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Abstract

In the paper, we investigate Poincaré type inequalities for the functions having
zero mean value on the whole boundary of a Lipschitz domain or on a measurable
part of the boundary. We derive exact and easily computable constants for some
basic domains (rectangles, cubes, and right triangles). In the last section, we
derive an a estimate of the difference between the exact solutions of two boundary
value problems. Constants in Poincaré type inequalities enter these estimates,
which provide guaranteed a posteriori error control.



[JIABHBIA PEJAKTOP

C. B. Kucrakos

PEAKOJLIEI'NA

B.M.Ba6u4, H.A.Bapumos, A.M.Bepmuk, M.A.Bcemupuor, A.l1.Tenepasos, 1.A . M6parumos,
JL.YO . Komorunuua, IL.I1.Kyaum, B.B.JIypre, FO.B.Matuscesuu, H.}O.Henperaes,
C.M.Pemun, I'.A.Ceperun, B.H.Cygaxor, O.M.domenko



1. INTRODUCTION

Let © be a connected bounded domain in R? with Lipschitz boundary 9Q. The
classical Poincaré inequality reads

(1.1) lwll20 < Co(@)|Vuloa,  Vwe H'(9),

where
HY(Q):={we H'(Q) | {w}e=0}.
Here and later on { g }},, denotes the mean value of g on the set w.
It was shown by Steklov [10] that the constant in (1.1) is equal to A~ 2, where A
is the smallest positive eigenvalue of the problem
—Au =My in

(1.2) Onu =0 on 09,

It has been shown (see [7]) that for convex domains in R? an upper bound of the
Poincaré constant is expressed throughout the diameter of 2, namely,

diam(}
(1.3) Op(Q) < 2

™

Other results related to constants in Poincaré type inequalities can be found in
[2, 3, 4, 5, 6] and some other publications cited therein.

In this paper, we consider estimates similar to (1.1), for the functions having
zero mean on a certain part of the boundary (or on the whole boundary). They are
as follows:

(1.4) [w]2,0 < CLQ,T)|Vwl20,  Ywe H'(Q,T),

(1.5) lwll2r < Co(Q, T Vw20, Vw € H'(Q,T),

where I is a measurable part of 02 (we assume that (d—1)-measure of I is positive),
H'(QT)={we H (Q) | {w}r=0}.

Since the quantity ||wl|¢ := [[Vw|l2,0 +]| [ w ds| is a norm equivalent to the original
norm of H'(Q), existence of the constants C;(Q,T) and C»(Q,T) is easy to prove.

In this paper, we find sharp values of the constants in Poincaré type inequalities
for rectangular domains and also for some classes of triangles. Our analysis is based
on the fact (obtained by standard variational arguments) that the extremal function
in (1.4) is an eigenfunction u € H*(2,T') of the boundary value problem

—Au=M\u in Q;

1.6
(16) 8&1:;15% udr on T Onu=0 on ON\T,
Q

which corresponds to the least eigenvalue A > 0.
Analogously, the extremal function in (1.5) is an eigenfunction u € H*(Q,T) of
the boundary value problem

Au =0 in

(L.7) Opqu=Mu on T} Oau=0 on OOQ\T,

which corresponds to the least positive eigenvalue.
In both cases the sharp constant in (1.4), (1.5) is equal to A~ 2. It is easy to show
that the eigenfunctions of the problems (1.6) and (1.7) form complete orthogonal
3



systems in Lo () and in Lo (T), respectively. Thus, the analysis is reduced to finding
the corresponding minimal positive eigenvalues.

In short, the outline of the paper is as follows. Section 2 is concerned with exact
constants for rectangular domains in R%. In Section 3, we find the constants for
right triangles and in Section 4 for a parallelepiped. Section 5 is intended to present
an example, which shows that the estimates can be used in quantitative analysis
of differential equations. In this example, we consider two elliptic boundary value
problems with different boundary conditions and source terms. The second prob-
lem is viewed as a certain simplification of the first one. This means that if the
functions presenting source terms and Dirichlet or Neumann boundary conditions
have complicated nonlinear behavior in some sets, then they are replaced by simple
(e.g., constant) functions. We show that if @ can be decomposed into a collection
of simple subdomains (for which the constants Cp, C'; and Cy are known), then
an easily computable bound of the difference between two exact solutions can be
deduced. We outline that the computation of this bound does not require solving
a boundary value problem and needs only integration of known functions. In par-
ticular, this estimate can be used to find a suitable initial mesh in finite element,
finite difference, or discontinuous Galerkin methods. Our analysis is performed
with the example of a simple linear elliptic equation. However, by similar argu-
ments one can obtain similar estimates for other differential equations associated
with the pair of conjugate operators grad and —div. Other applications of (1.4)
and (1.5) are related to a posteriori error estimation methods for partial differential
equations, where computable bounds between exact solutions and approximations
often involve constants in Poincaré type inequalities (see [8]).

