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1. Introduction


Let Bn denote the unit ball of Cn, n ≥ 1. Let σn denote Lebesgue measure on the unit
sphere ∂Bn; σn(∂Bn) = 1. Given a holomorphic mapping φ : Bn → Bm, m,n ∈ N, the
radial limit φ∗(ζ) is defined at σn-almost every point of ∂Bn. If |φ∗| = 1 σn-a.e., then φ is
called inner.


1.1. Holomorphic self-mappings of the unit disc. The starting point for this paper
is the following result for n = m = 1:


Theorem 1.1 ([12, Theorem 1.1], [1, Theorem 5.1]).


(i) Assume that ω is an increasing function on [0, 1], ω(0) = 0, and∫
0


ω2(t)


t
dt < ∞.


Let φ : B1 → B1 be a holomorphic function such that


(1.1)
|φ′(z)|(1− |z|2)


1− |φ(z)|2
≤ ω(1− |z|) for all z ∈ B1.


Then φ is not inner.
(ii) Assume that ω is an increasing function on [0, 1], ω(0) = 0, ω(t)/t1−ε decreases for


some ε > 0, and ∫
0


ω2(t)


t
dt = ∞.


Then there exists an inner function φ : B1 → B1 such that


|φ′(z)|(1− |z|2)
1− |φ(z)|2


≤ ω(1− |z|) for all z ∈ B1.


The above result is sharp, in a sense. However, by [7, Theorem 1.9(a)], the following
improvement of Theorem 1.1(i) holds.


Theorem 1.2 (see [7, p. 687]). If ω and φ satisfy the assumptions of Theorem 1.1(i), then
|φ∗| < 1 σ-a.e.


The quotient
|φ′(z)|


1− |φ(z)|2


is often called the hyperbolic derivative of φ. So, Theorems 1.1(i) and 1.2 are precise
formulations of the following heuristic principle:
If the hyperbolic derivative of φ does not grow sufficiently rapidly, then φ is far from


being inner.
Also, different motivations for Theorems 1.1 and 1.2 are given in [12, 1, 7].
In this paper, we improve Theorem 1.2.
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Theorem 1.3. If ω and φ satisfy the assumptions of Theorem 1.1(i), then


(1.2)


∫
∂B1


(
1


1− |φ∗(ζ)|2


)K


dσ1(ζ) < ∞


for all K > 0.


It is interesting to remark that, by [8, Corollary 3.25], condition (1.2) holds for all K > 0
if and only if the composition operator Cφ : f 7→ f ◦ φ is compact on the Hardy–Orlicz


space HΨ2(B1), where Ψ2(x) = ex
2 − 1.


Theorem 1.3 suggests that the conclusion of Theorem 1.1(i) remains true when the
hyperbolic factor (1 − |φ(z)|2)−1 in estimate (1.1) is replaced by a smaller function of
(1− |φ(z)|2). A quantitative version of this observation is formulated as Corollary 5.2.


1.2. Holomorphic mappings between complex unit balls. In fact, Theorem 1.3 ex-
tends to the holomorphic mappings φ : Bn → Bm with arbitrary n,m ∈ N. So, the main
result of the present paper is the following theorem:


Theorem 1.4. Assume that ω is an increasing function on [0, 1], ω(0) = 0, and∫
0


ω2(t)


t
dt < ∞.


Let n,m ∈ N and let φ : Bn → Bm be a holomorphic mapping such that


(1.3)
|∇φ(z)|(1− |z|2)


1− |φ(z)|2
≤ ω(1− |z|), z ∈ Bn,


where |∇φ(z)|2 =
∑n


j=1


∣∣∣ ∂φ∂zj
(z)
∣∣∣2. Then∫


∂Bn


(
1


1− |φ∗(ζ)|2


)K


dσn(ζ) < ∞


for all K > 0.


Organization of the paper. The main idea behind the proof of Theorem 1.4 is to con-
sider the composition operator Cφ from the Bloch space B(Bm) into a space X that is
sufficiently close to H∞(Bn). As a model, we consider the case X = BMOA(Bn) in Sec-
tion 2. Theorem 1.4 is proved in Section 3. Non-hyperbolic generalizations of Theorems 1.4
and 1.1(i) are obtained in Sections 4 and 5, respectively.


