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Exat onstants in Poinar�e type inequalitiesfor funtions with zero mean boundary traesA. NazarovV.A. Steklov Institute of Mathematis in St. Petersburg, 191023, Fontanka 27,St.-Petersburg, Russia and St. Petersburg State University, 198504,Universitetskii pr. 28, St.-Petersburg, RussiaS. I. RepinV.A. Steklov Institute of Mathematis in St. Petersburg, 191023, Fontanka 27,St.-Petersburg, RussiaAbstratIn the paper, we investigate Poinar�e type inequalities for the funtions havingzero mean value on the whole boundary of a Lipshitz domain or on a measurablepart of the boundary. We derive exat and easily omputable onstants for somebasi domains (retangles, ubes, and right triangles). In the last setion, wederive an a estimate of the di�erene between the exat solutions of two boundaryvalue problems. Constants in Poinar�e type inequalities enter these estimates,whih provide guaranteed a posteriori error ontrol.
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1. IntrodutionLet 
 be a onneted bounded domain in R
d with Lipshitz boundary �
. Thelassial Poinar�e inequality reads

‖w‖2;
 ≤ CP (
)‖∇w‖2;
; ∀w ∈ H̃1(
);(1.1)where H̃1(
) := {w ∈ H1(
) | {{w }}
 = 0} :Here and later on {{ g }}! denotes the mean value of g on the set !.It was shown by Steklov [10℄ that the onstant in (1.1) is equal to �− 12 , where �is the smallest positive eigenvalue of the problem(1.2) −�u =�u in 
;�nu =0 on �
;It has been shown (see [7℄) that for onvex domains in Rd an upper bound of thePoinar�e onstant is expressed throughout the diameter of 
, namely,CP (
) ≤ diam
� :(1.3)Other results related to onstants in Poinar�e type inequalities an be found in[2, 3, 4, 5, 6℄ and some other publiations ited therein.In this paper, we onsider estimates similar to (1.1), for the funtions havingzero mean on a ertain part of the boundary (or on the whole boundary). They areas follows:
‖w‖2;
 ≤ C1(
;�)‖∇w‖2;
; ∀w ∈ H1(
;�);(1.4)
‖w‖2;� ≤ C2(
;�)‖∇w‖2;
; ∀w ∈ H1(
;�);(1.5)where � is a measurable part of �
 (we assume that (d−1)-measure of � is positive),H1(
;�) = {w ∈ H1(
) | {{w }}� = 0} :Sine the quantity ‖w‖` := ‖∇w‖2;
+ |

∫� w ds| is a norm equivalent to the originalnorm of H1(
), existene of the onstants C1(
;�) and C2(
;�) is easy to prove.In this paper, we �nd sharp values of the onstants in Poinar�e type inequalitiesfor retangular domains and also for some lasses of triangles. Our analysis is basedon the fat (obtained by standard variational arguments) that the extremal funtionin (1.4) is an eigenfuntion u ∈ H1(
;�) of the boundary value problem(1.6) −�u =�u in 
;�nu =� ≡ �
|�| ∫
 u dx on �; �nu = 0 on �
 \ �;whih orresponds to the least eigenvalue � > 0.Analogously, the extremal funtion in (1.5) is an eigenfuntion u ∈ H1(
;�) ofthe boundary value problem(1.7) �u =0 in 
;�nu =�u on �; �nu = 0 on �
 \ �;whih orresponds to the least positive eigenvalue.In both ases the sharp onstant in (1.4), (1.5) is equal to �− 12 . It is easy to showthat the eigenfuntions of the problems (1.6) and (1.7) form omplete orthogonal3



