

 


 


 


ПРЕПРИНТЫ ПОМИ РАН 


 


 


ГЛАВНЫЙ РЕДАКТОР 


С.В. Кисляков 


 


 


 


РЕДКОЛЛЕГИЯ 


В.М.Бабич, Н.А.Вавилов, А.М.Вершик, М.А.Всемирнов, А.И.Генералов, И.А.Ибрагимов, 


Л.Ю.Колотилина, Б.Б.Лурье, Ю.В.Матиясевич, Н.Ю.Нецветаев, С.И.Репин, Г.А.Серегин  


 


 


Учредитель: Федеральное государственное бюджетное учреждение науки 


Санкт-Петербургское отделение Математического института 


им. В. А.  Стеклова Российской академии наук 


 


Свидетельство о регистрации средства массовой информации: ЭЛ №ФС 77-33560 от 16 


октября 2008 г. Выдано Федеральной службой по надзору в сфере связи и массовых 


коммуникаций 


 


 


Контактные данные: 191023, г. Санкт-Петербург, наб. реки Фонтанки, дом 27 


телефоны:(812)312-40-58; (812) 571-57-54 


e-mail: admin@pdmi.ras.ru 


http://www. pdmi.ras.ru /preprint/ 


Заведующая информационно-издательским сектором Симонова В.Н 



mailto:admin@pdmi.ras.ru





PDMI preprint 19/2012


Correlation functions of the XXZ chain at zero
anisotropy and enumeration of boxed plane


partitions ∗†


N. M. Bogoliubov?, C. Malyshev¦


Steklov Mathematical Institute, St.-Petersburg Department, RAS


Fontanka 27, St.-Petersburg, 191023, Russia


? e-mail: bogoliub@pdmi.ras.ru
¦ e-mail: malyshev@pdmi.ras.ru


Abstract


The temperature correlation functions of the XXZ Heisenberg chain at zero anisot-
ropy are calculated over the base of N -particle Bethe states. The wave functions
are expressed by means of the symmetric Schur functions. The correlation functions
both of the ferromagnetic string and domain wall are studied. A relationship is
demonstrated between the correlation functions in question and enumeration of the
boxed plane partitions as well as of the lattice paths. The determinant formula of the
Kuperberg type that provides a connection to (q-)binomial determinants is obtained.
An approach is developed to obtain the asymptotics of the correlators in the limit
of small temperature provided that the characteristic sizes of the system are large
enough.
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1 Introduction
The Heisenberg XXZ model continues to attract considerable attention since the cal-
culation of its correlation functions in the approach of the Algebraic Bethe Ansatz is
up-to-date problem both in theoretical and mathematical physics [1–10]. The limit of
zero anisotropy (the free-fermion limit) of the XXZ model, so-called, XX Heisenberg
chain, is also of considerable interest [11–14].


Random walks is a classical problem both for combinatorics and statistical physics.
Since they were introduced in the paper by Fisher [15], the problem of enumeration of
the paths of the vicious walkers is also actively investigated [16–28]. The random walks
over one-dimensional periodic lattice are related to the correlation functions of the XX
Heisenberg magnet [29, 30]. Certain averages taken over the ferromagnetic state of the
XX model play the role of the generating functions of the paths traced by the vicious
walkers. The correlation functions of the XX model have been used in [31–33] to study
the problem of enumeration of the trajectories of the vicious walkers.


In this paper the approach of [29–34] will be further explored. It is crucial that the
Bethe wave functions of the XXZ model are expressible in terms of the Schur functions
[40] in two important limits: zero and infinite anisotropy [33, 34]. In the present paper
we restrict ourselves with the limit of zero anisotropy to study the correlation functions
and certain form-factors in the Schur function representation. The correlation functions
of two types will be investigated: the correlation function describing the states with no
excitations on the first n sites of the chain (would be called as Survival Probability of
Ferromagnetic String), as well as the correlation function of the operators corresponding
to creation of n excitations on the first n sites of the chain (would be called as Survival
Probability of Domain Wall). We shall concentrate on the combinatorial aspects of the
correlation functions. The formulas obtained will be studied from the viewpoint both of
the random walks of the vicious walkers and enumeration of the boxed plane partitions. A
relationship to certain lattice paths will also be provided. Similar problems appear in the
case of the phase model (being a special limit of q-boson model) describing the so-called
friendly walkers [35]: boxed plane partitions, three-dimensional Young diagrams in a box,
lattice paths, etc.


The paper is organized as follows. Section 1 is introductive. The XXZ model and its
solution at arbitrary anisotropy parameter ∆ are presented shortly in Section 2. Section
3 contains the outline of the problem at zero value of ∆. Section 4 is concerned with cal-
culation of the correlation functions in question. In Section 5 the combinatorial aspects
of the problem are under consideration. The generating functions related to enumera-
tion of the boxed plane partitions and the lattice paths are obtained. The asymptotical
estimates of the Survival Probabilities are obtained in Section 6. Discussion in Section
7 concludes the paper. A proof of the determinantal formulas crucial for this paper is
given in Appendix I. A connection of these formulas with the q-binomial determinants is
established. Appendix II deals with the derivation of the asymptotical formulas.


2 XXZ Heisenberg model
The XXZ Heisenberg model is defined on one-dimensional lattice consisting of M + 1
sites labelled by elements of the setM≡ {0, 1, . . . , M} 3 k, and its Hamiltonian is of the
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form:


ĤXXZ = −1


2


M∑


k=0


(σ−k+1σ
+
k + σ+


k+1σ
−
k +


∆


2
(σz


k+1σ
z
k − 1)) , (1)


where ∆ ∈ R is the anisotropy. We assume that external magnetic field is absent, and
the number of sites, M + 1, is even. The local spin operators σ±k = 1


2
(σx


k ± iσy
k) and σz


k


obey the commutation rules:


[ σ+
k , σ−l ] = δk,l σ


z
l , [ σz


k, σ
±
l ] = ±2 δk,l σ


±
l .


The spin operators act in the space HM+1 spanned over the state-vectors
⊗M


k=0 |s〉k ,
where s implies either ↑ or ↓. The spin “up” and “down” states, |↑〉 and |↓〉, provide a
natural basis of the linear space C2 so that


|↑〉 ≡
( 1


0


)
, |↓〉 ≡


( 0
1


)
.


The periodic boundary conditions σ#
k+(M+1) = σ#


k are imposed.
To represent N -particle state-vectors of the model, |ΨN(u1, . . . , uN)〉, let the sites with


spin “down” states be labelled by the coordinates µi, 1 ≤ i ≤ N . These coordinates form
a strict partition µ ≡ (µ1, µ2, . . . , µN), where M ≥ µ1 > µ2 > . . . > µN ≥ 0. There is a
correspondence between each partition and an appropriate sequence of zeros and unities
of the form:


{
ek ≡ ek(µ)


}
k∈M, where ek ≡ δk,µn , 1 ≤ n ≤ N . Obviously, the relation∑M


k=0 ek = N is respected. The Hamiltonian (1) is diagonalized by means of the ansatz:


|ΨN(u)〉 =
∑


{ek(µ)}k∈M


χXXZ
µ (u)


M∏


k=0


(σ−k )ek |⇑〉 , (2)


where the summation is over CN
M ≡ M !


N !(M−N)!
strict partitions µ. The state |⇑〉 in (2) is


the fully polarized state with all spins “up”: |⇑〉 ≡ ⊗M
n=0 |↑〉n. It is proposed to use bold-


faced letters as short-hand notations for appropriate N -tuples of numbers: for instance, u
instead of (u1, . . . , uN), etc. Therefore, the wave function χXXZ


µ (u) in (2) is of the form:


χXXZ
µ (u) =


∑
Sp1,p2,...,pN


AS(u) u2µ1
p1


u2µ2
p2


. . . u2µN
pN


, (3)


where the summation is over all permutations Sp1,p2,...,pN
≡ S


( 1, 2, . . . , N
p1, p2, . . . , pN


)
. The


amplitude AS is given by the product:


AS(u) ≡
∏


1≤j<i≤N


1− 2∆u2
pi


+ u2
pi
u2


pj


u2
pi
− u2


pj


.


The state-vectors (2) provide the eigen-states of the Hamiltonian (1),


ĤXXZ |ΨN(u)〉 = EN(u) |ΨN(u)〉 ,
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with the corresponding eigen-values given by


EN(u) = −1


2


N∑
i=1


(u2
i + u−2


i − 2∆) , (4)


if and only if the variables ul (1 ≤ l ≤ N) satisfy the Bethe equations :


u
2(M+1)
l = (−1)N−1


N∏


k=1


1− 2∆u2
l + u2


l u
2
k


1− 2∆u2
k + u2


l u
2
k


. (5)


3 Outline of the problem
The isotropic limit of XXZ model, so-called, XX model [11–14], is described by the
Hamiltonian ĤXX , which arises from the Hamiltonian (1) at ∆ → 0:


ĤXX ≡ −1


2


M∑


k=0


(σ−k+1σ
+
k + σ+


k+1σ
−
k ) . (6)


The Hamiltonian (6) corresponds to nearest-neighbor interactions of spin “up” and “down”
states located on the sites of the periodic chain, and it admits a free fermion representation
[13]. The XX magnet can also be deduced in the limit of infinite on-site repulsion in
the boson Hubbard model [36]. The XX model is of interest for description of the
Frenkel excitons [37], as well as concerning the quantum information and computation
theory [38,39].


The state-vector of the XX model is given by (2) at ∆ → 0. In this limit, the wave
function (3) is specified, up to irrelevant pre-factor, as follows:


χXX
µ (u) = det(u2µk


j )1≤j,k≤N


∏


1≤n<l≤N


(u2
l − u2


n)−1, (7)


while the Bethe equations (5) take the form [13]:


u
2(M+1)
j = (−1)N−1 , 1 ≤ j ≤ N . (8)


The substitution u2
j = eiθj brings these equations to the exponential form,


ei(M+1)θj = (−1)N−1 . (9)


Equations (9) are solved by the “angles” θj,


θj =
2π


M + 1


(
Ij − N − 1


2


)
, 1 ≤ j ≤ N , (10)


where Ij are integers or half-integers depending on whether N is odd or even. It is sufficient
to consider a set of N different numbers Ij satisfying the condition: M ≥ I1 > I2 > · · · >
IN ≥ 0. The notation θ for N -tuple (θ1, θ2, . . . , θN) will be especially convenient for usage
below in order to stress that one is concerned with the solution (10) of the Bethe equation.
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Otherwise, it is appropriate to use u as an indication that arbitrary set of parameters is
meant. It follows from (4) that the eigen-energy of the XX model is equal to


EXX
N (θ) = −


N∑
j=1


cos θj = −
N∑


j=1


cos


(
2π


M + 1


(
Ij − N − 1


2


))
. (11)


The ground-state solution is given by the “angles” (10) at Ij = N − j:


θv
j ≡


2π


M + 1


(
N − j − N − 1


2


)
, 1 ≤ j ≤ N , (12)


and it corresponds to the eigen-energy of the form:


EXX
N (θv) = − cosec


π


M + 1
sin


πN


M + 1
. (13)


The wave function (7) is expressible through the Schur functions given by the Jacobi-
Trudy relation [40]:


