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Exa
t 
onstants in Poin
ar�e type inequalitiesfor fun
tions with zero mean boundary tra
esA. NazarovV.A. Steklov Institute of Mathemati
s in St. Petersburg, 191023, Fontanka 27,St.-Petersburg, Russia and St. Petersburg State University, 198504,Universitetskii pr. 28, St.-Petersburg, RussiaS. I. RepinV.A. Steklov Institute of Mathemati
s in St. Petersburg, 191023, Fontanka 27,St.-Petersburg, RussiaAbstra
tIn the paper, we investigate Poin
ar�e type inequalities for the fun
tions havingzero mean value on the whole boundary of a Lips
hitz domain or on a measurablepart of the boundary. We derive exa
t and easily 
omputable 
onstants for somebasi
 domains (re
tangles, 
ubes, and right triangles). In the last se
tion, wederive an a estimate of the di�eren
e between the exa
t solutions of two boundaryvalue problems. Constants in Poin
ar�e type inequalities enter these estimates,whi
h provide guaranteed a posteriori error 
ontrol.
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1. Introdu
tionLet 
 be a 
onne
ted bounded domain in R
d with Lips
hitz boundary �
. The
lassi
al Poin
ar�e inequality reads

‖w‖2;
 ≤ CP (
)‖∇w‖2;
; ∀w ∈ H̃1(
);(1.1)where H̃1(
) := {w ∈ H1(
) | {{w }}
 = 0} :Here and later on {{ g }}! denotes the mean value of g on the set !.It was shown by Steklov [10℄ that the 
onstant in (1.1) is equal to �− 12 , where �is the smallest positive eigenvalue of the problem(1.2) −�u =�u in 
;�nu =0 on �
;It has been shown (see [7℄) that for 
onvex domains in Rd an upper bound of thePoin
ar�e 
onstant is expressed throughout the diameter of 
, namely,CP (
) ≤ diam
� :(1.3)Other results related to 
onstants in Poin
ar�e type inequalities 
an be found in[2, 3, 4, 5, 6℄ and some other publi
ations 
ited therein.In this paper, we 
onsider estimates similar to (1.1), for the fun
tions havingzero mean on a 
ertain part of the boundary (or on the whole boundary). They areas follows:
‖w‖2;
 ≤ C1(
;�)‖∇w‖2;
; ∀w ∈ H1(
;�);(1.4)
‖w‖2;� ≤ C2(
;�)‖∇w‖2;
; ∀w ∈ H1(
;�);(1.5)where � is a measurable part of �
 (we assume that (d−1)-measure of � is positive),H1(
;�) = {w ∈ H1(
) | {{w }}� = 0} :Sin
e the quantity ‖w‖` := ‖∇w‖2;
+ |

∫� w ds| is a norm equivalent to the originalnorm of H1(
), existen
e of the 
onstants C1(
;�) and C2(
;�) is easy to prove.In this paper, we �nd sharp values of the 
onstants in Poin
ar�e type inequalitiesfor re
tangular domains and also for some 
lasses of triangles. Our analysis is basedon the fa
t (obtained by standard variational arguments) that the extremal fun
tionin (1.4) is an eigenfun
tion u ∈ H1(
;�) of the boundary value problem(1.6) −�u =�u in 
;�nu =� ≡ �
|�| ∫
 u dx on �; �nu = 0 on �
 \ �;whi
h 
orresponds to the least eigenvalue � > 0.Analogously, the extremal fun
tion in (1.5) is an eigenfun
tion u ∈ H1(
;�) ofthe boundary value problem(1.7) �u =0 in 
;�nu =�u on �; �nu = 0 on �
 \ �;whi
h 
orresponds to the least positive eigenvalue.In both 
ases the sharp 
onstant in (1.4), (1.5) is equal to �− 12 . It is easy to showthat the eigenfun
tions of the problems (1.6) and (1.7) form 
omplete orthogonal3



systems in L2(
) and in L2(�), respe
tively. Thus, the analysis is redu
ed to �ndingthe 
orresponding minimal positive eigenvalues.In short, the outline of the paper is as follows. Se
tion 2 is 
on
erned with exa
t
onstants for re
tangular domains in R2. In Se
tion 3, we �nd the 
onstants forright triangles and in Se
tion 4 for a parallelepiped. Se
tion 5 is intended to presentan example, whi
h shows that the estimates 
an be used in quantitative analysisof di�erential equations. In this example, we 
onsider two ellipti
 boundary valueproblems with di�erent boundary 
onditions and sour
e terms. The se
ond prob-lem is viewed as a 
ertain simpli�
ation of the �rst one. This means that if thefun
tions presenting sour
e terms and Diri
hlet or Neumann boundary 
onditionshave 
ompli
ated nonlinear behavior in some sets, then they are repla
ed by simple(e.g., 
onstant) fun
tions. We show that if 
 