systems in L2(
) and in L2(�), respetively. Thus, the analysis is redued to �ndingthe orresponding minimal positive eigenvalues.In short, the outline of the paper is as follows. Setion 2 is onerned with exatonstants for retangular domains in R2. In Setion 3, we �nd the onstants forright triangles and in Setion 4 for a parallelepiped. Setion 5 is intended to presentan example, whih shows that the estimates an be used in quantitative analysisof di�erential equations. In this example, we onsider two ellipti boundary valueproblems with di�erent boundary onditions and soure terms. The seond prob-lem is viewed as a ertain simpli�ation of the �rst one. This means that if thefuntions presenting soure terms and Dirihlet or Neumann boundary onditionshave ompliated nonlinear behavior in some sets, then they are replaed by simple(e.g., onstant) funtions. We show that if 
 an be deomposed into a olletionof simple subdomains (for whih the onstants CP , C1 and C2 are known), thenan easily omputable bound of the di�erene between two exat solutions an bededued. We outline that the omputation of this bound does not require solvinga boundary value problem and needs only integration of known funtions. In par-tiular, this estimate an be used to �nd a suitable initial mesh in �nite element,�nite di�erene, or disontinuous Galerkin methods. Our analysis is performedwith the example of a simple linear ellipti equation. However, by similar argu-ments one an obtain similar estimates for other di�erential equations assoiatedwith the pair of onjugate operators grad and −div. Other appliations of (1.4)and (1.5) are related to a posteriori error estimation methods for partial di�erentialequations, where omputable bounds between exat solutions and approximationsoften involve onstants in Poinar�e type inequalities (see [8℄).2. Exat onstants for retanglesIn this setion, we assume that 
 is a retangle with lengthes of sides h1 and h2.We �nd exat values of the onstants in (1.4) and (1.5) for the following two ases:� oinides with one side of 
 and � oinides with the whole �
.2.1. Case 1: � oinides with one side of the retangle. In this ase it isonvenient to selet the oordinate system suh that (see Fig. 1) 
 = (0; h1)×(0; h2).Without a loss of generality, we assume that� = {x1 = 0; x2 ∈ [0; h2℄}:
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Theorem 2.1. Sharp onstants in (1:4) and (1:5) are equal to 1� max{2h1;h2} and
( �h2 tanh(�h1h2 ))− 12 , respetively.Proof. Separating variables we obtain that the eigenfuntions of the problem(1.6) ukm(x) = os(�mh1 x1) os(�kh2 x2); m = 0; 1; 2; : : : ; k = 1; 2; : : : ;u0m(x) = sin(�(m+ 12 )h1 x1); m = 0; 1; 2; : : : :They form a omplete orthogonal system in L2(
). Therefore, the least eigenvalueof the problem (1.6) is min{�00;�10} = min{( �2h1 )2; ( �h2 )2}, and the �rst statementfollows.Consider another inequality. Similarly, we �nd that the eigenfuntions of (1.7)are uk(x) = os(�kh2 x2) osh(�kh2 (x1 − h1)); k = 0; 1; 2; : : : :They form a omplete orthogonal system in L2(�). Therefore, the orrespondingleast eigenvalue of the problem (1.7) is �1 = �h2 tanh(�h1h2 ). �Remark 2.1. It is onvenient to present the onstant C2 in terms of parameters hand �, whih haraterize the size and the shape of 
, respetively. We set h1 = �hand h2 = h. Then, C2 = C∗(�)√h, where C∗(�) = 1√� tanh�� (see Fig. 2).
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2.2. Case 2: � = �
. In this ase, the problem is symmetri with respet totwo axes. Therefore, it is onvenient to selet the oordinate system suh that
 = (−h12 ; h12 ) × (−h22 ; h22 ) (see Fig. 3). Due to the biaxial symmetry all theeigenfuntions of (1.6) and (1.7) are either even or odd with respet to the axes x1and x2.
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2Figure 3Theorem 2.2. The sharp onstant in (1:4) is equal to 1� max{h1;h2}.Proof. First, we onsider the eigenfuntions of (1.6), whih are odd with respetto x1. In this ase � = 0, and we arrive at the following problem:(2.1) −�u =�u in 
+ := (0; h12 )× (−h22 ; h22 );u =0 on {x1 = 0} ∩ 
; �nu = 0 on �
+ \ {x1 = 0}:It is easy to see that the funtionsu(1)km(x) = sin(�(2k + 1)h1 x1) os(2�mh2 x2); k;m = 0; 1; : : : ;u(2)km(x) = sin(�(2k + 1)h1 x1) sin(�(2m+ 1)h2 x2); k;m = 0; 1; : : : ;are eigenfuntions to the problem (2.1). They form a system of orthogonal fun-tions, whih is omplete in L2(
+). Therefore, the least eigenvalue of the problem(2.1) is �(1)00 = ( �h1 )2.Eigenfuntions of the problem (1.6), whih are odd with respet to x2 an beonstruted quite similarly and we �nd that the orresponding least eigenvalue is( �h2 )2.It remains to onsider eigenfuntions even with respet to both variables. Theybelong to the spae H1(
++;�+), where 
++ := (0; h12 ) × (0; h22 ), and �+ =� ∩ �
++ (see Fig. 3). In this ase, we need to solve the problem(2.2) −�u = �u in 
++;�nu = � on �+; �nu = 0 on �
++ \ �+:Moreover, the eigenvalues �ek of the problem (2.2) (enumerated in the inreasingorder and repeated aording to their multipliity) are ritial values of the Rayleigh6



quotient Q[v℄ ≡ ‖∇v‖22;
++
‖v‖22;
++(2.3)over the spae H1(
++;�+).Consider now the funtional Q on the whole spae H1(
++). By the variationalpriniple (see, e.g., [1℄, (1.15)), its ritial values �̃ek enumerated in the inreasingorder and repeated aording to their multipliity satisfy the relation1 �̃ek ≤ �ek ≤�̃ek+1. Therefore, if there exists an eigenvalue of the problem (2.2) in the interval(�̃e0; �̃e1) then it is neessarily �e0.Note that �̃ek are eigenvalues of the onventional Neumann problem

