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ABSTRACT:

We consider linear problems arising in linearization of a free boundary problem in magnetohy-
drodynamics. Linear problem for velocity vector field has a slightly different form as usual as a
consequence of the non-zero velocity of motion of the barycenter. Weighted estimates with the weight
e a > 0 for solutions of these problems in Sobolev norms are proved. On this base we intend
to prove the global solvability for the free boundary problem in magnetohydrodynamics under the
assumptions that the initial data are small and the initial position of the free boundary is close to the
sphere. Here we formulate the theorem for the nonlinear problem, the paper with the detailed proof
is in preparation.
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1 Introduction

We consider the free boundary problem governing the motion of a finite isolated mass of a
viscous incompressible electrically conducting capillary liquid. It is assumed that the lig-
uid is contained in a bounded variable domain 21; whose boundary consists of two disjoint
components: the free boundary I'; and a fixed surface 3 that ia also a boundary of a fixed
domain D. The domain D U y; is surrounded by a bounded vacuum region oy we set
Q=0 UTyUQy; Q is bounded by ¥ and the exterior surface S. It is assumed that both §
and ¥ are perfect conductors, [';NS = @, I''NY = & . The problem consists of determination
of Qj; together with the functions v(z,t), p(z,t) defined for x € Q1; and H(x,t), x € Q1,UQqy;
and satisfying the following system of equations, initial and boundary conditions:

vi+ (v-V)o—-V -T(v,p) =V -Ty(H) =0, V-v(zr,t) =0, z¢€Qyy,

i Hy + o trotrotH — pyrot(v x H) =0, V-H(z,t)=0, z€Qy, >0,
rotH=0, V- -H(z,t)=0, x€ Qo

v(z,t) =0, z€X,

T,p)+ Tu(H))n =0onH, V,=v-n, zecly, (1.1)
[WH -n]=0, [H;]=0, zely,
H(z,t) n(z

=0, z€S8,
H(z,t) - n(z)=0, rot;H=0, z€,
’l)(fl?,O) = ’UQ(ZE), T € Qqp, H(:L",O) = HQ(:L"), z € Q19 U Q9.

We have used the following notation:

v,a, o are positive constants (the kinematic viscosity, conductivity, coefficient of the sur-
face tension),

‘H is the doubled mean curvature of I',

T(v,p) = —pl + vS(v) is the stress tensor,

o T _ % 811]-
S(v) =Vov+ (Vv)' = <axj + 34‘2‘)@,;’:1,2,3

V. is the velocity of evolution of the surface ['; in the direction of the exterior normal n
to Ft,

 is a piecewise constant function (equals to p; > 0 in ;) - magnetic permeability,

Tyv(H) = p(H ® H — 1I|H|?) is the magnetic stress tensor.

Q19 is a given initial configuration of the liquid,

09 =X Uy,

[u] = v —u® - jump of u(z) on I'y, ul = ul e,

Similar problem but without a rigid domain D is studied in the paper [1]. Tt is proved
that for arbitrary Q9 C Q and arbitrary initial data vo(x), Ho(z) given in Q9 and Q9 U
Qog, respectively, and satisfying natural compatibility conditions, this problem has a unique
solution defined on a certain (small) time interval.

Our goal is to show that the problem (1.1) is uniquely solvable in an infinite time interval
t > 0, under the additional assumptions that the initial data are small and the surface I'y is
close to a sphere. We also intend to prove that the velocity, pressure and the magnetic field
tend to zero exponentially and I'y; tends to a sphere when ¢ — oc.