an be de
omposed into a 
olle
tionof simple subdomains (for whi
h the 
onstants CP , C1 and C2 are known), thenan easily 
omputable bound of the di�eren
e between two exa
t solutions 
an bededu
ed. We outline that the 
omputation of this bound does not require solvinga boundary value problem and needs only integration of known fun
tions. In par-ti
ular, this estimate 
an be used to �nd a suitable initial mesh in �nite element,�nite di�eren
e, or dis
ontinuous Galerkin methods. Our analysis is performedwith the example of a simple linear ellipti
 equation. However, by similar argu-ments one 
an obtain similar estimates for other di�erential equations asso
iatedwith the pair of 
onjugate operators grad and −div. Other appli
ations of (1.4)and (1.5) are related to a posteriori error estimation methods for partial di�erentialequations, where 
omputable bounds between exa
t solutions and approximationsoften involve 
onstants in Poin
ar�e type inequalities (see [8℄).2. Exa
t 
onstants for re
tanglesIn this se
tion, we assume that 
 is a re
tangle with lengthes of sides h1 and h2.We �nd exa
t values of the 
onstants in (1.4) and (1.5) for the following two 
ases:� 
oin
ides with one side of 
 and � 
oin
ides with the whole �
.2.1. Case 1: � 
oin
ides with one side of the re
tangle. In this 
ase it is
onvenient to sele
t the 
oordinate system su
h that (see Fig. 1) 
 = (0; h1)×(0; h2).Without a loss of generality, we assume that� = {x1 = 0; x2 ∈ [0; h2℄}:
h2

h1

x2

x1

ΩΓ Figure 14



Theorem 2.1. Sharp 
onstants in (1:4) and (1:5) are equal to 1� max{2h1;h2} and
( �h2 tanh(�h1h2 ))− 12 , respe
tively.Proof. Separating variables we obtain that the eigenfun
tions of the problem(1.6) ukm(x) = 
os(�mh1 x1) 
os(�kh2 x2); m = 0; 1; 2; : : : ; k = 1; 2; : : : ;u0m(x) = sin(�(m+ 12 )h1 x1); m = 0; 1; 2; : : : :They form a 
omplete orthogonal system in L2(
). Therefore, the least eigenvalueof the problem (1.6) is min{�00;�10} = min{( �2h1 )2; ( �h2 )2}, and the �rst statementfollows.Consider another inequality. Similarly, we �nd that the eigenfun
tions of (1.7)are uk(x) = 
os(�kh2 x2) 
osh(�kh2 (x1 − h1)); k = 0; 1; 2; : : : :They form a 
omplete orthogonal system in L2(�). Therefore, the 
orrespondingleast eigenvalue of the problem (1.7) is �1 = �h2 tanh(�h1h2 ). �Remark 2.1. It is 
onvenient to present the 
onstant C2 in terms of parameters hand �, whi
h 
hara
terize the size and the shape of 
, respe
tively. We set h1 = �hand h2 = h. Then, C2 = C∗(�)√h, where C∗(�) = 1√� tanh�� (see Fig. 2).
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2.2. Case 2: � = �
. In this 
ase, the problem is symmetri
 with respe
t totwo axes. Therefore, it is 
onvenient to sele
t the 
oordinate system su
h that
 = (−h12 ; h12 ) × (−h22 ; h22 ) (see Fig. 3). Due to the biaxial symmetry all theeigenfun
tions of (1.6) and (1.7) are either even or odd with respe
t to the axes x1and x2.
Ω ++

Γ +

Ω+

h1

2h_
2

_
2Figure 3Theorem 2.2. The sharp 
onstant in (1:4) is equal to 1� max{h1;h2}.Proof. First, we 
onsider the eigenfun
tions of (1.6), whi
h are odd with respe
tto x1. In this 
ase � = 0, and we arrive at the following problem:(2.1) −�u =�u in 
+ := (0; h12 )× (−h22 ; h22 );u =0 on {x1 = 0} ∩ 
; �nu = 0 on �
+ \ {x1 = 0}:It is easy to see that the fun
tionsu(1)km(x) = sin(�(2k + 1)h1 x1) 
os(2�mh2 x2); k;m = 0; 1; : : : ;u(2)km(x) = sin(�(2k + 1)h1 x1) sin(�(2m+ 1)h2 x2); k;m = 0; 1; : : : ;are eigenfun
tions to the problem (2.1). They form a system of orthogonal fun
-tions, whi
h is 
omplete in L2(
+). Therefore, the least eigenvalue of the problem(2.1) is �(1)00 = ( �h1 )2.Eigenfun
tions of the problem (1.6), whi
h are odd with respe
t to x2 
an be
onstru
ted quite similarly and we �nd that the 
orresponding least eigenvalue is( �h2 )2.It remains to 
onsider eigenfun
tions even with respe
t to both variables. Theybelong to the spa
e H1(
++;�+), where 
++ := (0; h12 ) × (0; h22 ), and �+ =� ∩ �
++ (see Fig. 3). In this 
ase, we need to solve the problem(2.2) −�u = �u in 
++;�nu = � on �+; �nu = 0 on �
++ \ �+:Moreover, the eigenvalues �ek of the problem (2.2) (enumerated in the in
reasingorder and repeated a

ording to their multipli
ity) are 
riti
al values of the Rayleigh6



quotient Q[v℄ ≡ ‖∇v‖22;
++
‖v‖22;
++(2.3)over the spa
e H1(
++;�+).Consider now the fun
tional Q on the whole spa
e H1(
++). By the variationalprin
iple (see, e.g., [1℄, (1.15)), its 
riti
al values �̃ek enumerated in the in
reasingorder and repeated a

ording to their multipli
ity satisfy the relation1 �̃ek ≤ �ek ≤�̃ek+1. Therefore, if there exists an eigenvalue of the problem (2.2) in the interval(�̃e0; �̃e1) then it is ne
essarily �e0.Note that �̃ek are eigenvalues of the 
onventional Neumann problem