−�u = �u in 
++; �nu = 0 on �
++;and thus, �̃e0 = 0, �̃e1 = min{( 2�h1 )2; ( 2�h2 )2}.Now we observe that the equation(2.4) h12 ot(!h22 )+ h22 ot(!h12 )+ 2! = 0has a unique solution !0 in the interval (0;min{ 2�h1 ; 2�h2 }) sine the funtion in theleft-hand side of (2.4) dereases from +∞ to −∞ on this interval. Diret alulationshows that the funtion v0(x) = os(!0x1)sin(!0h12 ) + os(!0x2)sin(!0h22 )solves the problem (2.2) with � = !20 . We note that (2.4) is just the ondition∫�+ v0 ds = 0.Thus, we onlude that �e0 = !20 . However, it is easy to see that!0 > min{ �h1 ; �h2 }:Therefore, the least eigenvalue of the problem (1.6) is min{( �h1 )2; ( �h2 )2}, and thestatement follows. �Theorem 2.3. The sharp onstant in (1:5) equals ( 2z0√h1h2 tanh( z0�0 ))− 12 , where z0 =z0(�) is a unique root of the equation(2.5) tanh( z�) tan(z�) = 1;suh that z0� < �2 , while �0 = √max{h1;h2}min{h1;h2} .Proof. First, we onsider the eigenfuntions of (1.7), whih are even withrespet to both variables. They belong to the spae H1(
++;�+) and solve thefollowing problem:(2.6) �u =0 in 
++;�nu =�u on �+; �nu = 0 on �
++ \ �+:1Note that H1(
++;�+) has odimension 1 in H1(
++).7



Moreover, the eigenvalues �ek of the problem (2.6) omplemented by zero, enu-merated in the inreasing order and repeated aording to their multipliity areritial values of the Rayleigh quotient
Q+[v℄ ≡ ‖∇v‖22;
++

‖v‖22;�+over the spae H1(
++). Consider another Rayleigh quotient
Q̃[v℄ ≡ ‖∇v‖22;
++

‖v‖22;�
++on the same spae. Sine Q̃[v℄ ≤ Q+[v℄, by the variational priniple its ritial val-ues �̃ek, whih are also enumerated in the inreasing order and repeated aordingto their multipliity, satisfy the relation �̃ek ≤ �ek. However, by homogeneity argu-ment �̃ek = 2�k. Therefore, an eigenfuntion of (1.7), whih is even with respet toboth variables annot orrespond to the least eigenvalue2.Further, we onsider the eigenfuntions odd with respet to x1. They lead tothe following problem in 
+:(2.7) �u =0 in 
+; u = 0 on {x1 = 0};�nu =�u on �
+ \ {x1 = 0}:We laim that the eigenfuntion of (2.7) orresponding to the least eigenvalue shouldpreserve its sign in 
+. Indeed, the funtionv(x1; x2) = |u(|x1|; x2)| · sign(x1)belongs to H1(
;�) and provides the same value � of the Rayleigh quotient(2.8) Q[v℄ ≡ ‖∇v‖22;

‖v‖22;�as u. If � minimizes Q on H1(
;�) then v must be a solution of (1.7), whihis possible only if v is positive in 
+, and the laim follows. Moreover, sineeigenfuntions of (2.7) are orthogonal in L2(�
+ \ {x1 = 0}), an eigenfuntionpositive in 
+ should orrespond to the least eigenvalue.Now we observe that the equation(2.9) tan(!h12 ) tanh(!h22 ) = 1;2We an suggest another proof of this fat, whih is interesting by itself. Let u be a solution of(2.6). We laim that at least one of sets $± = 
++ ∩ {u ≷ 0} has a onneted omponent whihtouhes �+ but does not touh the oordinate axes. Indeed, onsider a onneted omponent of$+ touhing �+ (in view of the ondition ∫�+ u = 0, suh a omponent exists). If this omponenttouhes both axes then any onneted omponent of $− touhing �+ is separated either from

