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ABSTRACT:
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1. FORMULATION OF THE PROBLEM.

The subject of the present paper is the evolution free boundary problem for a viscous incom-
pressible electrically conducting capillary liquid occupying a bounded variable domain ;; with
a free boundary I'; that is supposed to be a connected compact surface. The liquid is subjected
to the external mass forces f(x,t), capillary forces on I'; and forces arising due to the presence
of the magnetic field. Moreover, in a fixed domain Q3 an electric current of density j(z,t) is
defined. This vector field should have zero normal component on 03:

(1.1) j-n=0

and vanish outside (3.
Both Q;; and 3 are surrounded by a vacuum region 2y;. The domain Q = Q;; U Q3 U Qo
is bounded by a compact perfectly conducting surface S. If is assumed that the domains 21
and (23 are disjoint, as well as the surfaces S and I';.
The case S = 0, Q = R? is not excluded.
The state of the medium in  is characterized by the following functions:
v(x,t): the velocity vector field of the liquid,
p(xz,t): the pressure function,
H (z,t), € Q: the magnetic intensity,
B(z,t): the magnetic induction,
E(z,t), z € Q: the electric intensity.

The vector fields H (x,t) and B(x,t) are connected by the relation
B(z,t) = pH(z,t)
where p is a piece-wise constant function of magnetic permeability taking positive values y; in
Qq, p2 in Qs, pg in Q3. The domain 25 may consist of several components with different values
of ug.
The motion of the liquid is governed by the Navier-Stokes equations
{ut + (V)oY T(v,p) — V- Ty(H) = f(a,1),

1.2
(12) V- -v(z,t) =0, x€Qy, t>0,

where
T(v,p) = —pI + vS(v) is the viscous stress tensor,
S(v) = Vv + (Vv)Tis the doubled rate-of-strain tensor,
Tv(H) = p(H ® H — 3|H|*I) is the magnetic stress tensor.
Electric and magnetic fields satisfy the system of the Maxwell equations with the omitted
displacement current
wHy = —rotE, V-H =0, T € Qe U Qo U g,
rotH = a(E + p(v x H)), x € Qqy, t>0,
rotH = aFE + j(x,t), € Qs,
rotH=0, V-H=0, V-E=0, z¢€ Q.

(1.3)

where « is a piece-wise constant function of conductivity, positive for x € Q1 U Q23 and equal
to zero in Q9. The last equation for E follows from the fact that the vacuum region 2y can
not contain electric charges.

Let us pass to the boundary conditions on the exterior boundary S and on the interfaces I';
and S3 separating media with different physical properties. On fixed surfaces S3 = 923 and S
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standard boundary and jump conditions are prescribed (see [1,2]):
H-n=0 E,.=0, z€b6,
{[,an] =0, [H;]=0, [E;]=0, z¢€Ss,
and on the free surface I'; we have
(T(v,p) + [T (H)))n =onH, V,=v-n,
{MH*MZO,[HAZQ

(1.4)

(1.5)

where H is the doubled mean curvature of I'y,
H,=H -n(n-H), E. =FE —n(n- E) are tangential components of H and E,
[F] is a jump of the vector field F(z), z € Q14 U Qo U Q3, on I'y and Ss,
V., is the velocity of evolution of I'; in the direction of the exterior normal 7.

It remains to write the jump condition for £, on I';. Usually the jump conditions are deduced
from the Maxwell equations, assuming that they are satisfied in the sense of the distribution
theory. For instance, from

/ B -Vo(z)dr =0
K
where ¢ € C§°(K), K C Q, K UTy # 0 it follows that

—/V-Bnpdm+/ [B - nlpdS =0,

K 'K

and this implies

(1.6) V.-B=0, z€K\I;, [B-n]=0, zcl,NK.

In the same way the jump condition [H,]|r, = 0 is deduced. Moreover, if the equation B; =
—rotE is satisfied in a generalized sense, i.e.,

to+T1
/ / (=B -, + E -rotp)dzdt =0,
to K

then on the manifold &, = {z € Ty, t € (to,to + 7)} C R* the relation
(1.7) n[B:] + [n, x E] =0,

holds, where n, = (n;,ns,n3) and n; are components of the normal vector n to &, in R%.
In particular, for fixed interfaces, when n; = 0, the condition (1.7) takes a standard form
[ny x E]=0, ie, [E;] =0.

The following proposition is important for the construction of the solution of (1.2)-(1.5),
(1.7).

Proposition 1. If the relations (1.6) and (1.7) are satisfied, then

(1.8) [n-rotEl =—[n- B, z¢€lk:.

Proof. Suppose the surface &, C K x (tg,tp + 7) C R* is given by the equation & =
2(&1,&,t), where (€1, &, &3) are Cartesian coordinates in R®. The functions given on &, can be
considered as functions of &;,&>,t. The normal n to &, is parallel to the vector (n, z;), where
n= (251 ) %€2s _1)'

It is easily verified that

— [’;VL . ’l"OtE] = [Z51 (E273 — Egyz) + Z€q (E371 - E1,3) - (ELZ - E2,1)]
(1.9)

0 0 0 - 0
= [a—&(z£2E3 +E2) + 8_62(_E1 — Z£1E3)] = 8_51[n X E]1 + 8_52[n X E]Q,



where E; ; is the partial derivative of E; with respect to &; and
OE
%, ~
are derivatives calculated taking into account the dependence of E on £3. By (1.7), the equation
(1.9) is equivalent to

Eva+Z£aE,37 a:1727

0 0
a_&Zt[Bl] — a—fzzt[

= —[2e,,tB1 + 2B, + 2, 2eB13 + 2g, 4B + 2t Ba g, + 26,26 8o 3]

—[n-rotE] = — By]

(1.10)

Now we differentiate [n - B] = 0 with respect to ¢, which leads to
(1.11)  [2e,.eB1 + 2, Bit + 2t2e, B1,s + 2¢, ¢ B2 + ¢, Bap + 2¢,2¢Ba 3 — Bs y — 2z Bs 1] = 0.
When we add (1.11) to (1.10) and take the equation V - B = 0 into account, we obtain
—[n-rotE] = [2¢,B1t + 2¢,Bo4 — B3] = [n - By,
q.e.d.
The proof of the Proposition is due to Dr. N.Filonov.

Let us go back to the formulation of the problem. At the initial moment ¢t = 0 the configu-
ration of the liquid and the values of v(z,0) and H (z,0) are prescribed:

(112) ’U(ZL“,O) = ’Uo(él?), xr ng, H(ZL“,O) = Ho(él?), xr € ng U QZO U Q3,

where 19, (229 are given domains. Finally, we need some normalization conditions for E(z,t),
z € Q. Indeed, together with E the vector field E + E’ also satisfies (1.3),(1.4), if E' = 0 in
01; UQ3 and E’ is so called Dirichlet vector field in Qy;, satisfying the conditions

rotE'(z,t) =0, V-E'(z,t)=0, € Qy, E.=0, x¢c0Qyy,
in other words, E'(z,t) = 222:1 Ci(t)x;(z,t),

V2Xj($7t) = 07 HASS QQt: Xj(x,t)’zes = Ojk, Xj(xat)|x€Ft = 07
k

where S, k = 1,..., b2 are all the connected components of 9€s;, except I's and by is the second
Betti number of (25;. The normalization conditions can be taken in the form

(1.13) E -ndS =0.
Sk

Since the matrix with the elements |, s, %’;" dS, i,j7 = 1,...,b2 is not degenerate, the equations

(1.13) define C;(t) (and the vector field E(z,t), x € Q) in a unique way.

The aim of the paper is to prove local (in time) unique solvability of the problem (1.2)-(1.5),
(1.7), (1.12), (1.13) under the assumption that the initial data satisfy only natural compatibility
conditions

V-vg(z) =0, =z, [(S(vo)n);]=0, zely,

V-Hy(z) =0, x€QoUQypUQsy, rotHy(z) =0, z €&y,
(1.14) [Ho;] =0, [pHy-ng]l=0, ze€Ty,

[Ho;] =0, [pHy-n]=0, xz€S;,

Hy(z) n=0, z€S,

where ng is the exterior normal to ['g.
The precise formulation of the result is given in Theorem 2.1.



