters of GIL(o0, ¢) is countable (see
[Th72], [Sk]) as opposed to the infinite symmetric group S(oo) (see [Th64], [VK81], [KOO],
[OK]) or infinite-dimensional unitary group U(oco) (see [Vo], [VK82], [Bo], [00], [BO], [Pe],
[GP]) for which such sets comprise infinite-dimensional domains in R*°. This leads one to seek
for other n = 0o analogue of GL(n, q).

The key idea here is to change the embeddings. A new definition is hinted by the notions of
parabolic induction and restriction well-known in the representation theory of GL(n, q), see [Gr],
[Zel], [F]. This leads to parabolic embeddings i, : C(GL(n,q)) — C(GL(n + 1, ¢)) which are no
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longer induced by the group embeddings, see Section 2.2 for the formal definition. The inductive
limit of C(GL(n, q)) with respect to the embeddings i,, is our main hero — algebra A(GLB).
A thorough analysis of the definitions leads to the realization of A(GLB) as subalgebra of
the algebra of the functions on a group, that’s how the group GLB first appears. Note that
GL(00, q) is a dense subgroup of GLB, so another point of view might be to consider GLB as
a certain completion of discrete group GL(o0, q).

The representation theory of GLB, indeed, turns out to be similar to that of S(co). First,
the classification of traces of A(GLB) and characters of S(co) are similar, sequences {«a;} and
{B;} appear in both. The similarity is even more striking when one considers unipotent extreme
traces of A(GLB). Their normalized versions are in one-to-one correspondence with extreme
characters of S(00) and both families have similar properties, e.g. multiplicativity and the same
coefficients of decomposition into irreducibles of restrictions to A(GLB),, (S(n)).

The constructions of the representations corresponding to characters are also similar, al-
though some distinctions do exist (e.g. the distinguished vector becomes a distribution for
GLB). More precisely, the realization of representations of GLB with unipotent traces with
non-zero parameters «; is related to the spaces of flags of subspaces, while corresponding repre-
sentations of S(oc0) are related to its exact ¢ = 1 analogue which is the space of flags of subsets,
see [VK81], [TV].

The above facts lets us claim that the group GLB might be the right g-analogue of S(c0)
and n = oo analogue of GLL(n,¢) in the context of the asymptotic representation theory.

However, some of the similarities break down when we start considering representations with
non-zero ;. Representation of S(co) with single non-zero parameter §; = 1 is the simple one-
dimensional alternating representation, while the corresponding representation of GLB is an
infinite-dimensional one; this is parallel to the difference between alternating one-dimensional
representation of S(n) and corresponding unipotent (principal) representation of GL(n, ¢) which
is the Steinberg representation of dimension ¢™("~1/2

More importantly, while the (bi-)regular representation of S(co) is irreducible and corre-
sponds to zero parameters «; and (;, the (bi-)regular representation of GLB is reducible (as
we explain in Section 6). The construction of the unipotent representation of GLB correspond-
ing to zero parameters at the moment remains unknown.

We intensively exploit the similarity between S(c0) and GLB in our methods. For instance,
some theorems of the present article are based on the Ring Theorem, which originally was
discovered in the study of S(o0), see [KV80], [K03] and also [GO1, Section 8.7]). Also Schur
polynomials play an important role in the study of S(c0), while in the present paper we inten-
sively use both Schur polynomials and their g—deformation — Hall-Littlewood polynomials.

In the classics, the representation theory of S(co) has numerous connections with the repre-
sentation theory of U(oo), see [BO2] and references therein. A g-deformation of the character
theory of U (c0) related to the quantum groups was proposed in [G]. It is yet to discover whether
the representation theory of GLB is somehow related to that g—deformation.

Finally, we remark that some results on the structure of GLB from the algebraic point of
view can be also found in the literature, see [Ho], [GH] and references therein.

1.7. List of main notations and theorems.

Notations:

S(n) symmetric group of rank n

Hq(n) Iwahori-Hecke algebra of rank n

F, — finite field with g elements

GL(n, q) — group of all invertible n x n matrices over F,
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S(00), Hy(00), GL(c0, q) — inductive limits of corresponding finite n objects

GLB — group of all almost uppertriangular infinite matrices over F,,

B — group of all uppertriangular infinite matrices over [,

B,, — subgroup of B of all matrices such that their top left n x n corner is identity matrix
BI,, — group of all uppertriangular n X n matrices over I,

GLU — group of all almost uni-uppertriangular infinite matrices over I,

U — group of all uni-uppertriangular infinite matrices over [,

peLe — Haar measure on GLB normalized by peLe(B) =1

pcLu — Haar measure on GLU normalized by pugrLu(U) =1

A(GLB), A(GLU) — algebra of all continuous functions with compact support (on the
corresponding group) taking only finitely many values.

Y — set of all Young diagrams and also Young graph

C — set of all irreducible monic polynomials over I other than x and 1

C,, — all degree n polynomials in C

CY,, — set of all maps from from C to Y of degree n

CY — disjoint union of sets CY,,, n =1,2,...

nf, x/ — irreducible complex representation of GIL(n,q) parameterized by f € CY,, and its
conventional character

CY’ — subset of CY of maps f such that f(“z—1") = 0.

A — algebra of symmetric (polynomial) functions in countably many variables

hy, €n, pn — complete homogeneous functions, elementary symmetric functions and Newton
power sums, respectively

sx — Schur function indexed by A € Y

Py(;t), Qa(+;t) — Hall-Littlewood P and @ functions with parameter ¢, indexed by A € Y
Spa, 3,y — homomorphism from A into C indexed by two sequence of non-negative numbers
a = {w;}, 8 = {f:} and real number ~ such that >, (a; + 3;) <, and given by its values on
power sums

SPasalptl =7, Spasalpr] =) af + (1Y B k> 1

Key theorems:

Proposition 2.6 on page 14 identifies A(GLB) with the inductive limit of the group algebras
C(GL(n, q)).

Theorem 2.26 on page 19 provides the description of all extreme traces of A(GLB).

Theorem 3.3 on page 21 gives the proof of multiplicativity of extreme unipotent traces of
A(GLB).

Theorems 3.4 and 3.5 on page 22 relate the values of extreme unipotent characters to spe-
cializations of Hall-Littlewood polynomials.

Theorem 3.10 on page 27 identifies the restrictions of unipotent traces with extreme traces
of Iwahori-Hecke algebra.

Theorems 4.1 and 4.6 on pages 28 and 30 explain that each unipotent characters can be
viewed as a probability measure.

Conjecture 4.5 on page 29 gives the (conjectural) classification and law of large numbers for
conjugation—invariant probability measures on infinite upper-triangular matrices.

Theorem 5.11 on page 39 provides a construction for the representations of GLB related to
grassmanian.
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Theorem 5.12 on page 43 provides a construction for the representations of GLB related to
spaces of flags.
Theorem 6.1 on page 43 describes the decomposition of the biregular representation of GLB.

1.8. Acknowledgements. During the long period of first stage of the work on the subject last
two authors (S.K. and A.V.) had many useful discussions with A. Zelevinsky, G. Olshansky,
I. Bernstein. The first author (V.G) is grateful to G. Olshanski for drawing his attention to
GLB and fruitful discussions at various stages of this work. V.G. was partially supported
by RFBR-CNRS grants 10-01-93114 and 11-01-93105. A.V. was partially supported by RFBR
grants 11-01-12092 (OFI-M) and 11-01-00677.

2. THE GROUP GLB AND ITS SCHWARTZ-BRUHAT ALGEBRA A(GLB)

2.1. Basic definitions. Let F, be the finite field with ¢ elements and let GL(n, q) denote the
group of all invertible n x n matrices over [F,. For any matrix X we denote through X (") jtg
top left n x n corner.

Definition 2.1. GLB is the group of all invertible almost upper-triangular matrices over I,
in other words X = [X;;]¢5_ is an element of GLB if there exists n such that:

(1) The n x n submatriz X (™) is invertible,
(2) Xi5 =0 for all i such thati > j and i > n,
(3) X4 #0 fori>n.

The group GLB is an inductive limit of groups GLB,,, where
GLB, = {[X”] € GLB | X,‘j =0 if both ¢ >j and i > n},

in particular, GLBy = B C GLB is the subgroup of all upper-triangular invertible matrices.
Each GLB,, is a compact group (with topology of pointwise convergence of matrix elements).
GLB as an inductive limit of GLB,, is a locally compact topological group. Let ugrs denote
the biinvariant Haar measure on GLB normalized by the condition ugrLs(B) = 1.
The space L1 (GLB, pgLs) is a Banach involutive algebra with multiplication given by the
convolution.

Definition 2.2. A(GLB) is defined as the subalgebra of L1 (GLB, ugLs) formed by all locally
constant functions with compact support. In other words, a function f(X) belongs to A(GLB)
if their exists n and a function f, : GL(n,q) — C such that:

Fx) = {fn(X(”)), if X € GLB,,,

0, otherwise.

Clearly, A(GLB) is dense in L;(GLB, ucLB). Note that algebra A(GLB) does not have a
unit element.

Definition 2.3. A continuous function x : A(GLB) — C is a trace of A(GLB) if
(1) x is central, i.e. x(WU) = x(UW),
(2) x is positive definite, i.e. x(W*W) >0 for any W € A(GLB),

Remark. It is impossible to normalize the traces, i.e. for any a € A(GLB) there exists a
trace x such that x(a) = 0.

A trace x is indecomposable if x = ajx1 + asx2 with ag > 0, as > 0 implies that both y;
and y»o are multiples of y. In other words, indecomposable traces are elements of extreme rays
of the convex cone of all traces.
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2.2. A(GLB) as an inductive limit. For any matrix ¢ € GL(n,q) let IgGLB € A(GLB)
denote the function

168 () = 1, if X € GLB,, and X" = g,
g 0, otherwise.

Let e(n) denote the identity element of GL(n,¢). Then by the definition
ISVB(X) = IG5 (Xg ™) = g ISP,

€
Definition 2.4. A(GLB), is defined as the linear span of IE’LB, g € GL(n,q). Put it oth-
erwise, A(GLB),, consists of functions from A(GLB) with support in GLB,, and depending
only on the restriction of operator g € GLB, on V, C V.

The following proposition is straightforward

Proposition 2.5. A(GLB),, is a subalgebra of A(GLB) isomorphic to the conventional group
algebra C(GL(n,q)). If e, denotes the natural basis of C(GL(n,q)) then the isomorphism is
given by e, — (q — 1)”qn(”_1)/2IgG'LB

Observe that A(GLB),, C A(GLB),,+1. In the basis IgGLB this inclusion is given by

- . 7GLB GLB
in 1y — E I,
hEExtGLB(g)

where for g € GL(n,q) we have
ExtStB(g) = {[hij] €GL(n+1,q) | i =gand hyy =hpo =+ =hpp1 = o}.

Summarizing the discussion of this section we get the following statement.
Proposition 2.6. The algebra A(GLB) can be identified with the inductive limit of algebras
A(GLB),,:

n—oo

A(GLB) = lim A(GLB), =|_JA(GLB),.

For every n the algebra A(GLB),, is isomorphic to the group algebra C(GL(n,q))
Thus, A(GLB) is a locally semisimple algebra.

2.3. Facts from representation theory of GL(n,q). Let us fix the notations and recall some
basic facts from the representation theory of the group GL(n,q) which immediately translate
into the statements for the representations and traces of algebra A(GLB),,. To a large extent
we adopt the notations of the book [M].

A Young diagram A is a finite collection of boxes arranged in rows with nonincreasing row
lengths A;. The total number of boxes in A is denoted by |A|. Let Y denote the set of all Young
diagrams. We agree that the empty set § € Y and || = 0. Y,, C Y stays for the set of all
Young diagrams with n boxes. Also for the Young diagram A its transpose diagram is denoted
\'; the row lengths of A coincide with column lengths of A’. For a box [0 € X its hook length
h(0O) is one plus number of the boxes below [J (in the same column) plus number of the boxes
to the right from O (in the same row).

For d > 1 let C; denote the set of all monic irreducible polynomials of degree d over F,. Let
C1 be the set of all linear polynomials z — a, a € Fy, i.e. we exclude the polynomial z. Clearly,
ICi]=q—1. Let C =g, Cq.
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Definition 2.7. A family of Young diagrams over the set C is a map
p:C—Y,
such that

6] := > dlé(e)] < .

d c€eCq
We call |@| the degree of ¢.

Definition 2.8. CYy is the set of all families of degree d and CY = J2,CYq.

