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Abstract

Renormalization of the shear modulus caused by dipoles of the screw dislocations
lying along infinitely long cylinder is investigated. The core self-energy is taken into
account so that the axial singularities of the dislocations are eliminated due to for-
mation of the finite-sized cores. The dipole-dipole coupling is accounted for. The
behavior of the renormalized shear modulus is studied, and appropriate implica-
tions due to non-singularity of the dislocations are demonstrated near the melting
transition.
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1 Introduction
The physics of nanotubes/nanowires and of graphene sheets is of importance as far as
the development of modern technologies is concerned [1–3]. Dislocations as imperfections
of the crystalline ordering have attracted appreciable interest from the viewpoint of real
properties of nanostructures [1–10]. For instance, the multilayer nanotubes can contain
within their walls screw dislocations lying along the tube axis [8, 9]. The electronic and
the mechanical properties of the graphene sheets in presence of dislocations are also of
interest [7].

According to the elasticity theory, the stress tensor components of a single dislocation
are singular on the defect line since its core is not captured by the classical approach.
The dislocation solutions characterized by elimination of the axial singularities have re-
cently been investigated by means of the gradient elasticity and of the gauge-translational
approaches (see [11–15] for refs.). This smoothing is due to modification of the conven-
tional solutions within the finite-sized core regions. Since the cross-sectional characteristic
scales of the nanotubes are comparable with those of the dislocation cores, effects due to
finiteness of the cores look attractive for study from the viewpoint of nanostructures.

Dislocations are of importance also in the theory of melting of two-dimensional sys-
tems [16–19] being a part of more general theory of the defect-mediated phase transi-
tions [20–24]. It is crucial that proliferation of the dislocation dipoles is related to the
renormalization of the elastic constants [16–19, 21, 25]. Since the nanotubes and the dis-
location cores are characterized by comparable radii, it seems attractive to study the
renormalization of the elastic constants using the modified dislocation solutions possess-
ing the finite core regions. In this respect, an approach has been developed in [15] in order
to evaluate the renormalized shear modulus µ for the screw dislocations with finite-sized
core. Free-dipole approximation has been used in [15] to calculate in lowest order with
respect to square of the dipole momenta. The present paper is to evaluate the renormal-
ization of µ taking into account the dipole-dipole coupling. The multi-dipole corrections
to the renormalization rule are obtained, and influence of the non-conventional character
of the dislocation solutions on the renormalization is studied near the melting transition.

The paper is organized as follows. Section 1 is introductive. Section 2 begins with
the partition function of the elastic cylinder containing array of the modified screw dis-
locations. The stress-stress correlation function which incorporates averaging over the
dislocation dipole positions is derived in Section 2. Relations characterizing the shear
modulus renormalization are studied in Section 3. Discussion in Section 4 closes the
paper.

2 The stress-stress correlation function
We consider array of non-singular screw dislocations lying along infinite cylinder as a ther-
modynamical ensemble at non-zero temperature. The corresponding partition function Z
is written in the functional integral form:

Z =

∫
e−βW D(σb

ij, σ
c
ij, ui, eij) , (1)

W ≡ E − iEext , E ≡ Eel + Ecore , (2)
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where β is inverse of the absolute temperature T (the Boltzmann constant is unity),
and D(σb

ij, σ
c
ij, ui, eij) is appropriately normalized integration measure, [15]. Since our

framework is that of the plane elasticity, the independence on the third coordinate reduces
our study to the two-dimensional problem. Therefore, the functional W (2) consists of
the contributions (indices repeated imply summation, i = 1, 2):

Eel =
1

2µ

∫
(σb

i + σc
i )

2 d2x ,

Ecore =

∫
(−` (∂iej − ∂jei)