2. EXACT CONSTANTS FOR RECTANGLES

In this section, we assume that (2 is a rectangle with lengthes of sides hy and hs.
We find exact values of the constants in (1.4) and (1.5) for the following two cases:
I' coincides with one side of 2 and I" coincides with the whole Of2.

2.1. Case 1: T coincides with one side of the rectangle. In this case it is
convenient to select the coordinate system such that (see Fig. 1) @ = (0, k1) x (0, ha).
Without a loss of generality, we assume that

I'= {1‘1 =0,z9 € [O,hg]}

X2

FiGURE 1



Theorem 2.1. Sharp constants in (1.4) and (1.5) are equal to + max{2hy; ho} and

1
(h% tanh(%)) 2 | respectively.

Proof. Separating variables we obtain that the eigenfunctions of the problem

(1.6)
mm wk
Ugm (x) = cos (—xl) cos (—xz), m=0,1,2,...; k=1,2,...;
h1 ha
4+ 1
wom (z) = sin (wxl), m=20,1,2,....
1

They form a complete orthogonal system in L2(€2). Therefore, the least eigenvalue
of the problem (1.6) is min{Ago; 1o} = min{(ﬁ)a (%)2}, and the first statement
follows.

Consider another inequality. Similarly, we find that the eigenfunctions of (1.7)
are

up(z) = cos (kag) cosh (ﬁ(azl —hl)), k=0,1,2,....

ha ho
They form a complete orthogonal system in Lo(I'). Therefore, the corresponding
least eigenvalue of the problem (1.7) is Ay = 7= tanh(”h—’;l). O

Remark 2.1. [t is convenient to present the constant Cy in terms of parameters h
and k, which characterize the size and the shape of 2, respectively. We set hy = kh

and hy = h. Then, Cy = C(k)vV'h, where C.(k) = m (see Fig. 2).
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FIGURE 2. The graph of C.(k).



2.2. Case 2: T' = 9Q. In this case, the problem is symmetric with respect to
two axes. Therefore, it is convenient to select the coordinate system such that
Q = (- 2y x (—h2 h2) (see Fig. 3). Due to the biaxial symmetry all the
eigenfunctions of (1.6) and (1.7) are either even or odd with respect to the axes

and z».

h
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2
FIGURE 3

Theorem 2.2. The sharp constant in (1.4) is equal to %max{hl; ha}.

Proof. First, we consider the eigenfunctions of (1.6), which are odd with respect
to x1. In this case p = 0, and we arrive at the following problem:

—Au=X\u in QF:=(0, };—1) X (—%, %),

u=0 on {xr;=0}NKQ, Opu=0 on 00"\ {z; =0}.

(2.1)

It is easy to see that the functions

. (m(2k+ 1 2m,

ugcln)m(x):sm(_( . )$1) cos( Zz xg), kE,m=0,1,...;
) () = gin (FEHD Y g (FEm D

u,,, (¢) = sin ( T 331) sin ( T

are eigenfunctions to the problem (2.1). They form a system of orthogonal func-
tions, which is complete in Lo(2T). Therefore, the least eigenvalue of the problem

(2.1)is Ay = (&)

Eigenfunctions of the problem (1.6), which are odd with respect to z2 can be
constzructed quite similarly and we find that the corresponding least eigenvalue is
(h212 remains to consider eigenfunctions even with respect to both variables. They
belong to the space H'(QF+,I'F), where QT := (0,%4) x (0,%2), and T+ =
' N aQ* (see Fig. 3). In this case, we need to solve the problem

—Au=Xu in QTF;

Oqu=p on It Oau=0 on ONTT\Tt.