Theorem 2.9. Irreducible representations of GL(n,q) are parameterized by elements of CY,.
The dimension of irreducible representation parameterized by ¢ € CY is given by the q—analogue
of the hook formula

dn(¢(c)")
dimg(@) = (" 1) (g~ D[] ]| —2

=1 e, Hoepo (@™ = 1)

For the proof, construction of the representations and their characters see [Gr], [Zel], [M].
For f € CYy let 7/ denote the corresponding irreducible representation, H (/) the space of
this representation, and let x7/(-) be its conventional character (i.e. matrix trace of 7/ (-)).

Corollary 2.10. The set of all traces of A(GLB),, is a simplicial cone spanned by traces x7.
In other words, if X" is a trace of A(GLB),, then there exist unique nonnegative coefficients
c(f) such that

X" = Y0 )

fecy,

Proof. A(GLB),, is isomorphic to the conventional group algebra of GL(n,q). Under this
correspondence a trace of A(GLB), turns into the character of GL(n,q), i.e. central (class)
positive-definite function on the group. It is well-known that characters of a finite group form
a cone spanned by the characters (matrix traces) of the irreducible representations. O

Next we describe the interrelations between traces and inclusions %,,.

Embed GL(n — 1,q) x GL(1,¢q) into GL(n,q) as the subgroup of block diagonal matrices.
Consider the subgroup U C GL(n,q) consisting of unipotent upper triangular matrices [u;;]
such that w;; is non-zero only for j = n (and w,, = 1). Note that GL(n — 1,q) x GL(1,q)
normalizes U.

Theorem 2.11. Suppose that f € CY. Let f[(ﬂf) denote the subspace of U]'-invariant vectors
in H(w'). And let 7 denote the representation GL(n — 1,q) x GL(1,q) in this subspace. Let
{fi} be all families in CY,—1 for which there exist y; € C1 such that

(1) filz) = f(z) for z # yi,
(2) The difference of the Young diagrams f(y;) \ fi(y:) is a single box.

Finally, let f\ fi denote the family from CYy such that (f \ f;)(y;) is the one box diagram.
We have

7 = Pl orl\,
i

Proof. See e.g. [Zel, Chapter III]. O
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2.4. Structure of A(GLB). We need to introduce some notations to state an important
corollary of Theorem 2.11.

Definition 2.12. For two families f € CY,, and g € CY,,_1 we say that g precedes f and write
g <cLB f if

(1) f(*z—1")\ g(*z —17) is one box

(2) f(u) =g(u) for all u # “z —1".

(Here “x — 1”7 € Cy stays for the corresponding irreducible polynomial.)

Theorem 2.13 (Branching rule). Let w7 be the irreducible representation of algebra A(GLB),
(equivalently, of the group GL(n,q)) parameterized by f € CY,, and let x* be its conventional
character (i.e. matriz trace). The restrictions of 7/ and x/ to the subalgebra A(GLB),_;
admit the following decomposition:

! — E 9
X - X
LA(GLB)H?I g<GLBf
equivalently,
1 N @ v
™ — @ X7
‘A(GLB)n_l g=<cLBf
where N is a zero representations of A(GLB),_1 of dimension dim(f) — 3 __ . dim(g).

Remark 1. By zero representation we mean the action of A(GLB),,—; by the identical
zero in a vector space of arbitrary dimension.

Remark 2. Theorem 2.13 implies, in particular, that the restriction of 7/ to A(GLB),_;
is multiplicity free. This property was mentioned by various authors, the first proof was given
by A. Zelevinski [Zel, Chapter III] using the Hopf algebras approach. Now there exist simple
direct proofs of this fact, see [Go], [AG].

Remark 2. As opposed to the situation with parabolic embeddings, the restrictions of
irreducible representations of GIL(n,q) to the naturally embedded subgroup GL(n — 1,q) are
not multiplicity free, see [Th71], [Zel, Chapter III, Section 13].

Proof. This follows from Theorem 2.11 and we use the notations of that theorem. Indeed, the
summation in the definition of parabolic embedding ¢, introduces averaging over U and
over GIL(1,q). Therefore, the parabolic embedding translates into the projection on GIL(1,q)—
invariants in 77. O

Now the structure of locally semisimple algebra can be encoded via its Bratteli diagram [Br],
[VK87], [K03].

Definition 2.14. B(GLB) is a graded graph supplemented with additional numbers, labels of
the vertices. The set B(GLB),, of vertices at level n is CY,,. The label I(f) of the vertex
f € B(GLB),, is the dimension of the irreducible representation of GLL(n,q) parameterized by
f, the formula for its computation is given in Theorem 2.9. An edge joins vertex f and vertex

g is and only if g <gLB f-
Theorem 2.13 implies that
Proposition 2.15. B(GLB) is the Bratelli diagram of algebra A(GLB).

For convenience of the reader we recall in our settings the general procedure for the recon-
struction of the involutive algebra by its Bratteli diagram.
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By the well-known theorem algebra A(GLB),, is isomorphic to the direct sum of matrix
algebras of ranks equal to the dimensions of its irreducible representations. Therefore,

(2.1) AGLB),= @  Mat((f),l(f))
fEB(GLB),
The inclusions i, : A(GLB),, — A(GLB),+1 can be reconstructed as follows. For every
f € B(GLB),, fix the embedding
D Mati(9),U9) — Mat(i(£),1(f))
g<aLB/f
as block-diagonal matrices. Note that he we need the inequality

> g <Uf)

g<cLBf

to be satisfied. Let iy denote the above embedding considered as a map from the matrix
algebra corresponding to g to the matrix algebra corresponding to f viewed as a subalgebra of
A(GLB) 1.

Now for a =} ;¢ p(gLp), Ms> With my € Mat(I(f),1(f)) in (2.1), we set

in(a) = Z Z Qg fMy.
fEB(GLB)n+1 g=<f
Algebra A(GLB) is reconstructed as the inductive limit of A(GLB),,.

2.5. Some subalgebras of A(GLB). Let B,, C GL(n,q) be the (Borel) subgroup of all
upper-triangular matrices. We call an element

a = Z c(g)eg S (C(GL(TL, q))
g€GL(n,q)

By, —biinvariant if ¢(g) = ¢(b1gbs) for any g € GL(n,q) and by,by € B,,. Put it otherwise, B,,—
biinvariant element is a linear combination of characteristic functions of double cosets B, gB,,.

Definition 2.16. The Iwahori-Hecke algebra H,(n) is defined as the algebra of B, ~biinvariant
elements in C(GL(n, q)).

The following proposition describes the structure of Hy(n).
Proposition 2.17. The algebra H,(n) has dimension n! and has a linear basis s, enumerated

by permutation matrices w:
1
Sy = €g-
w 1B, Z 9

geBLwWB,

As an algebra Hy(n) is generated by n — 1 elements s;;41) (where (i,i + 1) is elementary
transposition permuting i and i + 1) subject to relations

(1) 8(i,i41)8(j,5+1) = SG.j+1)S@iit1), 1 —31>1,
(2) S(k k1) S(k+1,k+2)S(kk-+1) = S(k+1,k+2)S(kk+1)S(k+1,k+2)
(3) S%k,k+1) =(q— 1)5(k7k+1) + gse,

where e is identical permutation. s, is the unit element in Hq(n).

Proof. See [I], [Bou]. O

Let us embed H,(n) into Hy(n+1) as a subalgebra spanned by first n—1 out of n generators.
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Definition 2.18. The infinite-dimensional Iwahori-Hecke algebra H,(oco) is defined as the
inductive limit of H,(n):

n—oo

Hy(00) = lim H,(n) = | JH,(n),

Note that H,(o0) is generated by countably many generators s(; ;;1) subject to the same
relations as in Proposition 2.17.

Through the identification C(GL(n, ¢)) ~ A(GLB),, we can view H,(n) as a subalgebra of
A(GLB),,. The following proposition is straightforward.

Proposition 2.19. The restriction of the embedding i,, : A(GLB),, — A(GLB),.+1 on the
subalgebra Hy(n) coincides with above embedding Hy(n) — Hqy(n + 1), therefore, Hy(oo) C
A(GLB). Hy(co) coincides with subalgebra of B-biinvariant functions in A(GLB) C
Ll(GLB,/lGLB).

We want to define yet another important subalgebra of A(GLB). Let Iy € A(GLB) denote
the indicator function of B in the realization of A(GLB) as a subalgebra of L; (GLB, pgLB).

Definition 2.20. The unipotent subalgebra A(Uni) is defined as a two-sided ideal in A(GLB)
generated by Ig.

Our definitions imply that H,(co0) C A(Uni) C A(GLB).

We also note that the Bratteli diagram of A(GLB) described in the previous section is a
disjoint union of countably many copies of the Young graph with shifted gradings and different
labels of the vertices. Therefore, A(GLB) is the direct some of ideals corresponding to the con-
nected components of its Bratteli diagram. We remark that .4(Uni) is precisely the component
consisting of families f € CY such that f(u) = (), unless u = “x — 1", see also Proposition 3.1
for a related fact.

2.6. Classification of traces of A(GLB). Although, we are not going to use it directly, but
the following abstract statement holds:

Proposition 2.21. The description of traces of a locally semisimple algebra depends solely
on its Bratelli diagram without labels. In other words, if X and Y are two locally semisimple
algebras, whose Bratelli diagrams have the same sets of vertices and edges but, perhaps, different
labels of vertices, then there is a canonical correspondence between their traces.

Sketch of the proof. This follows from the identification of traces with harmonic functions or
coherent systems on the Bratelli diagram of the algebra, see [VK87], [VK90], [K03] for more
details. The key idea here is that branching of traces does not depend on labels, for GLB this
can be seen in Theorem 2.13. (]

In order to state the classification theorem for traces of A(GLB) we need to introduce some
additional notations.
Let f € CY be a family of Young diagrams. We call the set

{zeC| flz) #0}
the support of f and denote it supp(f). If f and g are two families of Young diagrams with
disjoint supports, then f + g stays for the following family:
f(@), x € supp(f),

(f +9)(@) = { 9(z), x € supp(yg),
(), otherwise.



19

This operation corresponds to the parabolic induction of representations of GL(n,q) (see e.g.
[Gr], [Zel, Chapter III] and [M, Section IV.3])

Let A be the algebra of symmetric functions in variables zi,zs,... (see e.g. [M] for all
the definitions). We intensively use various generators of this algebra, namely, elementary
symmetric functions e,, complete symmetric functions h,, and power sums py:

pr=) =t
k

We also use Schur symmetric functions sy, A € Y which form a linear basis in A.
A specialization ® of A is an algebra homomorphism:

®: AN —C.

Note that any specialization of A is uniquely defined by its values on pi. In what follows we
write the arguments of specializations in square brackets ®[].

Let « = {a;} and = {f;},1=1,2,3 ... be two weakly decreasing sequences of non-negative
real numbers such that

o0
(2.2) D (ai+ i) <y < oe.

i=1
Definition 2.22. For any two sequences o and 3 of non-negative reals and number v satisfying
(2.2) we define the specialization Spa. g, through its values on the generators py of A

SPasalp] =7 SPasalpi] =) af + (=1 Y pBF.

Remark. Note that if §; = 0 and >, a; = 7, then the specialization Sp, 3, boils down
to the substitution of numbers «; in place of formal variables x;.

Definition 2.23. CY’ C CY is the set of families f of Young diagrams such that f(“z—1") = (.

Definition 2.24. Q(GLB) is defined as the set of triplets («, 8, f), where a = {a;} and
B = {B:i}, i = 1,2,3... are two weakly decreasing sequences of non-negative real numbers
satisfying (2.2) fory =1 and f € CY'.

Definition 2.25. For w € Q(GLB) we define a trace x¥ of A(GLB) as follows. For g €
GL(n, q) we have X“’(IQGLB) =0 if n <|f]|, otherwise,

(2.3) XCISEB) = N TP IEEB)Sp, 5.[sA],
AEY sy

where Ey(\) is a function from CY,, taking value X in “x — 1" and taking value () in all other

points. xTTF1 N | as and above, stays for the matriz trace of the irreducible representation of
A(GLB),, (GL(n,q)) indexed by f + E1(\).

Theorem 2.26 (Classification theorem for finite traces of A(GLB)). The extreme rays of
the set of traces of A(GLB) are parameterized by elements of Q(GLB). For w = (a, 8, f) €
Q(GLB) the corresponding ray is Ry x“(+).

Proof. For a family f € CY’ let CY) C CY denote the set of families & € CY such that
h(u) = f(u) for allu € C\ {“x — 17}.