Sλ(x) ≡ Sλ(x1, x2, . . . , xN) ≡ det(xλk+N−k
j )1≤j,k≤N


det(xN−k
j )1≤j,k≤N


= det(xλk+N−k
j )1≤j,k≤N


∏


1≤n<l≤N


(xl − xn)−1 ,


(14)


where λ denotes the partition (λ1, λ2, . . . , λN) being N -tuple of non-increasing non-
negative integers: L ≥ λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0. Any strict partition M ≥ µ1 > µ2 >
. . . > µN ≥ 0 and non-strict partition M + 1−N ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 (denoted as
µ and λ, respectively) can be related by means of the relation λj = µj−N +j, where 1 ≤
j ≤ N . In other terms, λ = µ− δ, where δ is the strict partition (N − 1, N − 2, . . . , 1, 0).
So the wave function (7) may equivalently be written as


χXX
µ (u) = Sλ(u2) . (15)


Thermal correlation functions of two types will be investigated in the present paper.
First of all, the correlator, would be called as Survival Probability of Ferromagnetic String ,
related to the states with no spins down on first n sites of the chain. Specifically, we shall
consider the expectation value defined by the ratio:


T (θv, n, β) ≡ 〈ΨN(θv) | Π̄n e−βĤ Π̄n |ΨN(θv)〉
〈ΨN(θv) | e−βĤ |ΨN(θv)〉 , Π̄n ≡


n−1∏
j=0


q̌j , (16)


where Ĥ implies ĤXX (6), θv is given by (12), and β ∈ C. The projector Π̄n is expressed
by means of the operators q̌j dependent on the spin operators σ#


k as follows:


q̌k ≡ 1


2
(σ0


k + σz
k) , q̂k ≡ 1


2
(σ0


k − σz
k) , q̌k + q̂k = I, k ∈M . (17)


The projector Π̄n (16) annihilates the excited states on first n sites. Investigation of the
correlator (16) has already been started in [33, 34]. We shall also consider the correla-
tion function called as Survival Probability of Domain Wall , related to the operators F̄n
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corresponding to creation of n excitations on first n sites:


F(θv, n, β) ≡ 〈ΨN−n(θv) | F̄n e−βĤ F̄n |ΨN−n(θv)〉
〈ΨN−n(θv) | e−βĤ |ΨN−n(θv)〉 , F̄n ≡


n−1∏
j=0


σ−j . (18)


We shall use a relation for the Schur functions which is due to the Binet–Cauchy
formula [41]:


∑


λ⊆{(L/n)N}
Sλ(x2


1, . . . , x
2
N)Sλ(y2


1, . . . , y
2
N)


= det(Tjk)1≤j,k≤N


∏


1≤k<j≤N


(
y2


j − y2
k


)−1
∏


1≤m<l≤N


(
x2


l − x2
m


)−1
, (19)


where summation goes over all non-strict partitions λ into at most N parts so that each
is less than L but greater than n: L ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ n. The entries Tjk take the
form:


Tjk =
(xkyj)


2n − (xkyj)
2(N+L)


1− (xkyj)2
. (20)


4 The correlation functions


4.1 The Bethe states and form-factors


Before to proceed with calculation of T (θv, n, β) (16), we use (15) to specialize the state-
vector (2) and its conjugated:


|ΨN(u)〉 =
∑


λ⊆{(M+1−N)N}
Sλ(u2)


M∏
k=0


(σ−k )ek |⇑〉 ,


〈ΨN(v) |= ∑
λ⊆{(M+1−N)N}


〈⇑|
M∏


k=0


(σ+
k )ẽkSλ(v−2) ,


(21)


where summation goes over all non-strict partitions λ, which are related to the non-strict
partitions µ = λ + δ. The orthogonality relation


〈⇑|
M∏


k=0


(σ+
k )ẽk


M∏


l=0


(σ−l )el|⇑〉 =
M∏


n=0


δẽnen ,


as well as the relation (19), enable to obtain the scalar product of the state-vectors (21):


〈ΨN(v) |ΨN(u)〉 =
∑


λ⊆{(M+1−N)N}
Sλ(v−2)Sλ(u2) =


det(T o
kj)1≤k,j≤N


V(u2)V(v−2)
, (22)


where the entries T o
kj coincide with those given by (20) at n = 0:


T o
kj =


1− (u2
k/v


2
j )


M+1


1− u2
k/v


2
j


. (23)
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Besides, the notation for the Vandermonde determinant is used in (22):


V(u2) (≡ VN(u2)) ≡
∏


1≤m<l≤N


(u2
l − u2


m) . (24)


Define the squared norm of the states (21) parametrized arbitrarily:
N 2(u) = 〈ΨN(u) | ΨN(u)〉. Let us introduce the exponential parametrization for the
solutions of the Bethe equations:


u2 = eiθ , eiθ ≡ (eiθ1 , eiθ2 , . . . , eiθN ) ,


where the “angles” (10) are meant. The entries (23) taken on the solutions (10) are given
as follows:


T o
kj =


sin π(Ik − Ij)


sin π
M+1


(Ik − Ij)
ei πM


M+1
(Ik−Ij) = (M + 1)δjk . (25)


Then, the corresponding square of the norm N 2(θ) arises as follows:


N 2(θ) =
(M + 1)N


|V(eiθ)|2 =
(M + 1)N


∏
1≤m<l≤N


2(1− cos 2π
M+1


(Il − Im))
. (26)


Let us now consider the form-factor given by the ratio:


T (v,u, n) ≡ 〈ΨN(v) | Π̄n |ΨN(u)〉
N (v)N (u)


, (27)


where Π̄n is defined by (16). With regard at (21), we calculate:


Π̄n |ΨN(u)〉 =
∑


λ⊆{(M−N+1/n)N}
Sλ(u2)


( M∏


k=n


(σ−k )ek


)
|⇑〉 , (28)


where summation goes over non-strict partitions λ bounded below: M − N + 1 ≥ λ1 ≥
λ2 ≥ . . . ≥ λN ≥ n. Taking into account (19), (20), and (28), we calculate the nominator
of (27) 1:


〈ΨN(v) | Π̄n |ΨN(u)〉 =
∑


λ⊆{(M−N+1/n)N}
Sλ(v−2)Sλ(u2) =


det(Tkj)1≤k,j≤N


V(u2)V(v−2)
, (29)


Tkj =
(u2


k/v
2
j )


n − (u2
k/v


2
j )


M+1


1− u2
k/v


2
j


. (30)


Adding and subtracting unity in the nominator of Tkj (30), one obtains (29) on the
solutions (10):


〈ΨN(θ) | Π̄n |ΨN(θ)〉 =
1


|V(eiθ)|2 det
(
T o


kj − (M + 1)Kn(θk, θj)
)
1≤k,j≤N


, (31)


1In spite of the fact that Π̄n (16) is defined at n ≥ 1, right-hand side of (28) admits n = 0 and
therefore right-hand side of Eq. (29) reproduces, formally, the scalar product (22).
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where the matrix Kn(θk, θj) is


Kn(θk, θj) ≡ ei(n−1)(θk−θj)/2


M + 1


sin
n(θk−θj)


2


sin
θk−θj


2


. (32)


It is seen from (25), (26), (31), (32) that the weighted ratio (27) is related, in the
thermodynamic limit, with the Fredholm determinant:


T (eiθ/2, eiθ/2, n) = det
(
δlm −Kn(θl, θm)


)
1≤l,m≤N


∼ Det
(
δ(p, q)−Kn(p, q)


)
, (33)


where Kn(p, q) is the linear integral operator acting on functions on the segment [−kF , kF ]
with the kernel corresponding to (32) where M + 1 is replaced by 2π. In other words,
appropriately parametrized average (27) is related to the Emptiness Formation Probability
(EFP), P (n) ≡ 〈GS|Π̄n|GS〉, which is the probability of formation of a string of empty
(i.e., spin “up”) states on first n sites [7, 8, 13, 42, 43]. For zero magnetic field, the fully
polarized state |⇑〉 (see (2)) is not the ground state. The ground state |GS〉 in this
case is constructed, in the thermodynamic limit, by filling the reference state |⇑〉 with
quasi-particles occupying all admissible positions in the Fermi band [−kF , kF ] 3 p (here,
kF is the Fermi momentum, kF = arccos(h/2)


∣∣
h=0


= π
2
) [14]. The probability P (n) is


constructed by means of the matrix determinants as follows [44]:


P (n) =
n∑


J=0


1


J !


kF∫


−kF


. . .


kF∫


−kF


det
(−Kn(pl, pm)


)
1≤l,m≤N


dp1 . . . dpN . (34)


The asymptotical behavior of EFP is investigated in [42,43]. The multiple integral repre-
sentation [8] is alternative to (34) (see [42] for equivalence of these two representations).
However, we shall not touch the thermodynamic limit since it is assumed that the spin
chain is long enough though remains finite.


Another form-factor to be considered is that corresponding to F̄n (18). Let us introduce
an auxiliary operator DN−j(u) which acts according to the rule:


DN−j(u)(·) ≡ lim
u2


N−j→0


1


j !


dj


d(u2
N−j)


j


(N−j−1∏


lj=1


(u2
N−j − u2


lj
)× (·)


)
. (35)


The definition (35) implies that the corresponding argument (marked by the point between
the brackets) is firstly multiplied by the product of the differences u2


N−j − u2
lj
. The


expression obtained is differentiated j times over u2
N−j, and, finally, u2


N−j → 0. This
operation should be repeated subsequently n times. We introduce the operator D ≡
DN−n+1,N−n+2,...,N(u) to denote n-fold subsequent application of (35):


DN−n+1,N−n+2,...,N(u) ≡
n−1∏
j=0


DN−j(u) . (36)


The usage of (36) enables derivation of the average for F̄n by means of differentiation of the
corresponding representation 〈ΨN(v) | ΨN(u)〉 (22) either in the series or the determinant
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form:


〈ΨN(v) | F̄n |ΨN−n(u)〉 = DN−n+1,N−n+2,...,N(u)
( ∑


λ⊆{KN}
Sλ(v−2)Sλ(u2)


)


= DN−n+1,N−n+2,...,N(u)
(det(Tkj)1≤k,j≤N


V(u2)V(v−2)


)
, (37)


where we introduced K ≡ M + 1−N . It is tacitly assumed that u implies the sequence
(u1, u2, . . . , uN−n) of the “length” N − n in the case of the state-vector | ΨN−n(u)〉 in
left-hand side of (37). The auxiliary values u2


N−n+1, . . . , u
2
N (which are arbitrary) are used


in right-hand sides of (37) formally, only in order to express 〈ΨN(v) | ΨN(u)〉.
Using (22) in the series form, one can evaluate the form-factor (37) in terms of the


Schur functions:


〈ΨN(v) | F̄n |ΨN−n(u)〉 =
N−n∏


l=1


u2n
l


∑


λ⊆{KN−n}
Sλ̂(v−2)Sλ(u2) . (38)


The summation in (38) runs over the partitions λ of the “length” N − n:


M −N + 1(= K) ≥ λ1 ≥ λ2 ≥ . . . ≥ λN−n ≥ 0 .


Besides, we used in (38) the notation for the partition λ̂ of the length N , λ̂ ≡ (λ,0),
where the ‘hat’ points out that λ̂N−n+1 = λ̂N−n+2 = · · · = λ̂N = 0.


Using the explicit form of the entries Tkj (23), we directly evaluate (37) in the deter-
minant form:


〈ΨN(v) | F̄n |ΨN−n(u)〉 =
det(T̄kj)1≤k,j≤N


VN−n(u2)VN(v−2)
, (39)


where
T̄kj = Tkj , 1 ≤ k ≤ N − n, 1 ≤ j ≤ N ,


T̄kj = v
−2(N−k)
j , N − n + 1 ≤ k ≤ N, 1 ≤ j ≤ N .