{x1 = 0} or from {x2 = 0}. To be de�nite, let $ be a onneted omponent of $− whih touhes�+ but does not touh {x1 = 0}. Then the funtionv(x1; x2) = u(|x1|; |x2|) · �$(|x1|; |x2|) · sign(x1)belongs to H1(
;�) and provides the same value � of the Rayleigh quotient (2.8) as u. If �minimizes Q on H1(
;�) then v should be a solution of (1.7) whih is impossible. Unfortunately,this argument is purely 2-dimensional. 8



obviously has a unique solution !1 in the interval (0; 2�h1 ). Diret alulation showsthat the funtion v1(x) = sin(!1x1) osh(!1x2)is positive in 
+ and solves the problem (2.7) with � = !1 tanh (!1h22 ) (the equation(2.9) is just the equality of quotient �nu=u on sides of retangle). Substituting z0 =!12 √h1h2 we onlude that the least eigenvalue of (2.7) is equal to 2z0√h1h2 tanh( z0� )where z0 is root of (2.5) with � = √h1h2 .In a similar way, onsidering eigenfuntions of the problem (1.7) odd with respetto x2 we obtain the least eigenvalue 2z0√h1h2 tanh( z0� ) where z0 is root of (2.5) with� = √h2h1 .To omplete the proof it suÆes to show that the funtion f(�) = z0 tanh( z0� )dereases on (0;+∞). We laim that, in fat, �f(�) is a dereasing funtion.Indeed, di�erentiation of (2.5) after some transformations yieldsdd�(�f(�)) = 2z0(1− tanh4( z0� ))1 + �2 − tanh2( z0� )(1− �2) · [ tanh( z0� )1 + tanh2( z0� ) − z0�]:The fration here is obviously positive. Further, (2.5) implies z0� > �4 . Thus,tanh( z0� )1 + tanh2( z0� ) − z0� < 12 − �4 < 0;and the laim follows. �3. Exat onstants for an isoseles right triangleIn this setion, we assume that 
 is an isoseles right triangle. We �nd exatvalues of the onstants in (1.4) and (1.5) for the following three ases: � is a leg; �oinides with two legs; � is the hypotenuse.
a b

x x
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Figure 43.1. Case 1: � is a leg. In this ase it is onvenient to selet the oordinate systemsuh that (see Fig. 4a) 
 = {0 < x2 < x1 < h} and � = {x1 = h; x2 ∈ [0; h℄}.Theorem 3.1. The exat onstant in (1:4) is equal to z̃−10 h, where z̃0 is a uniqueroot of the equation(3.1) z ot(z) + 1 = 0in the interval (0; �). 9



Proof. As in the proof of Theorem 2.2, the eigenvalues �△k of the problem (1.6)(whih are enumerated in the inreasing order and repeated aording to theirmultipliity) are ritial values of the Rayleigh quotient Q[v℄ ≡ ‖∇v‖22;

‖v‖22;
 over thespae H1(
;�).Consider the funtional Q on the whole spae H1(
). In aordane with thevariational priniple, the orresponding ritial values �̃△k (enumerated in the in-reasing order and repeated aording to their multipliity) satisfy the relation�̃△k ≤ �△k ≤ �̃△k+1. Therefore, if the interval (�̃△0 ; �̃△1 ) ontains an eigenvalue of theproblem (1.6), then it is neessarily �△0 .Note that �̃△k are eigenvalues of the onventional Neumann problem(3.2) −�u = �u in 
; �nu = 0 on �
:By even reetion with respet to the line {x1 = x2} we onlude that any eigen-funtion of (3.2) is an eigenfuntion of the Neumann problem in the square (0; h)×(0; h). In partiular, �̃△0 = 0 orresponds to the eigenfuntion ũ0 ≡ 1, and �̃△1 =(�h)2 orresponds to the eigenfuntion ũ1(x) = os(�x1h ) + os(�x2h ).Now we observe that the equation (3.1) obviously has a unique solution in theinterval (0; �). Diret alulation shows that the funtionṽ0(x) = os( z̃0x1h )+ os( z̃0x2h )solves the problem (1.6) with � = ( z̃0h )2 (the equation (3.1) is just the ondition∫� ṽ0 ds = 0). Thus, we onlude that �△0 = ( z̃0h )2, and the statement follows. �Remark 3.1. Approximate value of the root in (3:1) is 2:02876. Thus, the onstantin Theorem 3:1 is approximately 0:4929h.Theorem 3.2. The sharp onstant in (1:5) is equal to ( ẑ0h tanh(ẑ0))− 12 where ẑ0is a unique root of the equation(3.3) tan(z) + tanh(z) = 0in the interval (0; �).Proof. Using the monotone rearrangement (see, e.g., [5℄) with respet to x2we an suppose that the minimizer v of the Rayleigh quotient Q[v℄ over the spaeH1(
;�) is monotone dereasing in x2. Therefore, v|� has exatly one hange ofsign. Moreover, sine any other eigenfuntion of the problem (1.7) is orthogonal to1 and to v in L2(�), an eigenfuntion u suh that u|� has exatly one hange ofsign should oinide with v up to a onstant multiplier.Now we observe that the equation (3.3) obviously has a unique solution in theinterval (0; �). Diret alulation shows that the funtionṽ1(x) = os( ẑ0x1h ) osh( ẑ0x2h )+ osh( ẑ0x1h ) os( ẑ0x2h )solves the problem (1.7) with � = ẑ0h tanh(ẑ0) (the equation (3.3) is just the ondi-tion ∫� ṽ1 ds = 0). Sine �2 < ẑ0 < �, ṽ1|� is monotone dereasing in x2. Therefore,ṽ1|� has exatly one hange of sign, and the statement follows. �Remark 3.2. Approximate value of the root in (3:3) is 2:3650. Thus, the onstantin Theorem 3.2 is approximately 0:6560h 12 .10