2 − 2ei σ
c
i ) d2x ,

Eext =

∫
σb

i (∂iu− 2Pi) d2x ,

(3)

where the integration is over the cylinder’s cross-section. Here, Eel is the elastic energy
of superposition of two stresses, σb

i and σc
i , and µ is the shear modulus. The notation

σb
i corresponds to the conventional long-ranged dislocation stress, while σc

i is to account
for the modification of σb

i within the core. The dislocation core energy is Ecore, the total
strain is ei, and ` is the parameter characterizing the core energy. In the two dimensional
problem we abbreviate: σ#

i ≡ σ#
i3 (# is b or c), ei ≡ ei3, etc. Since the displacement

vector of straight screw dislocation is along Ox3, we use u ≡ u3. The stresses respect the
equilibrium equations due to inclusion of the “source” term Eext (3); Eext is also related
to the plastic strain eP

i by means of Pi = eP
i + Ci. The field eP

i is to fix a specific
configuration of the dislocation lines. Auxiliary field Ci is to ensure self-consistency of
the set of equations of the present model.

The partition function Z (1)–(3) is estimated by steepest descent [15]. For definiteness,
consider N straight screw dislocations intersecting the plane x1Ox2 at the points x = yI

(we use x ≡ (x1, x2)), 1 ≤ I ≤ N , and possessing the Burgers vectors bI parallel to Ox3.
Provided the “electro-neutrality” condition

∑N
I=1 bI = 0 is imposed, the steepest descent

gives the effective energy W = −1
β

logZ approximately as follows:

W = W({yI}
)

=
−µ

4π

∑

I 6=J

bIbJ U(κ|yI − yJ |) , U(s) ≡ log
(γ

2
s
)

+ K0(s) , (4)

where {yI} ≡ {yI}1≤I≤N is the set of the dislocation positions, and κ ≡ (µ/`)
1
2 . The

energy W (4) demonstrates that the system of the dislocations is equivalent to the
electrically-neutral gas of charges interacting through the potential which is logarithmic
at large separation but tends to zero for the charges sufficiently close to each other. The
smoothing of the Coulomb potential occurs since the self-energy of the cores is accounted
for.

Let us turn to the grand-canonical ensemble of positive and negative modified screw
dislocations located, respectively, at {y+

I }1≤I≤N and {y−I }1≤I≤N and possessing unit Burg-
ers vectors. Its partition function in the dipole approximation reads:

Zdip =
∞∑
N=0

1

N !

N∏
I=1

∫
d2ξI

∫
d2ηI exp

[
−2βNΛ−

− β
( N∑

I=1

w(ηI) +
∑
I<J

wIJ

)]
, βw(η) ≡ KU(κη) ,

(5)
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where Λ is the chemical potential per dislocation, and K ≡ µβ
2π
. Position of Ith dipole is

given by its center of mass, ξI = (y+
I +y−I )/2, and momentum, ηI = y+

I −y−I . Summation
over the positions is replaced by the integration. The dipole energy is w(η), where η ≡ |η|,
while wIJ is the energy of interaction between Ith and J th dipoles.

Define two-point stress-stress correlation function 〈〈σtot
i (x1) σtot

j (x2)〉〉 (where σtot
i (x) =

σb
i (x) + σc

i (x)) as the following average:

〈〈σtot
i (x1) σtot

j (x2)〉〉 = Z
−1

dip

∑
numbers of dipoles,
dipole positions

∫
σtot

i (x1) σtot
j (x2) e−βWP D(σb

ij, σ
c
ij, ui, eij) . (6)

The functional WP is expressed by (2), (3), and Zdip is the partition function (5). The
index P is to stress that distribution of the dislocation lines is prescribed by means of the
plastic strain in the source Pi (i = 1, 2). After evaluation of the functional integral, we
obtain from (6):

〈〈σtot
i (x1) σtot

j (x2)〉〉 =
−µ

2πβ
∂(x1)i

∂(x2)j
U(κ|x1 − x2|)

+ Z
−1

dip

∑
numbers of dipoles,
dipole positions

σtot
i (x1)σ

tot
j (x2) e−βW ,

(7)

where the total elastic stress of a specific distribution of the dislocations, σtot
i (x), is

expressed through the corresponding stress potential U :

σtot
i (x) =

µ

2π

∑
I

εki ∂(x)k
U(κ|x− y±I |) . (8)