(40)


The notations VN and VN−n are chosen for the Vandermond determinants (24) so that
the subscripts imply that in the second case the indices in the product are restricted as
follows: 1 ≤ m < l ≤ N − n. The matrix in right-hand side of (39) consists of two
rectangular blocks. It is crucial that right-hand sides of (38) and (39) mutually coincide.
This is a by-product of the calculation of the average 〈ΨN(v) | F̄n |ΨN−n(u)〉 in two ways.


Doing analogously, we obtain the average 〈ΨN−n(v) | F̄n |ΨN(u)〉 in the determinant
form:


〈ΨN−n(v) | F̄n |ΨN(u)〉 = DN−n+1,N−n+2,...,N(v−1)
(〈ΨN(v) | ΨN(u)〉)


=
det(T̃kj)1≤k,j≤N


VN−n(v−2)VN(u2)
, (41)


where
T̃kj = Tkj , 1 ≤ k ≤ N, 1 ≤ j ≤ N − n ,


T̃kj = u
2(N−k)
j , 1 ≤ k ≤ N, N − n + 1 ≤ j ≤ N .


(42)
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The structure of the blockwise matrix T̃ is clear after the notations in (42). On the other
hand, the following relation takes place:


〈ΨN−n(v) | F̄n |ΨN(u)〉 =
N−n∏


l=1


v−2n
l


∑


λ⊆{KN−n}
Sλ(v−2)Sλ̂(u2) , (43)


where the summation is the same as in (38). Right-hand sides of (41) and (43) coincide.


4.2 Survival Probability of Ferromagnetic String


Let us recall, following [33], the main relations concerning the survival probability of
the ferromagnetic string and its relationship to the random walks. For instance, it is of
interest to evaluate the nominator of (16) parametrized by arbitrary u and v:


〈ΨN(v) | Π̄n e−βĤ Π̄n |ΨN(u)〉


=
∑


λL, λR⊆{(M−N+1/n)N}
SλL(v−2)SλR(u2)FµL; µR(β) ,


(44)


where (as well as below) Ĥ implies ĤXX . Summations in (44) run over two non-strict
partitions λL and λR of the same kind as in (28). Superscripts L and R are to distinguish
two independent summations. The corresponding strict partitions µL and µR are given as
follows: µL,R = λL,R + δ, where δ ≡ (δ1, δ2, . . . , δN), δj = N − j. The notation FµL; µR(β)
implies the following average:


FµL; µR(β) ≡ FµL
1 ,µL


2 ,...,µL
N ;µR


1 ,µR
2 ,...,µR


N
(β) =


= 〈⇑ |σ+
µL


1
σ+


µL
2


. . . σ+
µL


N
e−βĤσ−


µR
1
σ−


µR
2


. . . σ−
µR


N
| ⇑〉 ,


(45)


which is nothing but 2N -point correlation function over the fully polarized state | ⇑〉. The
average FµL; µR(β) is related to enumeration of admissible trajectories which are traced
by N vicious walkers travelling over sites of one-dimensional chain [29–33]. The relation
(44) is clearly reduced to (30) at β = 0.


Furthermore, let |PK(µR
1 , . . . , µR


N → µL
1 , . . . , µL


N)| be a number of trajectories consisting
of K links made by N vicious walkers in the random turns model. Here, the initial and
final positions of the walkers on the sites are given respectively by parts of the strict
decreasing partitions µR


1 > µR
2 > · · · > µR


N and µL
1 > µL


2 > · · · > µL
N . Let DK


` be the
differentiation operator of Kth order with respect to ` at ` = 0 [32]. Then, the average (44)
turns out to be the generating function of the polynomials dependent on 2N variables,
u2


1, u
2
2, . . . , u


2
N and v−2


1 , v−2
2 , . . . , v−2


N , as follows [33]:


DK
β/2


[
〈ΨN(v) | Π̄n e−βĤ Π̄n |ΨN(u)〉


]
=


=
∑


λL, λR⊆{(M−N+1/n)N}
|PK(µR → µL)|SλL(v−2) SλR(u2)


(46)


(remind that µL,R = λL,R + δ). The number of trajectories consisting of K links, which
are traced by N vicious walkers on an axis, i.e, |PK(µR → µL)|, is expressible through
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the number of trajectories of the same “length” K traced by a single walker travelling over
N -dimensional lattice of infinite extension [32].


The correlator (45) respects the following equation:


d


dβ
FµL


1 ,µL
2 ,...,µL


N ;µR
1 ,µR


2 ,...,µR
N
(β) =


=
1


2


N∑


k=1


(
FµL


1 ,µL
2 ,...,µL


N ;µR
1 ,µR


2 ,...,µR
k +1,...,µR


N
(β) + FµL


1 ,µL
2 ,...,µL


N ;µR
1 ,µR


2 ,...,µR
k −1,...,µR


N
(β)


)
.


(47)


Equation (47) has been considered in [30] for the case of the periodic boundary condition
with respect to the lattice argument and with the initial condition:


FµL
1 ,µL


2 ,...,µL
N ;µR


1 ,µR
2 ,...,µR


N
(0) =


N∏


k=1


δµL
k ,µR


k
.


Solution to (47) can be expressed as the determinant of the matrix
(
Fk; l(β)


)
1≤k,l≤N


[29,30]:


FµL
1 ,µL


2 ,...,µL
N ;µR


1 ,µR
2 ,...,µR


N
(β) = det


(
FµL


k ;µR
l
(β)


)
1≤k,l≤N


, (48)


where the entries respect the following difference-differential equation:


d


dβ
Fk; l(β) =


1


2
(Fk+1;l(β) + Fk−1;l(β)) . (49)


Similar equation can be also obtained for the fixed index l.
It can be checked that the transition amplitude 〈⇑ |σ+


k e−βĤσ−l | ⇑〉 respects (49),
[29–32]. This average can be considered as the generating function of the number of the
random turn walks of a single pedestrian travelling between lth and kth sites of (periodic)
chain [30,32]. The corresponding solution to (49) can be written as the following sum:


Fk; l(β) ≡ 1


M + 1


M∑
s=0


eβ cos φs eiφs(k−l) , (50)


where the parametrization φs =
2π


M + 1


(
s− M


2


)
is used. The periodicity condition with


respect of the lattice argument and the “initial” condition Fk; l(0) = δk,l are imposed.
Using (48) and (50), we re-express (45) through the Schur functions (14) and the


Vandermonde determinants (24) as follows [29]:


FµL; µR(β) =
1


(M + 1)N


∑


M≥k1>k2···>kN≥0


e
β


N∑
l=1


cos(φkl
)


×|V(eiφ)|2 SλL(eiφ)SλR(e−iφ) .


(51)


The same parametrization φs, 0 ≤ s ≤ M , are used both in (50) and (51). We continue
to use bold-faced letters to denote N -tuples of numbers: for instance, φ corresponds to
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(φk1 , φk2 , . . . , φkN
). We substitute (51) into (44), and use (30) in order to calculate the


sums:


P(v−2, eiφ) ≡
∑


λL


SλL(v−2) SλL(eiφ) , P(e−iφ,u2) ≡
∑


λR


SλR(e−iφ) SλR(u2) . (52)


The range of summation in (52) is taken as follows: λL, λR ⊆ {(M −N +1/n)N}. Then,
we obtain:


〈ΨN(v) | Π̄n e−βĤ Π̄n |ΨN(u)〉 =


=
1


(M + 1)N


∑


M≥k1>k2···>kN≥0


e−βEN (φ)|V(eiθ)|2P(v−2, eiθ)P(e−iθ,u2)


=


∏N
l=1 u2n


l v−2n
l


(M + 1)N V(u2)V(v−2)


∑


M≥k1>k2···>kN≥0


e−βEN (φ)


× det
(1− (eiφki v−2


j )M−n+1


1− eiφki v−2
j


)
1≤i,j≤N


det
(1− (u2


pe
−iφkl )M−n+1


1− u2
pe
−iφkl


)
1≤p,l≤N


.


(53)


The Binet–Cauchy formula enables to evaluate (53):


〈ΨN(v) | Π̄n e−βĤ Π̄n |ΨN(u)〉 =


=
1


V(u2)V(v−2)
det


(
M∑


k,l=n


Fk; l(β)
u2l


i


v2k
j


)


1≤i,j≤N


,
(54)


where Fk; l(β) is defined by (50). Clearly, the relation (54) is reduced, at β = 0, to (30).
We take into account that


〈ΨN(v) | e−βĤ |ΨN(θ)〉 = 〈ΨN(v) |ΨN(θ)〉 e−βEN (θ) , (55)


where the energy EN(θ) is given by (11). Further, expression for T (θv, n, β) (16) can
straightforwardly be obtained from (54):


T (θv, n, β) =
eβEN (θv)


(M + 1)N
det


(
M∑


k,l=n


Fk; l(β) ei(lθv
i −kθv


j )


)


1≤i,j≤N


, (56)


where EN(θv) is given by (13).


4.3 Survival Probability of Domain Wall


With the representations (39) and (41) at hands, let us turn to the correlation functions of
the one-dimensional domain wall (18). We begin with the nominator of (18) parametrized
arbitrarily:


〈ΨN−n(v) | F̄n e−βĤ F̄n |ΨN−n(u)〉 . (57)


The solutions of the Bethe equation (9) constitute a complete set of the eigen-states.
Taking into account their orthogonality, one can consider the resolution of the identity
operator:


I =
∑


{θ}
N−2(θ) |ΨN(θ)〉〈ΨN(θ) | , (58)
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where summation goes over all independent solutions of the Bethe equation (9), and the
square of the norm N 2(θ) is given by (26). We shall calculate (57) inserting (58) and using
appropriately (37) and (39). We take into account (55) and re-express (57) as follows:


〈ΨN−n(v) | F̄n e−βĤ F̄n |ΨN−n(u)〉 =


=
∑


{θ}
〈ΨN−n(v) | F̄n |ΨN(θ)〉〈ΨN(θ) | F̄n |ΨN−n(u)〉 e−βEN (θ)


N 2(θ)
. (59)


In order to evaluate (59) further, we use the differentiation representations (37) and
(41) for each form-factor , and straightforwardly obtain:


N−n〈F̄n e−βĤ F̄n〉N−n = (M + 1)−N DN−n+1,N−n+2,...,N(v−1) DN−n+1,N−n+2,...,N(u)


×
(


1


VN(u2)VN(v−2)


∑
M≥I1>I2···>IN≥0


e−βEN (θ) det
(1− (eiθiv−2


j )M+1


1− eiθiv−2
j


)
1≤i,j≤N


× det
(1− (u2


pe
−iθl)M+1


1− u2
pe
−iθl


)
1≤p,l≤N


)
.


(60)
Let us introduce the operators:


D̃N−n+1,N−n+2,...,N(u) ≡
n−1∏
j=0


(
lim


u2
N−j→0


1


j !


dj


d(u2
N−j)


j


)
. (61)


In terms of D̃ (61), we re-express (60):


N−n〈F̄n e−βĤ F̄n〉N−n =
1


(M + 1)NVN−n(u2)VN−n(v−2)
D̃N,N−1,...,N−n+1(v


−1)


× D̃N,N−1,...,N−n+1(u)


( ∑
M≥I1>I2···>IN≥0


e−βEN (θ) det
(1− (eiθiv−2


j )M+1


1− eiθiv−2
j


)
1≤i,j≤N


× det
(1− (u2


pe
−iθl)M+1


1− u2
pe
−iθl


)
1≤p,l≤N


)
.