Now we make some auxiliary constructions. Let €; = Q; U D and let |Q] = [Qp] =
%ﬂ'Rg. When we imagine that D is also filled with the liquid of the same density 1, then the

is the doubled rate-of-strain tensor,



barycenter of €2; is located at the point

1

= — zdz.
Q0] Jo,

£(#)

We assume that £(0) = 0. The velocity of the motion of the barycenter is

1 d 1
"t) = —— rdr = — v(z,t)dz,
£ |90|d75/m €| QM( )

if v(z,t) =0 for z € D.
Let
Fo={z=y+N@Hpo(y), Y€ Sry}

and
Iy ={z=y+ N(yply,t) +£(t), y € Sry,}

where N (y) = é—‘ is the exterior normal to Sr, = {|y| = Ro}. In order to write the problem
(1.1) in the fixed domain we construct the mapping of Q = Q1;,UT,UQy; on Q = F1USR, UFo,
where Fj is the domain bounded by ¥ and Sg, and F, = Q\ Fy; 0F, = S U Sg,.

We take a smooth cut-off function x(y) equal to 1, when y belongs to the layer Ry — dy <
ly| < Rp + do (we assume that this layer is contained in €2), and we extend N (y) and p(y, t)
from Sg, into €, as in [1], in particular, we assume that the extension p*(y,t) = 0 near S

and Y. In our problem it is possible to set N* = % Now we define the mapping
z=y+ Ny (y,t) + xW)E{t) =epe, y el (1.2)

When p and £(¢) are sufficiently small (which is certainly the case for ¢ < ty), then (1.2)
establishes one-to-one correspondence between F; and ¢, 1 = 1,2. We denote by Ly, p*, &)
the Jacobi matrix of the transformation (1.2) and we set L = detL, £L = LL~'. We note that

pt(y7 t) = 'I’LT-('U n— fi/f(t) : n)’x:e‘jé)

. . . R(y,t
where n, is the radial component of the normal to I'y, i.e., n, = %, R = Ry + p,

V., being the gradient on the unit sphere |y| = 1, i.e., the gradient with respect to the angular
variables.

As in [1], the transformation (1.2) converts (1.1) in a nonlinear problem in the fixed
domain Q = F; U Sk, U F2,. We separate linear and nonlinear parts in this problem, then it



can be written in the following form:

uy(y,t) — vVu + Vg = li(u,q, h, p),
V-u=ls(u,p), yeF, t>0,

IIyS(u)N = l3(u, p),

—q+vN - S(u)N(y) + oBop = ls(u, h,p) +15(p),

pt —u-N(y)+ udy - N(y) = ls(u,p), y € Sgy,

Q0] /7,
prh; + o trotroth = l7(h,u, p), (1.3)
V-h=0, yceF,

roth = rotlg(h,p), V-h=0, y¢& Fo,

[IU’hN] 207 [h”l’] :l9(h’7p)7 y e SR07

h(y,t) -n(y) =0, yeSUX, rot;h=0, yex,

U(y,O) :'U:()(y), y€~7:17 h(y,O) :h[)(y), ye]:lU]:Qa

P(y,0) =po(y), ¥ € Sk,

where u(y,t) =voe,e, q(y,t) =poeye, h(y,t) = Ly, p*, &) (H o epc), l; are the nonlinear
terms.

1
Bop = — 45 (Asip +20),
0

(1.4)

where Ag, is the Laplacean on the unit sphere S;. The expression o Byp is the first variation
of o(H(x) + Rlo) with respect to p, and l5(p) is a nonlinear remainder. The conditions
|Qo] = %T(‘R% and wi z;dr = 0 imply

/((R0+P0)3—R3)d5=07 /yz‘((Ro+P0)4—R§)d5=0’ i=1,2,3,
S1

St

i.e.,

1 1
ds = —— 2 dS——/ 3(y)dS,
/S1 po(y) e Slp (y) 3R /s, p°(y)

3 1
Yip de:——/ yiPQQdS__/ yipsde——/ yip* (y)dS.
[ wootris =~z | it — s [ tds - i [ ')



2 Linear problems

Omitting the nonlinear terms in (1.3), we arrive at a linear problem, which is separated in
two independent parts. At first, we consider the corresponding non-homogeneous problems