−�u = �u in 
++; �nu = 0 on �
++;and thus, �̃e0 = 0, �̃e1 = min{( 2�h1 )2; ( 2�h2 )2}.Now we observe that the equation(2.4) h12 
ot(!h22 )+ h22 
ot(!h12 )+ 2! = 0has a unique solution !0 in the interval (0;min{ 2�h1 ; 2�h2 }) sin
e the fun
tion in theleft-hand side of (2.4) de
reases from +∞ to −∞ on this interval. Dire
t 
al
ulationshows that the fun
tion v0(x) = 
os(!0x1)sin(!0h12 ) + 
os(!0x2)sin(!0h22 )solves the problem (2.2) with � = !20 . We note that (2.4) is just the 
ondition∫�+ v0 ds = 0.Thus, we 
on
lude that �e0 = !20 . However, it is easy to see that!0 > min{ �h1 ; �h2 }:Therefore, the least eigenvalue of the problem (1.6) is min{( �h1 )2; ( �h2 )2}, and thestatement follows. �Theorem 2.3. The sharp 
onstant in (1:5) equals ( 2z0√h1h2 tanh( z0�0 ))− 12 , where z0 =z0(�) is a unique root of the equation(2.5) tanh( z�) tan(z�) = 1;su
h that z0� < �2 , while �0 = √max{h1;h2}min{h1;h2} .Proof. First, we 
onsider the eigenfun
tions of (1.7), whi
h are even withrespe
t to both variables. They belong to the spa
e H1(
++;�+) and solve thefollowing problem:(2.6) �u =0 in 
++;�nu =�u on �+; �nu = 0 on �
++ \ �+:1Note that H1(
++;�+) has 
odimension 1 in H1(
++).7



Moreover, the eigenvalues �ek of the problem (2.6) 
omplemented by zero, enu-merated in the in
reasing order and repeated a

ording to their multipli
ity are
riti
al values of the Rayleigh quotient
Q+[v℄ ≡ ‖∇v‖22;
++

‖v‖22;�+over the spa
e H1(
++). Consider another Rayleigh quotient
Q̃[v℄ ≡ ‖∇v‖22;
++

‖v‖22;�
++on the same spa
e. Sin
e Q̃[v℄ ≤ Q+[v℄, by the variational prin
iple its 
riti
al val-ues �̃ek, whi
h are also enumerated in the in
reasing order and repeated a

ordingto their multipli
ity, satisfy the relation �̃ek ≤ �ek. However, by homogeneity argu-ment �̃ek = 2�k. Therefore, an eigenfun
tion of (1.7), whi
h is even with respe
t toboth variables 
annot 
orrespond to the least eigenvalue2.Further, we 
onsider the eigenfun
tions odd with respe
t to x1. They lead tothe following problem in 
+:(2.7) �u =0 in 
+; u = 0 on {x1 = 0};�nu =�u on �
+ \ {x1 = 0}:We 
laim that the eigenfun
tion of (2.7) 
orresponding to the least eigenvalue shouldpreserve its sign in 
+. Indeed, the fun
tionv(x1; x2) = |u(|x1|; x2)| · sign(x1)belongs to H1(
;�) and provides the same value � of the Rayleigh quotient(2.8) Q[v℄ ≡ ‖∇v‖22;

‖v‖22;�as u. If � minimizes Q on H1(
;�) then v must be a solution of (1.7), whi
his possible only if v is positive in 
+, and the 
laim follows. Moreover, sin
eeigenfun
tions of (2.7) are orthogonal in L2(�
+ \ {x1 = 0}), an eigenfun
tionpositive in 
+ should 
orrespond to the least eigenvalue.Now we observe that the equation(2.9) tan(!h12 ) tanh(!h22 ) = 1;2We 
an suggest another proof of this fa
t, whi
h is interesting by itself. Let u be a solution of(2.6). We 
laim that at least one of sets $± = 
++ ∩ {u ≷ 0} has a 
onne
ted 
omponent whi
htou
hes �+ but does not tou
h the 
oordinate axes. Indeed, 
onsider a 
onne
ted 
omponent of$+ tou
hing �+ (in view of the 
ondition ∫�+ u = 0, su
h a 
omponent exists). If this 
omponenttou
hes both axes then any 
onne
ted 
omponent of $− tou
hing �+ is separated either from