2. A model: Bloch-to-BMOA compositions


2.1. The Bloch space. Let H(Bm) denote the space of holomorphic functions on Bm.
The Bloch space B(Bm) consists of those functions f ∈ H(Bm) for which


∥f∥B(Bm) = |f(0)|+ sup
w∈Bm


|Rf(w)|(1− |w|2) < ∞,
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where


Rf(w) =
m∑
j=1


wj
∂f


∂wj


(w), w ∈ Bm,


is the radial derivative of f . Let


∇f(w) =


(
∂f


∂w1


(w), . . . ,
∂f


∂wm


(w)


)
, w ∈ Bm,


denote the complex gradient. Observe that


|f(0)|+ sup
w∈Bm


|∇f(w)|(1− |w|2)


is an equivalent norm on B(Bm); see, for example, [13, Theorem 3.4].


2.2. Carleson measures and BMOA. For ζ ∈ ∂Bn and r > 0, put


B(ζ, r) = {z ∈ Bn : |1− ⟨z, ζ⟩|
1
2 < r};


Q(ζ, r) = {ξ ∈ ∂Bn : |1− ⟨ξ, ζ⟩|
1
2 < r}.


A positive measure µ on Bn is called a Carleson measure if there exists a constant C > 0
such that µ(B(ζ, r)) ≤ Cr2n for all ζ ∈ ∂Bn.
Let νn denote Lebesgue measure on Bn; νn(Bn) = 1. Consider a function f ∈ H(Bn).


By [13, Theorem 5.19], f ∈ BMOA(Bn) if and only if


|Rf(z)|2(1− |z|2) dνn(z)


is a Carleson measure.


2.3. Bloch-to-BMOA composition operators. Given a holomorphic mapping φ =
(φ1, . . . , φm) : Bn → Bm, put Rφ = (Rφ1, . . . ,Rφm), where Rφj : Bn → C is the radial
derivative of φj, j = 1, . . . ,m. Consider the function


Ωφ,R(t) = max
|z|=1−t


|Rφ(z)|(1− |z|2)
1− |φ(z)|2


, 0 < t ≤ 1.


We need a result about the composition operator Cφ : f 7→ f ◦ φ.


Proposition 2.1 ([5, Proposition 4.1]). Let φ : Bn → Bm be a holomorphic mapping.
Assume that the composition operator Cφ maps B(Bm) to BMOA(Bn). Then there exist
constants ε = ε(n,m, ∥Cφ∥B→BMOA) > 0 and C = C(n) > 0 such that∫


∂Bn


exp


√
ε log


1


1− |φ∗(ζ)|2
dσn(ζ) ≤ C.


The following assertion is a model for Theorem 1.4.
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Corollary 2.2. Let n,m ∈ N and let φ : Bn → Bm be a holomorphic mapping. Assume
that


(2.1)


∫
0


Ω2
φ,R(t)


t
dt < ∞.


Then there exists a constant ε = ε(n,m,Ωφ,R) > 0 such that∫
∂Bn


exp


√
ε log


1


1− |φ∗(ζ)|2
dσn(ζ) < ∞.


Proof. Let f ∈ B(Bm), that is,


|∇f(w)|(1− |w|2) ≤ C, w ∈ Bm.


We have


R(f ◦ φ)(z) =
m∑
k=1


∂f


∂wk


(φ(z)) · Rφk(z), z ∈ Bn.


Therefore,


|R(f ◦ φ)(z)| ≤ |∇f(φ(z))||Rφ(z)| ≤ C
|Rφ(z)|


1− |φ(z)|2
, z ∈ Bn.


For ζ ∈ ∂Bn, put Π(ζ, r) = {ρξ : 1−r < ρ < 1 and ξ ∈ Q(ζ, r)}. Then B(ζ, r) ⊂ Π(ζ, Cr)
for an absolute constant C > 0. Also, we have σn(Q(ζ, r)) ≤ Cr2n. Therefore, (2.1)
guarantees that


|R(f ◦ φ)(z)|2(1− |z|2) dνn(z)
is a Carleson measure. Thus, f ◦φ ∈ BMOA(Bn). It remains to apply Proposition 2.1. �


Corollary 2.3 (cf. Theorem 1.1). Let m ∈ N.
(i) Assume that (2.1) holds for a holomorphic mapping φ : B1 → Bm. Then φ is not


inner.
(ii) Assume that ω is an increasing function on [0, 1], ω(0) = 0, ω(t)/t1−ε decreases for


some ε > 0, and ∫
0


ω2(t)


t
dt = ∞.