'Ut_VVQIU"i_Vp:f(yvt)a V-v:f(y,t):V-F(y,t), 96-7:1,
HOS(U)N = H()d(yat)a
—p+vN - -Sw)N +o0Byp=d-N,

pr— (v — |90|1/]r v(y,t)dy) - N =g(y,t), y € Sgys
1

U(yat) :07 Yy < 25
v(y,0) =vo(y), yeFi, p=0) =p(y), yESr;

(2.1)

and

pHy +a trotrotH = G(y,t), V-H=0, z¢cF,

rotH = j(y,t), V-H=0, x€ Fo,

[WH-N|=0, [H:]=a(y,t), yE€ Sg, (2.2)
H-n=0, yeSUX, rot;H=0, yecbl,

H(y,0) = Ho(y), ye€F1UZF.

The main result of the present paper is the weighted estimates in the norms of Sobolev-
Slobodetskii spaces. Let us remind the definition of these norms. Let 2 € R™, the norm in
the Sobolev space Wi(Q) for non-integer [ is defined by the formula

5 o o 2 dxdy
Il [y )=l v ||W[z + Z //‘D — D%u(y)| & — |20

|a|=

where

o 2
lulmg= > [ D) ds

0<|e|<[l]

is the norm in the space WQM. The anisotropic Sobolev-Slobodetskii space WQZ’l/ 2(QT) in
the cylindrical domain Q7 = € x (0,T) can be defined as the space Lo((0,T), Wi(Q)) N

WQZ/Q((O, T), Ly(2)) with the following norm

T
HUH i T):/H u(-,t) dt+/||u z/zOT) dx.
0

There exists many other equivalent norms in W2 2z 2(QT). Sobolev spaces of functions defined
on the smooth surfaces are introduced in a standard way, with the help of local maps and
partition of unity.

Theorem 2.1. Assume that | € [0,3/2), and that the data of the problem (2.1) pos-
sess the following regularity properties: f € WQZ Z/Q(QT) f e WQZH’O(QlT), flz,t) = V-
F(z,t), F, e WOQL), d- N € WGy n w0, 1w, /% (S,)), d— N(d - N) €



Wyt PRI Gr), g e Wy Gy, g € WEFN(F), po € WY (SR,) where T < oo,
Qy = F1 x (0,T), Gp = Sgr, % (0,T). Moreover, let the compatibility conditions

V-vo(z) = f(z,0), ze€F, HpS(vy)N =1d(z,0), =z € Sg, (2.3)

be satisfied. Then the problem (2.1) has a unique solution v,p, p such that v € WZHZ’UZH(Q%«),

Vp € WPQL), p € Wit P (Gr) n W0, T W, P (Sky)), o € Wy PPN Gy,

pE WZHE)/Z’O(GT) N Wzl/z(O,T; WS/Q(SRO)), and the solution satisfies the inequality

HvHWéH,z/zH(Q%F) + HvPHWj’l/Z(Q%F) + HPHW§+1/2,0(GT) + HP”W§/2(07T;W§/2(SRO))

+ HPHW;H’/Z’O(GT) + HpHWé/Q(QT;Wiﬂ(SRO)) + HptHW;F?’/QJ/Q-‘r?’/‘l(GT)

< o) (15 lyarzgony + 1 Doy + IFullyonsarz o (2.4

1
T
+ HHOdHWé+1/2’l/2+1/4(GT) + Hd : NHW;-’_I/ZO(GT) + Hd : NHwé/z((LT;Wzl/?(SRO))
+ H9HW5+3/2J/2+3/4(GT) + H'UO”W;H(]-]) + HPOHVVéJr2(5RO)) =c(T)K(T).
Proof. Similar result for a problem arising in linearization of a free boundary problem with a

fixed barycenter is proved in [2]. Problem (2.1) differs from the one considered in [2] by the
term