2. TRANSFORMATION OF THE PROBLEM AND FORMULATION OF THE MAIN RESULT.

It is customary to write free boundary problems as nonlinear problems in fixed domains. We
introduce now the corresponding coordinate transformation. We assume that 'y is located in
the neighborhood of a smooth connected surface G of arbitrary topological type, and can be
regarded as a normal perturbation of G:

Lo={z=y+N(@m), vegi},

where pyg is a given small function and N (y) is the exterior normal to G. Moreover, we assume
that also for ¢t > 0

(2.1) Ii={z=y+NWpyt), yecq}

with an unknown function p(y,t) such that p(y,0) = po(y). We extend N (y) and p(y,t) from
G into Q in such a way that the extension N* of IN is a smooth non-zero regular function in
) and p* vanishes in 3 and near S and satisfies the inequalities (4.11) (hence p* is small for
small p). We denote by F; the domain bounded by G and we set F» = Q\ (F, UQ3), Q3 = F3
(for uniformity of notation).

The transformation

(2.2) z=ep(y,t) =y+N"(y)p"(y,t), yeg
maps F; on Qi, ¢ = 1,2, and leaves Q3 invariant. We denote by £ = L(y, p*) = (lij)i,j=1,2,3 the
Jacobi matrix of the transformation (1.6) and we set L = detl, L = LL™" = (L;j)i j—1,23; L

is the co-factors matrix of £. We note that L(y, p*) =1 and £ = L=Iforye FsandyeS.
We set

u(?/: t) = U(em t) q(y, t) = p(ep7 t);
introduce new unknown vector fields
(2.3) h=LH(e,t), e=LEe,t),

and make use of the formulas

L7 (y, p)N(y)
(2.4) n(e,) = —=——-———-, yeg,
" LT (v, p)N ()
V- h(yat) = ﬁvy : H(ep7t) = L(yap*)vm ' H(;U:t)|x:ep(y,t)7
(2'5) V. e(y,t) = L(y,p*)vm ’ E(xat”x:e,,(y,t);

rot, H(z,t) = %rotyph(y,t), rot, E(z,t) = %roty’Pe(y,t),
where x = e, (y,t) and
CT
(2.6) Ply,p") = /L.

Repeating the calculations from [3], Sec.1, we show that the transformation (2.1) converts (1.2)-
(1.5) in

w —pf (LN (y) - V)u+ (L7 u - V)u
~ ~ ~ L
V-EuzO, y e F, t>0,



14 ~ 1
w(hy — zﬁt/lh — piL(LTE N (y) - V)z/lh) = —rotPe, y € F1UF2UF3,
(2.8) ProtPh = a(Pe + u(L'u x h)), V-h=0, ycrF,
rotPh =0, V-h=0, V.-e=0, z¢€kF,,
roth =ae + j(y,t), V-h=0, ye Fs,

h-n=0, e =0, yes,
(2.9) {[uh-n] —0, [A]=0, [e]=0, yeSs
AT
ph- N =0, [h- 22NNy =,
(2.10) [LIN
~ r LTN
T(w,anle,) +[T(TRn(ey)] =olin, po="1o— %, yeq,

where V = L1V, is the transformed gradient V, (?T” means transposition, £~1 = (£L71)T);
S(u) = Vu + (Vu)7 is the transformed rate-of-strain tensor,
T(u,q) = —qI + vS(u) is the transformed stress tensor,
Aly,p) = N(y) - L{y, p)N(y) = 1 — pH(y) + p’K(y)
and H, K are the doubled mean curvature and the Gaussian curvature of G, respectively.
Now we turn to the boundary condition (1.7). We compute the components n; and n,
of the normal to the surface {z € Ty, t € (0,7)} in R We consider the four-dimensional
transformation (z,t") = ¢,(y,t) defined by

(2.11) z=e,(y,t), t'=t
and we make use of the four-dimensional analog of the formula (2.4), i.e.,
TN
n(eﬂat) = = 0 )
[€TNo|

where No(y) = (N1(y), N2(y), N3(y),0) is the normal to G x (0,7) and £ is the co-factors
matrix corresponding to the transformation (2.11). The Jacobi matrix of this transformation
is given by

i he hs Ny(y)ei(y,t)
oo | 1 b2 ls N3()ei(yt)
I3 32 I3z Ni(y)pi(y,t) |’
0 0 0 1
hence R R R R
911 912 913 —(QN)lpt(y,t)
g | Lot Loy Loy —(LN)api(y,t)
Ls; Lz Lzz —(LN)3pe(y,t)
0 0 0 L
for y € G and

ETNo = (LN, ~Apy).
It follows that (1.7) is equivalent to
(2.12) —Ap[uH]|+[L'N x E| =0, z=c¢,(y,t)
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or, in view of the algebraic identity Af x Ag = ET(]" x g) and the kinematic boundary condition,
to

(2.13) —(u- LY N)[ph] + L[N x Pe] = 0.
Finally, we have the initial and normalization conditions
u(y,0) = uo(y) =voley), v Fi, ply,0)=poly), yeU,
(2.14) ho(y,0) = ho(y) = L(y, p)H (ep,), y € F1UF2UFs,

/S e, ) -n()dS =0, k=1, ho(5).

We find the solution of the problem (2.7)-(2.10), (2.13), (2.14) in anisotropic Sobolev-
Slobodetskii spaces. We recall the definition of the corresponding norms. Let Q be a domain
in R™. The (isotropic) Sobolev space Wi(£2) with [ > 0 is the space of functions u(z), z € ,

with the norm
g = 3 1Dl = X [ IDu()Pds,
o<1t o<t

if I =[l], i.e. | is an integral number, and

dzdy
2 2
wmmnw”+z/ﬁw D) el

lil=

alily
Bxil...axﬂ"
. L 1l
Jj = (j1,42,---dn) and |j| = j1 + ... + jn. The anisotropic space Wy’ /2 (Qr), Qr = Q2 x(0,T),
can be defined as

if [ =[]+, A € (0,1). As usual, D/u denotes a (generalized) partial derivative where

Lo ((0,T), W(2)) N W, *((0,T), L2($2))

and supplied with the norm

(2.15) [lw||? W) / ()@ dt+/||u ,,Z(OT)dx.

There exist many other equivalent norms in Wl /2 (Qr); some of them will be used below.
Sobolev spaces of functions given on smooth surfaces, in particular, on G and on Gy = Gx(0,7T),
are introduced in a standard way, with the help of local maps and partition of unity. We also
find it convenient to introduce the spaces Wi°(Qr) = Ly(0,T; Wi(Q)) and W;’l/2(QT) =
Wé/ 2(O,T;LQ(Q)); the squares of norms in these spaces coincide, respectively, with the first
and the second integral in (2.15).

In order to obtain uniform estimates of the solutions of (1.8) for small T, we introduce in

Wé’l/ *(Qr) equivalent norms defined by
lellgsirm gy = lullyzorzign):
if 1/2 is an integer or /2 =[I/2] + A, A € (1/2,1),

1 gl

||’LL|| ”/Z(Q ||U|| 11/2( Qr) TQ)\”at /2] ||L2(QT

if A € (0,1/2), and

lullFirzop) = Il Wiz o+ > sup || Dfu(c, £)[[5 1125 -
o<j<(i-1)/2 <t
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Similar norms can be introduced on the manifold Gy = G x (0,T'). The advantages furnished
by working with H-norms are discussed in [4, Propositions 1.1 and 1.2].

We prove the following theorem.