Moreover, for a family f € CY’ let Y/ denote the convex cone of traces y of A(GLB)
such that such that for n < |f| the restriction X|A(GLB vanishes and for n > |f| in the

n—1
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decomposition (see Corollary 2.10)
= Y cWx"().
hecy,

c(h) = 0 unless h € CY), Let Y? denote the set Y7/ for f being the empty family. We claim
that for any f € CY’ the convex cone Y7 is affine isomorphic to T?. The isomorphism

®f 1% - v/

X|.A(GLB)n

is given be the following formula. If y € T? is such that

X = S ehx"0),
|A(GLB)“ heCY, N CYW)
then
®/(x) = c(R)X" 1 ().
|A(GLB)"+‘” heCY%CY(f)

Theorem 2.13 implies that the branching of traces from T? with respect to restriction on
subalgebras A(GLB),, is the same as branching of the characters of symmetric groups, cf.
[Sa], [K03]. Therefore, Y? is isomorphic to the set of characters of the infinite symmetric
group S(o0), see [VK90], [K03]. The latter characters were classified by Thoma [Th64], see
also [VK81]. Thoma’s theorem implies that the extreme rays of T? are parameterized by pairs
a = {a;} and f = {B;}, i = 1,2,3... of weakly decreasing sequences of non-negative real
numbers satisfying (2.2) with v = 1. The ray corresponding to a pair («, ) is spanned by the
character y®? such that for g € GL(n,q) we have

XmB(IgGLB) = Z X)\(IQGLB)Spa,BJ[SA];
AEY,
We conclude that for f € CY’ the extreme rays of Y/ are parameterized by pairs (o, 3) and
are given by the formula (2.3) for the triplet (a, 8, f).
It remains to prove that every extreme ray of the set of traces of A(GLB) is an extreme ray
of one of the sets Y/. Indeed, let x be a trace of A(GLB). We claim that there exists a unique
decomposition of x into the sum

x=3 X0, D exs

fecy

To prove the claim consider the restrictions y (7 )|A(G ) for which the existence and uniqueness
LB),

of such decomposition is immediate. This finishes the proof. O

3. UNIPOTENT TRACES AND THEIR VALUES

Recall that an irreducible representation of GL(n,q) is said to be unipotent (see e.g. [St],
[J2]) if it contains a non-zero Bj-invariant vector. (Here B,, C GL(n,q) is the subgroup
of upper-triangular matrices.) In the above parameterization of irreducible representation of
GL(n,q) by the families of Young diagrams, unipotent representations 7/ are precisely those
for which f(p)=0ifp # “z—1".

Proposition 3.1. Let x¥, w € Q(GLB) be an indecomposable trace of A(GLB). The following
conditions are equivalent:

(1) For every n the restriction of x¥ to A(GLB),, is a linear combination of matriz traces
of irreducible unipotent representations of GL(n,q),
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(2) Restriction of x¥ on Hy(o0) is non-zero,
(3) Restriction of x* on A(Uni) is non-zero,

(4) w = (a, 8, f) with f = 0.

Proof. Equivalence of properties (1) and (4) is a corollary of Theorem 2.26. Next, normalized
indicator function of the Borel subgroup B,, C GL(n,q) is a unit element of H,(n). In the
same time in a unipotent representation of GIL(n,¢) it acts as a projection on the set of B,,—
invariant vectors, while in any other representation it acts as zero. Therefore, the value of the
matrix trace of a unipotent representation of GIL(n,q) on this indicator function is positive,
and (1) implies (2). Since Hy(oco) C A(Uni), the property (3) follows from (2). Finally,
since A(Uni) is spanned by the indicator function of B and this indicator function vanishes in
any non-unipotent representation, every element of .A4(Uni) acts as zero in any non-unipotent
representation. Therefore, the value of a non-unipotent character of GL(n, ¢) on an element of
A(Uni) is zero and (1) follows from (3). O

Definition 3.2. An indecomposable trace of A(GLB) satisfying conditions of Proposition 3.1
is called unipotent.

In this section we find a number of remarkable properties of unipotent traces which give
a relatively simple procedure for the computation of their values on arbitrary elements of
A(GLB). Let us sketch all these properties together first. Since A(GLB),, is isomorphic to
the group algebra of GL(n, g), the traces can be viewed as functions on matrices from GL(n, q)
for various n. Such function is central, i.e. its values depend on the matrix through its Jordan
normal form. One property of these functions is their multiplicativity which expresses the value
on arbitrary Jordan normal forms as product of values on single block Jordan forms. Another
property is a simple relation between values on the Jordan blocks with eigenvalue 1 and on
Jordan blocks with arbitrary other eigenvalues. Final component is an expression for the values
on the Jordan blocks with eigenvalue 1 in terms of specializations of modified Hall-Littlewood
polynomials.

As for the restriction of unipotent trace on Hecke algebra H,(co) C A(GLB), in this section
we identify them with extreme traces of H,(c0) found in [VK89], see also [Me, Section 7], which
also gives a formula for their values.

3.1. Values of unipotent traces: formulations.

Theorem 3.3 (Multiplicativity theorem for unipotent traces). Let x be an extreme unipotent
trace. For g € GL(n,q) let x(g) denote the value of the restriction of x* to A(GLB),, ~
C(GL(n, q)) on the element e, € C(GL(n,q)). Suppose that a € GL(n,q) and b € GL(m, q) are
two matrices with coprime characteristic polynomials, then

x“(a)x”(b) = x*(a ©b),
where a © b € GL(n + m, q) is the block-diagonal matriz with blocks a and b.

Remark. A very similar multiplicativity property holds for the extreme characters of the
infinite symmetric group S(co) (see [Th64]) and infinite-dimensional unitary group U(co) (see
[Vo]). This seems to be a general infinite-dimensional phenomenon.

The values of the unipotent traces on various conjugacy classes can be computed in terms
of specializations of symmetric functions.

Let P, (x1,2,...;¢7 ") and Q,(z1,72,...;¢7") denote the Hall-Littlewood P and @ poly-
nomials with parameter ¢! in variables x1, ... labeled by a Young diagram u, see [M, Chapter
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III]. Let M, denote the endomorphism of the algebra of symmetric functions
My :A— A

given on the Newton power sums py by the formula

1
Pk — ——— Pk, k=>0.
1—qk

Denote
P, =MyPy, Qu=MQu.
The symmetric functions ﬁ“ and @“ are known as modified Hall-Littlewood polynomials.

Theorem 3.4. Let x¥ be an extreme unipotent trace. For g € GLL(n,q) let x(g) denote the
value of the restriction of x¥ to A(GLB), ~ C(GL(n,q)) on the element e, € C(GL(n,q)).
Suppose that the characteristic polynomial of g is (x — 1)™ and the conjugacy class (i.e. Jordan
Normal form of g) is encoded by the Young diagram X\ with n boxes. Then

X(9) = 0"V Spasa 1],
where v
n(\) = Z(z —1\ = Z (2)
Now let Pl,, be the endomorphism of the algebra A defined through
Pl,:A— A, Pl,(p;) = pni

This is a particular case of plethysm morphism, see [M, Section 1.8]. Note that Pl,, maps m
to my.
Now set
Spa g1 = SPa,p1 0 Ply.
Observe that
SPZﬁ,l [f] = Spa",—(—,@)",l [f] ,
where a" = ((al)na (az)na tee )7 _(_ﬂ)n = (_(_Bl)na _(_62)n7 v )

Theorem 3.5. In the settings of Theorem 3.4 suppose that n = km, the characteristic polyno-
mial of g is u™, where u is an irreducible (over F,) polynomial of degreee k and the conjugacy
class (i.e. Jordan Normal form of g) is given by the Young diagram X\ with m bozes. Then

x(g) = ¢F" N Spk 4, [@A(-; q‘k)}

Clearly, combining Theorem 3.5 and Theorem 3.3 we get the formula for values of the unipo-
tent traces on arbitrary conjugacy classes.

3.2. Values of unipotent traces: proofs. To give a proof of Theorem 3.3 we need some
facts about the Hopf algebra related to the representations of GL(n,q). We follow [Zel] and
[M] here.

Let D,, denote the the space of central (i.e. class) complex functions on GL(n,q). This is a
finite dimensional vector space with basis of the characteristic functions of the conjugacy classes
of GL(n,q). The latter are parameterized by the elements of CY,,.

Denote

D= @nEODn-
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The vector space D is a Hopf algebra with multiplication and comultiplication given by the
operations of parabolic induction and parabolic restriction, respectively, see e.g. [Zel, Section
8, Chapter III] or [M, Section IV].

For a family f € CY,, let Cly € D,, denote the indicator function of the conjugacy class in
GL(n, q) corresponding to f. The definition of the multiplication in D implies that for disjoint
f1, fo we have

(3.1) Cly, - Cly, = Clyy v g

Let R,, C D,, denote the Z—module spanned by the characters of irreducible representations
of GL(n,q) and R = ®,>0R,. Then D = R ®z C. R is a Hall subalgebra of D, moreover, R is
a PSH-alebra in the terminology of [Zel].

Proposition 3.6. We have
(3.2) R=Q)R", D=()D,
ceC ceC

where Q) means the tensor product of Hopf algebras, R® is Z—module spanned by the characters
of irreducible representations x? of GL(n,q) such that f(u) = () unless u = c. R° is a Hopf
subalgebra of R, elements ¢ € C enumerate the so-called cuspidal irreducible representations of
GL(n, q), which are in bijections with elements of C and D¢ = R°®;C. Each R° is isomorphic
to A, under this identification xf € R corresponds to Sf(e)-

Proof. See [Zel, 9.3]. O

Next we describe how the traces of A(GLB) are related to algebra D. Let pG¥B denote a
distinguished degree one element of D which is the sum of characters of all ¢ — 1 irreducible
representation of GL(1, q).

Let 2GLB denote the convex cone of linear functionals on D satisfying:

&:D—C

(1) &[u - pSEB] = €[u], for every u € D,
(2) £[x] > 0 for every n and every character x € D,, of an irreducible representation of
GL(n,q).
Let ¢ — &? denote the map from the set of traces of A(GLB) to 2B given by:

& =clf),

where x/ € D, is a character of irreducible representation of GLL(n,q) indexed by f € CY,
and ¢(f) is the coefficient in the decomposition

()= D M)
(ﬁ‘A(GLB)n &
Comparing the definitions of the set 2B and Proposition 3.6 with Theorem 2.13 we con-

clude that the map ¢ — & gives a bijection between the set of traces of A(GLB) and ZGLB,
Moreover, note that for g € GL(n,q) belonging to a conjugacy class f we have (as follows
from the definitions)

(3.3) d(eg) = £°[Cly)

As and above we use the identification A(GLB),, ~ C(GL(n, q)) here.
Now we can prove Theorem 3.3.



24

Proof of Theorem 3.3. Let x (which is x* for some w € (GLB)) be a unipotent extreme trace
of A(GLB). For b€ R*®~'" the values of ¢X[b] were computed in Theorem 2.26. In particular,
since specializations Spy 5., are algebra homomorphisms by their definition and R~ ~ A,
we have for by,by € R @~

(3.4) X [b1ba] = EX[b1)EX [bo]-

We claim that (3.2) actually holds for general by,bs € D. To prove this claim note that both
sides of (3.4) are bilinear. Therefore, it enough to check this property for by, bs belonging to
some linear basis of D. Let us choose the basis b/ enumerated by f € CY and given by

o = = HXfc’
ceC

where y/< € R¢ is the character of the irreducible representation of GL(|f(c)|,q) corresponding
to the family f. defined as a unique family such that f.(c) = f(c) and f.(u) = 0 for u # ¢; x*
as and above is the corresponding character of the irreducible representation of GL(]|f],q). It
remains to observe that by the definition of the unipotent character

&p1=0
unless f(u) = 0 for any u # “z —17.