Then there exists an inner mapping φ : B1 → Bm such that Ωφ,R(t) ≤ ω(t) for all
t ∈ (0, 1].


Proof. Part (i) follows from Corollary 2.2. To prove part (ii), it suffices to consider the
mapping (φ, 0, . . . , 0) : B1 → Bm, where the inner function φ : B1 → B1 is provided by
Theorem 1.1(ii). �
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2.4. Mappings into the unit disc. Consider a holomorphic mapping φ : Bn → B1. If
(2.1) holds, then φ is not inner by Corollary 2.2. However, for n ≥ 2, the inner mappings
φ : Bn → B1 are known to be very rare and singular objects. So, the same conclusion
remains true when Ωφ,R is replaced by its non-hyperbolic analog. Namely, put


ωφ,R(t) = max
|z|=1−t


|Rφ(z)|(1− |z|2), 0 < t ≤ 1.


Proposition 2.4. Let φ : Bn → B1 be a holomorphic mapping. Assume that n ≥ 2 and


(2.2)


∫
0


ω2
φ,R(t)


t
dt < ∞.


Then φ is not inner.


Proof. Recall that a finite positive measure µ on Bn is called a vanishing Carleson measure
if


lim
r→0+


µ(B(ζ, r))


r2n
= 0


uniformly on ζ ∈ ∂Bn. We argue as in the proof of Corollary 2.2. So, (2.2) guarantees that


|Rφ(z)|2(1− |z|2) dνn(z)
is a vanishing Carleson measure. Thus, φ ∈ VMOA(Bn) by [13, Theorem 5.19]. Recall
that n ≥ 2, hence, φ is not inner by [10, Corollary 3.3]. �
By Theorem 1.1(ii), condition (2.1) is sharp for the class of the inner mappings φ :


B1 → B1. Clearly, there are inner mappings φ : B1 → B1 with property (2.2). In fact, if
n = 1 and (2.2) holds, then φ is inner if and only if φ is a finite Blaschke product (see, for
example, [1, Remark after Theorem 5.1]).
The author is not aware whether conditions (2.1) and (2.2) are sharp for the class of the


inner mappings φ : Bn → B1 when n ≥ 2. Note that Ωφ,R is bounded by the Schwarz–Pick
lemma. Clearly, we have ωφ,R ≤ Ωφ,R. Finally, by [3, Corollary 3.1], there exist inner
mappings φ : Bn → B1 such that Ωφ,R(t) → 0 as t → 0+.


3. Proof of Theorem 1.4


We need two auxiliary lemmas.


3.1. A reverse estimate for Bloch functions.


Lemma 3.1 ([5, Lemma 3.2]). Let m ∈ N and let 0 < p < ∞. Then there exist constants
J = J(m) ∈ N, τm,p > 0 and there exist functions Fj,x ∈ B(Bm), 1 ≤ j ≤ J , 0 ≤ x ≤ 1,
such that ∥Fj,x∥B(Bm) ≤ 1 and


J∑
j=1


∫ 1


0


|Fj,x(w)|p dx ≥ τm,p


(
log


1


1− |w|2


) p
2


for all w ∈ Bm.


It is worth to mention that J(1) = 1 in the above lemma.
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3.2. Exponential integrals. In this subsection, we use dyadic martingales on arcs [ζ, ξ) ⊂
∂B1. Given an arc I0 ⊂ ∂B1, let Fk be the σ-algebra generated by the dyadic subarcs
Ik ⊂ I0, σ1(Ik) = 2−kσ1(I0). For a real dyadic martingale M = (Mk,Fk), the square
function SM is defined by the identity


SM =
∞∑
k=1


(∆Mk)
2,


where ∆Mk = Mk −Mk−1. We need the following result:


Theorem 3.2 (see [2]). Let (Mk,Fk) be a real dyadic martingale on an arc I0 ⊂ ∂B1.
Assume that D > 0 and


∥SM∥∞ <
1


4D
.


Then the limit M∞(ζ) = limk→∞ Mk(ζ) exists at σ1-almost every point ζ ∈ I0 and


1


σ1(I0)


∫
I0


exp
(
D(M∞ −M0)


2(ζ)
)
dσ1(ζ) ≤ C < ∞,


where C > 0 is an absolute constant.