Theorem 1. Let ug € WiTH(F1), po € WE(G), ho € WETH(F), i = 1,2,3, with 1/2 <
I <1< 1, and let the compatibility conditions

% U = 0, Yy e .7:1, S(uo)no(epo) — no(no . S(UO)no) = 0, Yy e g,
V-hg =0, yeF, 1=1,23,
TOtP(yapU)hU = 07 ye f?:

(2.16) LLTN

[ho - N1 =0, [ho,] = ( —N)ho-N], yeg,

ZTN]?
[uhO . n] = 07 [hOT] = 07 Yy S 537
ho ~n|5 = 0,
and the smallness condition
(2'17) ||p0||w2’+3/2(g) <ex1

be satisfied. Assume also that
£ e Wi 0,T; W2(R?*) n WiH2O(R? x (0,Ty)),
§ €Wy 20,753 (Fa) AWy TH0(Fs x (0,Th)

and that the condition (1.1) holds. Then the problem (2.7)-(2.11) has a unique solution defined
in a certain (small) time interval (0,T) with the following regularity properties:

w e W22+l.1+l/2(Q%r,), Vq € Wé’m(QlT):
g e W0 (Gr) n Wy 0,1 W, %(9)),
p e Wy P20 (Gr) n w0, 153 (9),
pp € WITS/2U2H8/8 Gy @) ¢ il +20 24 iy
e € Wy Q) Ny (0, T W3 (),

where Qi = F; x (0,T), Gy = G x (0,T), 'Y = h
satisfies the inequality

(2.18)

Qi el) =e Qi-» it = 1,2,3. The solution

lull ez + IVallgue gy + ldllyirirzo g,y + Gz o mwirz @)
+ ||P||W2l+5/2-0(GT) + ||P||VAV2!/2(07T;W;/2(QT)) + lpell givsrzaraesraayy)
3
+ sup ||p('7 t)||W’+2(g) + Z ||h(z) ||Hl/+2,l’/2+1(Qi )
t<T ’ i=1 !
3
(2.19) (@) (@)
" Zl (e lyrrogyy + 1€ 50720 0,m0)
1=

< C(||f||VAV21>l/2(Q1T) + HH”Wz"““(g) + ||u0||W2l+1(]-'1) + ||PO||W21+2(g)
3

+2 ollyyy 1) + 1wy o) + ||j||VVé’/2(o,T;W5(f3)))'

i=1
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For the problem (1.2)-(1.5), (1.7), (1.12), (1.13) this means that it is solvable in the time
interval (0,T") and

voe, € WHH(QY), Vpoe, e W;'*(Q)),

poe, € Wy 20(Gr) nwy2 (0,1, 2(G)),

p € Wy /20(Gr) w2 (0,1 W %(9)),

i € Wé+3/2’l/2+3/4(GT), HD o e, € W;“’””“(Q%),
EWoe, e WIH(Qi) n WL 20, T Wi(F)), i=1,2,3.

Theorem 1 is proved in the paper [3] under the following extra assumptions: f =0, j = 0,
Q3 = 0, Q; and Q are simply connected. In this case the equations rotHH = 0, V- -H =
0, z € Qo imply

(2.20) H® =V,
where ¢ is a solution of the Neumann problem
‘ 0 0
(2.21) Vip(z,t) =0, =€ Qy, ,uga—i =wmHY .0, zely, a—i =0, z€8

and HY (z,t) = H(z,t)|scq,,. Hence H® is completely determined by H™Y - n|,cr,, which
permits to exclude E and to work only with the function H L) satisfying the relations

pH; + a trotrotH — pyrot(v x H) = 0,

V- -H(z,t) =0, z¢& Qy,

0
a_ia HT:VT‘P(xat): ZUEFt,

H(iL',O):Ho(ZU), z € Qp.

pHY n = p

In the general case (2.20) is not true, nevertheless, one can separate the determination of u, p, h
from that of e. Let 1 € W;’O (Q%), i = 1,2,3 be a test vector field satisfying the conditions

(222) v¢(y7t):07 y€-7:1 UF2U-7:37 T0t¢(y7t):07 y€f27
[N¢N]:07 [¢T]:07 yeg:
(223) [:ud’ : ’I’L] =0, [Ttbr] =0, ye 537

Pp-n=0, yes.
Since, in view of (2.13),
L
it is easy to obtain from the equations (2.8) the integral identity

L pT
/ rotPe(y,t) - (y, t)dy = / Pe - rotapdy + / u LN k) pds,
Q Q g

T T
/ /u(ht—<I>(h,p))-¢(y,t)dydt+/ / a~'ProtPh - rotyp(y, t)dydt
0 Q 0 F1UFs
T
2.24 — L7Yu x h) - rotp(y, t)dydt W (u,h,p)-pdS
@20 [ [ @t romp(y vt + [ ¥, )

T
= [ [ a it rorwty, e,
0 Fs3



where

1. " 1
®(h,p) = =LiLh+ p{L(L™N™(y) - V)= Lh
(2.25) L L

ql(’“’?h?p): L

[1h].
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This identity, together with initial and boundary conditions for h and the equation rotPh = 0,

constitutes a nonlinear problem studied in Sec.4.

3. LINEAR PROBLEMS

The proof of the solvability of the problem (1.7) is based on the analysis of the following

non-homogeneous linear problems:

1. Find (v, p, p) such that

v, — Vv +m(y,t)p" + Vp = f(y,1),
V-v=f(y,t)=V-F(y,t), yeF, t>0,
(3.1) T(v,p)N(y) + oN(y)Bp = d(y,1),
pe+V(z) - Vip—v-N(y) =gy,t), yeg,
v(y,0) =vo(y), y€F, py,0)=ply), yeg,
where Bp = —Agp — b(y)p, b = (H?> — 2K), Ag is the Laplace-Beltrami operator on G,

2. Find the vector field H(y,t), satisfying the equations
(3.2)
TOtH(y,t):TOtZ(y,t), ZJG}—% H(y,O):Ho(y), y€-7:1 U Fs UfS:

[WH-N]=0, [H;]=a, ye@G, [pH-n]=0, [H;]=0, yeS;, H-n=0,
and the integral identity

T
/ / wHy - (y, t)dydt + / a~trotH - roty(y, t)dydt
(33) 0 Q F1UFs

T T
- / / G (y,1) - rotp(y, t)dydt + / / HG(y,1) - (y, t)dydt,
0 F1UF3 0 Q

with the same kind of the test function 9 (y,t) as in (2.24).
In addition, we need to consider the auxiliary problem

roth(y) =k(y), V-h=0, yeF UFUF;,
[uh-N]1=0, [h;]=a, ye€G,

[wh-n] =0, [h;]=0, ye€Ss,

h-n(y)=0, yes.

(3.4)

We start with the existence theorem for the problem (3.1).

y € S.

Theorem 2. Assume that | € (1/2,1) and that the data of the problem (3.1) possess
the following reqularity properties: f € W2l7l/2(Q%1), f € W2l+1’0(Q%1), F; e W;’l/Z(Q%),
d-N ¢ W2 Gr) n w20, 7, w,/%(G), d — N(d - N) € Wi/ 4G, g e
W2l+3/2’l/2+3/4(GT), vo € WITH(FL), po € W2(G), where T < oo, QL = Fi x (0,T),
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Gr = G x (0,T). Moreover, let m € Wé’l/z(Q%), V e W2l+3/2(g) and let the compatibility

conditions
a5 V-vo(z) = f(z,0), =€ F,
(3:5) vlgS(vo)N = lgd(z,0), xz€G,

be satisfied, where
Igd=d— N(N -d)

is the tangential component of d on G. Then the problem (3.1) has a unique solution v,p,p
such that

ve WP QY), Ve e Wy (@), pe Wy P0G (0,1, (9)),
p € W, 2GR0, 15 W5 2(G), e € WP G,
and the solution satisfies the inequality
||’U||Hz+2,z/2+1(Q1T) + HVPHVAVZZ’ZM(Q}) + ||p||W2’+1/2’°(GT) + ||p||VAV21/2(07T;W21/2(gT))

F1pllyssermogyy + Wollguzo sz gny + 19elmessrmiressiagen))