:1:2), k,m=0,1,...,

(2.2)

Moreover, the eigenvalues A§ of the problem (2.2) (enumerated in the increasing
order and repeated according to their multiplicity) are critical values of the Rayleigh
6



quotient

- ||VU||§,Q++

- HU||§,Q++

(2.3) Q[v]

over the space H'(Q++,T't).

Consider now the functional Q on the whole space H*(Q27"). By the variational
principle (see, e.g., [1], (1.15)), its critical values Xi enumerated in the increasing
order and repeated according to their multiplicity satisfy the relation® Xz <Ap <
Xi +1- Therefore, if there exists an eigenvalue of the problem (2.2) in the interval
(XS,X%) then it is necessarily A§.

Note that Xz are eigenvalues of the conventional Neumann problem

~Au=Xu in QFF; Opu=0 on OO,

and thus, XS =0, Xi = min{(i_ir)2; (27‘[’)2}'

ho
Now we observe that the equation ’
hi who ho why 2
2.4 Mg (22) 4 12 gy (20) 4 2
(2.4) 5 ot (=5 + 5 ot (5 +w

2m, 271y gince the function in the
h1? ho

left-hand side of (2.4) decreases from 400 to —oo on this interval. Direct calculation
shows that the function

has a unique solution wy in the interval (0, min{

cos(wox1)  cos(woxs)

sin( ”°2h1 ) sin( ”°2h2 )

vo(x) =

solves the problem (2.2) with A = w3. We note that (2.4) is just the condition
fF+ vo ds = 0.
Thus, we conclude that A\§ = w3. However, it is easy to see that

T

wo > min{h—l; h_z}

Therefore, the least eigenvalue of the problem (1.6) is min{(hll)Q; (%)2}, and the
statement follows. O

Nl

Theorem 2.3. The sharp constant in (1.5) equals (-2 tanh(;—%))f

NOTS , where zg =

zo(a) is a unique root of the equation

(2.5) tanh (2) tan(za) = 1,

. hi;h
such that zoow < %, while ap = \/%.

Proof. First, we consider the eigenfunctions of (1.7), which are even with
respect to both variables. They belong to the space H!(Q*, ') and solve the
following problem:

Au=0 in QT
(2.6)
Oau =Xu on IT; Oqu=0 on OQTT\TT,

I'Note that H1(QT+,T'F) has codimension 1 in H1(QT+).
7



Moreover, the eigenvalues A§ of the problem (2.6) complemented by zero, enu-
merated in the increasing order and repeated according to their multiplicity are
critical values of the Rayleigh quotient
||VU||§7Q++

Q] =

Tol e
over the space H!'(QTT). Consider another Rayleigh quotient

_ Voul|?
5 = 1710

HU||§,39++

on the same space. Since @[v] < Q7 [v], by the variational principle its critical val-
ues Kz, which are also enumerated in the increasing order and repeated according
to their multiplicity, satisfy the relation Xi < A%. However, by homogeneity argu-
ment 7\2 = 2)g. Therefore, an eigenfunction of (1.7), which is even with respect to
both variables cannot correspond to the least eigenvalue?.

Further, we consider the eigenfunctions odd with respect to ;. They lead to
the following problem in QF:

Au=0 in QF; u=0 on {z; =0}

2.7
27) Opu =Xu on N\ {x; =0}

We claim that the eigenfunction of (2.7) corresponding to the least eigenvalue should
preserve its sign in Q. Indeed, the function

v(zy, 22) = |u(lzy], 22)| - sign(zy)
belongs to H'(2,T') and provides the same value X of the Rayleigh quotient

[Vl 59

]3¢
as u. If X\ minimizes Q on H'(Q,T) then v must be a solution of (1.7), which
is possible only if v is positive in QF, and the claim follows. Moreover, since
eigenfunctions of (2.7) are orthogonal in Ly (001 \ {z; = 0}), an eigenfunction
positive in Q7T should correspond to the least eigenvalue.