3.2. Case 2: � oinides with two legs. In this ase we again assume that (seeFig. 4a) 
 = {0 < x2 < x1 < h} and � = {x1 = h; x2 ∈ [0; h℄}∪{x2 = 0; x1 ∈ [0; h℄}.Theorem 3.3. The sharp onstant in (1:4) is equal to h� .Proof. By even reetion with respet to the line {x1 = x2} we onlude thatany eigenfuntion of (1.6) is an eigenfuntion of the same problem in the square
′ = (0; h)× (0; h) with � = �
′. This problem is solved in Theorem 2.2, and theleast positive eigenvalue equals (�h )2. The dimension of orresponding eigenspaeequals 2 and ontains the funtion os(�hx1) + os(�hx2) whih solves the originalproblem in the triangle. �Theorem 3.4. The sharp onstant in (1:5) equals ( 2z0h tanh(z0))− 12 , where z0 is aunique root of the equation (2:5) with � = 1 suh that z < �2 .Proof. We again use even reetion with respet to the line {x1 = x2} andredue our problem to the problem in the square (0; h) × (0; h). This problem issolved in Theorem 2.3, and the least positive eigenvalue equals 2z0h tanh(z0). Thedimension of orresponding eigenspae equals 2 and ontains the funtionsin(z0(2x1h − 1)) osh(z0(2x2h − 1))+ osh(z0(2x1h − 1)) sin(z0(2x2h − 1))whih solves the original problem in the triangle. �Remark 3.3. Approximate value of the root in (2:5) with � = 1 is 0:93755. Thus,the onstant in Theorem 3:2 is approximately 0:8523h 12 .3.3. Case 3: � is the hypotenuse. In this ase it is onvenient to selet theoordinate system suh that (see Fig. 4b) 
 = {0 < |x2| < x1 < h} and � = {x1 =h; x2 ∈ [−h; h℄}.Theorem 3.5. The sharp onstant in (1:4) is equal to z̃−10 h, where z̃0 is de�nedin Theorem 3:1.Proof. First, we onsider the eigenfuntions of (1.6), whih are odd with respetto x2. In this ase � = 0, and we arrive at the following problem in 
̃+ = {0 <x2 < x1 < h}:(3.4) −�u =�u in 
̃+; u = 0 on {x2 = 0};�nu =0 on �
̃+ \ {x2 = 0}:Similarly to Theorems 3.3 and 3.4, we use even reetion with respet to the line
{x1 = x2} and redue (3.4) to the problem in the square (0; h) × (0; h). Thus,we onlude that the least eigenvalue of the problem (3.4) is equal to 12 (�h )2 andorresponds to the eigenfuntionû0(x) = sin(�x12h ) sin(�x22h ):Next, we onsider the eigenfuntions, whih are even with respet to x2. Then wearrive at the problem (1.6) in 
̃+ whih is solved in Theorem 3.1.To omplete the proof we ompare 12 (�h )2 and ( z̃0h )2. It is easy to hek that�√2 ·ot( �√2 ) < −1. Sine t 7→ t ·ot(t) is a dereasing funtion on (0; �), this means�√2 > z̃0, and the statement follows. �Theorem 3.6. The exat onstant in (1:5) is equal to h 12 .11