(3.6) < (I g gy, * I hwgerocay) + IF Gy

1/2

+ ”HQdHH’+1/2J/2+1/4(GT) +||d- N||W2z+1/z,o(GT) +||d- N”WZI/Z(OJ;WZ

(9))
+ gl s+srzirzrars(yy + lwollyivr 2 + ||p0||w2’+2(g)>-

This theorem is proved in [5] in the case m = 0. The term mp* in (3.1) is weak and can be
estimated by the interpolation inequality

lmp™ g2 gry < enllpllyirsrzo gy + 10lw02 0 mws2 g
+ptllyiarzirzrara g ) + Pl Lo

with arbitrarily small 7, so the result of [5] extends to the case m # 0 in a standard way.
Before discussing the problems (3.2), (3.3) and (3.4), we recall some basic results concerning
the space L2(D) of square summable vector fields given in the domain D C R? with a smooth
connected boundary 0D. We introduce the finite dimensional spaces of the Neumann and
Dirichlet vector fields
U(D)={ueWz(D): V-u=0, rotu=0, u-nlsgp =0},
UsD)={veWy(D): V-v=0, rotv=0, wv.|sp =0}

The dimensions of these spaces are equal to the first and the second Betti numbers of D, by (D)
and by(D), respectively. Following [6,7], we recall the structure of the Neumann vector fields.
In the case by (D) > 0 there exist by (D) closed contours in R? \ D generating the first homology
group of R\ D, end every contour A generates the Neumann vector field of the form

U =u; + U
with u; given through the Biot-Savart law
-y
i (z) = / LY
Alz—yP !
and us = Vi, where ¢ is a solution of the problem

D=0, inD, F|,,=—ui-nl,,
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As for by(D), it is equal to the number of connected components I'; of the boundary of D
minus one (denoted by I'g), and the basis in Uy(D) consists of vector fields vy (x) = VO (z),
where @y, is a solution of the Dirichlet problem

A*®p =0, Pplp, =06k, k,j=1,...02(D), Plp, =0.
We also recall the Weyl decomposition formula for the space L2 (D) [8]:

o

(3.7) Ly(D) = G(D) & U(D) & J(D) = G(D) & J(D) = G(D) & J(D),
where
GD) ={ueLy(D): u=Vp, ¢eWiD), ¢lop=0},
UD)={ucLyD): u=Vy, oecWs(D), V* =0},

B(D) ={uecly(D): V-u=0, u-nlsgp=0};
G(D) = é(D) @ U(D) is the space of the potential vector fields and J(D) = 3(1)) o U(D) is
the space of divergence free vector fields.

It is clear that U, (D) C J(D) and U4(D) C U(D).
Following [7], we introduce in the domain Q = F; U F2 U F3 the by (Q)-dimensional space of
the modified Neumann vector fields U, (f2) whose elements u(y) satisfy the relations

rotug(z) =0, V-ugs(z)=0, zeF, i=1,2,3,
[pug - N1 =0, [ug]=0, z€g,
[pwu, -m] =0, [u,]=0, z€S8s,
uq(z) -n(z) =0, xebS.
It is clear that u,(z) = uy(x) + Vw,(z),
Viwg() =0, ze€F, i=1,23,

Ow
[Ha—]\; - _[H’]uq "N, [wq] =0, ze G,
Ow
[Ha—nq = —[plug-n, [w]=0, ze S
% =0, z€8

We denote by H'(Q) the space of the vector fields ¥ € WL(F;), i = 1,2, 3, satisfying (2.22),
(2.23). For [ < 1/2 the boundary conditions (2.23) are replaced with
(38) [IU’¢N]:07 yeg? [,u'(,bn]:O, y6537 '(,[7’!’1.:0, yGS,
because 1. has no sense in this case. By H°(f)) we mean the closure of H!(Q2) in L2(Q).
If ¥ € HO(Q), then @ e J(F), i = 1.3. and @ = Vo(y) + Zbl (72) c;jw;(y), where
w; € Up(F2) and ¢ is the solution of the Neumann problem

0
() 7 yEfz, /j’Za—;\D]:uld’(l)'Na yega
(3.9) 5 5
8_90_”3'9[’(3) ) y6837 6_;)3:0 yES

Along with (3.7), we shall use in 2 the decomposition

(3.10) Lou() = Gu(Q) @ J,u(9),
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where L, ,(Q) is the space Ly(f2) supplied with the scalar product
(3.11) (o) = [ - vdy,
Q

LOIH () is the space of divergence free vector fields satisfying the conditions (2.23), and G, (f2)
is the space of the elements of the form V¢, where p € W} () is the solution of the problem

vztp =V u(y)7 [@]'gusa =0, [ _90} |g = [:uu : N]|ga

e

(3.12) ;
,un 5, = Hu - n|sy, nS_u nls,

or, in a weak form,
/ NV - Vndy = / pu - Vndy, Vn € Wy (9Q).
Q Q

o
The projection operator P, on J, () is continuous not only in Ly (), but also in U;_, W (F;),
which is a consequence of the estimates of the solution of (3.12).

It is clear that H'(Q) C LO]H(Q) and U,(Q) C J,.(2). We denote by Py f, f € LOIH(Q), the
projection of f on HY and by Py, f the projection of f on the subspace H C H° whose
elements are orthogonal to Uy, (2):

(3.13) /Q,u't,b-ﬂqdyzo, g=1,..,01(Q).
It is easily verified that
), yeF, i=13,

Prf(y) = ni72)
Vo) + Y aqw;(y), ye T
j=1

where ¢(y) is a solution of the Neumann problem
Vie(y) =0, yeF,

%1 _o 92 _ .
anls =% gy =fT W N, yegGUS,

w;(y) are the Neumann vector fields in F, orthonormalized in L, (F>) and
o= [ 10wy k=L (),
F2

As P,, the operators Py and Py, are continuous not only in Ly (£2), but also in U, WJ (F).
Now we turn to the problem (3.4).
Theorem 3. Ifk € Wé“ (F), i =1,2,3 and the conditions

V'k(y,t):(), yEflLJ]:QU]:g,
k-nls=0, [k-n]s,=0, [k-N]=N - rota, yeg
hold, then the problem (3.3) has a unique solution h € Wé“(}}), i =1,2,3, orthogonal to the

space Upy:

(3.14) / ph-u,dr =0, q=1,..,0(0).
Q



The solution satisfies the inequality

(3'15) Z ||h||WH'2(]-'z Z ”kHWH'l(]-'Z) + ||a||W’+3/2(g))

Moreover, if
(3.16) k=rotK(y), [Kllous, =0, Kls=0, a=I[Allg
with A given in F1 U Fa U F3 and satisfying the conditions

A® =0, AW .N|g=A® .N|g=0

then
(3.17) 1PllLo(@) < (Ko@) + [1AllLa0) + llally-1r2g))-
Proof. Following [3], we construct the solution in the form
b1(9)
(3.18) h(y) =a*+Vp+ &+ > cuy,

where a* is the extension of a into € such that a*(y) = 0 for y € F» U F3 and
(319) ||a ||W1+2( < C||a||Wl+3/2(g)

The functions ¢ (z) and € we define as solutions to the problems

VZ'(/):—V'O,*( ), r e FLUFUF;,
(3.20) 0 0
{m=m[%$ 0, wel, WI=0, g]=0, wes,

(3.21) rot€ = j(xz) —rota*(z), V-£=0, z€F UFUZF;,
W€ -N1=0, [§]=0, z€G, [u&-n]=0, [{]=0, z€S;,

The solution of (3.21) has the form £(z) = &, + Vw with

(3.22) .

[w] =0, [uan]— [1)€, -m, =z € Ss, a—n:—ﬁl-n, y€S.