Now we observe that the equation

(2.9) tan (wThl) tanh (wThg) =1,

2We can suggest another proof of this fact, which is interesting by itself. Let u be a solution of
(2.6). We claim that at least one of sets w+ = Q7T N {u = 0} has a connected component which
touches I't but does not touch the coordinate axes. Indeed, consider a connected component of
@ touching T'F (in view of the condition [, u = 0, such a component exists). If this component
touches both axes then any connected component of w_ touching I't is separated either from
{z1 = 0} or from {x2> = 0}. To be definite, let w be a connected component of zo_ which touches
I't but does not touch {x1 = 0}. Then the function

(2.8) Q] =

v(w1,z2) = u(lzi],|22]) - X (J@1], |22]) - sign(z1)

belongs to H(,T') and provides the same value A of the Rayleigh quotient (2.8) as u. If A
minimizes Q on H(Q,T) then v should be a solution of (1.7) which is impossible. Unfortunately,
this argument is purely 2-dimensional.



obviously has a unique solution w; in the interval (0, 2—’;) Direct calculation shows

h
that the function
v1 () = sin(wy x1) cosh(w; x2)

is positive in Q7 and solves the problem (2.7) with A = w; tanh (¥42) (the equation
(2.9) is just the equality of quotient Onu/u on sides of rectangle). Substituting zo =

220

“L\/hihy we conclude that the least eigenvalue of (2.7) is equal to T tanh(%)

where zg is root of (2.5) with a = 1/2—;.
In a similar way, considering eigenfunctions of the problem (1.7) odd with respect

to x2 we obtain the least eigenvalue \/% tanh(Z2) where zp is root of (2.5) with

To complete the proof it suffices to show that the function f(a) = zo tanh(%2)
decreases on (0,4+00). We claim that, in fact, af(«) is a decreasing function.
Indeed, differentiation of (2.5) after some transformations yields

d _ 2z(1 —tanh'(22)) tanh(%2)
—(af(@)) = . YR 5y A0
da 1+ o2 —tanh®(2)(1 —o?) [1+ tanh®(20)

The fraction here is obviously positive. Further, (2.5) implies zoae > F. Thus,

tanh(22) 1 =
ﬁ*200[<—*_<0,
1 + tanh”(22) 2 4
and the claim follows. O

3. EXACT CONSTANTS FOR AN ISOSCELES RIGHT TRIANGLE

In this section, we assume that 2 is an isosceles right triangle. We find exact
values of the constants in (1.4) and (1.5) for the following three cases: I' is a leg; I’
coincides with two legs; I' is the hypotenuse.

Xy X2

X1

FIGURE 4

3.1. Case 1: I' is a leg. In this case it is convenient to select the coordinate system
such that (see Fig. 4a) Q@ = {0 <22 <21 < h}and T = {x; = h, 2 € [0, h]}.

Theorem 3.1. The exact constant in (1.4) is equal to Eo_lh, where 2y is a unique
root of the equation

(3.1) zeot(z) +1=0

in the interval (0, 7).



Proof. Asin the proof of Theorem 2.2, the eigenvalues A; of the problem (1.6)

(which are enumerated in the increasing order and repeated according to their
IIWIIQ o

U2Q

over the

multiplicity) are critical values of the Rayleigh quotient Q[v] =
space H(Q,T).

Consider the functional @ on the whole space H*(Q2). In accordance with the
variational principle, the corresponding critical values XA (enumerated in the in-
creasmg order and repeated according to their multlph(:lty) satisfy the relation
B < AA < XA or1- Therefore, if the interval (A4, A%) contains an eigenvalue of the
problem (1.6), then it is necessarily AJ.

Note that X,ﬁ are eigenvalues of the conventional Neumann problem

(3.2) —Au=XAu in Onu=0 on Of.
By even reflection with respect to the line {x; = 22} we conclude that any eigen-
function of (3.2) is an eigenfunction of the Neumann problem in the square (0, h) x
(0,h). In particular, X@ = 0 corresponds to the eigenfunction uy = 1, and Xf =
(%)2 corresponds to the eigenfunction u; () = cos(**) + cos(”,‘f2 ).

Now we observe that the equation (3.1) obviously has a unique solution in the
interval (0, 7). Direct calculation shows that the function

Up(x) = cos (20%) + cos (30;:2)

solves the problem (1.6) with A = ( )2 (the equation (3.1) is just the condition

JrPods = 0). Thus, we conclude that A\§ = (%0) , and the statement follows. O

Remark 3.1. Approzimate value of the root in (3.1) is 2.02876. Thus, the constant
in Theorem 3.1 is approximately 0.4929h.