The dipoles are very compact since the dipole momenta are not too large at small enough
temperature: 〈η2〉 ¿ κ−2. We use the center of mass and momentum coordinates, respec-
tively, ξL = (y+

L +y−L )/2 and ηL = y+
L −y−L for Lth dipole (1 ≤ L ≤ N ). We follow [26] in

order to take into account the dipole-dipole corrections. Therefore the sum in right-hand
side of (7) takes the form:

∑
numbers , positions

σtot
i (x1)σ

tot
j (x2) e−βW =

=
( µ

2π

)2

εikεjl ∂(x1)k
∂(x2)l

∞∑
N=1

1

N !

N∏
I=1

∫
d2ξI

∫
d2ηI e−β(2Λ+ w(ηI))

× ∏
P<Q

e−βwPQ

N∑
K,L=1

U+−
K (x1)U+−

L (x2) ,

(9)

where N is the number of dipoles. The stress potential of Kth dipole observed at the
point x, U+−

K (x), is approximated with regard at |ηK | ¿ |x− ξK | as follows:

U+−
K (x) ≡ U(κ|x− y+

K |) − U(κ|x− y−K |) ≈ − (ηK , ∂x)U(κ|x− ξK |) , (10)

where (·, ·) stands for the scalar product of 2-vectors. In order to account for the dipole-
dipole couplings, we expand e−βwPQ in (9) into the series over wPQ. The dipoles are

5



compact, and therefore non-trivial contributions into (9) are due to the ñ-dipole terms
given by the integral [26]:

( µ

2π

)2

εikεjl ∂(x1)k
∂(x2)l

ñ∏
I=1

∫
d2ξI

∫
d2ηI e−β(2Λ+ w(ηI))

×U+−
1 (x1) (−βw12) (−βw23) . . . (−βwñ−1,ñ)U+−

ñ (x2) ,

(11)

where the dipole-dipole coupling is of the form:

−βwIJ = K (ηI , ∂ξI
)(ηJ , ∂ξJ

)U(κ|ξI − ξJ |) , K =
µβ

2π
. (12)

In order to proceed with evaluation of (11), we integrate subsequently over ξ2, η2, ξ3,
η3, . . . (just taking into account (10) and (12), and tacitly assuming that ñ ≥ 2). After
k − 1 steps, we obtain:

Ik ≡
k∏

I=2

∫
d2ξI

∫
d2ηI e−β(2Λ+ w(ηI))

k∏
J=1

(−βwJ,J+1) = Kk(−π〈η2〉N̄)k−1×

× (η1, ∂ξ1
)(ηk+1, ∂ξk+1

)
[
U(κ|ξ1 − ξk+1|) +

k−1∑

l=1

(Dκ)
lK0(κ|ξ1 − ξk+1|)

]
. (13)

Here Dκ stands for the operator −κ
2

d
dκ
. The ξ-integrations in (13) are enabled by the

Green theorem [15]. The η-integrations are expressed in (13) by means of the definition
of the mean square of the dipole momentum 〈η2〉 [21, 26]:

∫
e−2βΛ−KU(κη)ηiηj d2η =

δij

2
〈η2〉N̄ , (14)

where N̄ is the average dipole density. The integral (14) diverges at K < 4. The dipolar
phase does not exist at the temperature T > Tc ≡ µ

8π
.

At each intermediate integration over ξI , ηI , 1 < I < ñ, it is appropriate to keep in
right-hand side of (13) only the long-ranged logarithmic contribution thus neglecting the
terms decaying fast at κ|ξ1 − ξI+1|>∼1. Thus we avoid the situation when the distance
between positions of compact dipoles is smaller than the characteristic size of the core
κ−1 [26]. Therefore, Eq. (13) should be written as follows:

Ik ≈ Kk(−π〈η2〉N̄)k−1 (η1, ∂ξ1
)(ηk+1, ∂ξk+1

) log |ξ1 − ξk+1| . (15)

After ñ−2 steps, two integrations remain, over ξ1, η1, and ξñ, ηñ. Provided (13) is used,
the following expression appears for the whole Eq. (11):