(62)


Applying the Binet-Cauchy formula (just like to pass from (53) to (54)), we obtain from
(62):


N−n〈F̄n e−βĤ F̄n〉N−n =
1


VN−n(u2)VN−n(v−2)
D̃N−n+1,N−n+2,...,N(v−1)


× D̃N−n+1,N−n+2,...,N(u) det


(
M∑


k,l=0


Fk; l(β)
u2l


i


v2k
j


)


1≤i,j≤N


.


(63)


After the differentiations, the representation (63) takes the form:


N−n〈F̄n e−βĤ F̄n〉N−n =
1


VN−n(u2)VN−n(v−2)
detN


(
AB
CD


)
, (64)
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where A, B, C, D are the rectangle matrices with the entries dependent on the parameters
u and v:


Aij ≡
M∑


k,l=0


Fk; l(β)
u2l


i


v2k
j


, 1 ≤ i, j ≤ N − n ,


Bij ≡
M∑


l=0


Fn−j; l(β) u2l
i , 1 ≤ i ≤ N − n , 1 ≤ j ≤ n ,


Cij ≡
M∑


l=0


Fl; n−i(β) v−2l
j , 1 ≤ i ≤ n , 1 ≤ j ≤ N − n ,


Dij ≡ Fn−i; n−j(β) , 1 ≤ i, j ≤ n .


Eventually, F(θv, n, β) (18) acquires the form:


F(θv, n, β) =
eβEN (θv)


(M + 1)N−n
detN


(
A|θv B|θv


C|θv D|θv


)
, (65)


where A|θv = limu,v→θv A (the same for B, C, and D).


5 Boxed plane partitions
Let us demonstrate that the scalar products of the state vectors and the form-factors
obtained are related to the generating functions of the boxed plane partitions. Recall
that an array (πi,j)i,j≥1 of non-negative integers that are non-increasing as functions both
of i and j (i, j ∈ {1, 2, . . . } is called a plane partition π [40]. The integers πi,j are called
the parts of the plane partition, and |π| = ∑


i,j≥1 πi,j is its volume. Each plane partition
has a three dimensional diagram which can be interpreted as a stack of unit cubes (three-
dimensional Young tableau). The height of a stack with coordinates (i, j) is equal to πi,j.
It is said that the plane partition corresponds to a box of the size L × N × P provided
i ≤ L, j ≤ N and πi,j ≤ P for all cubes of the Young tableau. If πi,j > πi+1,j, i.e. if the
parts of plane partition π are decaying along each column, then π is called the column
strict plane partition (cspp). We shall call π as the strict plane partition (spp) provided
the decaying occurs along each column and each raw (πi,j > πi+1,j and πi,j > πi,j+1). The
part π1,1 of the strict plane partition π satisfies the condition π1,1 ≥ 2N−2, if all i, j ≤ N .


An arbitrary plane partition corresponding to a box N × N × P may be transferred
into a column strict plane partition for a box N ×N × (P +N − 1) by adding to an array
(πi,j)i,j≥1 the N ×N matrix


πcspp =






N − 1 N − 1 · · · N − 1
N − 2 N − 2 · · · N − 2


...
...


...
0 0 · · · 0



 ,


which corresponds to a minimal column strict plane partition. The volumes of the column
strict plane partition and correspondent plane partition are related:


|πcspp| = |π|+ N2(N − 1)


2
.
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An arbitrary plane partition with a box N ×N ×P may be transferred into a strict plane
partition with a box N ×N × (P + 2N − 2) by adding to an array (πi,j)i,j≥1 the N ×N
matrix


πspp =






2N − 2 2N − 3 · · · N − 1
2N − 3 2N − 4 · · · N − 2


...
...


...
N − 1 N − 2 · · · 0



 ,


which corresponds to a minimal strict plane partition. The volumes of the strict plane
partition and correspondent plane partition are related:


|πspp| = |π|+ N2(N − 1).


The partition function of the three-dimensional Young tableaux, or saying differently
the generating function of plane partitions is equal to


Zq(L,N, P ) =
∑


{π}
q|π|, (66)


where q|π| is the Boltzmann weight, and summation is over all plane partitions confined
in the L×N × P box. The proof that


Zq(L,N, P ) =
L∏


j=1


N∏


k=1


P∏
i=1


1− qi+j+k−1


1− qi+j+k−2
=


L∏
j=1


N∏


k=1


1− qP+j+k−1


1− qj+k−1
(67)


may be found in [40] (it is assumed that L < N to justify the second equality in right-hand
side of (67)). According to the classical formula of MacMahon, there are exactly


A(L,N, P ) =
L∏


j=1


N∏


k=1


P∏
i=1


i + j + k − 1


i + j + k − 2
=


L∏
j=1


N∏


k=1


P + j + k − 1


j + k − 1
(68)


plane partitions contained in the L×N × P box. It is clear that right-hand side of (67)
tends to A(L,N, P ) is the q → 1 limit.


It is of interest for us here that the generating function of the column strict partitions
placed into N ×N × P box is calculated as follows:


Zcspp
q (N,N, P ) = q


N2


2
(N−1)


∏


1≤j,k≤N


1− qP+1+j−k


1− qj+k−1
. (69)


The limit q → 1 gives the number of the column strict partitions placed into N ×N × P
box, Zcspp


q=1 (N, N, P ), as follows:


Zcspp
1 (N, N, P ) =


∏


1≤j,k≤N


P + 1 + j − k


j + k − 1


=
N∏


j=1


Γ(j) Γ(j + P + 1)


Γ(j + N) Γ(j + P + 1−N)
. (70)
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Expression for Zcspp
q=1 (N,N, P ) in terms of the gamma-functions [53] will be appropriately


used below.
Let us demonstrate that the scalar product 〈ΨN(v) | ΨN(u)〉 (22) is related to


Zcspp
q (N,N, M). We use the parametrizations vj = q−


j
2 and uj = q


j−1
2 , and obtain:


〈ΨN(q−
1
2 ) |ΨN((q/q)


1
2 )〉 =


∑
λ⊆{KN}


Sλ(q) Sλ(q/q) =


= V−1(q)V−1(q/q) det
(1− q(M+1)(j+k−1)


1− qj+k−1


)
1≤j,k≤N


,


(71)


where q ≡ (q, q2, . . . , qN). The product of the Vandermonde determinants is calculated:


V(q)V(q/q) = q
N
6


(N−1)(2N−1)
∏


1≤k<j≤N


(
1− qj−k


)2
. (72)


The scalar product (71) has been calculated in [33] using the value of the corresponding
determinant according to the relation


det
(1− sj+k−1


1− qj+k−1


)
1≤j,k≤N


= V(q)V(q/q)
N∏


k,j=1


1− sqj−k


1− qj+k−1
. (73)


The relation (73) (would be called as the Kuperberg’s formula) can be extracted from [45]
where the alternating sign matrices enumeration problem has been investigated. Gener-
ally, s and q are independent parameters in (73). One obtains the determinant (71) at
s = qM+1. Taking into account (69) and (73), we obtain for (71):


〈ΨN(q−
1
2 ) |ΨN((q/q)


1
2 )〉 = q−


N2


2
(N−1)Zcspp


q (N,N, M) . (74)


Equation (74) reads that the scalar product of two state-vectors coincides at q = 1 with
Zcspp


q=1 (N,N, M), i.e., with the number of column strict partitions in N ×N ×M box.
Now lets turn to the expectation value of the ferromagnetic string (30). With regard


at (72) and (73), we obtain under the given parametrization:


〈ΨN(q−
1
2 ) | Π̄n |ΨN((q/q)


1
2 )〉 =


∑
λ⊆{(K/n)N}


Sλ(q) Sλ(q/q) =


= qnN2
N∏


k,j=1


1− qM−n+1+j−k


1− qj+k−1
= q


N2


2
(2n+1−N)Zcspp


q (N, N, M − n) .
(75)


The average in question is related to the generating function of column strict plane par-
titions in a box of the smaller size N ×N × (M − n). The expectation value in left-hand
side of (75), being considered at q → 1, gives the corresponding number of strict plane
partitions:


lim
q→1


〈ΨN(q−
1
2 ) | Π̄n |ΨN((q/q)


1
2 )〉 = Zcspp


1 (N,N, M − n) . (76)


In the same limit, q → 1, the corresponding value of the Schur function is given by
the ratio of two Vandermonde determinants [40]:


Sλ(1) ≡ Sλ(1, 1, . . . , 1) = V−1(δ)V(λ− δ) . (77)
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Right-hand side of (77) coincides with the dimensionality dλ ≡ dimπλ of the unitary
irreducible representations πλ with the signature λ of the unitary group U(N). Therefore,
dλ = Sλ(1) [46]. In the limit q → 1, the generating function (46) is specified as follows:


lim
q→1


DK
β/2


[
〈ΨN(q−


1
2 ) | Π̄n e−βĤ Π̄n |ΨN((q/q)


1
2 )〉


]
=


=
∑


λL, λR⊆{(K/n)N}
|PK(µR → µL)| dλL dλR ,


(78)


where strict and non-strict partitions are related: µL,R = λL,R + δ.
The numbers dλL,R in (78) (dependent “parametrically” on the partitions λL,R) are


related to appropriate values of the binomial determinants, say, bλ̄ (Appendix I). The
binomial determinant bλ̄ depends on, so-called, conjugated partition λ̄, which is defined
by means of the diagram given by transposition (i.e., by reflection with respect of the main
diagonal) of the diagram of the non-strict partition λ [40]. The conjugated partition λ̄
is non-strict also, and its parts are: N ≥ λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄K−n ≥ 0 2. Strict partition
µ̄ ≡ (µ̄1, µ̄2, . . . , µ̄K−n), which corresponds to λ̄, is defined by the relations: µ̄i = λ̄i + δ̄i,
δ̄i = K − n− i, i ∈ {1, 2, . . . ,K − n}, i.e., µ̄ = λ̄ + δ̄. In other words, one gets:


N +K − n− 1 = M − n ≥ µ̄1 > µ̄2 > · · · > µ̄K−n ≥ 0 .


Strict partition µ enumerates the spin “down” states placed on sites of the chain of the
length M − n + 1 (since only the sites from nth to M th are in the play). The other
K − n = M + 1 − N − n sites (labelled by strict partitions, say, µ̃ ≡ (µ̃1, µ̃2, . . . , µ̃K−n))
correspond to the spin “down” (hole) states. The parts of the strict partitions µ̄ are in
bijective correspondence with the parts of the partitions µ̃. The corresponding relation
reads: µ̃i = M − µ̄K−n+1−i, i ∈ {1, 2, . . . ,K − n}. In other words,


M ≥ µ̃1 > µ̃2 > · · · > µ̄K−n ≥ n .


In order to clarify the situation with the strict partitions µ and µ̃, it is useful to remind
the graphical picture (see Figure 1) which demonstrates the correspondence between strict
partitions µ, µ̃ and non-strict partitions λ, λ̄. Namely, to each partition λ we associate
a set of N -tuples G(λ) as follows [52]:


G(λ) =
{


λj − j +
1


2


∣∣∣ 1 ≤ j ≤ N
}
⊂ Z +


1


2
.