Nl

Theorem 3.2. The sharp constant in (1.3) is equal to (Eh—o tanh(Zp)) 2 where Z

is a unique root of the equation
(3.3) tan(z) + tanh(z) =0
in the interval (0, 7).

Proof. Using the monotone rearrangement (see, e.g., [5]) with respect to
we can suppose that the minimizer v of the Rayleigh quotient Q[v] over the space
H'(Q,T) is monotone decreasing in z5. Therefore, v|r has exactly one change of
sign. Moreover, since any other eigenfunction of the problem (1.7) is orthogonal to
1 and to v in Lo(T"), an eigenfunction u such that w|r has exactly one change of
sign should coincide with v up to a constant multiplier.

Now we observe that the equation (3.3) obviously has a unique solution in the
interval (0, 7). Direct calculation shows that the function

ZoT2
S

01 (x) = cos (20%) cosh (20%) + cosh (2051) cos

solves the problem (1.7) with A\ = zh‘l tanh(Zp) (the equation (3.3) is just the condi-
tion fr 01 ds = 0). Since § < Zp < 7, v1|r is monotone decreasing in 5. Therefore,
U1|r has exactly one change of sign, and the statement follows. O

Remark 3.2. Approzimate value of the root in (3.3) is 2.3650. Thus, the constant
in Theorem 3.2 is approzimately 0.6560h2 .
10



3.2. Case 2: T coincides with two legs. In this case we again assume that (see
Fig. 4a) Q = {0 < 22 < 21 < h}and T = {z1 = h,22 € [0, h]}U{z2 = 0,21 € [0, h]}.

Theorem 3.3. The sharp constant in (1.4) is equal to .

Proof. By even reflection with respect to the line {z; = 2o} we conclude that
any eigenfunction of (1.6) is an eigenfunction of the same problem in the square
V' = (0,h) x (0,h) with T' = 9. This problem is solved in Theorem 2.2, and the
least positive eigenvalue equals (%)2 The dimension of corresponding eigenspace
equals 2 and contains the function cos(7z1) + cos(Fx2) which solves the original

problem in the triangle. O

[N

Theorem 3.4. The sharp constant in (1.5) equals (%2 tanh(z))
unique root of the equation (2.5) with a =1 such that z < .

, where zg is a

Proof. We again use even reflection with respect to the line {x; = 2>} and
reduce our problem to the problem in the square (0,h) x (0,h). This problem is
solved in Theorem 2.3, and the least positive eigenvalue equals 2421 tanh(zg). The
dimension of corresponding eigenspace equals 2 and contains the function

. 2z 2z; 2z . 2z
(e 5o (32 1)) o (B2 1) (32 )
which solves the original problem in the triangle. O

Remark 3.3. Approximate value of the root in (2.5) with o = 1 is 0.93755. Thus,
the constant in Theorem 3.2 is approzimately 0.8523h%.

3.3. Case 3: I is the hypotenuse. In this case it is convenient to select the
coordinate system such that (see Fig. 4b) Q = {0 < |z2| < z1 < h} and T' = {a; =
h,xs € [—h, h]}.

Theorem 3.5. The sharp constant in (1.4) is equal to Zalh, where zy is defined
in Theorem 3.1.

Proof. First, we consider the eigenfunctions of (1.6), which are odd with respect
to xo. In this case p = 0, and we arrive at the following problem in QT = {0 <
To <11 < h}:

—Au=X)u in QF; u=0 on {z.s=0}

=0 on 90"\ {z, =0}.

Similarly to Theorems 3.3 and 3.4, we use even reflection with respect to the line
{1 = 22} and reduce (3.4) to the problem in the square (0,h) x (0,h). Thus,

we conclude that the least eigenvalue of the problem (3.4) is equal to £(¥)* and
corresponds to the eigenfunction

Up(z) = sin (%) sin (7;—22)

Next, we consider the eigenfunctions, which are even with respect to xzz. Then we

arrive at the problem (1.6) in Q+ which is solved in Theorem 3.1.

To complete the proof we compare 3(F)? and (%0)2 It is easy to check that

7 ~cot(%) < —1. Since t + t-cot(t) is a decreasing function on (0, ), this means

> Zp, and the statement follows. O

(3.4)

i

V2
Theorem 3.6. The exact constant in (1.5) is equal to h? .
11



Proof. First, we consider eigenfunctions of the problem (1.7) even with respect
to x2. Then we arrive at the problem (1.7) in Q" which is solved in Theorem 3.2.