Now suppose that a € GL(n,q) and b € GL(m,q) are two matrices with coprime charac-
teristic polynomials belonging to conjugacy classes parameterized by f € CY,, and h € CY,y,,
respectively. Then the families f and h are disjoint, furthermore, a o b belongs to the conjugacy
class parameterized by f + h. Therefore, using (3.4), (3.1) and (3.3) we obtain

X (aod) = € [Clpan] = € [Cly - Cla] = € [CI1E [Cla] = x* (@)X (b)
O

Proof of Theorem 3.4. If x* is the character of the unipotent representation of GL(n, ¢) indexed
by u, then as follows e.g. from the results of [M, Chapter IV]
1
X" (g) ( )KZ A
where KZT; is the ¢~! Kostka number defined as the coefficient in the decomposition of Schur
polynomials into the sum of Hall-Littlewood polynomials

-1

(3.5) SN(.'L'l,.'L'Q,...):ZKZ’)\P}\(xl,.'I)Q,...;q_l).
A

Therefore,

(3.6) Z Spmg 1[sA]-

It remains to prove that
~ —1
(3.7) Q=Y K s
w
Indeed, the Cauchy identity for Hall-littlewood polynomials (see [M, Section III.4]) yields
(3.8) > Pz, w50 )Qu(yn, vz, 0 Hu= [ [ - ¢ iy (1 - ziy;)

veY 2]
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Applying the map M, with respect to the variables y1,ys2, ... in the identity (3.8) we arrive at
(3.9) S P, m, 50 QUi v, -0 Du= [ (1 - ziyy)

veY i,

In the same time the Cauchy Identity for Schur Polynomials (see [M, Section I.4]) yields

(3.10) > sul@i,ma, .50 sy, g D= [[(1— @iy

veY .
Combining (3.9), (3.10) and (3.5) we arrive at (3.7). O

We need some preparations to prove Theorem 3.5. In order to connect the values of unipotent
traces on unipotent and on more general conjugacy classes it is convenient to work not with
irreducible representations of GL(n,¢q), but with representations induced from the parabolic
subgroups.

More precisely, let u be a Young diagram with n boxes and let fl, denote the set of all flags
of subspaces

icVec--CV,

of n-dimensional vector space Fy, such that dimVy = p1 + -+ + pg. Here r is the number
of nonempty rows in pu. GL(n,q) naturally acts in fl,. Let ¢){ denote the character of the
corresponding representation of GL(n,q) in C(fI,). Clearly, ¢,(g) is equal to the number of
flags in fl,, which g fixes.

First, we claim that if the conjugacy class of g is given by a family f € CY,, such that f(p) = 0
for all but one linear polynomial p, then the value of ¢,(g) does not depend on this p (but, of
course, depends on the Young diagram f(p)). Indeed, if g; and g, are two such matrices, then
one can be obtained from another by conjugation and addition of a scalar matrix. Conjugation
does not change the character. The addition of a scalar matrix does not change the set of
invariant subspaces of an operator, thus, also does not change the character.

Next suppose that n = mk and let p(z) be an irreducible polynomial of degree k. Suppose
that the conjugacy class of ¢ € GL(n,q) is given by a family f, f(-) is equal to empty set
everywhere except at p and f(p) = A. This implies that [\[ = m. Suppose also that g, €
GL(m,¢*) (note that the number of elements in the field changed!) is in a conjugacy class f’
such that f(p’) = A for linear polynomial p'(z) = "z — y” (here y € sz) Our next aim is to
prove that

V8 (g)), if i = kw; for all i,
0, otherwise.

(3.11) Pulg) = {

Note that (as we have shown above) the right side of (3.11), actually, does not depend on y.
Conjugating the matrix, if necessary, we can assume that ¢ is made out of k£ x k blocks. On
the main diagonal all the blocks are Mat(p), where

0 O 0o ... —Po

1 0 0 P —P1
Mat(p) =

0 I 0 —pr—2

0 0 1 —pr

is the companion matrix of the polynomial

p(x) =po+pa+-- +ppra "+t
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Below the diagonal all blocks are zero. Directly above the main diagonal blocks are either k x k
identity matrices or zeros. Identity matrices form (diagonal) groups of lengths (from top to
bottom) A1, As, ....

The matrix ¢’ can be assumed to have a similar structure (but without any blocks), e.g.

y 1 0
0 y 1 0
, o 0o y o0 o0
9= 10 0 0 y 10
0 ... 0 y

More formally, g’ has ys on the main diagonal, zeros everywhere below the main diagonal and
above the second (i.e. the one on top of the main diagonal) and 1s in the second diagonal
forming groups divided by zeros. In the above example the length of the first group, which is
A1, equals 2.

Now let us view the n-dimensional space Fy as (F’q“)m Let us identify IE"; with Fg.. The
main step in proving (3.11) is the following lemma.

Lemma 3.7. There exists y € Fyx such that if V is a Fy-linear subspace of (F’q“)m invariant
under g, then V is a IF-linear subspace invariant under g; and vice versa.

Proof. Let h be n x n matrix made out of m k x k blocks on the diagonal, each block is Mat(p).
If we set Q = ¢' with large enough ¢, then (¢ — h)? = 0. Note that the matrices g and h
commute, therefore (g — h)? = g¥ + (—h)?. We conclude that V is invariant under h<.

Now let us consider the field Fy[z]/p(x) ~ F, . Note that Mat(p) is the matrix of the
operator of multiplication by z in the basis 1,z,...,2* 1. Since z now can be viewed as an
element of the field with ¢* elements, we conclude that M at(p)qk = Mait(p). Therefore, it
is possible to choose large ¢ so that Mat(p)? = Mat(p). Thus, h% = h and V is invariant
under h. Any element of F,[z]/p ~ F is a polynomial in z, therefore, V' is invariant under
the multiplicative group of F,x. In other words, V is a F-linear subspace. Now identifying
z € Fyl[z]/p(z) with y € F» we see that V' is invariant under the g; .

In the reverse direction the statement is immediate. O

Now (3.11) becomes straightforward. Indeed, the left side of (3.11) equals the number of
g-invariant flags. If k does not divide p; for some i, then Lemma 3.7 implies that there are
simply no invariant flags. And if y; = kv; for all £, then the flags from fI, are identified with
flags from fl,, over bigger field F « and we arrive at the right side of (3.11).

Proof of Theorem 3.5. Now we can deduce the formula for the values of the unipotent traces.
Decompose x“ into the sum of the characters ¢:

e § q
X - C'u'(/)“
HEY R

In order to calculate the coefficients ¢, we recall the decomposition of the characters of the
irreducible unipotent representations of GIL(n, ¢) into the sum of ¢)f. We have

(3.12) X =D Ky,
o

where the coefficients K ,, are Kostka numbers and do not depend on ¢ (see [St] and also [M,
Section I.6] and references therein). They can be defined via the relations in the algebra of
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symmetric functions A:

my ZZEE:}(&“SA
A
where m,, is the monomial symmetric function indexed by p. We have

XY= X Spasalsal = > vl (Z K> uSpa,sal sA]> > Spasalmuvl

€Y, neY, AeY neY,

Evaluating in g and using (3.11) we get
Z Spﬂﬁl mkl’]wu Z Spa,,@, ml’]wu ( )

vEY,, veY,,
Converting back into the sum of irreducible unipotent characters we get

= Spk sl ().

AEY

Now the application of Theorem 3.4 (with ¢ replaced by ¢*) completes the proof. (]

3.3. Restriction of unipotent traces to Iwahori—Hecke algebra. In this section we ex-
plain what happens when one restricts unipotent trace of A(GLB) on H, (o).
First, we recall a classical theorem relating representations of H,(n) and GL(n, g).

Proposition 3.8. Both irreducible representations of Hy(n) and unipotent irreducible represen-
tations of GL(n,q) are parameterized by the set Y,, of Young diagrams with n boxes. The repre-
sentation of Hqy(n) indexed by \ coincides with the restriction of the representation of GL(n, q)
indezed by A on the set of B, —invariant vectors and on the subalgebra Hq(n) C C(GL(n,q)). In
particular the restriction of the conventional character (matriz trace) of the irreducible unipotent
representation of GL(n,q) on H,(n) is the character of the corresponding irreducible represen-

tation of Hq(n).
Proof. See e.g. [CF]. O

The traces of infinite Hecke algebra H,(co) were first classified in [VK89], recently they were
also studied in [Me]. From these articles the following result is known.

Proposition 3.9. Eztreme traces of Hy(0o) normalized by the condition x(s.) = 1 are enu-
merated by sequences a = {a;}, B = {B:} satisfying

aZay =20, =20, Y (i+B)<1
i
The decomposition of the restriction of trace x*° on Hq(n) into traces x* of irreducible repre-
sentations of Hq(n) is given by the following formula:

XY= Spagalsalxt
Ha(n) €Y,
Combining Propositions 3.8 and 3.9 with Theorem 2.26 we arrive at the following statement

which should be viewed as an infinite-dimensional analogue of Proposition 3.8.

Theorem 3.10 (Restriction theorem for unipotent traces). The restriction of the extreme
unipotent trace of A(GLB) indexed by pair of sequences «, B on the infinite-dimensional Hecke
algebra Hy(00) C A(GLB) is the extreme trace of Hy(o0) indexved by the same parameters.
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4. IDENTIFICATION OF UNIPOTENT TRACES WITH PROBABILITY MEASURES

For any g € GL(n, q) let CylfLB denote the set of all h € GLB such that IgGLB (h) =1. We

call Cyl?LB the cylindrical set of g. Clearly, sets CylfLB span the g-algebra of Borel sets on
GLB.

Theorem 4.1. Let x* be a unipotent trace of A(GLB). There exist a unique probability

measure on B C such that for any upper-triangular matriz g € n,q) we have:
oSLB B C GLB, h that f y upper-triangul triz g € GLL(n, q) h

(4.1) X758 = oS TP(CyIFh?)

-1
Proof. The g—Kostka numbers KZ7)\ are polynomials in ¢~!

e.g. [M, Section III.6]). Therefore, KZ_; > 0 for all g and A. Furthermore, also Spq 5,1[sx] > 0
(see [VK90], [K03]). Therefore, formula (3.6) implies that the values in the left side of (4.1)
are non-negative. Consequently, we can define the measure QSLB through the equation (4.1).
Definitions of the functions I, gG LB and traces readily imply that we get a well-defined probability
measure.

The uniqueness follows from Theorems 3.5 and 3.3 which prove that the trace x“ is uniquely
defined by its values on unipotent classes. O

with non-negative coefficients (see

Remark. Analyzing the statement of Theorem 3.5 one sees that, for general g, the values of
x“ (I fLB) might be negative. Thus, if we try to extended the measure g“ to the whole group
GLB, then it will no longer be a positive measure.

The aim of this section is to analyze the properties of measures ¢S“B. At this point it is
convenient to switch from GLB to GLU. While all the proofs remain almost the same, but the
statements for GLU look simpler and more clear. The reason is that unipotent upper triangular
matrices have a unique eigenvalue 1, while general upper-triangular matrices might have up to
q — 1 different eigenvalues and we would have to analyze the part of measure corresponding to
each of them separately.

The whole theory for GLU is very much parallel to GLB. We give an overview here, the
details can be found in the Appendix. In the same way as for GLB we introduce the algebra
A(GLU) of continuous functions on GLU with compact support taking only finitely many val-
ues. A(GLU) is yet again an inductive limit of algebras A(GLU),, isomorphic to C(GL(n,q)),
however, the embeddings become different. While the classification of traces of A(GLU) is a
bit different than that of A(GLB) there is still a class of unipotent traces parameterized by
sequences «, . Moreover, under the identification A(GLU),, ~ C(GL(n,q)) ~ A(GLB),, the
restriction of unipotent trace of A(GLU) and A(GLB) are the same functions. Because of
that it makes no reason to distinguish between the unipotent traces of A(GLU) and A(GLB).

For GLU the group B is replaced by the subgroup U of unipotent upper-triangular matrices
and Theorem 4.1 transforms into Theorem 4.2 (with notions of the indicator function I gGLU

lGLU
g

and cylindrical set Cy analogous to those for GLB) the proof of which remains the same.

Theorem 4.2. Let x* be a unipotent trace of A(GLU). There exist a unique probability

measure QSLU on U, such that for any upper-triangular matriz g € GLL(n, q) we have:

(4.2) X (IFY) = oGHY(CyIgtY)

The measures corresponding to unipotent traces belong to a more general class of measures
which we now describe.
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Definition 4.3. A probability measure o on U is called central if Q(CylfLU) depends only on
the conjugacy class, i.e. on the Jordan normal form of g. In other words, o is invariant under
conjugations by elements of GLL(oc0, q).

Remark. Conjugations, in general, do not preserve the set of upper-triangular matrices, so
the invariance means that if both M C U and gMg~' C U for some measurable set M and
g € GLL(c0, q), then the measures of M and gMg~! are equal.

Definition 4.4. A central measure o is called ergodic if it is an extreme point of the convez
set of all central probability measures.

The following conjecture describes the set of all ergodic central measures on U. For a matrix
u € U, as above, u(™ stays for its top-left n x n corner. Since all the eigenvalues of u are 1s,
the Jordan normal form of ("™ can be parameterized by a Young diagram X\, let \; (u,n) and
A} (u,n) denote the row and column lengths of A, respectively.