{x1 = 0} or from {x2 = 0}. To be de�nite, let $ be a 
onne
ted 
omponent of $− whi
h tou
hes�+ but does not tou
h {x1 = 0}. Then the fun
tionv(x1; x2) = u(|x1|; |x2|) · �$(|x1|; |x2|) · sign(x1)belongs to H1(
;�) and provides the same value � of the Rayleigh quotient (2.8) as u. If �minimizes Q on H1(
;�) then v should be a solution of (1.7) whi
h is impossible. Unfortunately,this argument is purely 2-dimensional. 8



obviously has a unique solution !1 in the interval (0; 2�h1 ). Dire
t 
al
ulation showsthat the fun
tion v1(x) = sin(!1x1) 
osh(!1x2)is positive in 
+ and solves the problem (2.7) with � = !1 tanh (!1h22 ) (the equation(2.9) is just the equality of quotient �nu=u on sides of re
tangle). Substituting z0 =!12 √h1h2 we 
on
lude that the least eigenvalue of (2.7) is equal to 2z0√h1h2 tanh( z0� )where z0 is root of (2.5) with � = √h1h2 .In a similar way, 
onsidering eigenfun
tions of the problem (1.7) odd with respe
tto x2 we obtain the least eigenvalue 2z0√h1h2 tanh( z0� ) where z0 is root of (2.5) with� = √h2h1 .To 
omplete the proof it suÆ
es to show that the fun
tion f(�) = z0 tanh( z0� )de
reases on (0;+∞). We 
laim that, in fa
t, �f(�) is a de
reasing fun
tion.Indeed, di�erentiation of (2.5) after some transformations yieldsdd�(�f(�)) = 2z0(1− tanh4( z0� ))1 + �2 − tanh2( z0� )(1− �2) · [ tanh( z0� )1 + tanh2( z0� ) − z0�]:The fra
tion here is obviously positive. Further, (2.5) implies z0� > �4 . Thus,tanh( z0� )1 + tanh2( z0� ) − z0� < 12 − �4 < 0;and the 
laim follows. �3. Exa
t 
onstants for an isos
eles right triangleIn this se
tion, we assume that 
 is an isos
eles right triangle. We �nd exa
tvalues of the 
onstants in (1.4) and (1.5) for the following three 
ases: � is a leg; �
oin
ides with two legs; � is the hypotenuse.
a b

x x

x

x

1

2

Γ
Ω

ΓΩ
1

2

Figure 43.1. Case 1: � is a leg. In this 
ase it is 
onvenient to sele
t the 
oordinate systemsu
h that (see Fig. 4a) 
 = {0 < x2 < x1 < h} and � = {x1 = h; x2 ∈ [0; h℄}.Theorem 3.1. The exa
t 
onstant in (1:4) is equal to z̃−10 h, where z̃0 is a uniqueroot of the equation(3.1) z 
ot(z) + 1 = 0in the interval (0; �). 9



Proof. As in the proof of Theorem 2.2, the eigenvalues �△k of the problem (1.6)(whi
h are enumerated in the in
reasing order and repeated a

ording to theirmultipli
ity) are 
riti
al values of the Rayleigh quotient Q[v℄ ≡ ‖∇v‖22;

‖v‖22;
 over thespa
e H1(
;�).Consider the fun
tional Q on the whole spa
e H1(
). In a

ordan
e with thevariational prin
iple, the 
orresponding 
riti
al values �̃△k (enumerated in the in-
reasing order and repeated a

ording to their multipli
ity) satisfy the relation�̃△k ≤ �△k ≤ �̃△k+1. Therefore, if the interval (�̃△0 ; �̃△1 ) 
ontains an eigenvalue of theproblem (1.6), then it is ne
essarily �△0 .Note that �̃△k are eigenvalues of the 
onventional Neumann problem(3.2) −�u = �u in 
; �nu = 0 on �
:By even re
e
tion with respe
t to the line {x1 = x2} we 
on
lude that any eigen-fun
tion of (3.2) is an eigenfun
tion of the Neumann problem in the square (0; h)×(0; h). In parti
ular, �̃△0 = 0 
orresponds to the eigenfun
tion ũ0 ≡ 1, and �̃△1 =(�h)2 
orresponds to the eigenfun
tion ũ1(x) = 
os(�x1h ) + 
os(�x2h ).Now we observe that the equation (3.1) obviously has a unique solution in theinterval (0; �). Dire
t 
al
ulation shows that the fun
tionṽ0(x) = 
os( z̃0x1h )+ 
os( z̃0x2h )solves the problem (1.6) with � = ( z̃0h )2 (the equation (3.1) is just the 
ondition∫� ṽ0 ds = 0). Thus, we 
on
lude that �△0 = ( z̃0h )2, and the statement follows. �Remark 3.1. Approximate value of the root in (3:1) is 2:02876. Thus, the 
onstantin Theorem 3:1 is approximately 0:4929h.Theorem 3.2. The sharp 
onstant in (1:5) is equal to ( ẑ0h tanh(ẑ0))− 12 where ẑ0is a unique root of the equation(3.3) tan(z) + tanh(z) = 0in the interval (0; �).Proof. Using the monotone rearrangement (see, e.g., [5℄) with respe
t to x2we 
an suppose that the minimizer v of the Rayleigh quotient Q[v℄ over the spa
eH1(
;�) is monotone de
reasing in x2. Therefore, v|� has exa
tly one 
hange ofsign. Moreover, sin
e any other eigenfun
tion of the problem (1.7) is orthogonal to1 and to v in L2(�), an eigenfun
tion u su
h that u|� has exa
tly one 
hange ofsign should 
oin
ide with v up to a 
onstant multiplier.Now we observe that the equation (3.3) obviously has a unique solution in theinterval (0; �). Dire
t 
al
ulation shows that the fun
tionṽ1(x) = 
os( ẑ0x1h ) 
osh( ẑ0x2h )+ 
osh( ẑ0x1h ) 
os( ẑ0x2h )solves the problem (1.7) with � = ẑ0h tanh(ẑ0) (the equation (3.3) is just the 
ondi-tion ∫� ṽ1 ds = 0). Sin
e �2 < ẑ0 < �, ṽ1|� is monotone de
reasing in x2. Therefore,ṽ1|� has exa
tly one 
hange of sign, and the statement follows. �Remark 3.2. Approximate value of the root in (3:3) is 2:3650. Thus, the 
onstantin Theorem 3.2 is approximately 0:6560h 12 .10