Further, let us consider the eigenfunctions, which are odd with respect to .
We arrive at the following problem in QF:

Au=0 1in SNT"; Onu =0 on {x; =uz2};

(3.5)
u=0 on {x3=0}; Ohu=Mu on {x;=h}

Direct calculation shows that the function zyzs is positive in QF and solves the
problem (3.5) with A = . Similarly to the problem (2.7), it should correspond to
the least eigenvalue.

To complete the proof we compare %tanh(?o) and % Since Zp > 7§, we have
Zp tanh(Zp) > 7 tanh(%) > 1, and the statement follows. O

4. CONSTANTS IN THREE DIMENSIONAL CASE

Theorems 2.1-2.3 can be extended to functions of three variables. The corre-
sponding proofs are quite similar. Therefore, we present them in a concise form
paying major attention to 3D specifics.

Theorem 4.1. Let @ = (0,h1) x (0,h2) x (0,h3) and T' = 02 N {z;1 = 0}.
Then the sharp constants in (1.4) and (1.5) are equal to X max{2hi;ho;hs} and

1
h -3 .
(max{gg;hg} tanh(ma;{rh;h?’} )) 2, respectively.

We omit the proof, which is quite similar to the proof of Theorem 2.1.

Remark 4.1. Let h = max{hy;hs} and hy = kh. Then C1(Q,T) = %max{l,Qii}

and Cy(Q,T) = C.(k)Vh, where C.(rk) = m (see Flig. 2).
Theorem 4.2. Let Q = (—% M) (2 hoy o (ks hs) gnd T = 00. Then the

exact constant in (1.4) is equal to - max{hy;ho;hs}.

Proof. The proof is similar to the proof of Theorem 2.2. Instead of (2.4) we
obtain the equation

i hy cot (w—h?’) + fuh cot (w—h2) + hahs cot (w—hl) + % (h1 + ha + h3) = 0.

2 2 2 2 2 2
Its unique solution in the interval (0, 2%) (here h = max{hy; ho; h3}) is greater than
7, and the statement follows. O

Theorem 4.3. Let Q and T be as in Theorem 4.2. Assume (for the sake of def-
initeness only) that hy < hy < hs. Then the exact constant in (1.5) is equal to

‘ 1
(% tanh(zl)) 2, where (21, z2) is a unique solution of the system

(4.1) Z—ltanh(zl) - tanh(zy) =
ha ha

=L g A 1+
ha tanh?(z;)

hy tanh?(zy)

2 N tanh2(zl) eot (Zlhg tanhg(zl))7

2(,
such that —Z;fl“” 1 4 fanhi(z) o z.

tanh?(22)
12



Proof. Similarly to the proof of Theorem 2.3, we conclude that the eigenfunc-
tion of (1.7) corresponding to the least eigenvalue must be odd with respect to one
of the coordinate axes ( for instance, with respect to z3). This gives the following
analog of (2.7) in the domain ot = (7}3—1, hz—l) X (—%, %) x (0, %)

Au=0 in Q% u=0 on {x3=0}

(4.2) -
Onu =Au on 90T\ {z3 =0}.

Repeating the proof of Theorem 2.3, we find that the eigenfunction of (4.2), which
is positive in 7, corresponds to the least eigenvalue.
It is easy to see that the equation

(4.3a) ptanh ('UThl) = v tanh (%hz)

defines an increasing function v = v(u) on R4, and the equation
h h
(4.3b) ptanh (%) = /2 + v2(u) - cot (\/uz + v2(p) ?3)

has a unique solution p1g such that \/u2 +v2(uo) % < Z. Direct calculation shows
that the function

Ui (z) = cosh(poz) cosh(v(pp)x=) sin <\/u% + 12 (o) x3>

is positive in QF and solves the problem (4.2) with A = o tanh (”02’“) (note that
(4.3) reflects the boundary conditions on the sides of parallelepiped). Substituting
z1 = ”02&, Zo = %, we conclude after some manipulations that the least
eigenvalue of (4.2) equals 2hZ11 tanh(z1) where (21, 22) is solution of (4.1).