Proof. First, we onsider eigenfuntions of the problem (1.7) even with respetto x2. Then we arrive at the problem (1.7) in 
̃+ whih is solved in Theorem 3.2.Further, let us onsider the eigenfuntions, whih are odd with respet to x1.We arrive at the following problem in 
̃+:(3.5) �u = 0 in 
̃+; �nu = 0 on {x1 = x2};u = 0 on {x2 = 0}; �nu = �u on {x1 = h}:Diret alulation shows that the funtion x1x2 is positive in 
̃+ and solves theproblem (3.5) with � = 1h . Similarly to the problem (2.7), it should orrespond tothe least eigenvalue.To omplete the proof we ompare ẑh tanh(ẑ0) and 1h . Sine ẑ0 > �2 , we haveẑ0 tanh(ẑ0) > �2 tanh(�2 ) > 1, and the statement follows. �4. Constants in three dimensional aseTheorems 2.1{2.3 an be extended to funtions of three variables. The orre-sponding proofs are quite similar. Therefore, we present them in a onise formpaying major attention to 3D spei�s.Theorem 4.1. Let 
 = (0; h1) × (0; h2) × (0; h3) and � = �
 ∩ {x1 = 0}.Then the sharp onstants in (1:4) and (1:5) are equal to 1� max{2h1;h2;h3} and
( �max{h2;h3} tanh( �h1max{h2;h3} ))− 12 , respetively.We omit the proof, whih is quite similar to the proof of Theorem 2.1.Remark 4.1. Let h = max{h2;h3} and h1 = �h. Then C1(
;�) = h� max{1; 2�}and C2(
;�) = C∗(�)√h, where C∗(�) = 1√� tanh�� (see Fig. 2).Theorem 4.2. Let 
 = (−h12 ; h12 )× (−h22 ; h22 )× (−h32 ; h32 ) and � = �
. Then theexat onstant in (1:4) is equal to 1� max{h1;h2;h3}.Proof. The proof is similar to the proof of Theorem 2.2. Instead of (2.4) weobtain the equationh1h22 ot(!h32 )+ h1h32 ot(!h22 )+ h2h32 ot(!h12 )+ 2! (h1 + h2 + h3) = 0:Its unique solution in the interval (0; 2�h ) (here h = max{h1;h2;h3}) is greater than�h , and the statement follows. �Theorem 4.3. Let 
 and � be as in Theorem 4:2. Assume (for the sake of def-initeness only) that h1 ≤ h2 ≤ h3. Then the exat onstant in (1:5) is equal to
( 2z1h1 tanh(z1))− 12 , where (z1; z2) is a unique solution of the system(4.1) z1h1 tanh(z1) = z2h2 tanh(z2) == z1h1√1 + tanh2(z1)tanh2(z2) · ot(z1h3h1 √1 + tanh2(z1)tanh2(z2));suh that z1h3h1 √1 + tanh2(z1)tanh2(z2) < �2 . 12



Proof. Similarly to the proof of Theorem 2.3, we onlude that the eigenfun-tion of (1.7) orresponding to the least eigenvalue must be odd with respet to oneof the oordinate axes ( for instane, with respet to x3). This gives the followinganalog of (2.7) in the domain 
̂+ = (−h12 ; h12 )× (−h22 ; h22 )× (0; h32 ):(4.2) �u =0 in 
̂+; u = 0 on {x3 = 0};�nu =�u on �
̂+ \ {x3 = 0}:Repeating the proof of Theorem 2.3, we �nd that the eigenfuntion of (4.2), whihis positive in 
̂+, orresponds to the least eigenvalue.It is easy to see that the equation(4.3a) � tanh(�h12 ) = � tanh(�h22 )de�nes an inreasing funtion � = �(�) on R+, and the equation(4.3b) � tanh(�h12 ) = √�2 + �2(�) · ot(√�2 + �2(�) h32 )has a unique solution �0 suh that √�20 + �2(�0) h32 < �2 . Diret alulation showsthat the funtionU1(x) = osh(�0x1) osh(�(�0)x2) sin(√�20 + �2(�0)x3)is positive in 
̂+ and solves the problem (4.2) with � = �0 tanh (�0h12 ) (note that(4.3) reets the boundary onditions on the sides of parallelepiped). Substitutingz1 = �0h12 , z2 = �(�0)h22 , we onlude after some manipulations that the leasteigenvalue of (4.2) equals 2z1h1 tanh(z1) where (z1; z2) is solution of (4.1).The eigenfuntions odd with respet to other oordinates an be onstrutedquite analogously. However, some additional alulations show that U1 is the besteigenfuntion provided that h3 is the longest edge of 
. Thus, the statement follows.
� 5. An appliation of the estimatesIn this setion, we disuss the meaning of the above derived estimates for quan-titative analysis of solutions to partial di�erential equations with the paradigm ofa linear ellipti equation. However, similar analysis an be performed for other dif-ferential equations assoiated with the pair of onjugate operators grad and −div.Assume that the boundary �
 onsists of two measurable noninterseting parts�D and �N assoiated with Dirihlet and Neumann boundary onditions, respe-tively. Consider the following ellipti boundary value problem P :div(A∇u) + f = 0 in 
;(5.1) u = u0 on �D;(5.2) A∇u · n = F on �N :(5.3)Here the dot stands for the salar produt of vetors,(5.4) f ∈ L2(
); F ∈ L2(�N ); and u0 ∈ H1(
):13