Conjecture 4.5 (Classification and law of large numbers for ergodic central measures). Let
¥ be an ergodic central measure on U. There exist two sequences 14, ¢; (row frequencies and
column frequencies), such that for every i, Y—almost surely

lim M =r;, lim M = ¢;.

n— oo n n— oo n
Moreover, for each pair of sequences r = (r1 > 19 > -+ >0) and ¢ = (¢ > ¢ca > -+ > 0)
satisfying Y, (ri +¢;) < 1 there exists a unique ergodic central measure 9™ with corresponding
row and column frequencies.

The Y™ °—probabilities of cylindrical sets can be expressed through the row frequencies and

column frequencies via the formula
qfn(nfl)/Z
(L—g )"
where g € GL(n,q) is an unipotent upper-triangular matriz corresponding to the conjugacy
class A, Qx is, as above, the Hall-Littlewood polynomial and for a sequence ¢ = c1,¢2,. ..,
the sequence ¢ is obtained by rearranging two-dimensional array of numbers (1 —q V)it 7,
1,7 =1,2,... in decreasing order.

(4.3) I(CyI§MY) = 7" NSp, 0 1 [QA(1¢7H)]

Remark 1. Conjecture 4.5 is a particular case of the conjecture on Macdonald polynomials
stated in [KO03, Section I1.9] and which is now known as Kerov conjecture. A part of this
conjecture was also briefly mentioned in Section 4 of [Fu].

Remark 2. If row frequencies r; form a geometric series (1 — ¢~ 1), (1 — ¢ 1)g!,... and
column frequencies ¢; are zero, then (see [M, Exercise 1 in Section III.2])

Spr,c(‘l)vl [QA('; qil)] = (1 - qfl)ann()\)
and 97¢ becomes the Haar (put if otherwise, uniform) measure on U. The row and column
frequencies for the Haar measure on U were first found by A. Borodin in [B1],[B2].

Remark 3. If r; = 0 and ¢ = (1,0,0,...) then ¢¥™° is the delta-measure on the identity
matrix.

Remark 4. If r = (1,0,...) and ¢; = 0 then ¥™° is the uniform measure on matrices u € U
such that u — I'd has maximal possible rank. In other words, all matrix elements of u on the
second diagonal are non-zero.

The existence of row and column frequencies for the ergodic central measure can, in principle,
be deduced from the ergodicity. The hard (and still open) part of Conjecture 4.5 is the fact
that the frequencies uniquely define the measure. Below we prove two partial results towards
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Conjecture 4.5, in particular, we show that the measure ¥"¢ with cylindrical probabilities given
by (4.3) is, indeed, an ergodic central measure. But, first, let us explain the relation of measures
¥™¢ to the unipotent traces.

Theorem 4.6. The measure oGV is an ergodic central probability measure on U. More

precisely, if w = (a, ), then o = ﬁ“(q)ﬁ, where for a sequence a = ay, s, ..., the sequence
a9 is obtained by rearranging two-dimensional array of numbers (1—q~Vazq' 7 ,4,7 =1,2,...
in decreasing order.

Remark. Note the dual role of row frequencies. On one hand, the parameters «;, [3; of
unipotent characters are limit row frequencies of Young diagrams parameterizing irreducible
unipotent representations of GL(n,q), see [VK81], [KOO]. On the other hand frequencies
show up in the limit behavior of Jordan Normal forms. The conceptual explanation of this
double appearance of frequencies is unknown yet. Somehow similar phenomena is present in
the asymptotic representation theory of symmetric groups with certain explanation given by
the RSK algorithm, see [KV86].

Proof of Theorem 4.6. Theorem 3.5 implies that the cylindrical probabilities of measure ¢* are
given by.

(4.4) 0 (CylFtY) = g = D/2qr N Sp, 5, [@A('Q q_l)}
Note that
SpPas1l@a(a )] =1 — a1 MSpaw s [@a(5a7)]-
Comparing (4.4) with (4.3) we conclude that ¢ = 9“5, O

Now let us prove two results related to Conjecture 4.5.

Proposition 4.7. For any sequences r = {r;}, ¢ = {c¢;} satisfying Y ,(ri+c;) < 1 the measure
9"¢ with cylindrical probabilities (4.3) is an ergodic central measure on U.

Proof. The key property which we use, is the positivity of the structural constants of the
multiplication in the basis of Hall-Littlewood polynomials. In other words, in the identity

(4.5) PaCia P07 =Y K Polia)

When g > 1 all the coefficients cf , are non-negative. This fact follows from the known formulas
for these coefficients (see e.g. [Ra, Theorem 4.9], [Sc, Theorem 1.3], [KM] and references
therein). Since Hall-Littlewood P-polynomials and @-polynomials differ by the multiplication
by the constant, which is positive for ¢ > 1 (see [M, Section III.2]) we can replace P by @ in
any part of (4.5) and the coefficients will be still positive. Moreover, (4.5) is equivalent to the
equality for skew Hall-Littlewood polynomials (see [M, Section III.5])

(46) Ql//u = ZCK,MQA
A

Again if we replace @) with P in either sides of (4.5) then the coefficients remain positive.
Let us prove that for any sequences r;, ¢;, the values

Spre 1 [Qx(5¢7Y)]

are nonnegative, which will guarantee the non-negativity of probabilities in (4.3).
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First, let » = (1,0,0,...), ¢ = (0,0,...). Then Sprvc(q)leA(-;qfl) = 0 unless A is a
one-row diagram, i.e. A\; = n, Ay = 0. In the latter case Sp,,7c(q)71[P>\(-;q_1)] = 1. Thus,
SPr.ct 1[@(5¢71)] is non-negative for all A,

Second, let r = (0,0,...), ¢c=(1,0,0,...). The Cauchy identity for Hall-Littlewood polyno-
mials (see [M, Section III.4]) yields (here z and y stay for two sets of variables)

m

> Pu(zqa H@ayig ) =exp (Z 1_#
A

m=1

Pm(2)Pm (y)> :

Applying Sp,. . ; With respect to the variables y we get

o0

> Pa(z1¢71)8p, e 1 [Qa(ys )] = exp (Z (_1)m_1§711 — q_l)mpm(z)>
A
= Z (1 - q_l)mem(z)

m>0

m=1

Since P\ = e}, for one-column Young diagram X = (1,...,1), we conclude that
Spr.ct 1[@a(y;¢7")] is zero unless A is a one-column diagram. In the latter case this num-
ber is positive.

Third, if r = ¢ = (0,0,...), then Spryc(q)J[Q)\(y;q_l)] is precisely the coefficient of pll)“ in

the decomposition of @ into the sum of products of power sums pg. These coefficients are
known to be non-negative, see [M, Exercise 4, Section IIL.7].

Next, suppose that we have two specializations Sp; and Spy of A which map Hall-Littlewood
polynomials to non-negative numbers. Take two nonnegative numbers a;, a, and consider a new
specialization Sp, which we call mizing of Sp; and Spo, given by

Splpk] = (al)kspl pr] + (az)kspz[pk]-

We claim that the values of Sp on Hall-Littlewood polynomials are also nonnegative. Indeed,
this follows from the identity (see [M, Section III.5])

SplQACG; ¢ ] =Y (a)™Sp1[Qu (54 (@) N Spa[Qn/u(507)]

w

and the positivity of the coefficients in (4.6).

Now observe that starting with three simplest specializations which we described above, one
can obtain any specialization Sp,. . ; with finitely many non-zero r;s and ¢;s through mixing.
Passing to the limit we conclude that Sp,. .« 1[@a] is non-negative for all A and all sequences
73, ¢; satisfying Y. (ri +¢;) < 1.

Next, let us show that the central probability measures on U are in bijections with linear
functionals

p:A—C
satisfying three coherency properties

(1) ¢ [QA('; q_l)] > 0 for every A
(2) ¢lp1f] = ¢[f] for any f e A
(3) ¢[1] =1.
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The correspondence is pretty much given by formula (4.3) and we keep the same notations, i.e.
given a measure ¥ the corresponding functional ¢y is
cLu, _ ¢ """V L1
(4.7) J(Cyl, ™) = mq Po[Qr (59 )]-
The coherency properties 1. and 3. easily translate into the properties of a central probability
measure. Let us deal with the coherency property 2.

By the very definition, the cylindrical probabilities of measure ¢ should satisfy

ICyIFHY) = Y w(CyIFtY),
heExztGLU(g)
where
Ext®tY(g) = {[h,-j] €GL(n+1,9) | A" =gand hy1 =hpa=-=hpn1 =0, hppn = 1}

is an analogue of ExtGLB(g) of Section 2. Let us divide EztSLY(g) into the groups having
the same conjugacy class. We use the formula from [B2] which says that if conjugacy class of
g is given by the Young diagram A € Y,,, then the number N, , of h € Ezt%LY(g) belonging
to the conjugacy class given by the Young diagram p € Yy, 41 is

Ny, J AT i\ A = T,
o 0, otherwise.

Here ¢\ A = O; means that the set-theoretical difference of the Young diagrams p and A is a

box in column j and we agree that Ay = 400, i.e. g* 0 = 0.

Therefore, the functional ¢y defined through (4.7) satisfies

(4.8) b0 [@r(3a7] = Y 00 [Qul5a7)] Naug 0

1_ g1
HEY 41 4

—n

In the same time Pierry rules for the Hall-Littlewood polynomials (see [M, Section IIL.5]) yield
QCig = D =N )Qu(igh,

HEY, p1:p\A=0

where j is again the column of the box u\ A\. Therefore, (4.8) is equivalent to
¢(0) [Qr(507)] = 0(¥) [P1QA(3a7H)] .

Since the latter equality holds for every A and Hall-Littlewood polynomials Qx(-;¢ %) form a
linear basis of A, we arrive at the coherency property 2.

Now we are in position to use the so-called Ring Theorem (see [KV80], [VK90], [K03] and
also [GO1, Section 8.7]). This theorem yields, that the extreme points of the convex set of
@ —positive functionals on A are those functional which are multiplicative (i.e. are algebra
homomorphism). By the very definition the functionals Sp,. ..y ; are multiplicative, they also
satisfy the coherency properties. We conclude that these functionals are extreme and, thus, the
corresponding measures ¥"¢ are indeed ergodic central measures on U. O

Proposition 4.8. If ¥ is an ergodic central measure on U, then there exist sequences «, B
satisfying (2.2) with v = 1 such that the measure ¥ has the following cylindrical probabilities:
—n(n—1)/2

BrraGLUy _ 4"
97 (Cyl, ™) =

TV Spasal@(ia7h)
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where g € GL(n, q) is an unipotent upper-triangular matriz corresponding to the conjugacy class
A.

Remark. Thus, to prove that the measures "¢ exhaust the list of ergodic central measures
it remains to show that if the sequence 8 is not a union of geometric series (with denominator
g 1), then Spag1 [Qa(5¢71)] <0 for some A.

Proof of Proposition 4.8. As in the proof of Proposition 4.7 we identify ergodic central measures
on U with multiplicative functionals on A satisfying three coherency properties. Observe that
the coefficients of the decomposition
)= eu@alia™)
m

are non-negative. Indeed, up to the simple constants they coincide with ¢-Kostka numbers (see
[M, Section IIL.6]).
Therefore any multiplicative functional ¢ satisfying three coherence properties also satisfy

But classification of the multiplicative functionals which are non-negative on Schur functions
is well-known. It is equivalent to the Thoma theorem on the characters of infinite symmetric
group S(00), see [Th64], [VK81], [VK90], [K03] . The list of the functionals is given by Spy s.1
with «, 8 satisfying (2.2) with v = 1. O

5. GRUPPOID CONSTRUCTION FOR THE REPRESENTATIONS OF GLB

In this section we give an explicit construction for the representations of GLB corresponding
to a large class of the extreme unipotent traces of A(GLB).

5.1. Generalities. Generally speaking, we are going to construct irreducible generalized spher-
ical representations of pair (GLB x GLB, GLB). Let us introduce some definitions first.

The well-known principle (see e.g. [D, Section 13]) identifies unitary representations of a
locally-compact group G with s—representations of L;(G) (with respect to Haar measure) and
we will silently use this identification where it leads to no confusions.

Definition 5.1. A generalized spherical representation of (GLB x GLB, GLB) is a triplet:

(1) Unitary (continuous) representation w in a Hilbert space H with scalar product (-,-):
7 : GLB x GLB — U(H),

(2) Dense subspace Hy C H equipped with a norm |- |,
(3) Linear functional (distribution) v € H;
Satisfying the following conditions:
(1) The inclusion i: (Hy,|-|) — (H,{--)) is continuous,
(2) For any (g,h) € GLB x GLB, 7r(g h)H, C Hy
(3) For any a € A(GLB) we have w(a,e)v € Hy and w(e,a)v € Hy. In other words, there
exists w(a) such that (v, 7(a,e)x) = (w(a),z) for every & € Hy, and similarly for (e, a).
(4) The span of {m(a,b)v | a,b € A(GLB)} is dense in H
For any g € GLB, we have n(g,g)v = v.
(6) (r(IB)v,v) = 1.