On another hand, any non-strict partition λ can be represented as a rectangular table
(the Young tableau) consisting of N columns so that λi, ∀i, is the height of ith column
(λi ≤ K = M −N + 1). We shift each element of the set G(λ) by N + 1


2
. Then we assign


the numbers thus obtained to the projections along the vertical dashed lines onto the
horizontal axis. The set of points on the horizontal axis just provides the strict partition
µ. For instance, the diagram on Figure 1 is drown for M = 8 and N = 4 and n = 0. We
have got respectively: λ = (5, 3, 2, 2) and µ = (8, 5, 3, 2). The corresponding conjugated
non-strict and strict partitions are given by λ̄ = (4, 4, 2, 1, 1) and µ̄ = (8, 7, 4, 2, 1),
respectively. The vertical solid lines point out the points labelled by µ̃ = (7, 6, 4, 1, 0). The
relationship between µ̄ and µ̃ can be most easily understood graphically (see Figure 1):


2Since the non-strict partition λ is restricted below: K ≥ λ1 ≥ λ2 ≥ . . . , λN ≥ n.
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0 2 3 5 8


µ1µ2µ3µ4 µ3 µ2


1 4 6 7


µ5 µ4 µ1∼ ∼ ∼ ∼∼


Figure 1: The partitions µ and µ̃ for M = 8, N = 4, and the corresponding Young
tableau.


one should transpose the Young tableau, i.e., consider reflection of the picture at Figure 1
with respect of the dotted line. Moreover, n = 2 implies that 0th and 1st sites are
“forbidden”, while the sites labelled by µ are occupied by excitations. Therefore, µ̃3 = 4,
µ̃2 = 6, and µ̃1 = 7, just correspond to hole (spin “up”) states.


The binomial determinant bλ̄ is transformed into another binomial determinant as
follows: (


N, N + 1, . . . , M − n− 1, M − n
µ̄K−n, µ̄K−n−1, . . . , µ̄2, µ̄1


)
=


=


(
N, N + 1, . . . , M − n− 1, M − n
µ̃K−n − n, µ̃K−n−1 − n, . . . , µ̃2 − n, µ̃1 − n


)
.


(79)


We shall not introduce a special notation for the binomial determinant in right-hand
side of (79). Both the binomial determinants in (79) can be interpreted in terms of
tuples of nonintersecting lattice paths. In the case of bλ̄, the lattice paths connect the
points labelled by the partitions (N, N + 1, . . . , M − n) and (µ̄1, µ̄2, . . . , µ̄K−n) [51]. For


instance, the binomial determinant bλ̄ = b(4,4,2,1,1) ≡
(


4, 5, 6, 7, 8
1, 2, 4, 7, 8


)
corresponds to the


strict partition µ̄ = (8, 7, 4, 2, 1) (see Figure 1). We present (n = 2, for simplicity)


Figure 2 drawn for the binomial determinant bλ̄ = b(2,1,1) ≡
(


4, 5, 6
1, 2, 4


)
, which corresponds


to the strict partition µ̃ = (7, 6, 4) (we depict and interpret the non-intersecting lattice
paths on Figure 2 closely following the rules of [51]). In our case, the points on the plane
are: A1 = (0, 4), A2 = (0, 5), A3 = (0, 6), and B1 = (2, 2), B2 = (4, 4), B3 = (5, 5).


Therefore, right-hand side of (78) is remarkably expressed completely in terms of the
numbers of the lattice paths belonging to three tuples. The first tuple contains non-
intersecting paths connecting some ordered points labelled by the partitions (N, N +
1, . . . , M +1−n) and the points labelled by the partitions µ̃L. The second tuple contains
the paths between the spin “down” sites (which are just complementary with respect of the
corresponding hole positions) labelled by the partitions µL and µR. Third tuple includes
the paths connecting the sites labelled by µ̃R and the ordered points (N,N + 1, . . . , M +
1 − n). In other words, the thermal “correlator” of the projectors is also the generating
functions of the complicated configuration of the lattice paths. Besides, the numbers bλ̄L


and bλ̄R themselves can also be interpreted in terms of the boxed plane partitions [51].
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y


Figure 2: The tuple of non-intersecting paths for the binomial determinant in r.h.s. of
(79) corresponding to (µ̃1 − 2, µ̃2 − 2, µ̃3 − 2) = (5, 4, 2).


Now let us turn to the form-factors 〈ΨN(v−2) | F̄n | ΨN−n(u2)〉 (expressed by (38),
(39)) and 〈ΨN−n(v−2) | F̄n | ΨN(u2)〉 (expressed by (41), (43)) which can also be re-
written at vj = q−


j
2 and uj = q


j−1
2 . For definiteness, let us put 〈ΨN(v−2) | F̄n |ΨN−n(u2)〉


in the q-parametrization as follows:


〈ΨN(v) | F̄n |ΨN−n(u)〉 = q
n
2
(N−n)(N−n−1)


∑
λ⊆{KN−n}


Sλ̂(q)Sλ(q/q) =


= V−1
N (q)V−1


N−n(q/q) det T̄ ,
(80)


where


T̄kj =
1− q(M+1)(j+k−1)


1− qj+k−1
, 1 ≤ k ≤ N − n, 1 ≤ j ≤ N ,


T̄kj = qj(N−k) , N − n + 1 < k ≤ N, 1 ≤ j ≤ N .


(81)


The notations for non-strict partitions λ̂ and λ are taken in the same sense both in (38)
and (80). An analogous answer is valid for the form-factor (43). The answer for (80)
appears explicitly due to the formula which should be presented as a separate
Proposition: The determinant of the matrix (T̄)1≤j,k≤N with the entries expressed by
(81) is given by the relation:


det(T̄)1≤j,k≤N = q
n
2
(N−n)(N−n−1) VN(q)VN−n(q/q) Zq(N − n,N,K)


= q
n
2
(N−n)(N−n−1) VN(q)VN−n(q/q)


N∏


k=1


N−n∏
j=1


1− qj+k+K−1


1− qj+k−1
,


(82)


where Zq(N − n,N,K) is the generating function (67) with L and P replaced by N − n
and K, respectively.
Proof: The representation (82) taken at n = 0 is the same as Eq. (73) being taken at
s = qM+1. Appendix I contains the proof of (82). The proof in Appendix I, which is based
on the Binet–Cauchy formula, differs from the proof of (73) in [45] valid, in principle, for
mutually independent s and q.


Taking into account (67), (80) and (82), we obtain:


〈ΨN(v) | F̄n |ΨN−n(u)〉 = q
n
2
(N−n)(N−n−1)Zq(N − n,N,K) . (83)
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Therefore,


lim
q→1


〈ΨN(v) | F̄n |ΨN−n(u)〉 = Z1(N − n,N,K) = A(N − n,N,K) , (84)


i.e., we obtained that 〈ΨN(v) | F̄n |ΨN−n(u)〉 is the generating function of the MacMahon
formula (68) for the number of the plane partitions confined in the box of the size (N −
n)×N × (M −N + 1).


6 Low temperature asymptotics


6.1 The survival probability of ferromagnetic string


Let us go over to the XX-chain long enough and assume that M À 1, while N is
moderate: 1 ¿ N ¿ M . Now the correlator Fk;l(β) (50) is approximately given by the
modified Bessel function:


Fk;l(β) = Ik−l(β) =
1


2π


π∫


−π


eβ cos φei(k−l)φdφ .


When β is large (small temperature limit), the behavior of the Bessel function is known
for moderate m ≡ |k − l|:


Fk;l(β) ' eβ


√
2πβ


(
1− 4m2 − 1


8β
+ . . .


)
,


i.e., the power decay is governed by the critical exponent ξ = −1/2.
With regard at (53), we put the correlator (16) in the form:


T (θv, n, β) =
1


N 2(θv)(M + 1)N


∑


{θ}
e−β(EN (θ)−EN (θv))


∣∣V(eiθ)P(e−iθ, eiθv


)
∣∣2 , (85)


where N 2(θv) is given by (26), and P(e−iθ, eiθv
) is expressed according to (52). Summa-


tions are replaced, at large enough M , by the integrations, and we obtain from (85):


T (θv, n, β) ' 1


N 2(θv)N !


N∏
i=1


( 2π∫


0


dθi


2π


)
e


β
N∑


l=1
(cos θl−cos θv


l )


×
∣∣P(e−iθ, eiθv


)
∣∣2 ∏


1≤k<l≤N


∣∣eiθk − eiθl
∣∣2 ,


(86)


where the continuous integration variables θi ∈ [0, 2π] are due to the change of the discrete
variables ki ∈M as follows: θki


7→ θi, ∀i. Besides, we put approximately:


1


N 2(θv)
≈ (2π)N(N−1)Γ2(1|N)


(M + 1)N2 , (87)


where it is used that


∏
1≤r<s≤N


|r − s| = Γ(1|N) , Γ(1|N) ≡
N∏


n=1


Γ(n) .
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Further, we may asymptotically put cos θl ≈ 1, ∀l, and the integral (86) can be approxi-
mated, at large β, as follows:


T (θv ≈ 0, n, β) ' P2(1,1)
(2π)N(N−2) Γ2(1|N) I


(M + 1)N2 N !


( 2


β


)N2/2


, (88)


I ≡
∞∫


−∞


∞∫


−∞


· · ·
∞∫


−∞


e
−


N∑
l=1


x2
l


∏


1≤k<l≤N


∣∣xk − xl


∣∣2dx1dx2 . . . dxN , (89)


The bold-faced arguments in P(1,1) imply that Sλ(e±iθ) in (52) is replaced by Sλ(1, 1, . . . , 1)
(see (77)) provided the N -tuple of the exponentials e±iθ is substituted by N -tuple of uni-
ties.


The integral I (89) is the Mehta integral [47] of the Gaussian Unitary Ensemble of
random matrices [44], and its value is known:


I =
πN/2 Γ(1|N + 1)


2N(N−1)/2
.


Then, right-hand side of (88) acquires the form:


T (θv ≈ 0, n, β) ' (
Zcspp


q=1 (N,N, M − n)
)2 CN,M


βN2/2
, CN,M ≡ (2π)N(N− 3


2
) Γ3(1|N)


(M + 1)N2 . (90)


The decay of the survival probability T (θv ≈ 0, n, β) at large β (low temperature) is
governed by the critical exponent N2/2, while its amplitude is proportional to the square
of Zcspp


q=1 (N, N, M − n) (30), i.e., of the number of column strict plane partitions in the
corresponding box. The estimate (90) takes equivalent form:


T (θv ≈ 0, n, β) ' (
Zcspp


q=1 (N, N, M − n)
)2


eN2 log 2π
M+1


−N2


2
log β+3φN , (91)


where


φN ≡
N∑


k=1


log
Γ(k)


(2π)1/2
. (92)


We re-express Zcspp
1 (N,N,M − n) in terms of the gamma-functions:


Zcspp
1 (N, N,M − n) ≡


∑


λ⊆{(K/n)N}
dλ dλ (93)


=
N∏


j=1


Γ(j) Γ(j + M + 1− n)


Γ(j + N) Γ(j + M + 1− n−N)
. (94)


Let us go further with our estimates. According to Appendix II, the asymptotical
representation for φN (92) is valid:


φN =
N2


2
log N − 3N2


4
+ O(N log N) , N À 1 . (95)


Taking into account the representation (94), we obtain that logarithm of Zcspp
1 (N, N, M−


n) behaves in leading order as follows (Appendix II):


log Zcspp
1 (N,N, M − n) ≈ N2 log


(
A


M + 1− n


N


)
, M − n À N À 1 , (96)
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where A = e2(1−log 2). In other words, Eq. (96) gives us the asymptotical behavior of the
number of column strict plane partitions placed into the box of the size N ×N × (M −n)
(very tall box with square bottom). According to (95) and (96), the estimate (91) is
specified as follows:


log T (θv ≈ 0, n, β) ' N2 log
(
C


(M + 1− n)2


(M + 1)(Nβ)1/2


)
,


where the exponent is taken with leading logarithmic accuracy. The logarithm, log T (0, n, β),
increases provided both M−n


N
and N


β
increase fast enough.