We assume that the matrix A is symmetri, bounded, and satis�es the uniformelliptiity ondition A� · � ≥ |�|2;  > 0;Standard (generalized) solution to the problem P is a funtion u ∈ H1(
) suhthat u− u0 ∈ V0 := {w ∈ H1(
) : w|�D = 0}and(5.5) ∫
 A∇u · ∇w dx = ∫
 fw dx+ ∫�N Fw ds; ∀w ∈ V0:Well known results in the ellipti theory guarantee the existene and uniqueness ofthe solution u.In pratie, �nding a solution u is replaed by �nding a sequene of approximatesolutions un onverging to u. Usually, un is onstruted as a Galerkin approxima-tion assoiated with a ertain �nite dimensional spae Vn If the funtions f , F ,and u0 are ompliated (e.g., rapidly hange or osillate in some parts of 
, �N ,and �D), then �nding un may be a diÆult problem. For example, if approxima-tions are onstruted with the help of simple (e.g., pieewise aÆne) funtions andthe boundary onditions are de�ned by ompliated nonlinear funtions, then theboundary ondition on �D and �N annot be exatly satis�ed. Similar diÆultyarises if a urvilinear boundary is approximated by pieewise aÆne funtions. Nu-merial omputation of the integrals involving f and F (whih is neessary in allvariational{di�erene numerial shemes) leads to errors generated by the fat thaton mesh ells the soure terms are usually simpli�ed (e.g., replaed by mean values).All these errors have a ommon soure: they arise beause in reality the onstru-tion of un is based on a di�erent problem P̂ . Approximation and integration errorsindue additional errors in disrete solutions, whih are usually estimated only inan asymptoti sense. However, in quantitative analysis we need onrete values ofthem. Indeed, if suh an error is smaller than the desired auray level (whihin the majority of ases is known a priori), then we an ignore inonvenienes inboundary onditions and inauray in loal representations of soure terms. Onthe other hand, if it is essentially larger, then the mesh and integration methodsare invalid for our purposes (i.e., this is a signal to use a �ner mesh and/or moreaurate integration methods). Thus, a guaranteed and easily omputable estimateof the error an help to selet suitable meshes, approximations of soure terms, andquadrature formulas without diretly solving a boundary value problem.Below we show how the required estimate an be dedued with the help of thePoinar�e type inequalities onsidered in previous setions. We note that estimatesof errors aused by simpli�ation of the oeÆients entering A has been reentlyderived in [9℄, so that estimation of summed e�et an be done by ombining theseestimates.Let us assume that 
 is split into a set O of "simple" nonoverlapping subdomains
i (e.g., they an be ells of a ertain mesh). Eah 
i belongs to one of the followingthree subsets:
OD := {
i ⊂ 
 | �
i ∩ �D := �Di 6= ∅};
ON := {
i ⊂ 
 | �
i ∩ �N := �Ni 6= ∅};
OI := O \ (OD ∪ ON ):14



In other words, OI ontain interior subdomains, OD ontain subdomains assoiatedwith �D, and elements of ON are the subdomains assoiated with �N . Then,
 = 
D ∪ 
I ∪ 
N , where 
D , 
N , and 
I onsist of 
i from OD , ON , and OI ,respetively (see Fig. 5).
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Figure 5Now, instead of P we onsider a modi�ed (simpli�ed) problem P̂ :div(Â∇û) + f̂ = 0 in 
;(5.6) û = û0 on �D;(5.7) A∇û · n = F̂ on �N :(5.8)Our goal is to dedue an estimate of the di�erene between the exat solutions ofthese two problems. For this purpose, we de�ne the energy norm
|||u− û|||2 := ∫
 A∇(u− û) · ∇(u− û) dxand note that, by the elliptiity ondition,(5.9) |||u− û||| ≥ √ · ‖∇(u− û)‖2;
:Now we introdue the quantitiesD1 := ( ∑
i∈O

C
2i ‖f − f̂‖22;
i)1=2;(5.10) D2 := ( ∑
i∈ON C2(
i;�Ni )2‖F − F̂‖22;�Ni )1=2;(5.11)where