( µ

2π

)2

Kñ−1(−π〈η2〉N̄)ñ εikεjl ∂(x1)k
∂(x2)l

[
U(κ|x1 − x2|) +

+
ñ∑

l=1

(Dκ)
lK0(κ|x1 − x2|)

]
. (16)

However, only the term l = 1 is to be kept in right-hand side of (16) as far as the relation
(15) holds. We take into account Zdip (5) and, eventually, obtain (7) in the following
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form:

〈〈σtot
i (x1) σtot

j (x2)〉〉 =
−µ

2πβ
∂(x1)i

∂(x2)j
U(κ|∆x|)

+
µ

2πβ

∞∑
ñ=1

(−βµd)ñ
(
εikεjl ∂(x1)k

∂(x2)l

)[U(κ|∆x|) +
κ|∆x|

2
K1(κ|∆x|)

]
,

(17)

where ∆x ≡ x1 − x2, and the contribution at ñ = 1 just corresponds to [15]. Besides, we
introduced d by means of the relation: βµd ≡ πK〈η2〉N̄ . The parameter d is proportional
to mean area covered by the dipoles.

3 The renormalization of the shear modulus
Let us obtain the renormalized shear modulus µren, which is expressed through the average
(6) as follows [18,25]:

1

µren

≡ β

µ2S
∑

i,k

∫∫
〈〈σtot

i (x1) σtot
k (x2)〉〉 d2x1d

2x2 , (18)

where S is the area of the sample’s cross-section. The main relation of the present paper
arises from (17) and (18):

1

µren

=
1

µ
C1(κR) +

βd

1 + βµd
C2(κR) , (19)

where C1(z) = 1−2K1(z)I1(z) and C2(z) = C1(z)+DzC1(z) are given by the modified Bessel
functions. When µd is not too large, µd ¿ 1, the renormalization rule (19) is reduced
to the relation obtained in [15]. Equation (19) demonstrates that the shear modulus µren

depends on the ratio R/κ
−1 of the sample’s cross-section radius to that of the dislocation

core. The coefficients C1(z) and C2(z) both are positive and less than unity. They behave
at growing z as follows: C1(z) ≈ 1 − 1

z
+ 3

8z3 − . . . and C2(z) ≈ 1 − 3
2z

+ 15
16z3 − . . . .

Equation (19) corresponds to the case of singular dislocations when κR tends to infinity
(see, for comparison, Eq. (59) in [25] obtained however for three-dimensional solid).

According to the rule (19), the ratio µren

µ
is characterized by the following double-sided

estimate:
1

2
≤ 1

C1 + C2

<
µren

µ
=

1 + βµd

C1 + βµd (C1 + C2)
<

1

C1

. (20)

Let µ̃ren to denote the renormalized shear modulus in the case of singular dislocations
(when C1,2 = 1). Then, one obtains from (20) that µ̃ren < µren and 1

2
< µ̃ren/µ < 1.

Since C1,2 are positive and less than unity, certain restrictions must be fulfilled in order
to make (20) physically meaningful. First of all, in order to avoid the contradiction with
µren/µ < 1, we require C1 + C2 > 1. The latter is valid at κR >∼ 2.17. Therefore, the
series expansions of C1,2(z) are admissible provided the value of 1

z
respects the estimate:

0 < 1
z
≤ 1

2.17
≈ 0.46. External diameter of the nanotubes ranges from nanometers to tens

of nanometers. As an example, let us specify the cylinder’s radius R as follows: R <∼ 10 a,
where a is lattice spacing. We know that 1

κ
' 0.25a, according to [11], and thus κR <∼ 40,

or 1
κ
' 0.4a, according to [14], and so κR <∼ 25. Thus, an admissible range is determined

for κR.
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Furthermore, the leading contribution to µren/µ is (C1 +C2)
−1 provided the dislocation

density µd is large enough. For instance, (C1 + C2)
−1 is 0.72 at κR = 4.0, or 0.55 at κR =