—
ot
N
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This definition is just a generalization of the well-known definition of a spherical represen-
tations of the Gelfand pair. The theory of spherical representations for the infinite symmetric
group S(oco) and infinite-dimensional unitary group U(oco) was developed by G.Olshanski and
his collaborators, see [O1], [02], [O3]. The novelty in the present paper is the fact that the
distinguished vector v no longer belongs to the Hilbert space, but becomes a distribution.

Definition 5.2. A spherical function of a generalized spherical representation (m,H;,v) is
defined as

x(a) = (r(a,b)v,v),
where either a or b belong to A(GLB).

Clearly, the restriction of the spherical function to its first coordinate (i.e. to pairs (a,e) )
gives a trace of A(GLB).

The converse is also true, i.e. given a trace of A(GLB) we can, in principle, construct the
corresponding representation (using a version of the so-called Gelfand-Naimark-Segal construc-
tion). However, the general construction is quite abstract and we seek for an explicit description
of the representations corresponding to the unipotent traces x“.

We could avoid the notion of a general spherical representation and use von Neuman factors
instead, however, our approach seems to show more hidden structure. The following simple
proposition explains how to pass to the factor-representations.

Proposition 5.3. Let (7, Hy,v) be a generalized spherical representation such that the corre-
sponding traces x of A(GLB) is extreme. The restriction of m on the first coordinate is von
Neumann semifinite (i.e. either type I or type I1) factor representation of group GLB in the
cyclic span of v.

Proof. Let V C B(H) denote the minimal von Neumann algebra containing all operators 7 (g, e),
g € GLB. Let x’ denote the (unique) extension of the trace y of A(GLB) on V. Clearly, x’ is
a semifinite trace of V. Note that ' is extreme. Indeed, if X" = x} + x5, then x has a similar
decomposition and we get a contradiction with extremality of x. Extremality of ' implies that
V is a von Neumann factor. O

Remark. As we will see below the actual type of the factor representation can be different.

5.2. Two simplest type [ examples. Recall that unipotent representations are parameter-
ized by two sequences a; > ap > --- > and f; > 82 > --- > 0 such that > (a; + 3;) < 1. We
start from considering some simplest cases.

First, suppose that a; = 1 with all other parameters being zeros. In this case the desired
representation is just an identity representation. I.e. H is 1-dimensional vector space, H; = H,
7w maps all elements of GLB x GLB to identity operator and v is a unit vector in H.

Next, let f; = 1, and let all other parameters be zeros.

Let St,, be the Steinberg representation of GL(n, q) (see [St], [Hu]). This representation can
be realized as the left representation of GL(n,q) in the right ideal of C(GL(n,q)) spanned by

the element
s = Z (=), Z ey

ceS, g€eB,
It is well known that a linear basis of H(St,) can be chosen to be
{698 | g € Un}7

where U, is a subgroup of unipotent upper triangular matrices in GLL(n,q). The dimension of
H(Sty) is g"(n—D/2.
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The representation St,,—; of A(GLB),,—; is naturally included into the representation St,,
of A(GLB),, as the subspace of U]’-invariant vectors (see Theorem 2.11 for the definition of the
group U?). Let St% denote the inductive limit of the representations St,, with respect to the
above embeddings. Note that each H(St,) has a (unique up to a multiplication by a constant)
GL(n, g)—invariant scalar product and these scalar products can be choosen to agree with the
above embeddings. Thus, the space H(St2.) is equipped with a scalar product. Let H (Sto)
denote *-representation of A in the completion of the space H(St%,).

Now let H denote the Hilbert space H(Stoo)* ® H(St) of Hilbert-Schmidt operators in
H(Sts). We have a natural *-representation m of A x A in H. It can be extended to a non-
degenerate representation of L;(GLB) ® L;(GLB) and, thus, to a unitary representation of
GLB x GLB, which we denote by the same letter 7. Let H; C H be the subspace of trace-class
operators and let the functional v € H] be trace. (If we identify H| with the space B(H) of
bounded linear operators, then v corresponds to the identity operator.) Note that if a € A,
then the image of the operator Stoo(a) lies in H(St,). Therefore, Sto(a) has finite rank. It
follows that «((a,b))v € Hy for any (a,b) € A x A. All other properties are trivial and we
conclude that (H,H;,v) is a generalized spherical representation. One immediately checks that
the spherical function of this representation corresponds to the trace with 5, = 1 and all other
parameters being zeros.

5.3. Representations related to grassmanian. We next proceed to the construction of the
representation with a; = t1, as = to, t; + t3 = 1. Our construction has lots of similarities
with gruppoid construction of [VK81] for the realization of factor representation of the infinite
symmetric group S(00).

Let V' be the infinite-dimensional linear space over F, with basis ej,es,.... Denote
Vi = (e1,...,e;). In what follows we use an infinite-dimensional analogue of the well-known
decomposition of grassmanian into Schubert cells.

Definition 5.4. For a subspace X of V with d; = dim(X (\V;), the symbol of X is the 0 — 1
sequence d; — d;_1:
Sym(X) = (d1 — do,dg — dl, .. )

Definition 5.5. For a 0 — 1 sequence z let Schubert cell of x denote the set of all subspaces
with symbol x:
Sch(z) ={X C V| Sym(X) = z}.
We fix a distinguished coordinate subspace in Sch(z) which is
C(z) =(e; | z; =1).

In the same way if X is a subspace of V},, then its n-dimensional symbol Sym™(X) is the
0 — 1 sequence (d; — dp, - ..,d, —dp—1) of length n. For a 0 — 1 sequence (x1,...,2,) we define
a finite Schubert cell

Sch™(z) ={X C V,, | Sym"(X) = z}.

By a simple linear algebra we have
(5.1) |Sch™(z)| = qu":l(imi)fm(m+1)/2,
where m = Y"1 | @;.

Remark. Another way to rewrite (5.1) is

|Seh™ (z)| = ¢™1 =),

where inv(—x) is the number of inversions in —x. In other words, it is the number of pairs
¢ < j such that z; < x;. Similar formula still holds when we pass from grassmanian to more
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complicated flag varieties. This makes a link to g—exchangeability and GL(oo, ¢)—invariant
measures on flags of [GOZ2].

Let v denote the uniform probability measure on the finite set Sch™(z). Thus, for a subspace
X in V,, we have

¥ MmN /2= G) - X e Seh (),
ve(X) = 0, otherwise.

For a space W (W will be either V of V,,) let Gr(W) the set of all subspaces of . Note that
GLB naturally acts in Gr(V'). We equip Gr(V') with a topology of GLB-space (i.e. elementary
open neighborhood of a point z is the image of the action on z of an open neighborhood of
identity element in GLB) and corresponding o—algebra of Borel sets. Gr(V) is a union of
Schubert cells, every cell is a measurable subset of Gr(V') and is a B-orbit. Let 7, be the map:

e : B — Gr(V), w(g)=g9C(x).

Let measure v, be the image of the Haar measure on B with respect to m,. By its definition
v, is a unique B-invariant probability measure supported on Sch(z).
Let 7(") be the projection

™ Gr(V) — Gr(V,), «"(X)=X[)Va,

then the image of v, with respect to the map 7(") is precisely the uniform probability measure
Vip.....eny O0 the finite Schubert cell Sch”((zy,...,2y)) C Gr(Vy).
Let us introduce an important probability measure 1, +, on Gr(V'). Let ¢ denote the map

¢:{0,1}**xB = Gr(V), (x,9) — gC(x).

Definition 5.6. The measure 0, +, s the ¢p-pushforward of the product of Bernoulli measure
with probability of 1 being t1, and Haar measure ug on B. In other words, to get a random
element of Gr(V') distributed according to the measure n, 1+, we, first, sample a 0 — 1 sequence
x from the Bernoulli measure and then take an element of Sch(zx) distributed according to v,.

We also let 57 ;, be the 1™ pushforward of 7, 4,. Our definitions imply that for X € Gr(V},)
with symbol (z1,...,z,) we have

(5.2) 77217@ (X) — qm(m+1)/2—2?:1(i$i)tlz:i ﬂvit;*Zi i
The following two propositions explain the relation between 7, ;, and action of GLB.

Proposition 5.7 (Fundamental cocycle of the action on grassmanian). The measure 1y, +, is
quasi-invariant with respect to the action of GLB. The cocycle of the action of GLB is given
by
Nty ,ta (g ) dX) — qZk k(Sym(X)k—Sym(gX)k)'
TNty ,to (dX)

Proof. By the definition 7, ;, is B-invariant. Thus, it remains to consider g € GL(n,q) for
arbitrary n. But then the computation of the cocycle of 1, +, boils down to the computation
for nf® ;, which is straightforward from (5.2). O

Proposition 5.8. Ift; and ty are nonzero, then there is no finite or c—finite GLB—invariant
measure on Gr(V') equivalent (i.e. with the same sets of measure zero) to 1, ¢, -
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Proof. The classification of all finite GLB-invariant measures on Gr(V') was recently found
in [GO2]. It is shown there that every GLB—invariant probability measure is supported on
the subspaces whose symbol has finitely many Os or 1s. Thus, finite GLB-invariant measure
cannot be equivalent to 7, ¢, .

For a subspace Y € Gr(V,,) denote

UY;n)={X eGr(V)| X(Va=Y}.

If ¢ is not finite, but equivalent to n, s then for arbitrary k, I there exists n(k,l) and
Z(k,1) € Gr(Vy(k,)) such that the symbol of Z(k,l) has at least k zeros and at least [ 1s
and o(U(Z(k,1);n(k,1)) = co. Observe that any set U(Y;n) contains an image of one of such
sets Z(k,l) with respect to GLB-action. We conclude that for a non-finite GLB-invariant
equivalent to 7, 1, measure ¢, @(U(Y;n)) = oo for any ¥ and n. Therefore, ¢ is not o—
finite. O

In order to get the desired spherical representation we need to introduce a more compli-
cated space. The construction of this space has similarities with analogous construction for
infinite symmetric group S(c0), see [VK81], [TV] with some ideas tracing back to the papers
of F. J. Murray and J. von Neumann [MN], [N].

Let

Gr2(V) ={(X,Y) € Gr(V) x Gr(V) | X = gV, for some g € GLB}.
We equip the set Gr?(V) with a topology, the elementary open neighborhoods of a point (X, Y")
are indexed by numbers n =0,1,2,... and

Un(X,Y) = {(Z,W) e Gr*(V) [ Z(\Va =XV, W[\Va =Y Vi,
dim(Z (Vi) = dim(W (\ Vi), for k > n}

Note that U"(X,Y) actually depends only on X NV,, Y NV, and this set is empty unless
dim(X NV,) = dim(Y NV,,). In this topology Gr?(V) is locally compact. The group GLB x
GLB naturally acts in Gr?(V) and the action is continuous in the introduced topology.

Now we introduce a measure py, ¢, on Gr?(V) which is quasiinvariant with respect to the
action of GLB x GLB.

Let =,y be two infinite 0 — 1 sequences. We write x ~ y if there exists NV such that z, = y,
for n > N and Zgzl Ty = Zgzl yn. Note that (X1, X2) € Gr(V) x Gr(V) belongs to Gr?(V)
is and only if Sym(X;) ~ Sym(X>).

Denote 7 the set of pairs (x,y) of infinite 0 — 1 sequences such that « ~ y. 7 is equipped
with sigma algebra spanned by the sets Aﬁf:, where 41,...,%, and j1,...,J, are two 0 — 1
sequences such that > i = > jp

Aot =L ) €T | @1 =01y, T = Gn, Y1 = J1s--+>Yn = Jn, Yk = T, for k > n}.