Ci = { CP (
i) if 
i ∈ OI ∪ ON ;C1(
i;�Di ) if 
i ∈ OD :(5.12)These quantities are easily omputable provided that the onstants CP , C1, and C2assoiated with the orresponding subdomains are known. Indeed, if f , f̂ , F , and F̂are de�ned, then �nding the quantities is redued to integration of known funtionsand does not require solving a boundary value problem. The theorem below showsthat a guaranteed and diretly omputable bound of the di�erene between twoexat solutions an be expressed throughout D1, D2 and other easily omputablequantities. 15



Theorem 5.1. Let u and û be the solutions of (5:1){(5:3) and (5:6){(5:8), respe-tively. Suppose also that the right-hand sides of (5:6) and (5:8) satisfy the onditions
{{ f − f̂ }}
i = 0 ∀
i ∈ OI ∪ ON ;(5.13)
{{F − F̂ }}�Ni = 0 ∀
i ∈ ON :(5.14)Then(5.15) |||u− û||| ≤ �1 +√�2 + �21;where(5.16) 2�1 = D1 +D2√ + |||�|||; �2 = I0 + I1(�) + I2(�);
I0 = ∑
i∈OD{{ u0 − û0 }}�Di ∫
i (f − f̂) dx;(5.17)

I1(�) = ∫
 (f − f̂)� dx; I2(�) = ∫�N (F − F̂ )� ds;(5.18)and � is an arbitrary funtion in H1(
) suh that � = u0 − û0 on �D.Proof. We use (5.5), (5.6){(5.8) and obtain(5.19) ∫
 A(∇u − ∇û) · ∇w dx = ∫
 (f − f̂)w dx + ∫�N (F − F̂ )w ds ∀w ∈ V0:Sine w = u− û− � ∈ V0 we an use it as a trial funtion. Then(5.20) ∫
 A∇(u− û) · ∇w dx = |||u− û|||2 + ∫
 A∇(u− û) · ∇� dx ≥

≥ |||u− û|||2 − |||u− û||| |||�|||:Consider the �rst term in the right-hand side of (5.19):(5.21) ∫
 (f − f̂)w dx= ∑
i∈OI∪ON ∫
i (f − f̂)(u− û)dx+ ∑
i∈OD ∫
i (f − f̂)(u− û)dx + I1(�):The terms of the �rst sum in (5.21) are estimated using (5.13) and (1.1):
∫
i (f − f̂)(u− û)dx = ∫
i (f − f̂)(u− û− {{ u− û }}
i) dx

≤ CP (
i)‖f − f̂‖2;
i‖∇(u− û)‖2;
i ; 
i ∈ OI ∪ ON :16



The terms of the seond sum are estimated with the help of (1.4) as follows:
∫
i (f − f̂)(u− û) dx = ∫
i (f − f̂)(u− û− {{ u− û }}�Di ) dx+ ∫
i (f − f̂){{ u− û }}�Di dx ≤ C1(
i;�Di )‖f − f̂‖2;
i‖∇(u− û)‖2;
i+ {{ u− û }}�Di ∫
i (f − f̂)dx; 
i ∈ OD:Summing up these estimates and using (5.9) and (5.17) we obtain(5.22) ∫
 (f − f̂)w dx ≤

∑
i∈O
Ci‖f − f̂‖2;
i‖∇(u− û)‖2;
i + I0 + I1(�)

≤ D1√ |||u− û|||+ I0 + I1(�):In a similar way, using (5.14) and (1.5) we dedue(5.23) ∫�Ni (F − F̂ )(u− û) ds ≤ C2(
;�Ni )‖F − F̂‖2;�Ni ‖∇(u− û)‖2;
i ;and, therefore, by (5.9) and (5.18),(5.24) ∫�N (F − F̂ )w ds ≤ D2√ |||u− û|||+ I2(�):Now (5.19), (5.21), (5.22), and (5.24) imply the estimate(5.25) |||u− û|||2 ≤ 2�1|||u− û|||+ �2;where the quantities �1 and �2 are de�ned by (5.16).The quadrati inequality (5.25) easily implies (5.15). �Theorem 5.1 presents the most general form of the estimate. If û0 = u0, thenthis estimate an be signi�antly simpli�ed. Indeed, in this ase one an hoose� ≡ 0, and (5.15) is redued to(5.26) |||u− û||| ≤ D1 +D2√ :Moreover, in this ase we an replae C1(
i;�Di ) in (5.12) by a smaller onstantCF (
i;�Di ) suh that
‖w‖2;
 ≤ CF (
i;�Di )‖∇w‖2;
; ∀w ∈ H1(
i) : w|�Di = 0:For simple domains suh as retangles or isoeles right triangles this onstant iswell-known. 6. AknowledgmentsThis work was in part supported by RFBR grants 11-01-00825 (the �rst author)and 11-01-00531-a (the seond author). 17
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