3.2. Case 2: � 
oin
ides with two legs. In this 
ase we again assume that (seeFig. 4a) 
 = {0 < x2 < x1 < h} and � = {x1 = h; x2 ∈ [0; h℄}∪{x2 = 0; x1 ∈ [0; h℄}.Theorem 3.3. The sharp 
onstant in (1:4) is equal to h� .Proof. By even re
e
tion with respe
t to the line {x1 = x2} we 
on
lude thatany eigenfun
tion of (1.6) is an eigenfun
tion of the same problem in the square
′ = (0; h)× (0; h) with � = �
′. This problem is solved in Theorem 2.2, and theleast positive eigenvalue equals (�h )2. The dimension of 
orresponding eigenspa
eequals 2 and 
ontains the fun
tion 
os(�hx1) + 
os(�hx2) whi
h solves the originalproblem in the triangle. �Theorem 3.4. The sharp 
onstant in (1:5) equals ( 2z0h tanh(z0))− 12 , where z0 is aunique root of the equation (2:5) with � = 1 su
h that z < �2 .Proof. We again use even re
e
tion with respe
t to the line {x1 = x2} andredu
e our problem to the problem in the square (0; h) × (0; h). This problem issolved in Theorem 2.3, and the least positive eigenvalue equals 2z0h tanh(z0). Thedimension of 
orresponding eigenspa
e equals 2 and 
ontains the fun
tionsin(z0(2x1h − 1)) 
osh(z0(2x2h − 1))+ 
osh(z0(2x1h − 1)) sin(z0(2x2h − 1))whi
h solves the original problem in the triangle. �Remark 3.3. Approximate value of the root in (2:5) with � = 1 is 0:93755. Thus,the 
onstant in Theorem 3:2 is approximately 0:8523h 12 .3.3. Case 3: � is the hypotenuse. In this 
ase it is 
onvenient to sele
t the
oordinate system su
h that (see Fig. 4b) 
 = {0 < |x2| < x1 < h} and � = {x1 =h; x2 ∈ [−h; h℄}.Theorem 3.5. The sharp 
onstant in (1:4) is equal to z̃−10 h, where z̃0 is de�nedin Theorem 3:1.Proof. First, we 
onsider the eigenfun
tions of (1.6), whi
h are odd with respe
tto x2. In this 
ase � = 0, and we arrive at the following problem in 
̃+ = {0 <x2 < x1 < h}:(3.4) −�u =�u in 
̃+; u = 0 on {x2 = 0};�nu =0 on �
̃+ \ {x2 = 0}:Similarly to Theorems 3.3 and 3.4, we use even re
e
tion with respe
t to the line
{x1 = x2} and redu
e (3.4) to the problem in the square (0; h) × (0; h). Thus,we 
on
lude that the least eigenvalue of the problem (3.4) is equal to 12 (�h )2 and
orresponds to the eigenfun
tionû0(x) = sin(�x12h ) sin(�x22h ):Next, we 
onsider the eigenfun
tions, whi
h are even with respe
t to x2. Then wearrive at the problem (1.6) in 
̃+ whi
h is solved in Theorem 3.1.To 
omplete the proof we 
ompare 12 (�h )2 and ( z̃0h )2. It is easy to 
he
k that�√2 ·
ot( �√2 ) < −1. Sin
e t 7→ t ·
ot(t) is a de
reasing fun
tion on (0; �), this means�√2 > z̃0, and the statement follows. �Theorem 3.6. The exa
t 
onstant in (1:5) is equal to h 12 .11