Q]! / v(y, t)dy - N,
Fi

which we have as a consequence of the non-zero velocity of the motion of the barycenter.
This term is of the lower order in comparison with the others in the boundary condition,
and can be estimated by the interpolation inequality. Indeed, applying to (2.1) the coercive
estimate proved in [2], we arrive at

HUHI/V;'FZ’Z/2+1(Q%_‘) + HVPHWZZJ/Z(Q,%) + ”p“Wé+1/2’O(GT) + HpHWZZ/Z(O,T7W21/2(SRO))

el F 1Pz g2 s, Tl g,

< oD)(K(D) 41900 | [ o0ty N [ypissouniars ) (2.5)
Fi1
<) (K@) + [ 100) ey, d).
F1

By the interpolation inequality [3], we have
| v HW20J/2+3/4(Q1T)§ eflw HW20J/2+1 +C(e) [ v Iz, g1 (2.6)

Estimates (2.5) and (2.6) imply

|0 lyrrairass g, < 2@ (K@ 110 11,01 ):



Clearly, this estimate is true also for any ¢ < 7. In particular,

t
t) = f v(y,t)Pdy = bf 4 ( f o (y, 7)Pdy)dr+ | wo [I7, 5,

t
<[ f lvr(y, 7 !2d9d7+f J oy, m)Pdydr+ [ wo |17, (5,
0 F 0 F

t

<K+ [ J(T)df). (2.7)

0

With the help of the Gronwall lemma, we deduce from (2.7) the estimate of the Ly norm:

9 lzaep= / [ Payr <R, s ©.3)
0 A
Collecting (2.5), (2.6), (2.8), we obtain the desired estimate (2.4). O

Remark. Estimate (4.22) [2], estimate (2.5), and interpolation inequalities imply that if
we add to the right-hand side of (2.4) the week norm of v, the constant c¢(T') remains uniformly
bounded. It means that under the assumptions of Theorem 2.1 the following estimate

HUHWé*‘Zl/Q'Fl(Q%) + vaHWZZJ/z(Q’:lT') + HpHW;‘i‘l/zao(GT) + HpHWZZ/Z((LTyWZl/Z(SRO))

Flelwgrorzo gy TNl rwg/2se )y TPz,

< C (110 lzaay) +1f gtz + 1 wtnoigny + 1Fllynrrzon (29)

LTS +||d v iy I Ny i,

+ HgHWé+3/2,1/2+3/4(GT) + H’UOHWéJrl(]_—l) + HPOHW§+2(SRO)).

holds with the constant C independent of T.

The unique solvability of problem (2.2) and estimates of the solution in Sobolev norms
follows from the results obtained in [1].

Theorem 2.2. Assume that the data of the problem (2.2) possess the following prop-

erties: G € Wy'*(QL), Hy € Wit (F) n Wi (F), § = 5@ e Wyt T02(Q2), a €

14+3/2,1/2+3/4
W2+ [2:4/2+3/ (Gr), moreover,

3(2) = ’l’OtJ(z), HAS f27 a(a:,t) = [A(:E,t)], YIS SRO?

with 7 € W, 7HQR), TP € Wy (0.7 wy 1 (Sky). AD € Wy Q). A €
Wl/z(O,T; W;l/Q(SRO)), i = 1,2, and the compatibility conditions

V-G(z,t) =0, z€F, V-Hylz)=0, ze€FUF, roHyx)=7iP0), =zck,
[uHy-N]=0, [Ho]=a(z,0), a- N=AYD.N=0, zecSg,

Hy-N=0, rot;Hy=0, z€cX, A(2>S=0, A(l)E:O, J(2>S:0,



are satisfied. Then the problem (2.2) has a unique solution
H e Wy P QE) nwy PN QR) with HIY € w0, 15w, 2 (Sgy)), i=1,2,
and
2
; (”H(i)”vvé”’”?“(@%) * HH@HWé/Z(O,T;Wz_l/Z(SRO))> = C(“G”wé’l”@;) + [ Hollyyre1 5,