The constants ¢; are found from the orthogonality conditions (3.14):

b1(Q2)

(3.23) 0:/ wa* + Vi +€) - upde + Z cj/uu] updz,
Q

j=1
E=1,..,b(Q). It is clear that

b1
Z lci| < clla”™ + Vi + €L, ),

i=1

i
ON |s

V2w(x):0, reFLUFUF3, [w]=0, [uaN]— —[u]&, - N

§-nls=0.

reQq,

15
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which implies
3 b
(3.24) SIS s llyre, < clla” + Vo + €.
=1 j=1
Making use of well known estimates of the Newtonian potential and of solutions of the elliptic
boundary value problems (3.20) and (3.22), we obtain
3

D IVellwirzry < cllallyirz gz, < cllallyisr2g),

=1

3

Z ||£||W2H1 < CZ Ik — rota™ HW’“(}‘ Z ||k||Wz+1(}- + ||a||W’+3/2(g))
=1 i=1 i=1

Together with (3.24), these inequalities yield (3.15) The uniqueness follows from the fact that
the solution of a homogeneous problem (3.4) belongs to U, ().
Now we prove (3.17). We use the following representation formula for h:

b1 ()
h=A+VI+X+ > c¢uj,
j=1
where ¥ and X are solutions to the problems
v
VZ‘II(ZE):—V-A(ZE), x € F1 UFUF;, 6— =0,
ON Is
(3.25) o
[\Il] =0, [NaN] r e, [\II] =0, [H%] =0, z€Ss,
rotX =j(z) —rotA(z), V-X=0, z€eFHLUFRUF;, X n|s=0,
X -N]=0, [X;]=0, z€gG, [puX-n]=0, [X,;]=0, z€b;.
Since A|s =0, [pA - Nl|g =0, [#A - n]|s, = 0, the problem (3.25) is solvable, and
(3.26) V¥l o) < cllAllLo0)-

As for X, we represent it as the sum
X(z) = Xi(z) + VU (x),

X,(0) = forat [ KD = A),

4 lz -yl
2 oU
VU(x)=0, z€FLUFUF, [Ul)]=0, [ua—N]:—[u]Xl-N, z €q,
oU oU
[U(LE)] = 07 [H’a—n] = _[H]Xl "n, ¥ € S37 _|S =-Xi-
Since [N x (K — A)]lg = —N xa, [nx (K — A)]|53 = 0,, the vector field
1 1 N(y
X:U:—rot/V—-Ky— / dS
0= gzt Vg KW rEr
satisfies the inequality
(3.27) X1l o) < UK Lo + 1Allae) + lally-172g),

that is obtained as in [3] (see (2.24)), as well as the estimate
(3.28) VUl o) < cll Xl Loe)
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[3, (2.26). Putting the inequalities (3.26)-(3.28) together, we obtain (3.17). The theorem is
proved.

Corollary Assume that k, K, a, A in (3.3), (3.16) depend ont € (0,T), k € Wé“’o( éﬂ),
k(1) € WH(F}), §=1,2,3, a e Wy **°(Gr), al-,t) e WaT/2(G) vt < T, Ky € W' (Qr),
a e W20, ;W 2(G)), A e W2(Q1), i =1,2. Then

3
Z ||h(J) HH’“"”“(Q?)
j=1

3
(3.20) < e Y UED oo g + sup [ Dllwgim + 1K I gy.)

i=1
+lallygrsrzo g, + up lallywzrirzig) + lalFizo 2w 12
+14ilm30m 03,
Estimate (3.29) follows from (3.15) and from (3.17) applied to the time derivative hiand to
the finite difference of the time derivative hy(z,t + s) — h(x,t) (cf. the analogous corollary in

3)-
Let us pass to the problem 2. (3.2), (3.3), (2.23).

Theorem 4. Assume that G € Wé“’o(c‘?%ﬂ)rﬂ/lfé/2 0, T;WEHFi)),i=1,3,Gy € Wé’lm(QiT),

Hy € WENF), i = 1,2,3, £ € WO Q) n W0, T; Wi(F)), £y, 1)|yes,us = O,
143/2,0 141/2 1/2 T —1/2 _
a < W2 (GT)7 a('at) € W2 (g)7 vt € (OaT)7 a; < W2 (OaTaW2 (g))7 a = [A]7
A; € WQO’Z/2 (Qr) and that the compatibility conditions
VH()(:U):O, y6f1Uf2Uf37 rotHO(y):th(y,O), ye:FZ;

LLTN ’
|ZT.ZV|2 P=po
[uHo-n] =0, [Hy]=0, y€S;, Hy-n=0, yeb.

(3.30) [WHo- N1 =0, [Ho] = ( ~ N)[H, - NJ,

are satisfied. Then the problem 2. has a unique solution H € Wé+2’l/2+1(Q§1), 1=1,2,3, and

3
> H sz gy

i=1

3
<c(I)( > (IGllwerroqiy +1GIw20 wa (5,)) + > Gl g
(3.31) j=1,3 i=1
+ ||E||W2z+2,o(Q2T) + fgg ||E(-,t)||W21+1(g) + ||£t||/W§,l/2(Q%) + ||at||/V[\/2l/2(07T;W2_1/2(g))
3

+ ||a||W2l+3/2(GT) + Supt<T||a('7t)HWzl*l/z(g) + ||At||/u\/20>l/2(QT) + Zl ||H0||W2’+1(_7-‘l))
i=

The solution is unique in the class of vector fields with the above-mentioned regularity properties
that are orthogonal to Uy (Q):

[ Gy =0, k=1, (@,
Q

Proof. Step 1. Reduction to the case £ = 0.
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We extend £ from F» in F; in such a way that

||£||W2’+2(]-'1U]-‘2) < c||£||w2l+2(]:2):

1l om0 < Ly
then

(3 32) ||£||W2l+2’O(Q%1UQ%) + ||£||/W720’1+Z/Z(Q;UQ§,)
' < (1l ygngn) + IElgasnagz)):

For y € F5 we set £(y,t) = 0. We define h; as a solution of the problem (3.4) with k = rot¥; it
satisfies the inequality (3.29) with K = £, k = rotf. For h = H — h; we obtain the problem 2.
with £ = 0, @ = 0 and with G, G2 replaced by G| = G| — a"'roth,, G}, = G2 — hy;.

Step 2. Proof of the solvability of the problem 2. with £ =0, a = 0.
This problem can be written in the form

T
/ / pwhy -y, t)dydt + / a~troth - rot(y, t)dydt
Fi1UFs3

/ / 1(y,t) - rotap(y, t) dydt+/ /N92 (y,t) - Yy, t)dydt,
]:1Uf3

(3.33) y,t) =0, ye€FLUFUF3, roth(y,t)=0, y¢& Fo,
[uh'N]ZUa [h-]=0, yeg,
[uh -m] =0, [h;]=0, yeSs, h-n=0, yes,
h(y,O) = HO(y) - hl(yao) = hO(:’/);

where

glszGlla g2:PHP;LGI27

Py is the orthogonal projection on the space J(F; U F3).
Now we decompose g, and h in the sum of linear combinations of the modified Neumann
vector fields uy(x) in © and of the vector fields that are orthogonal to U, (2). We set

h=h'+h", g,=gb+g ,

where
. b1(R2) b1(R2)
W =Py b, gy=Pu g, h ut)=Y kOU;@), g4t =>Y vOuQy).
=1 i=1

In the same way we decompose the test function 4 and the initial datum hy. Then (3.33) is
decomposed in two problems. Setting ¥ = 1) , we reduce (3.33) to

"

(3.34) hi =g,, h'(y,0) = hy(y),
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and for A’ we obtain the problem

T
/ / phy - (y, t)dydt + / a~troth’ - roty’ (y,t)dydt
0o Jo

F1UFs
T T
~[ [ awo o @i+ [ [ aghiw.0) % (v, 0y,
0 F1UF3 0 Q
V- -h'(y,t)=0, yeFUecFUEcF;, roth'(yt)=0 € F,
[Nh/'N]:Oa [h;]:o, yeg;
[wh'-m] =0, [hR]=0, yeSs, h'-n=0, yes,
h'(y,0) = ho(y),
Clearly, (3.34) is easily solved. We have

(3.35)

t
(3.36) R (y.1) = hy (y) + / gs (4, 7)dr,
0

which is equivalent to

k:j(t) = kj(O) +/ ’)/j(T)dT, Jj= 1,...,b1(ﬂ).