U1 ,eenytn

We define the measure Ry, +, by
Ry, (A7) = 0 )72
Let v be the map
'(/) : 7 x B XB—>GT‘2(V)7 Z/J((x,y,g,h)) = (gC‘(m)7th(y)7

and let p¢, 4, be the push-forward of the measure Ry, ;, ® up ® pg with respect to 1.
The following proposition gives a more direct description of the measure p¢, ..
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Proposition 5.9. Let n = 0,1,2,... and (X,Y) € Gr?(V). Suppose that dim(X N V) =
dim(Y N'Vy) for k> n and denote

m:=dim(X NV,) =dim(Y NV,) ZSym

We have
12 (U(X, ) = )= S Koy Xt Sum () g m,

Proof. Observe that if (X',Y”) are such that Sym(X') = Sym(X) and Sym(Y’) = Sym(Y),
then there exist (g,h) € B x B such that X’ = ¢gX, Y’/ = hY. Therefore
Un(X",Y) = (g, U™ (X,Y),
hence, by the definition of the measure,
Ptr s (UM(X,Y)) = ey e, (U™ (X7, YT)).
Now note that

Sym(Y)1,....,Sym(Y )n n
(5.3) pAgmee i xBx By = | J Uz w),
(2, W)

where Z; goes over g2 K(Sym(X)n=m(m+1)/2 suhspaces of V such that Sym(Z;) = Sym(X) and
Z;(V,, are pairwise distinct; W goes over g2 w BSym(Y)e—m(m+1)/2 gyhspaces of V such that

Sym(W;) = Sym(Y') and W; (| V,, are pairwise distinct. Evaluating ps, +, of both sides of (5.3)
we get the desired formulas. (]

Corollary 5.10. The measure py, 1, S quasi-invariant with respect to the action of GLB x
GLB. The corresponding cocycle is given by

Pt ((9,h) - d(X,Y)) (S KUM= Sym(g X))+, KSym(Y)u—Sym(hY ).
Pty ,ts (d(X7 Y))

Proof. This follows from Proposition 5.9 and the fact that if (¢,h) € GLB x GLB and n is
large enough integer, then

(9, )YUMX,Y) =U"(gX,hY).
(]

Remark. It is easy to replace the measure py, +, with an equivalent one p, ¢, which would
be invariant with respect to the action of the subgroup GLB x {e} € GLB x GLB. However,
it is not possible to achieve the invariance with respect to the whole group GLB x GLB.

Further, let m ¢, denote the usual unitary representation of GLB x GLB in the
Lo(Gr?(V), ptrt,)- In other words, for f € Lo(Gr*(V),ps +,) and (g9,h) € GLB x GLB

we have

_ -1 -1 pthtz((gil;hil) i d(X7 Y))
[7Tt17t2(gah)f] (X,Y) = f(g X, h Y)\/ Dot (d(X,Y))

Let C°(Gr?(V)) denote the space of continuous functions on Gr?(V) with compact support
equipped with supremum-norm. We have natural inclusions

CO(GT2(V)) - LZ(GTQ(V)aptlyh) C (CO(GTQ(V)))*

Consider the unitary representation of GLB x GLB dual to the restriction of m, s on
C°(Gr?(V)). Somewhat abusing the notations we will use the same symbol 7, 4, for this
representation.
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Let v, ¢, € C°(Gr?(V))* denote the linear functional:

Vs 2 COG(V)) = C, gy () = /G ) TO5 X 0)
r(V

Further, let Sp(vt, +,) denote the GLB x GLB cyclic span of the linear functional vy, 4, and
let 7y, ¢, denote the restriction of my, ¢, on Lo—closure of Sp(vt, +,) N CO(Gr?(V)).

Theorem 5.11. The triplet (7, 1,, C°(Gr*(V)) N Sp(ve, t,), 0, 1,) 1S a generalized spherical
representation. Its spherical function gives the extreme unipotent trace of A(GLB) with pa-
rameters a; = t1, as = to. The restriction of this representations on the first component is von
Neumann factor representation of type Il

Proof. Let us check the 6 properties of a generalized spherical representation.

(1) The natural map i : C°(Gr*(V)) — La(Gr*(V), pt, t,) is, indeed, a continuous inclu-

sion. This follows from our choice of topology.

(2) Since for any element (g,h) € GLB x GLB and any elementary open neighborhood

U™(X,Y) (with large enough n) we have (g,h)U"(X,Y) = U™(¢9X,gY), thus, the
action of GLB x GLB maps open sets to open sets and, therefore, preserves the space
of continuous functions with compact support.

(3) It suffices to prove that (I.(y), e)vtl,tz is a continuous function with compact support.

Let BI,, denote the subgroup Cyl B ¢ B. By the definition

&)vts 12, f) = / / ((9:€) - )X, X)u(dg)e, 12 (dX)
XeGr(V) JgeBI,

/ / \/ pt17t2 X X)f(gilX,X),u(dg)nthtz (dX)
X€eGr(V) JgeBI, Ptl, t2

_ / / X, X) (dg) e, 1o (dX)
XeGr(v) JgeBI,

For X,Y € Gr(V) let U*(X,Y) denote the indicator function of the set U*(X,Y).
To analyze the last integral we set f = U*(I,J), k > n, I,J € V* and com-
pute [ gy flg7 X, X)u(dg). Observe that if X Vi # J or XV, # IV, or
dim(X N V;) # dim(I (" Vy) for some n < £ < k, then (97X, X) does not belong to
Uk(1,J) and the integral vanishes. Otherwise, it is equal to

/ . X X)(dg) = w(BL) 1,

where M is the number of Z € Gr(V}) such that Z(\V,, = IV, and dim(Z (V) =
dim(I N V¢) for all n < ¢ < k. We have

1/M = qdim(I)(dim(I)+1)/2—dim(IﬁVn)(dim(IﬂVn)+1)/2—Z’z=n+1 eSym(I)e.

Therefore, the double integral equals

—1
(5.4) /X o /B Flg™ X, X) p(dg) e, 10 (dX)

— H(Bln) dim(I)(dim(I)+1)/2—dim(INV, ) (dim(INV,)+1) /2= % nt1 ESym(I)e 1,t2(‘])
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if INV, =JNV, and dim(I N Ve) = dim(J Vi) for n < £ < k, otherwise the double
integral vanishes. (5.4) together with formulas for py, 4, (U*(I,J)) and nf ,,(J) imply

. -1 d d
(5.5) /X o / o 107X X (1)

_ / VXY F(X Y )ty 4 (d(X, V),
Gr2(V)

where

,u(BIn)q_ dim(XNV,)(dim(X NV, )+1) /2437 (Sym(X)g, if (X, Y) € Ly,
0, otherwise,

Vi (X Y) :{

Ly ={(X,Y) € Gr*(V) | X[ Vo =Y [ Vo, dim(X (| Vi) = dim (Y[ | V) for k > n}.

Since the linear span of the functions U¥(I,J) (with various k) is dense in
Ly(Gr*(V), pt, +,), the equality (5.5) holds for a general function f(X,Y). Thus,
(Le(ny> €)Vty 1, = Vf, 4, 18, as desired, a continuous function with compact support.

(4) Since we work in the span of vy, +,, there is nothing to check here.

(5) Let us check that (g, g)ve, t, = vt 1, for any ¢ € GLB. Indeed, since 7, 4, is unitary
representation,

((gag)vh,twf) = (vt1,t27 (g_lag_l)f)
:/ f(gXagX)\/w(‘xa‘){)nthtz(d}()
Gr(V)

Pty to

YzgX / FOY )00 (AY) = (03 0, f)
Gr(V)

(6) We have already shown that Igvy, +, = 'U?htZ. Then

(Ith17t27vt1,t2) :/ Nty to (dX) =1
Gr(V)

Now we compute the trace of this representation.
For g € GLL(n,q) we have

(ﬂ-h ,to (Iga e)vt17t27 vt17t2) = (ﬂ-h ,to (g ! Ie(n) ) e)vt1,t27 vt17t2) = (ﬂ-h ,to (97 e),un, U)

=p(BL) Y (Te,e(g,e)g PO@mEOTD 2R MEmEyn (X, X)), 0)
XeGr(Vr)

By the definition for X,Y € Gr(V,,) we have
gD /2= 2 M(Sym(X)e) gmgn—m - ¥ — Y,

(U™ (X,Y),v) :{

0, otherwise,

where m = dim(X). It follows that

(5.6) (3,0 (Igs )01 2y V11 15) = 1(BL) ST im0 dmeo,
XeGr(Vr):gX=X
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Our next aim is to decompose the function x(g) := (¢, +,(Iy,€)v,v) into the sum of matrix
traces of irreducible representations of GLL(n, ¢). We rewrite (5.6)as

X(g) = D i1ty " dm(9)
m=0

with
Vm(g) = p(BL)#{X € Gr(V") : dim(X) = m, gX = X}

Let ¥,, be the natural representation of GL(n,q) in the space of functions on the set of all
subspaces of V,, of dimension m. If we view ¥,,, as a representation of A(GLB),,, then its matrix
trace Trace(¥n,(I,) is precisely 1, (g); the prefactor u(BI,) arises from the identification of
A(GLB) and the group algebra of GL(n, ¢) (see Proposition 2.5).

The decomposition of ¥, into irreducible representations is well known (see e.g. [St]). We
have

(57) v, = @K(n—m,m),AQpA:
A

where 9* is the irreducible unipotent representation of GIL(n, ¢) indexed by the Young diagram
with n boxes A and K(,,_y;,m),x 18 the Kostka number. These numbers do not depend on ¢
and coincide with similar coefficients for the decomposition of the representation of symmetric
group S(n) in the space of functions on the set of all m-element subsets of the set {1,2,...,n}.
It is convenient for us to use yet another definition related to the symmetric functions:

b —m = Z K(n—m,m),ASM

where h,, is the complete symmetric function and s) is the Schur function. The last formula
can be shown to be equivalent to the definition of Kostka numbers through (3.12).
(5.7) implies that

X = Z <Z K(n—m,m),AtTtg_m> X)\a
A m

where x* is the conventional character (matrix trace) of the unipotent representation indexed
by the Young diagram with n boxes A.
Next, observe that

ZK(n—m,m),)\t;’nt;im = Z K(n—m,m),)\m(n—m,m) (t17t2) = S}\(tlatZ)7
m

m<n/2

where m, is the monomial symmetric function indexed by the Young diagram p and for a sym-
metric function f(z1,x2,...) the notation f(t1,t2) means the specialization f(t1,t2,0,0,...).
We arrive at the final formula

X = Z sa(tr,t2)x7,
A

which coincides with the decomposition of the extreme unipotent trace of A(GLB) with pa-
rameters a; = t1, ay = to given in Theorem 2.26. ]
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5.4. Representations related to spaces of flags. The results of Section 5.3 can be gen-
eralized to give a construction for the representations of GLB corresponding to the extreme
unipotent representation with arbitrary sequence of parameters «;.

Suppose that we have r non-zero parameters «;:

a1:t17a2:t27"'7a7‘:t7‘7

with r being either finite or r = +o0.
Let F1,.(V) denote the space of all length r — 1 decreasing flags in V, i.e.

Fl»,-(V) = {Xl O2XoD---D X, 1 | X; € GT(V)}

In particular, Fly(V) = Gr(V). Note that, in principle, we allow non-strict inclusions in the
above definition, e.g. X; might be equal to X,. However, with respect to the measures we
use, the inclusions turn out to be almost surely strict. If 7 = oo, then we also demand that
N; Xi=0.

The group GLB naturally acts in F[,.(V) and, similarly to the grassmanian case, we define:
FI2(V) = {(F,H) € FI,(V) x FI,(V) | 3g € GLB : gF = H}.

For a flag F € FI,.(V) let F) i =1,...,r — 1 denote its subspaces, i.e. F = F(1) D ... D
F(=1_ The symbol Sym(F) of the flag F' € Fl;(V) is defined as the coordinate-wise sum of
the symbols of F(¥):

Sym(F) = (Z Sym(Fi)l,ZSym(Fi)z,---> :

Note that this sum is well-defined even for r = oo as follows from the condition (), X; = 0.
Let N, denote the set {0,1...,r — 1}. For a sequence f € N> let Sch(f) denote the set of
all flags in FI,.(V') with symbol f. Sch(f) has a distinguished coordinate flag, which we denote
C(f). Sch(f) is a B-orbit and, thus, has a unique B-invariant probability measure.
Next, we define the map ¢,:

(lsr N;)o x B — Flr(v)7 (;5,.(213,9) = gC(az)

Let nt, ...+, be the ¢,.-pushforward of the product of Bernoulli measure P on N;>° with Prob(k) =
tr and Haar measure on B.

Let 7, denote the set of pairs of sequences (z,y) € N x N such that x is a finite
permutation of y. o

7, is equipped with sigma algebra spanned by the sets Aﬁf:, whereiy,...,i, and j1,...,jn
are two sequences from N which are permutations of each other

Ajl:---vjn :{(:L',y) 67;‘ | T :ila"'axn :ina Y1 :jla"'ayn :jna Yk = Tk, fork>n}

01 ,e0yin

Define the measure Ry, .. ;. on 7, setting

Let 1, be the map
¥ T, x BxB = FIZ(V), ¢:.((2,9),9,h) = (¢C(x),hC(y)).