6.2 The survival probability of domain wall


Let us repeat the same steps as above in order to estimate F(θv ≈ 0, n, β) (see (18)). We
begin with the consideration of (57) using appropriately (38) and (43) within (59), and
we obtain:


〈ΨN−n(v) | F̄n e−βĤ F̄n |ΨN−n(u)〉 =
1


(M + 1)N


∑


M≥k1>k2···>kN≥0


e−βEN (θ)


× |V(eiθ)|2
∑


λL,λR⊆{KN−n}
SλL(v−2)Sλ̂L(eiθ)Sλ̂R(e−iθ)SλR(u2) . (97)


Taking into account (AI.21) and (AI.22), one concludes that right-hand side of (97) is
also related to enumeration of certain lattice paths. We use (97) in order to go further:


F(θv, n, β) =
1


N 2(θv)(M + 1)N


∑


M≥k1>k2···>kN≥0


e−β(EN (θ)−EN (θv))


×
∣∣∣V(eiθ)


∑


λ⊆{KN−n}
Sλ̂(e−iθ)Sλ(eiθv


)
∣∣∣
2


. (98)


We repeat the steps leading from from (86) to (91), and the estimate in question takes
the form:


F(θv ≈ 0, n, β) ' (
Zq=1(N − n,N,K)


)2
eN2 log 2π


M+1
−N2


2
log β+3φN . (99)


We re-express Z1(N − n,N,K) in terms of the gamma-functions:


Z1(N − n,N,K) =
∑


λ⊆{KN−n}
dλ̂ dλ


=
N∏


j=1


Γ(j) Γ(j + M + 1− n)


Γ(j + N − n) Γ(j + M + 1−N)
. (100)


Using Appendix II to estimate right-hand side of (100), we obtain for the logarithm of
Z1(N − n,N,K):


log Z1(N − n,N, M −N + 1) ≈ N(N − n) log
(
B


M − n


2N − n


)
,


M, M − n À N − n,N À 1 , (101)
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where B is some constant. In other words, Eq. (101) gives us the asymptotical behavior of
the number of all plane partitions placed into the box of the size (N−n)×N×(M−N +1)
(very tall box with rectangle bottom). According to (95) and (101), the estimate (99)
takes the form:


F(θv ≈ 0, n, β) ' exp
(
N2 log


N3/2


Mβ1/2
− 2N(N − n) log


2N − n


M − n


)
.


It is interesting to note that the behavior of the ratio of Zcspp
1 (N,N, M − n) to


Z1(N − n, N,M − N + 1) can be estimated. Indeed, according to Eqs. (96) and (101),
the corresponding logarithm looks, approximately, as follows:


log
Zcspp


1 (N,N, M − n)


Z1(N − n,N, M −N + 1)
= N2 log


(2A


B


)
+ nN log


(B


2


M


N


)
. (102)


The value of log
(


B
2


M
N


)
is positive provided M is large enough. Assume that n is also large,


log
(


2A
B


) ¿ n ¿ N . If so, appropriate choice of M (for instance, B
2


M
N
∼ eN) can ensure


domination of the second term in right-hand side of (102). In other words, the value of
Zcspp


1 (N,N, M − n) would grow faster than that of Z1(N − n,N, M). In the case when
the first contribution dominates in right-hand side of (102), more detailed investigation
is required to determine the sign of log


(
2A
B


)
. Therefore, both Zcspp


1 (N, N, M − n) and
Z1(N − n,N, M − N + 1) can demonstrate various behavior at growing lengths of the
sides of the box.


7 Discussion
The XXZ Heisenberg chain has been considered at zero value of the anisotropy parameter.
It is crucial that in this limit the Bethe states are expressible in terms of the symmetric
Schur functions. The Schur functions have been used to calculate thermal correlation
functions of the ferromagnetic string and of the domain wall over the many-particle state-
vectors. A relationship between the average value of the projecting operator Π̄n (16) and
the generating function of the column strict plane partitions in a box, Zcspp


q (N, N, P ) (69),
is obtained, as well as between the form-factor of the operator of creation of excitations,
F̄n (18), and the generating function of arbitrary plane partitions in a box, Zq(L,N, P )
(67). It is shown that the Survival Probability of the Ferromagnetic String turns out to
be the generating function related to enumeration both of paths of the random walks of
vicious walkers and of certain non-intersecting lattice paths.


The determinant of the Kuperberg type is calculated, and its relationship with the
q-binomial determinant is demonstrated. The calculation of the determinant is based on
the theory of the symmetric functions.


Asymptotic estimates for the survival probability of the projecting operator and of
the domain wall operator are obtained in the limit of small temperature. The critical ex-
ponents which govern the decay of the correlation functions are calculated. It is demon-
strated that the survival probabilities are asymptotically proportional to the squared
numbers of the plane partitions in box. The asymptotical dependence of the survival
probabilities on the length of the chain, M + 1, and on the number of particles, N , is
determined provided both M and N are large enough but finite.
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Appendix I
The relations (73) and (82) are crucial in the approach developed to the enumeration of the
boxed plane partitions. The statement expressed by Eq. (73) has been proved in [45], and
thus it would be called as the Kuperberg’s formula. Reasonings based on the divisibility
of the determinant itself have been used in [45]. It is crucil that the Binet-Cauchy formula
gives a way to evaluate the right-hand side of (73) straightforwardly although for a special
case of s being an integer power of q. The Binet-Cauchy formula is of importance in our
calculations, and, moreover, it enables to establish more general relation (82) (Eq. (73)
is a particular case of (82)). We provide a proof of (82) related to application of the
Binet-Cauchy formula.


Since M +1 is the number of sites, while N is the number of excitations, we can safely
assume that M + 1 ≥ N ≥ 1. So let us fix N and define K ≡ M + 1 − N , 0 ≤ K ≤ M .
Then, we put s = qM+1 and re-express (73) as follows:


det


(
N+K−1∑


l=0


ql(j+k−1)


)


1≤j,k≤N


= VN(q)VN(q/q)
N∏


k,j=1


1− qK+j+k−1


1− qj+k−1
, (AI.1)


where K = 0, 1, . . . , M . Left-hand side of (AI.1) is due to the known relation,


P∑


l=0


Ql =
1−QP+1


1−Q
, (AI.2)


while the product VN(q)VN(q/q) of the Vandermond determinants is given by (72). Right-
hand-side of (AI.1) appears due to the relation (at fixed j):


N∏


k=1


(1− qj−k+M+1) =
N∏


l=1


(1− qj+l+M−N) . (AI.3)


The validity of (AI.1) is most easily seen at K = 0. Indeed, left-hand side of (AI.1) at
K = 0 acquires the form of the determinant of the product of two square matrices, and
we obtain:


det


(
N−1∑


l=0


qjlql(k−1)


)


1≤j,k≤N


= det
(
qj(k−1)


)
1≤j,k≤N


det
(
q(j−1)(k−1)


)
1≤j,k≤N


. (AI.4)


It is seen that right-hand side of (AI.4) is the product of two Vandermond determinants,
VN(q)VN(q−1q). It is clear that left-hand side of (AI.1) is expressing the determinant of
the matrix being at K > 0 a product of two rectangular matrices. The Binet–Cauchy
theorem should be applied to the left-hand side of (AI.1) at K 6= 0. However, this requires
some preliminary notes concerning the symmetric functions [40].


Before to proceed with the symmetric functions, let us remind certain notations of q-
calculus [48]. We need the q-number [n] being q-analogue of the positive integer n ∈ Z+,


[n] ≡ 1− qn


1− q
, (AI.5)


and the q-factorial [n]!,


[n]! ≡ [1] [2] . . . [n] , [0]! ≡ 1 . (AI.6)
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The definitions (AI.5) and (AI.6) enable to define the q-binomial coefficient
[N


r


]
:


[
N
r


]
≡ [N ] [N − 1] . . . [N − r + 1]


[r]!
=


[N ]!


[r]! [N − r]!
. (AI.7)


In the limit q → 1, the q-binomial coefficients
[N


r


]
are transformed into the binomial


coefficients Cr
N ≡


(N
r


)
. Two analogues of the Pascal formula exist for the q-binomial


coefficients (AI.7) [48]:
[
N
r


]
=


[
N − 1
r − 1


]
+ qr


[
N − 1


r


]
,


[
N
r


]
= qN−r


[
N − 1
r − 1


]
+


[
N − 1


r


]
,


(AI.8)


where 1 ≤ r ≤ N − 1. In turn, there exists the following identity for the q-binomial
coefficients [48]: [


N + N ′


r


]
=


min (r,N)∑
j=0


q(N−j)(r−j)


[
N
j


][
N ′


r − j


]
. (AI.9)


Now let us define the elementary symmetric functions er = er(x) dependent on N
variables x = (x1, x2, . . . , xN):


er ≡
∑


i1<i2<···<ir


xi1xi2 . . . xir . (AI.10)


The functions er (AI.10) can be obtained as the coefficients in the product:


(1 + tx1)(1 + tx2) . . . (1 + txN) = 1 + e1t + e2t
2 + · · ·+ eN tN .


Special notations, Lr and Rr, for er at x = q and x = q−1q, respectively, are appropriate:
Rr ≡ er(q


−1q) and Lr ≡ er(q). The following values are known [40]:


Rr = qr(r−1)/2


[
N
r


]
, Lr = qr(r+1)/2


[
N
r


]
, (AI.11)


where the q-binomial coefficients (AI.9) are used.
Let us turn to the definition of the Schur functions (14) which are labelled by non-


strict partitions λ, K ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. So-called, conjugated partitions λ̄
can be defined as the diagrams given by transposition (i.e., by reflection with respect of
the main diagonal) of the diagrams of the non-strict partitions λ [40]. The parts of the
non-strict partitions λ̄ respect the inequality: N ≥ λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄K ≥ 0. With
the conjugated diagrams at hands, one can express the Schur functions (14) through the
elementary symmetric functions (AI.10) [40]:


Sλ(x) = det
(
eλ̄i−i+j(x)


)
1≤i,j≤K . (AI.12)
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Now let us straightforwardly apply the Binet-Cauchy formula to the left-hand side of
(AI.1) (the first line below) and subsequently re-express the answer by means of the Schur
functions (14) (the second line below):


det


(
N+K−1∑


l=0


ql(j+k−1)


)


1≤j,k≤N


=
∑


λ


det(qjµk)1≤j,k≤N det(q(j−1)µk)1≤j,k≤N


= VN(q)VN(q/q)
∑


λ⊆{KN}
Sλ(q)Sλ(q−1q) .