The proof of the following lemma is based on certain ideas from [6].


Lemma 3.3. Let g ∈ H(B1). Assume that


|g′(z)|(1− |z|2) ≤ ω(1− |z|) for all z ∈ B1,


where ω is an increasing function on [0, 1], ω(0) = 0, and∫
0


ω2(t)


t
dt < ∞.


Let A > 0. Then there exists a constant C = C(A,ω, |g(0)|) < ∞ such that∫
∂B1


exp
(
A|g(rζ)|2


)
dσ1(ζ) ≤ C


for all 0 ≤ r < 1.


Proof. We have ∫ 1


0


|g′(rζ)|2(1− r2) dr ≤
∫ 1


0


ω2(1− r)


1− r2
dr < ∞


for all ζ ∈ ∂B1. Thus,∫
∂B1


(∫ 1


0


|g′(rζ)|2(1− r2) dr


) p
2


dσ1(ζ) ≤ C(ω) < ∞


for all p < ∞. Hence, ∥g∥Hp(B1) ≤ C(p, ω, |g(0)|), where Hp(B1) denotes the Hardy space
(see, for example, [14]). In particular, ∥g∥H1(B1) ≤ C(ω, |g(0)|). So, the boundary values
g∗(ζ) are defined σ1-a.e., g


∗ ∈ L1(∂B1), and g = P [g∗], where P [g∗] is the Poisson integral
of g∗.
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Now, consider the function u = Re g : B1 → R. Note that


|∇u(z)|(1− |z|2) ≤ ω(1− |z|).
Recall that ω is increasing on [0, 1]. So, by Green’s formula, there exists an absolute
constant C > 0 such that


(3.1)


∣∣∣∣∫
I+


u∗(ζ) dσ1(ζ)−
∫
I−


u∗(ζ) dσ1(ζ)


∣∣∣∣ ≤ Cσ1(I±)ω(σ1(I±))


for any adjacent arcs I+, I− ⊂ ∂B1 such that σ1(I+) = σ1(I−) (see, for example, the proof
of the implication (b)⇒(a) from [6, Theorem 1.1]).
Let I0 ⊂ ∂B1 be an arc. Consider the dyadic martingale M generated on I0 by the


function u∗(ζ). Namely, put


Mk|Ik =
1


σ1(Ik)


∫
Ik


u∗(ζ) dσ1(ζ),


where Ik is a dyadic arc of rank k, k ≥ 0. By Lebesgue’s differentiation theorem, the limit
M∞(ζ) = limk→∞ Mk(ζ) exists at σ1-almost every point ζ ∈ I0; moreover, M∞ = u∗ σ1-a.e.
Estimate (3.1) guarantees that


SM(ζ) =
∞∑
k=1


(Mk(ζ)−Mk−1(ζ))
2 ≤ C


∞∑
k=1


ω2(2−kσ1(I0)) for all ζ ∈ I0.


Since ω is increasing, we have
∞∑
k=1


ω2(2−kσ1(I0)) ≤ C


∫ σ1(I0)


0


ω2(t)


t
dt.


Hence, there exists n0 ∈ N so large that


∥SM∥∞ <
1


16A


for all I0 with σ1(I0) ≤ 1
n0
. Fix such a number n0 = n0(A,ω).


Now, let I0 ⊂ ∂B1 be an arbitrary arc such that σ1(I0) =
1
n0
. By Theorem 3.2, we have


(3.2)
1


σ1(I0)


∫
I0


exp
(
4A(Re g∗(ζ)−M0)


2
)
dσ1(ζ) ≤ C.


Also, note that


(3.3)
M0 =


1


σ1(I0)


∫
I0


Re g∗(ζ) dσ1(ζ) ≤
∥g∥H1(B1)


σ1(I0)


≤ n0C(ω, |g(0)|) ≤ C(A,ω, |g(0)|).
By (3.2) and (3.3), we obtain


1


σ1(I0)


∫
I0


exp
(
2A(Re g∗(ζ))2


)
dσ1(ζ) ≤ C(A,ω, |g(0)|).
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Analogously, we have


1


σ1(I0)


∫
I0


exp
(
2A(Im g∗(ζ))2


)
dσ1(ζ) ≤ C(A,ω, |g(0)|).