The eigenfunctions odd with respect to other coordinates can be constructed
quite analogously. However, some additional calculations show that U; is the best
eigenfunction provided that hs is the longest edge of Q2. Thus, the statement follows.

O

5. AN APPLICATION OF THE ESTIMATES

In this section, we discuss the meaning of the above derived estimates for quan-
titative analysis of solutions to partial differential equations with the paradigm of
a linear elliptic equation. However, similar analysis can be performed for other dif-
ferential equations associated with the pair of conjugate operators grad and —div.

Agsume that the boundary 9 consists of two measurable nonintersecting parts
I'? and T'V associated with Dirichlet and Neumann boundary conditions, respec-
tively. Consider the following elliptic boundary value problem P:

(5.1) div(AVu)+ f=0 in Q,
(5.2) u=up on I'P,
(5.3) AVu-n=F on I'N.

Here the dot stands for the scalar product of vectors,

(5.4) fer*Q), FelL*TV), and uoc H'(Q).
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We assume that the matrix A is symmetric, bounded, and satisfies the uniform
ellipticity condition
Ag-€ = g’ >0,
Standard (generalized) solution to the problem P is a function u € H'(Q) such
that
u—ug € Vo :={we H(Q) : w|pp =0}

and

(5.5) /AVU-dea::/fwdar—l—/Fwds, Yw € V.

Q Q I'n
Well known results in the elliptic theory guarantee the existence and uniqueness of
the solution w.

In practice, finding a solution w is replaced by finding a sequence of approximate
solutions u,, converging to u. Usually, u,, is constructed as a Galerkin approxima-
tion associated with a certain finite dimensional space V,, If the functions f, F,
and uo are complicated (e.g., rapidly change or oscillate in some parts of Q, T'V,
and I'P), then finding u,, may be a difficult problem. For example, if approxima-
tions are constructed with the help of simple (e.g., piecewise affine) functions and
the boundary conditions are defined by complicated nonlinear functions, then the
boundary condition on I'” and 'V cannot be exactly satisfied. Similar difficulty
arises if a curvilinear boundary is approximated by piecewise affine functions. Nu-
merical computation of the integrals involving f and F' (which is necessary in all
variational—-difference numerical schemes) leads to errors generated by the fact that
on mesh cells the source terms are usually simplified (e.g., replaced by mean values).
All these errors have a common source: they arise because in reality the construc-
tion of u,, is based on a different problem p. Approximation and integration errors
induce additional errors in discrete solutions, which are usually estimated only in
an asymptotic sense. However, in quantitative analysis we need concrete values of
them. Indeed, if such an error is smaller than the desired accuracy level (which
in the majority of cases is known a priori), then we can ignore inconveniences in
boundary conditions and inaccuracy in local representations of source terms. On
the other hand, if it is essentially larger, then the mesh and integration methods
are invalid for our purposes (i.e., this is a signal to use a finer mesh and/or more
accurate integration methods). Thus, a guaranteed and easily computable estimate
of the error can help to select suitable meshes, approximations of source terms, and
quadrature formulas without directly solving a boundary value problem.

Below we show how the required estimate can be deduced with the help of the
Poincaré type inequalities considered in previous sections. We note that estimates
of errors caused by simplification of the coefficients entering A has been recently
derived in [9], so that estimation of summed effect can be done by combining these
estimates.

Let us assume that (2 is split into a set O of ”simple” nonoverlapping subdomains
Q; (e.g., they can be cells of a certain mesh). Each ©; belongs to one of the following
three subsets:

OP :={0;, cQ|80;nTP .=TP #£0},
ON :={Q; c Q| 99;NTN :=TN £¢},

ol.=0\ (0P uoM).
14



In other words, O contain interior subdomains, O contain subdomains associated
with TP, and elements of OV are the subdomains associated with I'V. Then,
0=0"0u0" uT", where OP, OV, and Q7 consist of Q; from O, OV and O,
respectively (see Fig. 5).