. . 2
+lallygearnag,y +Suplal, Olgrrns, ) + 13loig, + 52 1l + 177 lyave gs)

2
(2) ()
+ HJt HWé/Q(O,T;W;UZ(sRO)) + HAtHWZO’l/Z(QT) + Z HAt HW;N(O,T;WZ_I/Q(SRO))).
=1

Now we consider the homogeneous linear problems:
v — vV +Vp=0, V-v=0 yeF,
HQS(’U)N = O,
—p+vN-Sw)N + 0Byp =0,
pr=(v-— !Qo!_l/ v(y,t)dy) "N, y € Sk,
F1

(y,t):(), yGE,
(¥,0) =voly), ye€Fi, px0)=p(y), yESr

(2.10)
v
v
and

piHy+ o trotrotH=0, V-H=0, z¢&F,

rotH=0, V-H=0, z¢&F,

(wWH - -N]=0, [H; =0, yé€Sg,, (2.11)
H-n=0, yeSUY, rot;H=0, ye,

H(y,0) = Ho(y), y€ F1UF,

Linearization of conditions (1.5) leads to

/ po(y)dS =0, / yipo(y)dS =0, i=1,2,3. (2.12)
SRrg R

SRy

It is easily seen that (1.3) implies the same conditions for p(y,t):
| swvis=o. [ wpltds =0, i=1.23 (2.13)
SRy SRy

This follows from

d 1

— oy, t)dS = v-NdS — — vdy - N(y)dS =0,

dt Js,, Skq Q] J7, Sky

d 1

— yip(y,t)dS = | vi(y,t)dy — —/ vdy - N (y)y:dS = 0.
dt SRq F1 0] J7, SRy



Now we formulate the main result of the present paper:
Theorem 2.3 For arbitrary vo € Wy ' (Fy) and pg € W2 (Sg,), | € [0,3/2), satisfying
the compatibility conditions

V- ’U[)(y) =0, yelrh, HOS(UO)N(y) =0, y€Sg,
and the conditions (2.12), the problem (2.10) has a unique solution, and
HeathW;+2,l/2+1(QlT) + He‘lthHW;,z/z(QlT) + HeatpHWé-s-l/z,o(GT) + HeatpHW;/z 075w,/ %(Sr )
e ol rszayy T 1Pl mansrz sgyy + 1€ plhwgrarnimsarg,

. | (2.14)
+sp [lew0( )lge gz + sup 1o (o Dl )

< C(H'U()Hwé“(}'l) + HPOHWé“(SRO))’
where a > 0, the constant ¢ is independent of T

Proof. At first we prove the energy estimate. We multiply the first equation in (2.10) by v,
integrate over Fi, and integrate by parts. We arrive at

14
OF1

Due to the boundary conditions in (2.10), the boundary integral takes the form

/ang(pt—i—‘Q ’/ (y,t)dy - N)ds = /aptBopds—l—a/Bop£ t)- Nds, (2.16)

SRrg Sgrg SRrg

where
Bop = —Aggp p— 2p.

The second term in (2.16) is equal to zero due to the condition (2.13), while the first term
takes the form

o o d d
- A 20) ppds = — — Vol? —20%)ds = —— M ().

As a result, (2.15) reads

1d y
S (0G0 Iy +M @) + 511 S@) 17, 5= 0. (2.17)

It can be demonstrated in the same way as in [4], [5], that conditions (2.13) imply that

M (t) is positively defined. Really, due to (2.13), p is orthogonal to the first and the second
“+oo

eigenfunctions of Laplace-Beltarmi operator Ag,. Consequently, if we decompose p = > Y},
n=2

where Y, are linear combinations of eigenfunctions, corresponding to the eigenvalue A\, =

n(n + 1), we see that

+oo
/Z (n+1)Y, —2Y)ZYd3> /\pr\dw+R2/p2dw,

S1

10



hence,
M) = C () Py, (218)

In (2.17) there is no dissipative term for p. To add this term, we use the so-called ”free
energy” method (see for example [6], [7], [8]).