Note that exp(A(a2 + b2)) ≤ exp(2Aa2) + exp(2Ab2) for all a, b ∈ R. Therefore,


n0


∫
I0


exp
(
A|g∗(ζ)|2


)
dσ1(ζ) ≤ C(A,ω, |g(0)|).


Thus, ∫
∂B1


exp
(
A|g∗(ζ)|2


)
dσ1(ζ) ≤ C(A,ω, |g(0)|).


Finally, recall that


g(rζ) =


∫
∂B1


g∗(ξ) dµrζ(ξ), 0 ≤ r < 1, ζ ∈ ∂B1,


where


µrζ(ξ) =
1− r2


|rζ − ξ|2
dσ1(ξ), ξ ∈ ∂B1,


is the Poisson kernel for the point rζ ∈ B1. So, by Jensen’s inequality,∫
∂B1


exp(A|g(rζ)|2) dσ1(ζ) ≤
∫
∂B1


exp


(
A


(∫
∂B1


|g∗(ξ)| dµrζ(ξ)


)2
)


dσ1(ζ)


≤
∫
∂B1


∫
∂B1


exp
(
A|g∗(ξ)|2


)
dµrζ(ξ) dσ1(ζ)


=


∫
∂B1


exp
(
A|g∗(ζ)|2


)
dσ1(ζ)


≤ C(A,ω, |g(0)|)
for all 0 ≤ r < 1. �
3.3. Proof of Theorem 1.4. If φ : Bn → Bm is a holomorphic mapping, then


|Rφ(z)| ≤ |∇φ(z)|, z ∈ Bn.


So, the following assertion implies Theorem 1.4.


Theorem 3.4. Let n,m ∈ N and let φ : Bn → Bm be a holomorphic mapping such that


(3.4)
|Rφ(z)|(1− |z|2)


1− |φ(z)|2
≤ ω(1− |z|), z ∈ Bn,


where ω satisfies the assumptions of Lemma 3.3. Then∫
∂Bn


(
1


1− |φ∗(ζ)|2


)K


dσn(ζ) < ∞


for all K > 0.
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Proof. Let the constant τ = τm,2 > 0 and the functions Fj,x ∈ B(Bm), 1 ≤ j ≤ J ,
0 ≤ x ≤ 1, be those provided by Lemma 3.1 with q = 2. Note that


(3.5) |∇Fj,x(w)|(1− |w|2) ≤ C, w ∈ Bm, 1 ≤ j ≤ J, 0 ≤ x ≤ 1.


Fix a point ζ ∈ ∂Bn. Consider the slice-mapping φζ(λ) = φ(λζ), λ ∈ B1. Observe that


(Fj,x ◦ φζ)
′(λ) =


m∑
k=1


∂Fj,x


∂wk


(φζ(λ)) · (φζ)
′
k(λ).


We have λ(φζ)
′
k(λ) = (Rφk)(λζ), hence,


|λ||(Fj,x ◦ φζ)
′(λ)|(1− |λ|2) ≤ |∇Fj,x(φζ(λ))||Rφ(λζ)|(1− |λ|2)


≤ C
|Rφ(λζ)|(1− |λζ|2)


1− |φ(λζ)|2
≤ Cω(1− |λ|), λ ∈ B1,


by (3.5) and (3.4). So, Lemma 3.3 is applicable to the function Fj,x ◦ φζ ∈ H(B1). Recall
that ∥Fj,x∥B(Bm) ≤ 1, thus, |(Fj,x ◦ φζ)(0)| is estimated by a constant C = C(φ(0)).
Therefore, Lemma 3.3 guarantees that


C = C(A, ω, φ(0)) ≥
∫
∂B1


exp
(
A|Fj,x ◦ φζ(rξ))|2


)
dσ1(ξ)


for all 1 ≤ j ≤ J , 0 ≤ x ≤ 1, 0 ≤ r < 1. So, we have


C ≥ 1


J


J∑
j=1


∫ 1


0


∫
∂B1


exp
(
A|Fj,x ◦ φζ(rξ))|2


)
dσ1(ξ) dx


for all 0 ≤ x ≤ 1, 0 ≤ r < 1. Now, Fubini’s theorem, Jensen’s inequality and Lemma 3.1
with q = 2 guarantee that