15.0, or 0.53 at κR = 25.0. Besides, µren/µ reduces to 1
C1 provided µd decreases. Since

1
C1 > 1, it is appropriate to ensure µren/µ < 1 requiring the validity of the inequalities:

1 + βµd

C1(z) + βµd(C1(z) + C2(z))
< 1 ⇐⇒ f(z) ≡ 1− C1(z)

C1(z) + C2(z)− 1
< βµd . (21)

Therefore, the inequality f(z) < βµd, Eq. (21), imposes the lower bound in the sense that
βµd should not lie below f(z) (see Fig. 1 ) provided z acquires admissible values. One
can also compare the dependence of µren/µ on βµd in the singular and non-singular cases
(see Fig. 2 drawn for κR = 15.0).

2

0

z

25201510

3

5

1

f(z)

Figure 1: f(z)

The rule (19) enables one to express the renormalized shear modulus as the function
of the absolute temperature, µren = µren(T ). The temperature Tc of the melting transition
is given by (14), and it respects µβc = 8π. The function µren(T ) takes the following form
in a close vicinity of Tc (at T < Tc):

µren(T )

µren(T−
c )

≈ 1 +
( T

Tc

− 1
)
h(κR) , h(κR) ≡ 8πd

(1 + 8πd)(8πd + C∗(κR)(1 + 8πd))
,

(22)
where C∗(κR) ≡ C1(κR)

C2(κR)
. The limits C∗(κR) → 1 and h(κR) → h∞ take place at κR →∞,

and this corresponds to the case of singular dislocations. Numerical estimate shows us
that 1.0 < C∗(κR) < 1.4 at κR > 2.17, and so h(κR) is smaller than the limiting
value h∞. The limiting value of µren(T ) below the critical temperature, µren(T

−
c ), is also

8



0.8

0.65

0.55

0.6

μα

15

0.7

5

0.75

2010

Figure 2: µren/µ (dashed) and µ̃ren/µ vs µα ≡ βµd

obtainable from (19) (µren is zero above the transition point). The value of µren(T
−
c ) can

be compared with the analogous value for the singular dislocations. It is appropriate to
put the corresponding inequality in the following form:

µren(T
−
c )

Tc

=
8π(1 + 8πd)

C1 + 8πd(C1 + C2)
>

µ̃ren(T
−
c )

Tc

=
8π(1 + 8πd)

1 + 16πd
. (23)

Crucially, Eq. (23) demonstrates that the value of µren(T−c )
Tc

at d ¿ 1 (or d À 1) ceases to

be an integer multiplied by π, as it happens for µ̃ren(T−c )
Tc

.
Therefore, Eqs. (22) and (23) demonstrate how the non-conventional character of the

dislocation solution influences, through the dependence on C1(κR), C2(κR), the shear
modulus renormalization near the melting transition. It should be noticed that a direct
verification of the limiting value of the Young modulus (which is 16π at T → T−

c ) predicted
by the theory [16–19] has been reported in [27], where the two-dimensional colloidal
crystal has been used. More references concerning testing of the essential elements of the
theory [16–19] can also be found in [27]. Appropriate candidates for observing the effects
of the elastic constants renormalization have been discussed in [25], where the colloidal
crystals have also been mentioned as the suitable ones.

4 Discussion
The renormalization of the shear modulus is studied in the case of the screw disloca-
tions possessing the finite-sized core. The influence of the dipole-dipole interaction on the
renormalization rule is taken into account. Approximation of compact dipoles is used.

9



The non-triviality of the cores is valuable for the renormalization of the shear modulus at
finite κR. The numerical restrictions ensuring the validity of (19) are not in contradiction
with realistic characteristics of the nanotubes/nanowires. The relations obtained, (19),
(22), (23), demonstrate the thermodynamical implications of the usage of the singular-
ityless modified dislocation solutions. Although the effects of the renormalization a very
subtle, the nanophysics could hopefully provide an opportunity to verify the correspond-
ing predictions of the approach proposed to elimination of the dislocation singularities.
Further development for nonsingular edge dislocations should be interesting.
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