Proof. First, we 
onsider eigenfun
tions of the problem (1.7) even with respe
tto x2. Then we arrive at the problem (1.7) in 
̃+ whi
h is solved in Theorem 3.2.Further, let us 
onsider the eigenfun
tions, whi
h are odd with respe
t to x1.We arrive at the following problem in 
̃+:(3.5) �u = 0 in 
̃+; �nu = 0 on {x1 = x2};u = 0 on {x2 = 0}; �nu = �u on {x1 = h}:Dire
t 
al
ulation shows that the fun
tion x1x2 is positive in 
̃+ and solves theproblem (3.5) with � = 1h . Similarly to the problem (2.7), it should 
orrespond tothe least eigenvalue.To 
omplete the proof we 
ompare ẑh tanh(ẑ0) and 1h . Sin
e ẑ0 > �2 , we haveẑ0 tanh(ẑ0) > �2 tanh(�2 ) > 1, and the statement follows. �4. Constants in three dimensional 
aseTheorems 2.1{2.3 
an be extended to fun
tions of three variables. The 
orre-sponding proofs are quite similar. Therefore, we present them in a 
on
ise formpaying major attention to 3D spe
i�
s.Theorem 4.1. Let 
 = (0; h1) × (0; h2) × (0; h3) and � = �
 ∩ {x1 = 0}.Then the sharp 
onstants in (1:4) and (1:5) are equal to 1� max{2h1;h2;h3} and
( �max{h2;h3} tanh( �h1max{h2;h3} ))− 12 , respe
tively.We omit the proof, whi
h is quite similar to the proof of Theorem 2.1.Remark 4.1. Let h = max{h2;h3} and h1 = �h. Then C1(
;�) = h� max{1; 2�}and C2(
;�) = C∗(�)√h, where C∗(�) = 1√� tanh�� (see Fig. 2).Theorem 4.2. Let 
 = (−h12 ; h12 )× (−h22 ; h22 )× (−h32 ; h32 ) and � = �
. Then theexa
t 
onstant in (1:4) is equal to 1� max{h1;h2;h3}.Proof. The proof is similar to the proof of Theorem 2.2. Instead of (2.4) weobtain the equationh1h22 
ot(!h32 )+ h1h32 
ot(!h22 )+ h2h32 
ot(!h12 )+ 2! (h1 + h2 + h3) = 0:Its unique solution in the interval (0; 2�h ) (here h = max{h1;h2;h3}) is greater than�h , and the statement follows. �Theorem 4.3. Let 
 and � be as in Theorem 4:2. Assume (for the sake of def-initeness only) that h1 ≤ h2 ≤ h3. Then the exa
t 
onstant in (1:5) is equal to
( 2z1h1 tanh(z1))− 12 , where (z1; z2) is a unique solution of the system(4.1) z1h1 tanh(z1) = z2h2 tanh(z2) == z1h1√1 + tanh2(z1)tanh2(z2) · 
ot(z1h3h1 √1 + tanh2(z1)tanh2(z2));su
h that z1h3h1 √1 + tanh2(z1)tanh2(z2) < �2 . 12



Proof. Similarly to the proof of Theorem 2.3, we 
on
lude that the eigenfun
-tion of (1.7) 
orresponding to the least eigenvalue must be odd with respe
t to oneof the 
oordinate axes ( for instan
e, with respe
t to x3). This gives the followinganalog of (2.7) in the domain 
̂+ = (−h12 ; h12 )× (−h22 ; h22 )× (0; h32 ):(4.2) �u =0 in 
̂+; u = 0 on {x3 = 0};�nu =�u on �
̂+ \ {x3 = 0}:Repeating the proof of Theorem 2.3, we �nd that the eigenfun
tion of (4.2), whi
his positive in 
̂+, 
orresponds to the least eigenvalue.It is easy to see that the equation(4.3a) � tanh(�h12 ) = � tanh(�h22 )de�nes an in
reasing fun
tion � = �(�) on R+, and the equation(4.3b) � tanh(�h12 ) = √�2 + �2(�) · 
ot(√�2 + �2(�) h32 )has a unique solution �0 su
h that √�20 + �2(�0) h32 < �2 . Dire
t 
al
ulation showsthat the fun
tionU1(x) = 
osh(�0x1) 
osh(�(�0)x2) sin(√�20 + �2(�0)x3)is positive in 
̂+ and solves the problem (4.2) with � = �0 tanh (�0h12 ) (note that(4.3) re
e
ts the boundary 
onditions on the sides of parallelepiped). Substitutingz1 = �0h12 , z2 = �(�0)h22 , we 
on
lude after some manipulations that the leasteigenvalue of (4.2) equals 2z1h1 tanh(z1) where (z1; z2) is solution of (4.1).The eigenfun
tions odd with respe
t to other 
oordinates 
an be 
onstru
tedquite analogously. However, some additional 
al
ulations show that U1 is the besteigenfun
tion provided that h3 is the longest edge of 
. Thus, the statement follows.
� 5. An appli
ation of the estimatesIn this se
tion, we dis
uss the meaning of the above derived estimates for quan-titative analysis of solutions to partial di�erential equations with the paradigm ofa linear ellipti
 equation. However, similar analysis 
an be performed for other dif-ferential equations asso
iated with the pair of 
onjugate operators grad and −div.Assume that the boundary �
 
onsists of two measurable noninterse
ting parts�D and �N asso
iated with Diri
hlet and Neumann boundary 
onditions, respe
-tively. Consider the following ellipti
 boundary value problem P :div(A∇u) + f = 0 in 
;(5.1) u = u0 on �D;(5.2) A∇u · n = F on �N :(5.3)Here the dot stands for the s
alar produ
t of ve
tors,(5.4) f ∈ L2(
); F ∈ L2(�N ); and u0 ∈ H1(
):13