C ≥
∫
∂B1


1


J


J∑
j=1


∫ 1


0


exp
(
A|Fj,x ◦ φζ(rξ))|2


)
dx dσ1(ξ)


≥
∫
∂B1


exp


(
A


J


J∑
j=1


∫ 1


0


A|Fj,x ◦ φζ(rξ))|2 dx


)
dσ1(ξ)


≥
∫
∂B1


exp


(
Aτ


J
log


1


1− |φζ(rξ)|2


)
dσ1(ξ)


=


∫
∂B1


(
1


1− |φζ(rξ)|2


)Aτ/J


dσ1(ξ)
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for all 0 ≤ r < 1. Note that the above constant C = C(A,ω, φ(0)) does not depend on
ζ ∈ ∂Bn. So, putting A = KJ/τ and integrating by slices, we obtain


C ≥ sup
0≤r<1


∫
∂Bn


(
1


1− |φ(rζ)|2


)K


dσn(ζ).


By Fatou’s lemma, the proof of Theorem 3.4 is complete. �


4. Theorem 1.4 and growth spaces


The following result shows that the conclusion of Theorem 1.1(ii) remains true when
(1− |φ(z)|2)−1 is replaced by an arbitrarily large function of (1− |φ(z)|2).


Theorem 4.1 ([1, Theorem 5.3]). Assume that ω is an increasing function on [0, 1], ω(0) =
0, ω(t)/t1−ε decreases for some ε > 0, and∫


0


ω2(t)


t
dt = ∞.


Let v : (0, 1] → (0,+∞) be a continuous function, v(0+) = 0. Then there exists an inner
function φ : B1 → B1 such that


|φ′(z)|(1− |z|2)
v(1− |φ(z)|2)


≤ ω(1− |z|) for all z ∈ B1.


So, it is natural to look for stronger conclusions when the hyperbolic gradient


|∇φ(z)|
1− |φ(z)|2


in estimate (1.3) is replaced, for example, by


|∇φ(z)|
(1− |φ(z)|2)γ


for some γ > 1.
By analogy with Theorem 1.4, the above problem is closely related with properties of


the composition operator Cφ : f 7→ f ◦ φ, f ∈ A−β(Bm), β > 0. By definition, the growth
space f ∈ A−β(Bm) consists of those f ∈ H(Bm) for which


∥f∥A−β(Bm) = sup
z∈Bm


|f(z)|(1− |z|2)β < ∞.


In a sense, the Bloch space B(Bm) is an extension of the scale {A−β(Bm)}β>0 to the
end-point β = 0.
It is well known that ∥f∥A−β(Bm) is equivalent to the following Bloch-type norm:


∥f∥Bβ+1(Bm) = |f(0)|+ sup
z∈Bm


|∇f(z)|(1− |z|)β+1.


The following lemma is a particular case of Lemma 1.2 from [4].







12


Lemma 4.2. Given β > 0 and m ∈ N, there exists Fj ∈ A−β(Bm), 1 ≤ j ≤ J = J(m),
such that


(4.1)
J∑


j=1


|Fj(z)| ≥
1


(1− |z|)β
, z ∈ Bm.


The role of the above lemma will be similar to that of Lemma 3.1.


Theorem 4.3. Assume that ω is an increasing function on [0, 1], ω(0) = 0, and∫
0


ω2(t)


t
dt < ∞.


Let α > 1 and let φ : Bn → Bm be a holomorphic mapping such that


|Rφ(z)|(1− |z|2)
(1− |φ(z)|2)α


≤ ω(1− |z|), z ∈ Bn.


Then ∫
∂Bn


exp


[
K


(1− |φ∗(ζ)|2)α−1


]
dσn(ζ) < ∞


for all K > 0.


Proof. Let the functions Fj ∈ A1−α(Bm), 1 ≤ j ≤ J , be those provided by Lemma 4.2 with
β = α− 1 > 0. Note that


(4.2) |∇Fj(w)|(1− |w|2)α ≤ C, w ∈ Bm, 1 ≤ j ≤ J.