[<=]

As for (3.35), this problem is studied in [7]. Indeed, let E be the extension operator defined on
the space J(F; U F3) N W}(Fy U F3) such that E¢p € WH(Q) and (E¢p); =0 on S. Then

| gverotpdy= [ Eg, rotwdy = [ rotBg, -y = | uPu protiy, -y,
F1UF3 Q Q Q

/ a~lroth’ - roty'(y, t)dy = / P (pa) "trot(Eroth) - rotdy,
F1UF3 Q

consequently (3.35) can be written as the Cauchy problem

(3.37) hi+Ah =gy +g;=gs, hli=o = hy,
where

(3.38) g3 = P, p"'rotEg,,

and

(3.39) AR/ = Py ptrotEa roth’

The operator A is a positive operator defined on the space of vector fields h € W3 (F; U Fz U
F3) UH?(Q) (see details in [7]).
Now we pass to the proof of (3.31). It is clear that

3
DM llmszarzia g
i=1

<c

(3.40) (D) (el 4172y + [Rol + 1VI22 0 1))

3

< o) Y (hollwis iz + 19l a2 o))
i=1
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because
b1(2)

[ holw) ety = >l ©) [ i) -y )iy
/ngz(y, y)dy = Z Yot //w/c (y) - uq(y)dy,

Next, we estimate the functions g5 and g3 in (3.37) making use of the boundedness of the
projection operators Py, P, Py, Py, :
||PJGI1||W2’“(.7:Z) SCHG/l”WZ"(.'Fl)? i:1737 ’I":]., ’I":l-f-].,
3
1G5 llLa0) < ellGolla)s D I1PuGsllwi(r) < cllGhllwsr,);
i=1
moreover we require that
IEfllwzy <c Y Ifllwgm), r=1L1+1
i=1,3

This implies

3
Z ”gSHWl 1z Qi) <c Z ||g1||Wl+1 Qi) + ||gl||Wl/2 0 TW1(]-')))
i=1

i=1,3
(3'41) <c Z (HG/l”Wzl“-O(QiT) + ||G/1||VAV21/2(07T:W21(_7:1.)))7
i=1,3
’ /
Z ”92”[7[/;’/2(@51) <c Z ||G2||VAV21~’/2(Q§1)'
1=1,3 1=1,3
Hence

3 3
/
Zl ||g4||VAV21~’/2(QiT) < C(Zl ||G2||VAV21~’/2(Q1'T)
1= 1=

+ Z (”G/lHWéH’O(Qé«) + ||GI1||/W721/2(07T;W21(7:1.)))'
i=1,3

(3.42)

Now we make use of the following result.

Theorem 5. For arbitrary g, € N3_ 1Wl l/Z(QT) N Ly(0,T;HY () and hy € HLTH(Q) the
problem (3.37) has a unique solution

R e i Wy (@Q)) N La(0, Ty HT (@)

and

3 3
(3.43) S sy < 3 (gallgrors gy, + 1R lwies (s,
i=1 i=1
This result in obtained in [7] for [ = 0, F3 = 0, and in [3] it is extended to [ € (1/2,1) in
the case of simply connected F; and (2, when ﬁn(ﬂ) = (. The general case is considered in a
similar manner.
The inequality (3.31) for the solution of the problem 2. is a consequence of (3.29), (3.40)-
(3.43). The uniqueness follows from the uniqueness of the solution of (3.37). Theorem 4 is
proved.



21

4. NONLINEAR PROBLEM

In this section we consider the main nonlinear problem
—pH(LTIN* (y) - V)u + (L7 - V)u
~ -~ ~ L

-V T(u7q) -V TM(Zh) = f(emt);

V- -Lu=0, yeF, t>0,

~ L u-LTN

T(u,q)n(e,) + [TM(Lh)n]:aH(ep))n, Pt:ma yegy,
T
/ / (ht — ,p)) - Py, t)dydt + /0 /}_ . a~tProtPh - rotip (y, t)dydt
(4.1) + Nl/ (L7 tu x h) - rotyp(y, t)dydt +/ W (u,h,p) - pdS
g

Fi1
//a J(y,t) - rotep(y, t)dydt,
F3
y,t) =0, yeFHLUFUF;, rotPh(y,t)=0, yé€ Fo,
LLTN
h-N|=0, [h;]=(—————-N)h-N], €q,
b N =0, ) = (s = N)R-N],
[h-n] =0, [h;]=0, y€S; h-n=0, yeSs,
u(y,()):uo(y), yefla h(y,O):ho(y), yej:lUf2Uf37

where % is an arbitrary test function satisfying the conditions (2.22), (2.23).

As in [3], we transform the problem (4.1) by separating the linear and nonlinear parts with
respect to u, g, p, b in all the equations and separating the tangential and normal components
in the equation T'(u,q)n(e,) = 0 H(e,)n. We also make use of the formulas

1
Flept) = Fnt)+ [ F e thds = F.0)+ S fesye

s=0

# [ =  Fenthds = £0.0) + O - D) 1011

(4.2) /0(1_5);2f(esp,t)ds,
T
H(ep) =-V, 'n(x)lz:ep(y,t) = _‘CiT(yap)v' |§T875;z8;|
e AR s Py vl (RO L €)
=Hly) = Bp /0(1 Vgt WsrV |LT (y, sp) N (y)|’

where Bp = —Agp — (H* — 2K)p is the first variation of —(H(e,) — H(y)) with respect to p.
(Without restriction of generality, we may assume that f(z,¢) is extended into the whole space
R3). Since ¥ -1p = ¥, -1p_ = (N x ¥) - (N x 1), the surface integral in (4.1) can be written
in the form

/‘I’-d’(y,t)dS = —/ rot(N™ x &) -¢(y,t)dy+/ (N™ x ®7) - rotap(y, t)dy,
g Fi

Fi1
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where N* is the extension of N in Q) mentioned in Sec.2 and

T — w- L7 (y,p ) N"(y)

Finally, we introduce the vector field V' € W2l+3/ %(G), satisfying the condition

||V - uOHWzH'l/Z(Q) S ) < 1.

It is easily seen that (4.1) is equivalent to

u(y, t) — vViu+ Vg — p"(y)(N*(y) - V) f(y,t) = f(
V~u:l2(u,p), yEfl,
HQS(U)N(y) :l3(uap)7

—q+VvN-Su)N +0Bp =ls(u,p) +1s5(p) + oH(y),
pt+V(y) Vip—u-N=lu,p),

T T
/ / phy -y, t)dydt + / / a~troth - rot (y, t)dydt =
0 Q 0 Fi1UFs3

T
—/ l7(u,h,p)-T0t¢(y,t)dydt+/u'1>(h,p)-¢(y,t)dydt
0 F1 Q

/ / a”'j(y,t) - rotep(y, t)dydt,
Fs3

)—0 yeFLUFUFs,
roth:rotlg(h,p), y € Fa,
[I,LhN]:O, [h'r]:lg(h’ap)a y€g7

u(y,O) = uO(:U): Yy e -7:17 h(y,O) = hO(:U);

[th-n] =0, [h;]=0, yeS;, h-n=0, yes

yEflLJ}—QU}—g,

y7t) + ll(uaqap)a

T
+ /T /fl rot(IN* x ¥*) - ap(y, t)dydt —/0 a (N* x &) - rotp (y, t)dy



where

(4.6)
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Li(u,q,p) =v(V2 = VHu+ (V= V)g+p; (L' N*(y) - V)u

1
—(L'u - V)u+V- TM(gh) + / (1- s)%f(esp,t)ds,
0

I3(u, p) = T (TgS(u)N)(y) — TS (u)n(e,(y)),

Li(,hyp) = (N - S@)N —n - S(w)n) — [ne,) - Tat (Shn),

L
! d LT (y, sp)N
s(p) = —o [ (1—s) T V. o WP
5(p) U/Ov ( S)dSZ (y7sp) |£T(y,SP)N|dS7
o hp) = (N LV - N)u+ (V—u) Vv €g
6 (U, 1L, P A(y,p) P P Y )

l7(h,p) = a ' (roth — ProtPh) + i (L 'u x h), y € Fi,
l8(hap):(1_P)h7 y€f27

LLTN
l h, :Ai—N hN:Ah, B Gg,
o(h,p) (|/3TN|2 )k - N]=[A(h,p)], y
. LLT N .
AV (h,p)=(ZZ—— —N"BY .N*), yeF, i=1,2,
(h,p) (|£TN*|2 ) ), Y

Nf=f-nn-f), ligg=g—-N(g-N).