Lemmal([6],[8]) For any function p € WQZH/Q’O(GT) such that py € Lo(Gr), and satisfy-
ing the orthogonality condition

| ptutris =o.
Sko

there exists a vector field
w('vt) S W21(-7:1)a wt('at) S LQ(fl)v
which is a solution to the following problem

V-w=0, y € Fi, t >0,
w|220, w- N = p,

SRro
and satisfies the estimates
[ 00) g = e 060 lyaregs
L w(,8) < el pt) agsng ) (2.19)
|| wt('vt) HLz(.7:1)S c || Pt(',t) ||L2(SR0) .
We multiply the first equation in (2.10) by w and integrate over Fi, we arrive at
/vt-wdx—i-u/VQv-wdm—l—/Vp-wdx:0.
Fi Fi Fi

Then we integrate by parts and take into account the boundary conditions in (2.10), we have

L [v-wdz+v [ S(): S(w)dr — [ v wdr
F1 F1 F1

+ [ oBopw - Nds = 0. (2.20)

SRrg

Due to the condition w - N

g = P we see that the boundary integral in (2.20) can be
Ro
written in the form

[ (9ol —26%)ds = 200,
SR

o
D2
RO
0

We multiply (2.20) by a small positive number vy and add to (2.17), we obtain

1d

52 (B +7Bu() + M(1)) + D) +7D1 (1) + M (1) = 0, (2.21)

11



where

E(t) =| v(-,t) ”%2(}'1)’ Ei(t) = 2f_f v - wdz,
D(t) =% || S(v) HL2 (F1) Di(t)y=v [ S(v): S(w)dz — [ v-wdz,
.7:1 Fi1
Sf(|pr —2p%(-,t))ds.

Making use of (2.19);, we estimate E;(t) in the following way

1B O] <2 [ v ol w o) < 2 10 ol 2 llisgseg) < (1o 17y + 10 Iys,,) )-

For the sufficiently small +, it leads to

B(t) + 7B (t) + M(8) > c( | 00,8) ym) + 16 8) Prggs ) )- (2.22)

Similarly, with the help of (2.19) and the boundary condition (2.10)4, we have

(IwC8) sy + 1 wet) lnagry )

|D1(t)‘ SH ’U(-,t) HW21(]:1)
+ 1 pe5t) sy )

<ellvCt) lwgemy (106D lyoegs,

< el vt gy (1060 Iypras, ) + 1060 lragsny )-

(2.23)

By the Korn inequality
[o(8) lwy ) <SG D) Lo,

and, for the sufficiently small v, (2.18), (2.23) imply
D(t) + D1 (1) + (1) > e( || 0(1) gy #7100 ryisey ) (229)

As a consequence of (2.21) (2.22), (2.24), we obtain the exponential decay in Ly norms

1008) Bym) + 120 8) Brygsn = O (w0 12,0 + 0 [pisney ) B> 0.
(2.25)

Now we pass to the estimate (2.14). Let us introduce the notation:

v = v, p=ep, p=¢e"p, a>0.

If v, p, p is a solution to problem (2.10), then ¥, p, p satisfy the following relations

0 — vV +Vp=—ad, V-9=0, yecF,
I, S(8)N =0,
—p+vN - -S(®)N +oByp =0,

(2.26)

pi= (512" [ os.0dy) - N ~ap. y€ S,
Fi1

f)(yvt)zoa yGE,
(y,0) =voly), ye€Fi, px,0)=p(y), yESr.
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By estimate (2.9), we have