We define the measure pg, .. ;. on FI,.(V) as the ¢,-pushforward of the measure Ry, . : @u®
UB-

Similarly to Proposition 5.7 and Corollary 5.10 one proves that n;, .. ¢ is GLB-quasiinvariant
and py, ...+, is GLB x GLB—quasiinvariant.

r



43

Therefore there is a natural unitary representation m, . : of GLB x GLB in
Ly(FL.(V), pty....t,.)-

Similarly, to Gr?(V) we define a topological structure of Fl,.(V) and consider the space
C(F12(V)) of continuous functions with compact support. Let vy, ... € C°(FI?(V))" denote
the following linear functional

v s COFIE(V)) = C, v, g (f) = / )T X, (450,
Fl.(V

We further set 7, ..+ to be the restriction of m, . ;
CO°(FI2(V)) and cyclic span Sp(vt,, .t,) of vty 4.

Theorem 5.12. The triplet (7t,,.. +.,CO(FI2(V))NSp(ve, ....1.), Ve, ,....t,) is a generalized spher-
ical representation. Its spherical function gives the extreme unipotent trace of A(GLB) with
parameters ay = t1,..., o, = t.. The restriction of this representations on the first component
is von Neumann factor representation of type I1.

on the Lo—closure of the intersection of

r

The proof repeats that of Theorem 5.11.

6. BIREGULAR REPRESENTATION OF GLB

Recall that GLB is a locally compact group with biinvariant Haar measure pgrs and
consider the Hilbert space H = L,(GLB, ugLB). Let mgrey denote the natural representation
of (GLB x GLB) in H by left and right translations. Let H; C H be the subspace C[GLB] of
all continuous functions on GLB and let 6. denote the delta-function at the identity element
of GLB:

de(f) = fle), [feH.

Theorem 6.1 (On the structure of biregular representation). The triplet (mreq, C[GLB], )
is a generalized spherical representation of GLB. Its spherical function x has the following
decomposition into extreme traces of A(GLB):

x= Y CnHo,

fecy’

where 119 means the geometric series (1 —q~ '), (1—q¢ )¢ 5 (1—q Yg2,...) and

ol = ( 1)\f| H qdn(s(c)/)
iy Hpes(o (@™ =1)

Proof. Observe that Treg(Ie(n),€)de = Ie(n). Therefore, for g € GL(n,q) we have

ﬂ'Reg(Ig’e)ée _ {179 = e(”)?

0, otherwise.

It follows that the restriction of x to A(GLB), (under the identification A(GLB), =~
C(GL(n, q)) is the character of the regular representation of GILL(n, ¢) multiplied by the constant

(q _ 1)nqn(n71)/2 B ﬁ q-— 1
IGL(n,q)] 11 g¢ -1

i=1
Using the well-known decomposition of the regular representation of a finite group into irre-
ducibles we get




44

where dim, (h) is the dimension of the irreducible representation of GLL(n, ¢) indexed by h which
can be computed using the following g-analogue of the hook formula:

dn(s(c)’)
dimq(s):(qn—l)---(q_l)HH !

O
d>1c€Cq HDGS(C) (g —1)

Extracting the factor with ¢ = “o — 1”7 and using the identity (see e.g. [M, Chapter I, Section
3, Exercise 2])

5 (1 —¢ g (=g ), (1 =g, .. ) = (¢— )" HDeAq(qh(D) —1)

n(\)’

we arrive at

0 0 = 2 €D X s (1o g ),
AGLB).  secyr AEY. )
with in(a(e)’)
q n(s(c
C(f) =la-1" :
cle_C[d HDes(c)(qdh(D) -1)
It remains to compare (6.1) with (2.3). O

7. ApPENDIX: GLU

There is another distinguished infinite-dimensional group over finite field, which is a group
of almost uni-uppertriangular matrices.

Definition 7.1. GLU is a subgroup of GLB defined through
GLU = {[X;;] € GLB : X;; =1 for large enough i}.

The whole theory for GLU is very much parallel to that of GLB.
The group GLU is an inductive limit of groups GLU,,: GLU = |J;~ , GLU,,.

GLU, ={[X;;]€e GLU | X;; =0if both ¢ > j and i >n; X;; =1fori>n},

in particular, GLUy = U C GLU is the subgroup of all unipotent upper-triangular matrices.
Each GLU,, is compact group (with topology of pointwise convergence of matrix elements).
GLU as an inductive limit of GLU, is a locally compact topological group. Let uG¥U denote
the biinvariant Haar measure on GLU normalized by the condition xSV (U) = 1.
The space L; (GLU, u®%V) is a Banach involutive algebra with multiplication given by the
convolution.

Definition 7.2. A(GLU) C L, (GLU, uStY) is defined as the subalgebra formed by all locally
constant functions with compact support. In other words, a function f(X) belongs to A(GLU)
if their ezists n and a function f, : GL(n,q) — C such that:

), 4
£06) = {fn(X ), if X € GLU,,

0, otherwise.

Clearly, A(GLU) is dense in L;(GLU,uS%Y). Note that A(GLU) does not have a unit
element.
As and above, we call a continuous function x : A(GLU) — C a trace of A(GLU) if
(1) x is central, i.e. x(WU) = x(UW),
(2) x is positive definite, i.e. x(W*W) > 0 for any W € A(GLU),
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Remark. It is impossible to normalize the traces, i.e. for any a € A(GLU) there exists a
trace x such that x(a) = 0.

For any matrix g € GLL(n, ) let IS"Y € A(GLU) denote the function

16U () = 1, if X e gLUn and X(*) = g,
0, otherwise.
Let e(n) denote the identity element of GL(n,¢). Then
ISMY(X) = 1G5 (Xg ) = g 195V,

Denote A(GLU),, =< IF"Y | g € GL(n,q) >. The following proposition is straightforward

Proposition 7.3. A(GLU), is a subalgebra of A(GLU) isomorphic to the conventional group
algebra C(GL(n,q)). If e, denotes the natural basis of C(GL(n,q)) then the isomorphism is
given e, — q”(”*l)/ZIgGLU.

Observe that A(GLU),, C A(GLU),11. In the basis I&*4Y this inclusion is given by
ISy qenv
heExtGLU (g)

where for g € GL(n,q) we have
ExtStY(g) = {[h,-j] €GL(n+1,9) | AW =gand hyys =hpo = =hpn1=0, hypn= 1}.

The algebra A(GLU) can be identified with the inductive limit of algebras A(GLU),:
A(GLU) = lim A(GLU), = | JA(GLU),.
n—oo n

Thus, A(GLU) is a locally semisimple algebra.

Proposition 7.4. The set of all traces of A(GLU),, is a simplicial cone spanned by traces x7,
f € CY,. In other words, if X" is a trace of A(GLU),,, then there exist unique nonnegative
coefficients c(f) such that

fecy,

Proof. The proof repeats that of Proposition 2.10 (I

Definition 7.5. For two families f € CY,, and g € CY,,—1 we say that g precedes f and write
g <Gvru f if there exists a € F for which

(1) f(“z—a”)\ g(“z —a”) is one boz,

(2) f(u) =g(u) for all u # “z —a”.

Note that this definition is different from that of <gLB.
Similarly to Theorem 2.13 one proves the following statement.

Proposition 7.6. Let nf be the irreducible representation of algebra A(GLU),, (equivalently,
of the group GLL(n, q)) parameterized by f € CY,, and let x' be its conventional character (i.e.
matriz trace). The restrictions of m/ and x/ to the subalgebra A(GLU),,_; admit the following

decomposition:
= > X

f
‘ g=arLuf

A(GLU),_,
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equivalently,
f =N @ g
™ ¥ X7
‘A(GLU)THI g<arLuf
where N is a zero representations of A(GLU),,—, of dimension dim(f) —>> .  .dim(g).

We need to introduce some additional notations to state an analogue of Theorem 2.26 for
GLU.

Definition 7.7. CY‘ C CY is defined as the set of families f of Young diagrams such that
f(éx —a”) =0 for a € T}.

De.ﬁnition 7..8. Q(GLU) is the set of quadruples (a, 3,7, f), whpre V= {v}, 7 € Fy, a =
{af}, B=1{B{},i=1,2,3..., j €F}; for every j the sequences o] and (] and the number 7/
satisfy (2.2); moreover 3 _; v =1 and f € CY".

Theorem 7.9 (Classification theorem for finite traces of A(GLU)). The extreme rays of the
set of traces of A(GLU) are parameterized by elements of Q(GLU). For w = (a,f,7,f) €
Q(GLU) the corresponding ray is Ry x“(-) and for g € GL(n,q) we have X“’(IgGLU) =0 if
n < |f|, otherwise,

(7'1) Xw([gGrLU) — Z Xf+ZjEj(>\J)([g(}LU) H Spajﬂjﬁj [S}J],

NEY: Y [N |=n—|f] jEF:
Where Ej(A) € CY is a family taking value X in “x — j” (j € F;) and taking 0 in all other
points.

Proof. The argument starts similarly to that of Theorem 2.26. For a family f € CY* let
CYU! C CY denote the set of families h € CY such that h(u) = f(u) for allu € C\U;cp. { “c—5"}

Moreover, for a family f € CY* let ©F denote the convex cone of traces x of A(GLU)
such that such that for n < |f] the restriction X|A(GLU vanishes and for n > |f] in the

n—1

decomposition
= 3 o).

heCY,
c(h) = 0 unless h € CYL/]. Let 0" denote the set ©f for f being the empty family. Similarly to
the proof of Theorem 2.26 for any f € CY* the convex cone ©/ is affine isomorphic to ©? and
the statement of Theorem 7.9 is reduced to the identification of all extreme rays of ©%. The
rest of the proof is this identification.

Take ¢ — 1 countable sets of variables (:cf»'),-:l,g,,,,, j € F; and let A®@=1) denote the algebra

X|.A(GLU)n

of (polynomial) functions symmetric in variables a:{, i=1,2,... for every fixed j € F. Let
AJ denote the subalgebra of symmetric functions in x{,x%, .... For any 7 and any symmetric
function r € A let r(z7) denote the corresponding symmetric function in variables a:{, xé, e
In particular, py(2’) € A/ are the Newton power sum in variables

pr(a’) = Z(fﬂg)k-
i=1
Clearly, the functions

H sxi (@), MeY
JEF;

form a linear basis in A®(¢~1),
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Let A denote the cone of linear functionals w on A®(¢~1) satisfying:
w: AP - C
(1) w [Hjep Sxi (333)} > 0 for any ¢ — 1 Young diagrams {\}.
(2) w [U(ZjelF* p1 (fﬂj))} = wu], for any u € A®(~1),

We claim that A and ©” are affine isomorphic. Under this identification a trace y € ©?
corresponds to a functional w, such that

Wx Hsh(“z—j")(ﬂfj) = c(h)

jeF:

for any h € CYl and for h € CY?!NCY,, the number ¢(h) is defined as the coefficient in the

decomposition
= 3 et
RECY,
Indeed, condition 1 translates into the non-negativity of the coefficients ¢(h) and condition 2
translates into the statement of Proposition 7.6.

Now we can again use the Ring Theorem (see [KV80], [VK90], [K03] and also [GO1, Section
8.7]) for studying the structure of the set A. This theorem yields that h € A is an element of
an extreme ray (in other words, h is indecomposable) if and only if h = T'iL, where r € R} and
h € A is a multiplicative functional, i.e. h(uv) = h(u)h(v).

Now let h € A be a multiplicative functional and let k7, j € [y be its restrictions on AJ.
Clearly,

X acrv),

(72) B TT s = TT #lsss )
JEF; JEF;

Define a new linear functional b7 on AJ through
. i
W= ——

(h[p1 (27)])

where deg(u) is the degree of polynomial u. The functional B on AJ is multiplicative and

satisfies

(1) fALj[sA(xj)] >0 for every A € Y,
(2) W [upy(x;)] = h[u],
(3) Wlp(zj)] = 1.
Such functional are classified by Thoma’s theorem, they correspond to extreme points of the

set of normalized characters of S(c0), see [VK90], [K03]. They are parameterized by sequences
a, (3, satisfying (2.2) with v = 1. We have:

W [5x(2)] = Spap1[5:]
Now set v; = h'[p; (27)]. Then we have

W [sx(27)] = SPai pi i [$1]

for certain o/, 37,~7. Substituting into (7.2) we arrive at the desired statement.
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Theorem 7.9 yields that for GLU and w = (o, 8, f) € Q(GLU) the trace x* is unipotent
if f=0and o =p! =0for j # 1. Note that if we identify A(GLB),, ~ C(GL(n,q)) =~
A(GLU),, then unipotent traces of A(GLB) and A(GLU) are the same functions.
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