We note that the vector field

1. " . 1 .
®(h,p) = TLLh+ pfLILTINT(y) - V)T Lh = hi(y, 1) — L(H (@, )]o=c,)

is divergence free and ® = 0 in F3 and in the neighborhood of S U S;.
The solvability of the problem (4.4) can be proved by successive approximations, according
to a usual scheme
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U1t (Y, 1) = vV i1 + Vit = Py (9) (N (y) - V) £y, 1)
=y, t) + li(Um, Gm, ),

V tmir = (Wi, pm), Y € Fu,

HgS(wm+1)N(y) = lz(wm, pm),

= qm+41 + VN - S(Umi1)N + 0Bpmi1 = la(Um, pm) + I5(pm) + oH(Y),
Prtit + V(Y)  Vipmir — i1 - N = lg(Um, pm),

T T
/ / phpmia - Y (y, t)dydt + / / a trothy, 1 - rot(y, t)dydt
0 Q 0 F1UF3
T
=[] tolatms ) oty Oyt + [ i, )60 s
(4.7) o Jr Q
T T
+/ / rot(N* x ¥ ) - (y,t)dydt —/ / (N* x ¥ ) - roty(y,t)dydt
0 F1 0 F1

+ ' [ a ity ) rots(y, Dyt
0o Jr
V- -hmi1(y,t) =0, yeF UFUF;,
rothmy1 = rotls(hp, pm), Yy € Fo,
[hips1 - NI =0, [hmir,r] = lo(hm, pm), Yy €G,
[thyt1-n] =0, [hpmy1-]=0, y€Ss, hpy-n=0, yes,
Um+1(¥,0) =wo(y), Yy E€F1, hmu(y,0) =holy), ye€FUFUZFs,

where m =1, ..., and ¥} is defined by (4.3) with w,, by, pm instead of u, h, p.
The first approximation, (u1,q1, p1, h1), is defined for ¢ € (0,00) in the following way: ¢; = 0,
u1, p1 and h, satisfy the initial conditions

wi(y,0) =uo(y), yve€Fi, pi(y,0)=po(y), yeg,
hl(y,O):ho(y), y€f1Uf2Uf37

the equation V - hy(y,t) =0, y € F; U Fo U F3 and the inequalities
||“1||H’+2~’/2+1(Q},o) S C||U1||W21+2,1/2+1(Qé0) S C||U0||W2l+1(]_-1),
||p1||w2’+5/2'0(G00) + ||Pl,t||W2l+3/2.l/2+3/4(G00) < C||p0||W21+z(g),

3 3
Z ||h1||w2l+2,l/2+1(Qioo) S CZ ||h0||W2l+1(]-'i)'

i=1 i=1

(4.8)

The proof of the solvability of (4.7) is based on the estimates of non-linear terms and of the
solutions of the linear problems 1. and 2. studied in Sec. 2. Let
(4.9)

Xn(T) = ||um||Hl+2-l/2+1(Q1T) + ||vqm||VAV21-l/2(Q1T) + ||qm||W21+1/2-0(GT) + ||Qm||ﬁ/21/2(07T;W21/2(g))

+ ||pm||W2l+5/2‘0(GT) + ”pm”/u\/zl/?(gj;ws/?(g)) + ||pm7t||Hl+3/2>’/2+3/4(GT)
3
+ fgg lpm (-, t)||W2’+2(g) + Z |hS) g2 241 (@i
i=1
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and
Zm(T) = ||l1(um;Qm;hm:/’)”vAVZU/?(Q;) + ||l2(umapm)||W2’+1’°(Q1T) + fgg ||l2(um,pm)||W21(;:1)
[ Le(wms pm) 0.2 guy + s (s p) L2 0r240078 Gy + Nla@ms By o) ly00720
+ ||l5(pm)||W2'+1/2’°(GT) + ||l4(uma hm:pM)H/V[\/zl/?(O,T;Wzl/?(g)) + ||l5(pm)||VAV2’/2(07T;W21/2(Q))
+ ||l6(u’m7pm)||Hl+3/2'l/2+3/4(G'T) + ||l7||W21’+1.0(Q%“) + ||l7||/VI\/2l,/2(07T;W21(f1))

+ ||ls||Hl’+2.l’/2+1(Q2T) + ||l9(hmapm)||Hl’+3/2-l’/2+3/4(GT) + ||At(hm,pm)||ﬁ,20,u/z(QT)
3
+ ||l9,t(hm:pm)||W2l’/2(0’T;W271/2(g)) + Zl ||q)(hmapm)||ﬁ,é’l’/2(QzT)
1=

+ ||‘P (umahmapTTL)”WZ’/‘H’O(Q;) + ||‘P (um;hm:pm)||’w21//2(07T;W21(f1))-

The following proposition is an analog of Theorem 7 in [3].
Proposition 2. Assume that (4.4) holds and

(4.10) tsgg ||pm('7t)||w2l+3/2(g) <ok,

moreover, let the extension p* of p (see (2.2)) possess the properties
a *
P —0,
ON lg
p*(y,t) =0, when y € F3 ory belongs to a neighborhood of S, and

||p*(7t)||W2"+1/2(Q) < C||p||W2’(g)7 e (07l+ 5/2]7

(4.11) .
||pt ('7t)||W2"+1/2(Q) < CHptHW;(g): re (07l + 3/2]7 le (1/27 1)
Then
3 .
j=1

where 61 is a small number dependent on § and T .

The non-linear terms (4.6) are identical or very similar to the nonlinear terms (1.10), (1.11)
in [3], and they are estimated in the same manner (cf. [3, Sec.4, 4, Sec.3]). We point out that
the estimate of Iy are made here slightly better than in [3], namely, it holds

||at(h’m7 pm) ||VAV21/2(07T;W2’1/2(9))

< C(SHhm’t . NH/V[\/ll/z + CT(lil/)/ZHh(i) ||H2+1/,1+1//2(Q§1)
2

(O,T;Wz_l/Z(Q)) |p||H3/2+z,3/4+1/2(GT)

< Bllhm liggo.rreg,y + TR | o asirra g Il srzsrssasiraan
because h,,, m > 1, are divergence free. Therefore the norm

2
(4)
Z ||hm7t ||W2l,/2(0,T;W;1/2(Q))

i=1
is not included in X,,(T") (although it can be estimated, too).
Making use of the inequalities (3.6) and (3.31) applied to the problem (4.7), we obtain

3
Xm+1 <oy Zan + N,
i1
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where §; < 1,
N = ||u0||W2’+1(]-‘1) + ||p0||w2l+2(g) + ||H|‘W2l+1/2(g)

3
+ 2 Mol iy + g ooty * g gy + 1 gy
and the constants ¢; and ¢y are independent of T'.
It follows that in the case of small §; the estimate
(4.13) Ximt1 < 26N
holds and, in addition,

t
(4.14) lpmar (s D)llyyesrz gy < lpollyyivara g +/0 e (o )l g7z gy

< HP0||W21+3/2(Q) + 202N\/T <e+ 202\/TN < 4.

Thus, we have proved that (4.13) is satisfied for all m > 1. The convergence of the sequences
Uy Gm, Pm, pm follows from the estimates of the differences w11 —Um, Gm+1—qms Bmt1—Pm,
Pm+1 — pm (cf. [3], Theorem 8). Making m tend to infinity, we obtain the inequality

(4.15) X(T) < 2¢,N

for the solution of the problem (4.7) constructed above ( here X (T') is defined by (4.9) with
u,q, p, h instead of W, @, Py B )-

The uniqueness of the solution obtained in this way follows from the same kind of estimates
for the differences uw — u’, ¢ — ¢, p — p’, h — h’ of two possible solutions of (4.7).

We conclude the proof of Theorem 1 by construction of the vector field e assuming that the
solution of (4.1) is already obtained. For this we need to solve the problem

rot€(y) = p€(y), V-P€=0, ye FLUFRUF,
(4.16) [WPT'E-N]=0, [E;]=aly), yeg,
WP'€-n]=0, [£,]=0, ye€S;, & =0, yeb.