[Bllyygeniroer gy + VPl gy + WPllwrr2o gy + 1Plwire o zawir2(s g

+ Hﬁ”wﬁ"‘g’/z’o(GT) + HﬁHWé/Q(O,T;Wg/z(SRO)) + ”ﬁt”wﬁ+3/2al/2+3/4(GT)

~ ~ ~ (2.27)
<O ooy +alolyoregr) +all®lysogs

+ aHﬁHWé+3/2,z/2+3/4(GT) + HUOHW;“(}H) + HPOHW£+2(SRO))7

where the constant C' is independent of T. We apply to the right-hand side of (2.27) inter-
polation inequalities, and then estimate the week norms || © HLz(QlT)7 | p ||W11(SR0) by (2.25).
For a < 8, (2.25) implies

| ev(-1) HLQ(QIT) + || ep(-,t) HW (Skg) S ¢( [l vo 2.5 Ly T | po le (Sko) )-
As a consequence, we arrive at (2.14). O

Weighted estimates for solutions of problem (2.11) can be carried out by the same scheme.
Theorem 2.4 For arbitrary Hy € WQIH(]-}), 1 = 1,2, satisfying the compatibility condi-
tions

V- -Hy(z) =0, z€FUF, rotHyz)=0, z¢cFy,
[IJ’HON]:()? [HOT]:O’ .TIGSRO,

Hyn =0, rot;Hy=0, yecX, (2:28)
Hy n=0, yes,
the problem (2.2) has a unique solution, and the inequality
2
Zl ||e“tH £+2,z/2+1(Q7;T) + ||€atHz(ei)HWé/2(0TW2 1/2(g ) < CZ HHO ||Wl+1 Fi) (2.29)
i=

holds with a certain o > 0 and with the constant ¢ independent of T

3 Nonlinear problem.

Weighted estimates for linear problems give us the opportunity to prove the global solvability
for the free boundary problem in magnetohydrodynamics under the assumptions that the
initial data are small and the initial position of the free boundary is close to the sphere. Here
we formulate the result for the nonlinear problem (1.3), the paper with the detailed proof is
in preparation.

Theorem 3.1. Let ug € WiT'(F), po € Wi2(Sg,), ho € WL (F) and let the
compatibility conditions

V-ug =la(uo,po)y y € F1, oS(uo)N(y) =1l3(uo,p0), yE€G,
v-hV =0, V-mY =0, rothl? =rotls(h?, po),

[who - N1 =0, [hor] =lg(ho,p0), z€G,

hyo- N =0, rot:hg=0, yeXx

13



and the smallness condition
HUOHWéH(}-l) + HPOHW?S’/?(S + HhOHWZH FySe<l (3.2)

be satisfied. Then the problem (1.3) has a unique solution with the following regularity prop-
erties:

we WHHHR(QL), vae WHHQL), ¢ e WY (Go) nWY(0, 00, WS (S )
€W, G WL O.T W), € WG, RO ey QL.

where Q' = F; x (0,00), Goo = Sg, x (0,00), R = hler,, 1 = 1,2. The solution satisfies
the inequality

e ulyrrareen gy ) + eVl gr ) + Nl o + el ooz

+ ||e® pHWé-w/z,o( + ||e* pHAz/z (0,00 W2/2(Sk ) + ||e? ptHWé+3/2,z/2+3/4(Goo)

¢ ¢ ty (2)
+ igg lle®p(-,t HWHZ Sg + Z [l h(® l’+2 l’/ZJrl(Qz + [le” ht Hsz/z( ;WJI/Q(SRO)))

C(||U0HW£+2(]:1) + HPOHWéJrz Sy T Z ||h Wl’+1 )
(3.3)

with a certain a > 0.

Estimate (3.3) shows that velocity, pressure and the magnetic field tend to zero exponen-
tially and I'; tends to a sphere when ¢ — +o00. The center of the limit sphere is located at
the point

¢(+o0) = 70d¢ / v(z, 7)ds = +/de / w(y, 7) Ly,
0 Q1 0 Fi1
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