(AI.13)


In order to capture the Proposition expressed by (82), let us combine (80) and (81) as
follows:


det(T̄) = q
n
2
(N−n)(N−n−1)VN(q)VN−n(q/q)


×
∑


λ⊆{KN−n}
Sλ̂(q)Sλ(q/q) ,


(AI.14)


where


T̄kj =
1− q(M+1)(j+k−1)


1− qj+k−1
, 1 ≤ k ≤ N − n, 1 ≤ j ≤ N ,


T̄kj = qj(N−k) , N − n + 1 < k ≤ N, 1 ≤ j ≤ N .


(AI.15)


In what follows, let us concentrate on the sums of the Schur functions in (AI.13) and
(AI.14). Denote them as ΣN (or, correspondingly, ΣN−n). After the usage of (AI.12), we
obtain from (AI.14):


ΣN−n =
∑


λ̄⊆{(N−n)K}
det


(
eλ̄j−j+k(q)


)
1≤j,k≤K det


(
eλ̄k−k+j(q


−1q)
)
1≤j,k≤K , (AI.16)


where the summation is now going over all conjugated partitions λ̄. In more explicit form,
(AI.16) takes the form:


ΣN−n =
∑


λ̄⊆{(N−n)K}
det






Lλ̄1
Lλ̄1+1 . . . Lλ̄1+K−1


Lλ̄2−1 Lλ̄2
. . . Lλ̄2+K−2


...
... . . . ...


Lλ̄K−K+1 Lλ̄K−K+2 . . . Lλ̄K






× det






Rλ̄1
Rλ̄1−1 . . . Rλ̄1−K+1


Rλ̄2+1 Rλ̄2
. . . Rλ̄2−K+2


...
... . . . ...


Rλ̄K+K−1 Rλ̄K+K−2 . . . Rλ̄K



 ,


(AI.17)


where the definitions (AI.11) are taken into account. Besides, R0 = L0 = 1 (by definition)
while both Rr and Lr are zero at r > N . We again use the Binet-Cauchy formula to replace
the sum


∑
λ̄ in the right-hand side of (AI.17) by the determinant of the symmetric matrix
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of the size K ×K as follows:


ΣN−n =


= det






∑N−n
i=0 LiRi


∑N−n
i=0 Li+1Ri


∑N−n
i=0 Li+2Ri . . .


∑N−n
i=0 Li+K−1Ri∑N−n


i=0 LiRi+1


∑N−n
i=0 LiRi


∑N−n
i=0 Li+1Ri . . .


∑N−n
i=0 Li+K−2Ri∑N−n


i=0 LiRi+2


∑N−n
i=0 LiRi+1


∑N−n
i=0 LiRi . . .


∑N−n
i=0 Li+K−3Ri


...
...


... . . . ...∑N−n
i=0 LiRi+K−1


∑N−n
i=0 LiRi+K−2


∑N−n
i=0 LiRi+K−3 . . .


∑N−n
i=0 LiRi






.


(AI.18)
The entries in (AI.18) are given by the sums which can be determined by means of


(AI.9) and (AI.11) as follows (0 ≤ s ≤ K − 1):
N−n∑
i=0


Li+sRi = q
s
2
(s+1)


[
2N − n
N − s


]
,


N−n∑
i=0


LiRi+s = q
s
2
(s−1)


[
2N − n
N + s


]
.


(AI.19)


With the sums (AI.19) at hands, we obtain the determinant of the matrix in (AI.18) with
the entries given by the q-binomial coefficients:


ΣN−n =


= det






CN
q,2N−n q CN−1


q,2N−n q3 CN−2
q,2N−n . . . q


K
2


(K−1) CN−K+1
q,2N−n


CN+1
q,2N−n CN


q,2N−n q CN−1
q,2N−n . . . q


K−1
2


(K−2) CN−K+2
q,2N−n


q CN+2
q,2N−n CN+1


q,2N−n CN
q,2N−n . . . q


K−2
2


(K−3) CN−K+3
q,2N−n


...
...


... . . . ...
q
K−1


2
(K−2) CN+K−1


q,2N−n q
K−2


2
(K−3) CN+K−2


q,2N−n q
K−3


2
(K−4) CN+K−3


q,2N−n . . . CN
q,2N−n






.


(AI.20)


We used CN
q,N ′ in (AI.20) as the short-hand notation for the q-binomial coefficient


[N ′


N


]
.


In the limit q → 1, the q-binomial coefficient CN
q,N ′ tends to the usual binomial coefficient


CN
N ′ .
Let us calculate the determinant (AI.20) using the properties of the q-binomial co-


efficients (AI.8). As a first step, we combine the rows in (AI.20) as follows: the Kth is
multiplied by qN+1 and the (K − 1)th is added to it, the (K − 1)th is multiplied by qN+1


and the (K− 2)th is added to it, . . . , the 2nd is multiplied by qN+1 and the 1st is added to
it. The second step concerns the rows of matrix thus obtained: the Kth is multiplied by
qN+2 and the (K−1)th is added to it, the (K−1)th is multiplied by qN+2 and the (K−2)th


is added to it, . . . , the 3rd is multiplied by qN+2 and the 2nd is added to it. After K − 1
steps, we introduce the factor


q−(N+1)(K−1)−(N+2)(K−2)−...−(N+K−1)×1 ,


and obtain the answer which we put in the following form:


ΣN−n = q
N
2


(1−K)K×


×
(


2N − n, 2N − n + 1, . . . , 2N − n +K − 2, 2N − n +K − 1
N − n, N − n + 1, . . . , N − n +K − 2, N − n +K − 1


)


q


.
(AI.21)
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We introduced in (AI.21) the notation for, so-called, q-binomial determinant, [49, 50]. It
is appropriate to recall that the binomial determinant has been defined in [51] as follows:


(
2N − n, 2N − n + 1, . . . , 2N − n +K − 2, 2N − n +K − 1
N − n, N − n + 1, . . . , N − n +K − 2, N − n +K − 1


)
≡


≡ det






CN−n
2N−n CN−n+1


2N−n CN−n+2
2N−n . . . CN−n+K−2


2N−n CN−n+K−1
2N−n


CN−n
2N−n+1 CN−n+1


2N−n+1 CN−n+2
2N−n+1 . . . CN−n+K−2


2N−n+1 CN−n+K−1
2N−n+1


CN−n
2N−n+2 CN−n+1


2N−n+2 CN−n+2
2N−n+2 . . . CN−n+K−2


2N−n+2 CN−n+K−1
2N−n+2


...
...


... . . . ...
...


CN−n
2N−n+K−2 CN−n+1


2N−n+K−2 CN−n+2
2N−n+K−2 . . . CN−n+K−2


2N−n+K−2 CN−n+K−1
2N−n+K−2


CN−n
2N−n+K−1 CN−n+1


2N−n+K−1 CN−n+2
2N−n+K−1 . . . CN−n+K−2


2N−n+K−1 CN−n+K−1
2N−n+K−1






.


(AI.22)
The binomial determinant (AI.22) is positive, and it gives the number of certain paths
on a two-dimensional integer lattice. Moreover, the binomial determinants are related to
the shifted Young tableaux, as well as enjoy many other interesting properties [51]. The
q-binomial determinant introduced in (AI.21) corresponds to the case when all the entries
in (AI.22) are replaced by the q-binomial coefficients: CN


N ′ → CN
q,N ′ .


Evaluation of the q-binomial determinant in (AI.21) leads to the answer:


ΣN−n = q
N
2


(1−K)K
N−n∏
j=1


K∏


k=1


[N + j + k − 1]


[j + k − 1]
×


× det






1 C1
q,N C2


q,N . . . CK−2
q,N CK−1


q,N


1 C1
q,N+1 C2


q,N+1 . . . CK−2
q,N+1 CK−1


q,N+1
...


...
... . . . ...


...
1 C1


q,N+K−2 C2
q,N+K−2 . . . CK−2


q,N+K−2 CK−1
q,N+K−2


1 C1
q,N+K−1 C2


q,N+K−1 . . . CK−2
q,N+K−1 CK−1


q,N+K−1






.


(AI.22)


After a transformation, the determinant in (AI.22) acquires the form:


q
N
2


(K−1)K × det






1 C1
q,N C2


q,N . . . CK−2
q,N CK−1


q,N


0 1 q−1C1
q,N . . . q1·(3−K)CK−3


q,N q1·(2−K)CK−2
q,N


0 0 1 . . . q2(4−K)CK−4
q,N q2·(3−K)CK−3


q,N
...


...
... . . . ...


...
0 0 0 . . . 1 q(K−2)·(−1)C1


q,N


0 0 0 . . . 0 1






. (AI.23)


In other words, this determinant is equal to q
N
2


(K−1)K. We combine (AI.22) and (AI.23)
and obtain the expression for the determinant ΣN−n (AI.18). The double product in
(AI.22) is expressed as follows:


N−n∏
j=1


K∏


k=1


[N + j + k − 1]


[j + k − 1]
=


N−n∏
j=1


K∏


k=1


1− qN+j+k−1


1− qj+k−1
= Zq(N − n,K, N) , (AI.24)


where Zq(N − n,K, N) corresponds to the definition of the generating function (67).
Furthermore, the double product in left-hand side of (AI.24) can equivalently be re-
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arranged as follows:


N−n∏
j=1


N∏


k=1


[K + j + k − 1]


[j + k − 1]
=


N−n∏
j=1


N∏


k=1


1− qK+j+k−1


1− qj+k−1
= Zq(N − n,N,K) . (AI.25)


It is clear, with regard at the definition (67), that the representations (AI.24) and (AI.25)
are indeed coinciding. Thus, we obtain for ΣN−n (AI.18):


ΣN−n = Zq(N − n,N,K) . (AI.26)


Substituting ΣN−n (AI.26) into (AI.14) one just obtains the statement expressed by (82).
As a particular case, it is seen from (AI.26) that substituting ΣN into (AI.13) one obtains
(AI.1). Therefore, Eqs. (82) and (AI.1) are justified. ¤


The relation (77) states that Sλ(1) coincides with the dimensionality dλ of the irre-
ducible representation of U(N). It is interesting to have a look at (AI.12) at x → 1. It
is appropriate to think of this limit in the sense of the q → 1 limit of the q-parametrized
relations (AI.11). The distinction between Lr and Rr disappears at q = 1, and we obtain:


dλ = det
(
C µ̄i+j−K


N


)
1≤i,j≤K , (AI.27)


where the strict partition µ̄ corresponds to the conjugated partition λ̄: µ̄j = λ̄j +K− j,
j ∈ {1, 2, . . . ,K}. Equation (AI.21) is valid since K ≥ l(λ̄) holds (l(λ̄) is the number of
parts of the partition λ̄). Using (AI.8) at q = 1,


C µ̄l+1
N+1 = C µ̄l


N + C µ̄l+1
N ,


we can re-express right-hand side of (AI.27) in the form of the binomial determinant as
follows:


dλ =


(
N, N + 1, . . . , N +K − 2, N +K − 1
µ̄K, µ̄K−1, . . . , µ̄2, µ̄1


)
≡ bλ̄ . (AI.28)


The binomial determinant bλ̄ (AI.28) can be interpreted in terms of tuples of the lattice
paths connecting the points labelled by the partitions (N +K− 1, N +K− 2, . . . , N) and
(µ̄1, µ̄2, . . . , µ̄K) [51]. The relation (AI.28) just provides the combinatorial interpretation
of dλ.


Appendix II
We use the Binet representation for log Γ(z) [53]:


log Γ(z) =
(
z − 1


2


)
log z − z +


1


2
log 2π +


∞∫


0


e−tzB(t)dt , <z > 0 , (AII.1)


where
B(t) ≡ 1


t


( 1


et − 1
− 1


t
+


1


2


)
.
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The function B(t) is expanded for sufficiently small t as follows:


B(t) = B2


(1


2
− t2


5!
+


t4


7!
+ . . .