We assume that the matrix A is symmetri
, bounded, and satis�es the uniformellipti
ity 
ondition A� · � ≥ 
|�|2; 
 > 0;Standard (generalized) solution to the problem P is a fun
tion u ∈ H1(
) su
hthat u− u0 ∈ V0 := {w ∈ H1(
) : w|�D = 0}and(5.5) ∫
 A∇u · ∇w dx = ∫
 fw dx+ ∫�N Fw ds; ∀w ∈ V0:Well known results in the ellipti
 theory guarantee the existen
e and uniqueness ofthe solution u.In pra
ti
e, �nding a solution u is repla
ed by �nding a sequen
e of approximatesolutions un 
onverging to u. Usually, un is 
onstru
ted as a Galerkin approxima-tion asso
iated with a 
ertain �nite dimensional spa
e Vn If the fun
tions f , F ,and u0 are 
ompli
ated (e.g., rapidly 
hange or os
illate in some parts of 
, �N ,and �D), then �nding un may be a diÆ
ult problem. For example, if approxima-tions are 
onstru
ted with the help of simple (e.g., pie
ewise aÆne) fun
tions andthe boundary 
onditions are de�ned by 
ompli
ated nonlinear fun
tions, then theboundary 
ondition on �D and �N 
annot be exa
tly satis�ed. Similar diÆ
ultyarises if a 
urvilinear boundary is approximated by pie
ewise aÆne fun
tions. Nu-meri
al 
omputation of the integrals involving f and F (whi
h is ne
essary in allvariational{di�eren
e numeri
al s
hemes) leads to errors generated by the fa
t thaton mesh 
ells the sour
e terms are usually simpli�ed (e.g., repla
ed by mean values).All these errors have a 
ommon sour
e: they arise be
ause in reality the 
onstru
-tion of un is based on a di�erent problem P̂ . Approximation and integration errorsindu
e additional errors in dis
rete solutions, whi
h are usually estimated only inan asymptoti
 sense. However, in quantitative analysis we need 
on
rete values ofthem. Indeed, if su
h an error is smaller than the desired a

ura
y level (whi
hin the majority of 
ases is known a priori), then we 
an ignore in
onvenien
es inboundary 
onditions and ina

ura
y in lo
al representations of sour
e terms. Onthe other hand, if it is essentially larger, then the mesh and integration methodsare invalid for our purposes (i.e., this is a signal to use a �ner mesh and/or morea

urate integration methods). Thus, a guaranteed and easily 
omputable estimateof the error 
an help to sele
t suitable meshes, approximations of sour
e terms, andquadrature formulas without dire
tly solving a boundary value problem.Below we show how the required estimate 
an be dedu
ed with the help of thePoin
ar�e type inequalities 
onsidered in previous se
tions. We note that estimatesof errors 
aused by simpli�
ation of the 
oeÆ
ients entering A has been re
entlyderived in [9℄, so that estimation of summed e�e
t 
an be done by 
ombining theseestimates.Let us assume that 
 is split into a set O of "simple" nonoverlapping subdomains
i (e.g., they 
an be 
ells of a 
ertain mesh). Ea
h 
i belongs to one of the followingthree subsets:
OD := {
i ⊂ 
 | �
i ∩ �D := �Di 6= ∅};
ON := {
i ⊂ 
 | �
i ∩ �N := �Ni 6= ∅};
OI := O \ (OD ∪ ON ):14



In other words, OI 
ontain interior subdomains, OD 
ontain subdomains asso
iatedwith �D, and elements of ON are the subdomains asso
iated with �N . Then,
 = 
D ∪ 
I ∪ 
N , where 
D , 
N , and 
I 
onsist of 
i from OD , ON , and OI ,respe
tively (see Fig. 5).
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Figure 5Now, instead of P we 
onsider a modi�ed (simpli�ed) problem P̂ :div(Â∇û) + f̂ = 0 in 
;(5.6) û = û0 on �D;(5.7) A∇û · n = F̂ on �N :(5.8)Our goal is to dedu
e an estimate of the di�eren
e between the exa
t solutions ofthese two problems. For this purpose, we de�ne the energy norm
|||u− û|||2 := ∫
 A∇(u− û) · ∇(u− û) dxand note that, by the ellipti
ity 
ondition,(5.9) |||u− û||| ≥ √
 · ‖∇(u− û)‖2;
:Now we introdu
e the quantitiesD1 := ( ∑
i∈O