Theorem 6. Assume that & € Wi(F;),i=1,2,3,a € W2l+3/2(g) and that the compatibility
and orthogonality conditions

Vg(y):(), yEflLJfQUfg,

(417) [u£~N]:N'7"0ta, yeg, [ug.n]:(), yESg, £~n:0, yGS

(4.18) /ng(y) g (y)dy = /g(N X a)-u,dS, u4 € Un(), q=1,...b:(0)

are satisfied. Then the problem (4.16) has a unique solution € € Wé“(}}), i =1,2,3 orthogonal
to the ba(Q)-dimensional space Uy of vector fields v(y( such that

rotv =0, V-P lu(y) =0,

[v,]=0, yeS;UG, [P 'v-Nllg=0, [P 'v-n]ls,=0, wv,|s=0.

The solution satisfies the inequality

(4.19)

3 3
(4.20) > el < (3 €llwsion + lallygor)
= 1=
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withr =1,r=0.
Proof. We seek the solution in the form
b2(Q2)
(4.21) E=a"+E+VZ)+ ) dv;y),
j=1

where a* is the extension of a, as in Theorem 3,

L [ ()~ rota*(2))d:
) = goro [ RS

V-PIVZ=-VP a*+&i(y), yeFiIUFUF;,
Z(y)=-9(), yeSs, [Zy]=0, yegusSs,
WP~ 'VZ-N]=—[uP *a*+&)-N], yeg,
WP 'VZ -nl=—[uP *a* + &) n|, ycS;

(4.22)

It is easily seen that rot€; = p€ — rota*. The function ¢ is defined as follows. Since (u& —
rota*) - n|ls = 0, we have fz rot€1 - ndS = 0 for arbitrary ¥ C S, and this relation holds also
for ¥ =%, k=1,...,0:(Q), where X, are cuts of 2 that make  simply connected (this follows
from the orthogonality conditions (4.18), i.e., from

/ (1€ — rota™) - udy = 0,
Q

see [6]). Hence by the Stokes formula, the relation

/Sl-dlzo
~

holds for arbitrary closed contour v C S, which implies €;]s = V,g(y) with a certain single-
valued g(y). Now the relations (4.16) are easily verified.

Making use of the estimates of the volume potential and of the solution of elliptic problem
for Z (4.22), we estimate & and VZ, after which the term Z;’i(lm d;v;(y) is estimated with the
help of the condition of orthogonality of £ to v; (cf. the proof of (3.15)). In this way we obtain
(4.20). The uniqueness of the solution in the class indicated in the statement of the theorem is
obvious. The theorem is proved.

Now we pass to the construction of e. We want to solve the problem (4.16) with € = —h;+ ®
and @ = —NN x ¥; in this case the condition [£;] = @ on G is equivalent to

(4.23) [N x €] = 0.

Let us verify the assumptions (4.17), (4.18) of Theorem 6. From Proposition 1 the following
statements follows: arbitrary b and £ given on F; U Fy and G, respectively, and such that

V-b=0, yeFUF, [bN]:O, yeg,

[N x &= T

b, yeg,
satisfy

1 o 1
[N - rot€] = —[b; — z.ET,/:b ~pL(LTH(N V)3 Lb- N].
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For b = ph, this coincides with the main compatibility condition in (4.17). As for (4.18), this
condition can be verified by setting 1 = u, in the integral identity in (4.1). Hence the problem
(4.16) with the above-mentioned data is solvable, and the solution satisfies the identity

T
/ / (=& + a troth) - rota(y, t)dydt =
(424) 0 F1UF3

T T
= m / / by (u, e, p) - rotap (y, 1) dydt + / / a15(y,8) - rotap (y, ) dydt.
0 F1 0 F3

By Theorem 3, rot1 runs over the whole 3(.7—'1 U F3), when % runs over H!(2). It follows that
— &N a7 ProtPR — py (L7 x By = vy D),

4.25
( ) —E®) 4 alroth® — ali(y,t) = vy ®),
We set
Pe=E+VY, yeFUF;

and

b2(£2)

Pe=E+VYD + > Ci(t)Vwi(y), yeF,

j=1
where Y2 is a solution of the problem
(4.26) V-PVY® =0, yeR, YOeo=v", vP|eq =v®),

and w; are solutions of
VP 'Vuw; =0, yeF, wi®lyes, =0k, Jk=1,....ba(F), wjlyeg=0.
Then the equations
V-e?(y,t)=0, yeF, [(Pe)]=0, yeGUSs

are satisfied.
We pass to the estimates of e. By (4.20),

3 3
(4.27) Z; 1€l 10001 ) < c(z; 1he = @llyrogs) + 1Ely 720 6, )-
= (2

Applying the same inequality with { = 0 to £ and to the finite difference A;(h)E = E(y,t+h) —
E(y,t), we easily obtain

3 3
(4.28) Z; €720, 25wp (7)) < C(Z; 1Pt = @llgp0.02 ey + ||‘II||/W\/21/2(0,T;W21/2(Q))'
= 1=
Hence
3
2 Ellwgriogs) + 1w 1z 5p)
(4.29) =t

3

< e e = @l gy + 1y g, + 1 G0z i)
i=1
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Further, from (4.25) it follows that

HVY(UHW;*I‘O(QIT) < HSHWzHI‘O(QlT)
+ lay *ProtPh — py (L7 u x h)||W2z+1,o(Q1T),
/2

1
vyt )”VVZ 0. 15Wh(F)) S ||5”vAv;/2(o,T;W§f1>>

(4.30) . B
+ o] “ProtPh — ui (L~ u x h)

5272 0,752 (1))
IVY @410 1) < IElIwrioggs, + lla (roth = )10 ),
||VY(3)||W21/2( + ||Oé_1(7“0th — ])

1/2

0,1, (Fs)) = ||5|‘W£/2(0,T;W5(f3)) ”@ (0,T5W3 (F3))’

and, since Y'(?) is a solution of (4.22), we have

IVY P lyssogz) + IVY Dl rams )
(4.31) < c(||VY(1)||W21+1,o(Q1T) + vy @
FIVY Py + IVYC

)”vAv;”(o,T;W;(fl))
)”VAVZI/Z(OvT;Wzl(fs)))'

The functions C;(t) are found from the condition (1.13), since the matrix with the elements
/. Sk P~ 1Vw; -ndS is non-degenerate. Indeed, otherwise there would exist the constants a; such
that

P IVA®y) ndS =0, k=1,..0(Q)

Sk
where A(y) = Z?i(lm ajw;. This would imply
0= / AV - P IV Ady = P IVA(y) - nA(y)dS — P IVA(y) - VA(y)dy
Q OFs Fo

=— | P'VA(y) - VA(y)dy,
Fa

because Als, = const, k =0,...,02(F>2). Hence VA = 0 and a; = 0.
By (1.13),

0:/ e-ndS:/ Pe -ndS = (E+VY®?).nds
Sk Sk Sk

(4.32) b2 (2)
+ Y Ci(t) | PVw; - nds,
j=1 Sk

from which it follows that

b2 b2

(4 33) || Zl Cj,ijHWéH’O(Q%) + || Zl ijwj”ﬁVéM(O,T;Wzl(fg)) S C(HVY(Z) ||W2H1'0(Q2T)
: J= J=

2
VY PG00 zwamy + 1€ Iweroz) + 1€1G120 1w (7))
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Finally,
3 3
; lelwyroqs) + el o rwy iz = CZ;(”“:”W#“)(Q;)
1= 1=
(4.34) + ||g||/v{\/21/2(07T;W21(]-'i)) + ||VY(1)||W2£+1,0(Q§1) + ”vy(l)||ﬁ/2l/2(0’T;W21(j:i))

b2 b2

+ || Z Cijj||W2l+1‘0(Q2T) + || Z ijwjHv\Vzl/z(O,T;Wzl(fg)))'
=1 i=1

Inequality (2.16) for e is a consequence of (4.27)-(4.34), (4.12), (4.13). This completes the
proof of Theorem 1.
The solution of the problem (1.2)-(1.5), (1.7), (1.12), (1.13) is defined by
’U(;U,t) :u(egl(xat)at)a p(:l?,t) :fI(e;l(v’Uat);t);
Ly, p")

L(y, p*
Hiz,?) = L(y P*)h(m’t”y:e;l(wvt)’ E(z,t) = LEy p*;e(y7t)|y%l(z,t>’

the free surface I'; is given by (2.1).
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