)
,


where B2 is the Bernoulli number, B2 = 1
6
. The representation (AII.1) enables at N À 1


the validity of the estimate:


φN '
N∑


k=1


(
k − 1


2


)
log k − N(N + 1)


2
+


N∑


k=1


1∫


0


B(t)e−tkdt +


∞∫


1


B(t)


et − 1
dt . (AII.2)


In turn, Eq. (AII.2) leads to (95) provided the Euler–Maclaurin formula is used.
Moreover, we introduce the notations:


φ′
N ≡


N∑


k=1


log
Γ(k + N)


(2π)1/2
,


φ′′
N ≡


N∑


k=1


log
Γ(k + L)


(2π)1/2
,


φ′′′
N ≡


N∑


k=1


log
Γ(k + N + L)


(2π)1/2
.


In analogous way as above, usage of (AII.1) gives us the estimate for φ′′
N at N,L À 1:


φ′′
N =


(L + N)2


2
log(L+N)− L2


2
log L− 3N


2


(
L+


N


2


)
+O(


(N+L) log(N+L)
)
. (AII.3)


As a particular case, we obtain from (AII.3) the estimate for φ′
N :


φ′
N =


3N2


2
log N + N2


(
2 log 2− 9


4


)
+ O(N log N) , N À 1 . (AII.4)


Bearing in mind estimation of (96), it is appropriate to use (AII.3) in order to obtain the
difference φ′′′


N − φ′′
N in leading order (with respect of N2) as follows:


φ′′′
N − φ′′


N ≈ N2 log(2N + L) +
N2


2
, N, L À 1 . (AII.5)


Then, Eq. (96) is obtained from (95), (AII.4), and (AII.5) taken at L = M + 1− n−N .
In order to obtain (101), we use (95) and (AII.3), where we put respectively L = N − n,
L = M + 1− n, or L = M + 1−N .


31







References
[1] L. D. Faddeev, L. A. Takhtajan, Quantum inverse scattering method and the XYZ


Heisenberg model, Usp. Mat. Nauk, 34 (1979), No. 5(209), 13–63. [Translation:
L. A. Takhtadzhyan, L. D. Faddeev, Russ. Math. Surveys, 34, 11–68 (1979).]


[2] P. P. Kulish, E. K. Sklyanin, Quantum spectral transform method. Recent develop-
ments, Lecture Notes in Phys., 151, Springer, Berlin, etc., 1982, pp. 61–119.


[3] N. M. Bogoliubov, A. G. Izergin, V. E. Korepin, Correlation Functions of Integrable
Systems and Quantum Inverse Scattering Method, Nauka, Moscow, 1992. [In Russian]


[4] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method
and Correlation Functions, Cambridge University Press, Cambridge, 1993.


[5] V. E. Korepin, Calculation of norms of Bethe wave functions, Comm. Math. Phys.
86 (1982), No. 3, 391–418.


[6] A. G. Izergin, V. E. Korepin, Correlation functions for the Heisenberg XXZ-anti-
ferromagnet, Comm. Math. Phys. 99 (1985), No. 2, 271–302.


[7] F. H. L. Eßler, H. Frahm, A. G. Izergin, V. E. Korepin, Determinant representation
for correlation functions of spin-1/2 XXX and XXZ Heisenberg magnets, Comm.
Math. Phys., 174 (1995), No. 1, 191–214.


[8] N. Kitanine, J. M. Maillet, N. Slavnov, V. Terras, Correlation functions of the XXZ
spin-1


2
Heisenberg chain at the free fermion point from their multiple integral repre-


sentations, Nucl. Phys. B 642 (2002), No. 3, 433–455.


[9] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, On the algebraic Bethe
Ansatz approach to the correlation functions of the XXZ spin-1/2 Heisenberg chain,
arXiv:hep-th/0505006


[10] N. A. Slavnov, The algebraic Bethe ansatz and quantum integrable systems, Russian
Math. Surveys, 62 (2007), No. 4, 727–766.


[11] E. Lieb, T. Schultz, D. Mattis, Two soluble models of an antiferromagnetic chain,
Ann. Phys. (NY), 16 (1961), No. 3, 407–466.


[12] Th. Niemeijer, Some exact calculations on a chain of spin 1
2
. I, II, Physica, 36 (1967),


No. 3, 377–419; 39 (1968), No. 3, 313–326.


[13] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, Correlators in the Heisenberg
XXO chain as Fredholm determinants, Phys. Lett. A, 169 (1992), No.4, 243–247.


[14] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, Temperature correlation func-
tions in the XXO Heisenberg chain, Theor. Math. Phys., 94 (1993), No.1, 11–38.


[15] M. E. Fisher, Walks, walls, wetting, and melting, J. Statist. Phys., 34 (1984), No. 5–6,
667–729.


32







[16] P. J. Forrester, Exact solution of the lock step model of vicious walkers, J. Phys. A.:
Math. Gen., 23 (1990), No. 7, 1259–1273.


[17] T. Nagao, P. J. Forrester, Vicious random walkers and a discretization of Gaussian
random matrix ensembles, Nucl. Phys. B, 620 (2002), No. 3, 551–565.


[18] A. J. Guttmann, A. L. Owczarek, X. G. Viennot, Vicious walkers and Young tableaux
I: without walls, J. Phys. A: Math. Gen., 31 (1998), No. 40, 8123–8135.


[19] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, Vicious walkers, friendly walkers
and Young tableaux: II. With a wall, J. Phys. A: Math. Gen., 33 (2000), No. 48,
8835–8866.


[20] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, Vicious walkers, friendly walkers,
and Young tableaux. III. Between two walls, J. Statist. Phys., 110 (2003), No. 3–6,
1069–1086.


[21] M. Katori, H. Tanemura, Scaling limit of vicious walks and two-matrix model, Phys.
Rev. E, 66 (2002), No. 1, 011105 [12 pages].


[22] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, Vicious walks with a wall, non-
colliding meanders, and chiral and Bogoliubov–de Gennes random matrices, Phys.
Rev. E, 68 (2003), No. 2, 021112 [16 pages].


[23] M. Katori, H. Tanemura, Nonintersecting paths, noncolliding diffusion processes and
representation theory, In: Combinatorial Methods in Representation Theory and
their Applications. RIMS Kokyuroku, 1438 (2005), 83–102.


[24] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality, Phys. Rev. A, 38 (1998),
No. 1, 364–374.


[25] D. Huse, M. Fisher, Commensurate melting, domain walls, and dislocations, Phys.
Rev. B, 29 (1984), No. 1, 239–270.


[26] J. W. Essam, A. J. Guttmann, Vicious walkers and directed polymer networks in
general dimensions, Phys. Rev. E, 52 (1995), No. 6, 5849–5862.


[27] S. Yu. Grigoriev, V. B. Priezzhev, Random walk of annihilating particles on the ring,
Teoret. Mat. Fiz., 146 (2006), No. 3, 488–498. [In Russian]


[28] J. W. van de Leur, A. Yu. Orlov, Random turn walk on a half line with creation of
particles at the origin. arXiv:0801.0066


[29] N. M. Bogoliubov, XX Heisenberg chain and random walks, Zap. Nauchn. Sem. POMI
325 (2005), 13–27; English transl., J. Math. Sci. 138 (2006), No. 3, 5636–5643.


[30] N. M. Bogoliubov, The integrable models for the vicious and friendly walkers, Zap.
Nauchn. Sem. POMI 335 (2006), 59–74; English transl., J. Math. Sci., 143 (2007),
No. 1, 2729–2737.


33







[31] N. M. Bogoliubov, C. Malyshev, A path integration approach to the correlators of
XY Heisenberg magnet and random walks, In: Proceedings of the 9th Intern. Conf.
“Path Integrals: New Trends and Perspectives” (Dresden, Germany, September 23–
28, 2007). Eds., W. Janke, A. Pelster (World Sci., Singapore, 2008), pp. 508–513.
arXiv:0810.4816


[32] N. M. Bogoliubov, C. Malyshev, The correlation functions of the XX Heisenberg
magnet and random walks of vicious walkers, Theor. Math. Phys., 159 (2009), No. 2,
563–574. arXiv:0903.3227


[33] N. M. Bogoliubov, C. Malyshev, The correlation functions of the XXZ Heisenberg
chain in the case of zero or infinite anisotropy, and random walks of vicious walkers,
St. Petersburg Math. J., 22 (2011), No. 3, 359-377. arXiv:0912.1138


[34] N. M. Bogoliubov, C. Malyshev, Ising limit of a Heisenberg XXZ magnet and some
temperature correlation functions, Theor. Math. Phys., 169 (2011), No. 2, 1517-1529.
arXiv:1106.5455


[35] N. M. Bogoliubov, Form-factors, plane partitions and random walks, Zap. Nauchn.
Sem. POMI 360 (2008), 5–29; English transl., J. Math. Sci., 158 (2009), No. 6,
771–786.


[36] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge,
1999.


[37] F. Colomo, A. G. Izergin, V. Tognetti, Correlation functions in the XXO Heisenberg
chain and their relations with spectral shapes, J. Phys. A: Math. Gen., 30 (1997),
No. 2, 361–370.


[38] V. Korepin, J. Terilla, Thermodynamic interpretation of quantum error correcting
criterion, Quantum Information Processing, 1 (2002), No. 4, 225–242.


[39] B.-Q. Jin, V. E. Korepin, Entanglement, Toeplitz determinants and Fisher-Hartwig
conjecture, J. Stat. Phys., 116 (2004), No. 1-4, 79–95.


[40] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University
Press, Oxford, 1995.


[41] F. R. Gantmakher, Theory of Matrices, Nauka, Moscow, 1988. [In Russian]


[42] M. Shiroishi, M. Takahashi, Y. Nishiyama, Emptiness Formation Probability for the
One-Dimensional Isotropic XY Model , J. Phys. Soc. Jap., 70 (2001), 3535–3543.


[43] A. G. Abanov, F. Franchini, Emptiness Formation Probability for the Anisotropic
XY Spin Chain in a Magnetic Field, Phys. Lett. A, 316, No. 5 (2003), 342–349.


[44] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Ap-
proach (AMS, Providence, 1999).


[45] G. Kuperberg, Another proof of the alternative-sign matrix conjecture, Int. Math.
Res. Notices, 1996 (1996), 139–150.


34







[46] D. P. Zhelobenko, A. I. Stern, Representations of the Lie Groups, Nauka, Moscow,
1983. [In Russian]


[47] M. L. Mehta, Random Matrices, Academic Press, London, 1991.


[48] A. Klimyk, K. Schmudgen, Quantum Groups and their Representations, Springer,
Berlin, 1997.


[49] A. M. Ostrowski, On some determinants with combinatorial numbers, J. reine angew.
Math. 216 (1964), 25–30.


[50] L. Carlitz, Some determinants of q-binomial coefficients, J. reine angew. Math. 226
(1967), 216–220.


[51] I. Gessel, G. Viennot, Binomial determinants, paths, and hook length formulae, Ad-
vances in Mathematics, 58 (1985), 300–321.


[52] A. Okounkov, Infinite wedge and random partitions, Selecta Mathematica, New Se-
ries, 7 (2001), No. 1, 57–81.


[53] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special
Functions of Mathematical Physics, Springer, Berlin, 1966.


35