C
2i ‖f − f̂‖22;
i)1=2;(5.10) D2 := ( ∑
i∈ON C2(
i;�Ni )2‖F − F̂‖22;�Ni )1=2;(5.11)where

Ci = { CP (
i) if 
i ∈ OI ∪ ON ;C1(
i;�Di ) if 
i ∈ OD :(5.12)These quantities are easily 
omputable provided that the 
onstants CP , C1, and C2asso
iated with the 
orresponding subdomains are known. Indeed, if f , f̂ , F , and F̂are de�ned, then �nding the quantities is redu
ed to integration of known fun
tionsand does not require solving a boundary value problem. The theorem below showsthat a guaranteed and dire
tly 
omputable bound of the di�eren
e between twoexa
t solutions 
an be expressed throughout D1, D2 and other easily 
omputablequantities. 15



Theorem 5.1. Let u and û be the solutions of (5:1){(5:3) and (5:6){(5:8), respe
-tively. Suppose also that the right-hand sides of (5:6) and (5:8) satisfy the 
onditions
{{ f − f̂ }}
i = 0 ∀
i ∈ OI ∪ ON ;(5.13)
{{F − F̂ }}�Ni = 0 ∀
i ∈ ON :(5.14)Then(5.15) |||u− û||| ≤ �1 +√�2 + �21;where(5.16) 2�1 = D1 +D2√
 + |||�|||; �2 = I0 + I1(�) + I2(�);
I0 = ∑
i∈OD{{ u0 − û0 }}�Di ∫
i (f − f̂) dx;(5.17)

I1(�) = ∫
 (f − f̂)� dx; I2(�) = ∫�N (F − F̂ )� ds;(5.18)and � is an arbitrary fun
tion in H1(
) su
h that � = u0 − û0 on �D.Proof. We use (5.5), (5.6){(5.8) and obtain(5.19) ∫
 A(∇u − ∇û) · ∇w dx = ∫
 (f − f̂)w dx + ∫�N (F − F̂ )w ds ∀w ∈ V0:Sin
e w = u− û− � ∈ V0 we 
an use it as a trial fun
tion. Then(5.20) ∫
 A∇(u− û) · ∇w dx = |||u− û|||2 + ∫
 A∇(u− û) · ∇� dx ≥

≥ |||u− û|||2 − |||u− û||| |||�|||:Consider the �rst term in the right-hand side of (5.19):(5.21) ∫
 (f − f̂)w dx= ∑
i∈OI∪ON ∫
i (f − f̂)(u− û)dx+ ∑
i∈OD ∫
i (f − f̂)(u− û)dx + I1(�):The terms of the �rst sum in (5.21) are estimated using (5.13) and (1.1):
∫
i (f − f̂)(u− û)dx = ∫
i (f − f̂)(u− û− {{ u− û }}
i) dx

≤ CP (
i)‖f − f̂‖2;
i‖∇(u− û)‖2;
i ; 
i ∈ OI ∪ ON :16



The terms of the se
ond sum are estimated with the help of (1.4) as follows:
∫
i (f − f̂)(u− û) dx = ∫
i (f − f̂)(u− û− {{ u− û }}�Di ) dx+ ∫
i (f − f̂){{ u− û }}�Di dx ≤ C1(
i;�Di )‖f − f̂‖2;
i‖∇(u− û)‖2;
i+ {{ u− û }}�Di ∫
i (f − f̂)dx; 
i ∈ OD:Summing up these estimates and using (5.9) and (5.17) we obtain(5.22) ∫
 (f − f̂)w dx ≤

∑
i∈O
Ci‖f − f̂‖2;
i‖∇(u− û)‖2;
i + I0 + I1(�)

≤ D1√
 |||u− û|||+ I0 + I1(�):In a similar way, using (5.14) and (1.5) we dedu
e(5.23) ∫�Ni (F − F̂ )(u− û) ds ≤ C2(
;�Ni )‖F − F̂‖2;�Ni ‖∇(u− û)‖2;
i ;and, therefore, by (5.9) and (5.18),(5.24) ∫�N (F − F̂ )w ds ≤ D2√
 |||u− û|||+ I2(�):Now (5.19), (5.21), (5.22), and (5.24) imply the estimate(5.25) |||u− û|||2 ≤ 2�1|||u− û|||+ �2;where the quantities �1 and �2 are de�ned by (5.16).The quadrati
 inequality (5.25) easily implies (5.15). �Theorem 5.1 presents the most general form of the estimate. If û0 = u0, thenthis estimate 
an be signi�
antly simpli�ed. Indeed, in this 
ase one 
an 
hoose� ≡ 0, and (5.15) is redu
ed to(5.26) |||u− û||| ≤ D1 +D2√
 :Moreover, in this 
ase we 
an repla
e C1(
i;�Di ) in (5.12) by a smaller 
onstantCF (
i;�Di ) su
h that
‖w‖2;
 ≤ CF (
i;�Di )‖∇w‖2;
; ∀w ∈ H1(
i) : w|�Di = 0:For simple domains su
h as re
tangles or iso
eles right triangles this 
onstant iswell-known. 6. A
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