Fix a point ζ ∈ ∂Bn. We argue as in the proof of Theorem 3.4. So, given A > 0, we
have


C = C(A,ω, φ(0)) ≥
∫
∂B1


exp
(
A|Fj ◦ φζ(rξ))|2


)
dσ1(ξ)


for all 1 ≤ j ≤ J , 0 ≤ r < 1 by (4.1), (4.2) and Lemma 3.3. Therefore,


C ≥ 1


J


J∑
j=1


∫
∂B1


exp
(
A|Fj ◦ φζ(rξ))|2


)
dσ1(ξ)


for all 0 ≤ r < 1. Applying Jensen’s inequality and Lemma 4.2, we have


C ≥
∫
∂B1


1


J


J∑
j=1


exp
(
A|Fj ◦ φζ(rξ))|2


)
dσ1(ξ)


≥
∫
∂B1


exp


(
A


J


J∑
j=1


A|Fj ◦ φζ(rξ))|2
)


dσ1(ξ)


=


∫
∂B1


exp


[
A


J(1− |φζ(rξ)|2)α−1


]
dσ1(ξ)


for all 0 ≤ r < 1. To finish the proof, put A = KJ , integrate by slices and apply Fatou’s
lemma. �
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5. Theorem 1.1(i) and inner functions


As mentioned in the introduction, it is natural to expect that the conclusion of Theo-
rem 1.1(i) remains true when the hyperbolic factor (1− |φ(z)|2)−1 is replaced by a smaller
function of (1−|φ(z)|2). To quantify this observation, assume that Ω, ω : (0, 1] → (0,+∞)
are bounded measurable functions. By definition, Ω is called admissible if the implication∫


0


ω2(t)


t
dt < ∞ ⇒ φ is not inner


holds for all holomorphic functions φ : B1 → B1 such that


(5.1)
|φ′(z)|(1− |z|2)


1− |φ(z)|2
Ω(1− |φ(z)|2) ≤ ω(1− |z|2) for all z ∈ B1.


For example, up to additional assumptions about ω, Theorem 1.1(i) says that Ω ≡ 1 is
admissible.
To characterize the admissible functions, we use the following result, which is essentially


obtained in [12].


Theorem 5.1 (cf. [12, Theorem 1.1]). Let Ω : (0, 1] → (0,+∞) be a measurable function
such that


(5.2)


∫
0


Ω2(t)


t
dt = ∞.


If φ : B1 → B1 is an inner function, then


(5.3)


∫
B1


|φ′(z)|2Ω
2(1− |φ(z)|2)
(1− |φ(z)|2)2


(1− |z|2) dν1(z) = ∞.


Proof. Recall that the Nevanlinna counting function is defined by the identity


Nφ(w) =
∑


z∈φ−1(w)


log
1


|z|
, w ∈ B1 \ {φ(0)}.


We have


(5.4)


∫
B1


|φ′(z)|2Ω
2(1− |φ(z)|2)
(1− |φ(z)|2)2


log
1


|z|
dν1(z) =


∫
B1


Ω2(1− |w|2)
(1− |w|2)2


Nφ(w) dν1(w)


by a change of variable formula; see [11, p. 398].
Since φ is inner, we have


Nφ(w) = log


∣∣∣∣1− wφ(0)


w − φ(0)


∣∣∣∣
for all w ∈ B1 \ {φ(0)} outside a set of logarithmic capacity zero, hence, for all w ∈ B1 \E
with ν1(E) = 0 (see [9]). Therefore,


CNφ(w) ≥ 1− |w|2


for all w ∈ B1 \ E. So, the right-hand side of (5.4) is infinite by (5.2). Hence, (5.3)
holds. �







14


Corollary 5.2. Let Ω : (0, 1] → (0,+∞) be a bounded measurable function. Then Ω is
admissible if and only if


(5.5)


∫
0


Ω2(t)


t
dt = ∞.


Proof. Let (5.5) hold. Assume that φ : B1 → B1 is holomorphic, (5.1) holds, and∫
0


ω2(t)


t
dt < ∞.


Then ∫
B1


|φ′(z)|2Ω
2(1− |φ(z)|2)
(1− |φ(z)|2)2


(1− |z|2) dν1(z) ≤
∫
B1


ω2(1− |z|2)
1− |z|2


dν1(z) < ∞.


Hence, by (5.5), Theorem 5.1 guarantees that φ is not inner. In other words, Ω is admissible.
To prove the converse implication, assume that∫


0


Ω2(t)


t
dt < ∞.


Then (5.1) holds with ω = Ω for the inner function φ(z) = z. So, Ω is not admissible. �
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