FIGURE 5

Now, instead of P we consider a modified (simplified) problem P:

(5.6) div(AVa)+ f=0  in €,
(5.7) u =y on TP,
(5.8) AVi-n=F on TV,

Our goal is to deduce an estimate of the difference between the exact solutions of
these two problems. For this purpose, we define the energy norm

Ju —af? := /AV(u _8) - V(u—1)da
Q

and note that, by the ellipticity condition,

(5.9) lu —all > Ve IV(u—@)|2,0-
Now we introduce the quantities
‘ N 1/2
(5.10) Di= (3 Cf-Fl3a)
;€0
N2 12 1/2
(5.11) Dyi= (3 G TNPIF-Fly)
Q;eON
where
| Cp(y) if Q;e0luUON,
(5.12) Ci —{ Ci(QTP) if Q0P

These quantities are easily computable provided that the constants Cp, C, and Cs
associated with the corresponding subdomains are known. Indeed, if f, ]?, F, and F
are defined, then finding the quantities is reduced to integration of known functions
and does not require solving a boundary value problem. The theorem below shows
that a guaranteed and directly computable bound of the difference between two
exact solutions can be expressed throughout Dy, D, and other easily computable
quantities.
15



Theorem 5.1. Let u and u be the solutions of (5.1)—(5.3) and (5.6)—(5.8), respec-
tively. Suppose also that the right-hand sides of (5.6) and (5.8) satisfy the conditions

(5.13) {Ff=FYa, =0 v, e 0l uoN,
(5.14) {F-Fhry=0 v, e OV,
Then
(5.15) flu —al < p1 + \/ P2+ o1,
where
(5.16) 21 = Dl}Dz U6l pe=To+Tu(6) + Ta(4),
(5.17) To= Y fuo—Tohro [(f—f)dz
Q;eO0P Q;
(5.18) ({ f-Pode,  Td)= [(F—F)¢ds,
N

and ¢ is an arbitrary function in H'(Q)) such that ¢ = ug — o on I'P.
Proof. We use (5.5), (5.6)—(5.8) and obtain
(5.19) /A(Vu — Vi) - Vwdr = /(f — Pwdz + /(F — F)wds Yw € V.
Q Q N
Since w = u —u — ¢ € Vp we can use it as a trial function. Then
(5.20) /AV(U — 1) - Vwdr = |lu —al* + /AV(U —u)-Vodx >

Q Q
> Jlu —a@l* ~ flu —all 4]

Consider the first term in the right-hand side of (5.19):
(5.21) /(f — DHwdz
Q
= Z /f f Y(u —u)dx + Z /f f (u —u)dr + 1 ().
Q;€e0TUON ¢ Q;c0Pg
The terms of the first sum in (5.21) are estimated using (5.13) and (1.1):

/(f*f)(ufﬂ)dwZ/(fff)(ufﬁf{{ufﬂ}}m)dw

Qi Qi
< Cp(QIf — Flo I Vu—) |20,  QiecOlUON.
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The terms of the second sum are estimated with the help of (1.4) as follows:
[t =Bu-dyde= [ (7 Hlu-a-fu-ahp)ds
Q; Q;

+/(f*f){{ufa}}rp dr < Cy(Q;,TP)

Q;

V(u— )2,

%

T+ {u—ahes /(fff)dx, Q, € OP.
Q;
Summing up these estimates and using (5.9) and (5.17) we obtain

(5.22) / (

Q Q; €0

V(u = u)l2,0

(¢)

\/|||U —afl +Zo + Z1(9).
In a similar way, using (5.14) and (1.5) we deduce

(5.23) /(F*ﬁ)(ufﬂ) ds < Co(UTN)|[F = Fllypw ||V (= )2,
ry

and, therefore, by (5.9) and (5.18),

i)

Ve

Now (5.19), (5.21), (5.22), and (5.24) imply the estimate
(5.25) llu = @l* < 2p1lu —@f| + pe,

(5.24) /(F Fywds < 22ju—al +Zo(4).
FN

where the quantities p; and py are defined by (5.16).
The quadratic inequality (5.25) easily implies (5.15). O

Theorem 5.1 presents the most general form of the estimate. If 4y = ug, then
this estimate can be significantly simplified. Indeed, in this case one can choose
¢ =0, and (5.15) is reduced to

Dy + D,y
Moreover, in this case we can replace C;(Q;,TP) in (5.12) by a smaller constant

CF(QZ»,I‘?) such that
HUJ||27Q < CF(QZ',F?)HV’wllgﬂ, Yw € Hl(ﬂl) : w|rf’ =0.

(5.26) lu —wll <

For simple domains such as rectangles or isoceles right triangles this constant is
well-known.
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